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Abstract

Digital Twins (DTs) are increasingly used to manage systems un-
der fluctuating demand, yet many remain static and cannot adjust
their internal models or control policies as the targeted real system
changes. We present a self-adaptive DT architecture that supports
runtime reconfiguration of resources. The architecture integrates
semantic reflection to keep the DT’s runtime model aligned with
the structural representation of the real system, lifecycle-based state
management to trigger reconfiguration at appropriate times, and
penalty-guided optimisation for decision-making under constraints,
balancing resilience and operational cost when capacity must be
reorganised. We realise the approach in DYNREsSDT, a resilient hos-
pital ward prototype for bed bay allocation of patients. Through
simulation with realistic patient-arrival patterns and stress peaks,
the DT maintains model consistency, opens and closes overflow
capacity when needed, and allocates patients while minimising
costly room usage and unnecessary moves. Our results show a prac-
tical trade-off between correctness and responsiveness: timely and
principled adaptions offset potential overhead through reflection
and lifecycle logic. The architectural pattern is applicable beyond
healthcare to other dynamic resource-management domains.
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1 Introduction

Digital twins (DTs) are virtual representations of real systems, pro-
cesses, or entities , designed to mirror and synchronise with their
real-system counterparts [24] (if these systems are physical, the
real system is often referred to as the physical twin, e.g., [11]).
The digital twin’s underlying models enable simulation, analysis,
and optimisation of real-system behaviour over time. When bi-
directional communication is established between the digital and
real-system layers, the feedback loop is closed, allowing digital
twins to not only reflect but also to influence, and possibly even
control, the real system [23]. To ensure adaptation when the real
system and its runtime and structural representation in the DT drift
apart, semantic reflection, a technique to represent runtime states
in knowledge graphs [20], enables the DT to reason about these
differences and adjust autonomously. Self-adaptive systems have
proven effective under changing conditions [35]. In safety-critical
contexts, where reliability is paramount and failures can propagate,
ensuring dependability strengthens overall robustness [37].

In domains such as healthcare, DTs have shown promise in im-
proving operational decision-making, including patient flow and
resource allocation [1, 2, 31]. In such dynamic domains, where pa-
tient influx, ward capacity, and seasonal trends vary rapidly, limited
runtime adaptability remains a key barrier to effective resource
management. Resource allocation tasks are still largely performed
manually by admitting staff, who must make time-critical decisions,
often under uncertainty and incomplete information. Manual task
allocation in healthcare has shown to be inefficient and lead to ad
hoc decision making [14]. When resources are insufficient, staff
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resort to calling other wards, postponing treatments, or placing
patients in makeshift areas such as corridors [38].

Decisions are further complicated by temporal dynamics in de-
mand and capacity: patient conditions vary, resource availability
fluctuates, and external factors such as seasonal illnesses (e.g., the
annual flu) or extreme weather events introduce variability into
demand patterns. Such continuous unpredictability makes static,
deadline-based policies poorly suited to real operational settings [2].

To address this barrier, we propose a self-adaptive digital twin
architecture, DYNRESDT, that evolves its internal models during
operation. Our work integrates semantic models [13], simulation-
driven forecasting [34], and constraint-based optimisation [4, 8]
to enable runtime reconfiguration in response to changing system
states. We scope the proposed architecture within BEDREFLYT [22,
31], a DT for resource management which focuses on bed bay
allocation in hospital wards. The system transforms a timed input
stream reflecting patients arriving at the ward into a timed output
stream of bed bay allocations for the ward. The DT design involves
a human-in-the-loop to make the ultimate decisions on patient
placements; thus, the actual bed bay allocation may differ from the
allocation suggested by the digital twin. While our approach in this
paper is designed to be generic and applicable in different domains,
we scope our integration into bed bay allocation for validation.

Contributions and architectural focus. This paper presents a self-
adaptive digital twin architecture for dynamic resource manage-
ment. The contribution of this work lies not in any single mech-
anism in isolation, but in their integration into a coherent archi-
tectural framework that supports (i) runtime semantic alignment
between the digital and physical twins through semantic lifting and
reflection, (ii) controlled reconfiguration via lifecycle-based state
management, and (iii) decision-making under competing objec-
tives using penalty-guided optimisation, while explicitly support-
ing human-in-the-loop intervention. We demonstrate the feasibility
of the proposed architecture through its instantiation in a hospital
bed bay allocation scenario and an experimental evaluation of its
adaptive behaviour in response to patient demands.

For validation, we consider the following research questions:
RQ1: (Semantic reflection): How can semantic reflection enable a
DT to evolve its internal model at runtime to remain aligned with
changes in the real system?

RQ2: (Lifecycle adaptation): How can lifecycle-based state manage-
ment support timely reconfiguration of a DT under fluctuating
resource demands?

RQ3: (Decision-making under constraints): How can penalty-guided
optimisation enable trade-offs between resilience and operational
cost during dynamic resource reconfiguration?

Concretely, we make the following contributions:

o A self-adaptive DT architecture that dynamically allocates re-
sources under changing conditions;

o A runtime-evolving semantic model enabling model alignment
via semantic reflection;

e A lifecycle manager implementing state-triggered reconfigura-
tion through Optimization Modulo Theory-based optimisation;

o A prototype implementation and empirical validation on hospital
ward bed bay allocation;
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Figure 1: The self-adaptive DT architecture integrated in the
BepreFLYT digital twin.

The paper is structured as follows: Section 2 introduces the
BepreFLYT DT, motivating the proposed self-adaptive capabilities.
Section 3 discusses related work on DT architectures, with a focus
on self-adaptation and lifecycle management, and penalty-based
optimisation. The proposed self-adaptive architecture is presented
in Sect. 4, and its integration with BEDREFLYT in Sect. 5. We evaluate
DyNREsSDT experimentally in Sect. 6, and discuss results and lessons
learned in Sect. 7 before Sect. 8 concludes the paper.

2 BEDREFLYT

BEDREFLYT [22, 31] is a digital twin that aims to aid hospital staff
with resource planning in hospitals by addressing the bed bay allo-
cation problem. The real system that is twinned in BEDREFLYT is
a large hospital ward. The ward layout and its underlying compo-
nents are modelled in the DT using a knowledge base that evolves
over time. The DT uses this knowledge in combination with a timed
input stream reflecting the patients arriving in the ward and their
associated diagnosis. The DT is configured to provide meaningful
suggestions for bed bay allocation in the ward. Since the knowledge
on which the twin acts may be incomplete, the DT does not enforce
the suggested bed bay allocation, but is part of a human-in-the-loop
decision making process [39]. This means that that the bed bay
allocation in the ward may differ from the one expected by the twin.
The feedback loop is closed in the DT by dynamically adjusting the
knowledge base based on the actual bed bay allocation as decided
by the human, and then using the knowledge base to configure the
models for the next analysis step.

Figure 1 illustrates BEDREFLYT extended by self-adaptive capa-
bilities. The existing DT integrates the following formal techniques
into a tool chain for patient flow analysis: 1) a Semantic Model that
formalises static knowledge about the structure and room layout of
a hospital ward and domain knowledge about different diagnoses
and their associated treatments, where each treatment details its
resource needs, 2) a Simulation-driven Forecasting model to collect
the resource needs of the patients in the ward at different points
in time, and 3) a Constraint-Based Optimisation model to perform
the actual bed bay allocation for each point in time. The Digital
Twin Orchestrator uses semantic reflection [18, 19] to connect the
Semantic Model to the other components (see Sect. 4.1 for details).

We now explain how the twin uses the semantic model. As shown
in Fig. 1, BEDREFLYT takes as input a timed Patient Stream, where
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each patient has an associated diagnosis. The twin then queries the
Semantic Model and stochastically selects a possible treatment for
the diagnosis of each patient in the Patient Stream as input to the
Simulation-driven Forecasting model, which in turn transforms this
timed stream of patient data into a timed stream of resource needs
that capture the bed bay allocation problems at different points in
time. Together with a description of the ward’s layout and capaci-
ties that is obtained from the Semantic Model, the timed stream of
resource needs is turned into a stream of optimisation problems,
which is given as input to the Constraint-Based Optimisation model.
The result is a timed Bed Bay Allocation Stream of suggested solu-
tions, returned to the human-in-the-loop decision-making process
in the hospital ward.

As shown in Fig. 1, BEDREFLYT transforms a timed patient ar-
rival stream into a corresponding stream of bed bay allocation
recommendations by combining a semantic representation of ward
resources, simulation-driven forecasting, and constraint-based opti-
misation. The DT produces allocation suggestions that are reviewed
and enacted by ward staff; the resulting allocation is synchronised
back into the DT to maintain alighment between the virtual and
real system states.

In this paper, our objective is to extend the digital twin archi-
tecture with self-adaptive capabilities to dynamically adapt the
available resources of the twin, and hence the associated optimisa-
tion problem. We realise our solution as an extension of BEDREFLYT.
With respect to Fig. 1, the resources that were statically defined in
the Semantic Model will now evolve over time by making additional
rooms available in the ward and thereby increase or decrease the
overall capacity of the ward when needed. To this aim, we intro-
duce three new components in the DT architecture: (1) a Lifecycle
Manager, (2) an Evolving Semantic Model, and (3) Penalty-based Opti-
misation. BedreFlyt acts as a digital twin of a specific hospital ward.
The physical twin is the operational ward state (rooms, bed bays,
active capacity) together with the observed patient flow. The virtual
twin is an executable representation that combines the evolving
semantic model (knowledge graph), simulation-based forecasting,
and optimisation. Semantic lifting and alignment synchronise ob-
served changes into the runtime model, and the architecture closes
the loop by producing reconfiguration recommendations (enacted
by a human operator in our setting). In our evaluation, the existing
simulator serves as a surrogate source of observations, while the
architecture is designed to connect to live ward data in deployment.

3 Related Work

This paper presents a self-adaptive DT architecture to optimise
resource management. Different self-adaptive architectures for DTs
have been proposed, using, e.g., MAPE-K loops for adaptive ro-
bot control [9] and cyber-physical system controllers [10], quality
awareness to capture drifts in real system behaviour [32], combi-
nations of system engineering techniques and information tech-
nology to adapt the DT lifecycle [26], leveraging semantic technol-
ogy [16, 19]. In contrast to adaptation based on quality awareness
[32], our system is driven by penalties associated with the usage of
additional resources, which affects the associated optimisation prob-
lems. Compared to these proposals, our architecture integrates se-
mantic reflection for runtime model alignment, lifecycle-based state
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management for structured reconfiguration, and penalty-guided
optimisation for decision-making under constraints.

Within the domain of DTs, semantic reflection has proven a pow-
erful tool to adapt the runtime state of the heap [18]. This process
is achieved using reasoners to identify drifts in the runtime knowl-
edge graphs to adapt the underlying model [19] while ensuring
correctness of the constructed DT [16]. Semantic reflection has
also proven effective for runtime adaptation of the model, both for
structural drifts in the runtime states [21], as well as behavioural
drifts [29] (when the component is not mutated, but its information
requires it to change its behavioural state).

While Sieve et al. [29] showed how to integrate behavioural self-
adaptation using SMOL and semantic reflection, other approaches
have been proposed to achieve self-adaptation of DT behaviour.
In particular, declarative lifecycle management [15] separates a
model of the different states of the lifecycle from the conditions
that trigger the adaptation. Furthermore, lifecycle management has
proven effective, when in conjunction with real systems replicas,
to improve the scalability of the development of the DT, improving
modularity [25]. Lifecycle management in DTs, when conjoined
with machine learning approaches, has proven powerful to handle
complex scenarios and improve management, suggesting potential
advantages of combining the two technologies [28].

Optimisation Modulo Theories (OMT) [4] adds an objective func-
tion to a satisfiability problem. However, it can be challenging to
integrate different requirements with the objective function. To this
aim, a set of (static or dynamic) penalties can be integrated into the
constraint problem [36]. When dealing with different objectives,
one set of weights might not be enough, and using functions with
specific weight vectors can allow the system to adapt the optimi-
sation problem with different requirements [27]. While this paper
uses static penalties defined in the semantic model, we can use
semantic lifting to adapt them at runtime and make them dynamic.
Tessema et al. [33] proposed a self-adaptive penalty function to
solve a constrained optimisation problem, using distance value and
penalties to identify the best infeasible individuals in a population.
This approach would be interesting for future work.

Although these works have proven powerful in self-adaptation
and optimisation for constraint solvers, the integration of semantic
reflection, lifecycle adaptation, and penalty-guided optimisation
into a single runtime architecture has, to the best of our knowledge,
not yet been explored. Our work addresses this gap by integrating
the different aspects into a runtime self-adapting DT architecture.

4 A Self-Adaptive Digital Twin Architecture

In this section, we propose a self-adaptive DT architecture that im-
proves resource management in an evolving target system. Through
periodic monitoring of the target system’s operational state, we trig-
ger the self-adaptive capabilities of the DT that adapt the runtime
states of the DT in response to internal and external changes.
Boundary and assumptions. In this paper, the digital twin com-
prises the BedreFlyt-based software system, including its evolving
semantic model, orchestration logic, lifecycle management, and
optimisation components. The physical twin is the hospital ward
(beds/bays/rooms) and its operational state, with changes enacted
by staff (e.g., opening or closing rooms and placing patients). The
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environment includes the patient arrival stream and operational
policies, while operators (ward staff) act as human-in-the-loop deci-
sion makers whose actions may diverge from DT recommendations
and are subsequently reflected back into the DT via the synchroni-
sation mechanisms described in this section. Human-in-the-loop
decision making is a well-established assumption in self-adaptive
systems, particularly in safety-critical domains, where automated
adaptations provide recommendations that may be overridden by
human operators [6].

The requirements for the self-adaptive DT architecture must
include support for dynamic resource management in a consistent
and accurate manner, to accommodate different scenarios when
managing resources in the target system. To accommodate these
requirements, we designed our architecture by integrating three
main components: the Evolving Semantic Model, the Digital Twin
Orchestrator, and the Lifecycle Manager. A purpose of the Evolving
Semantic Model is to maintain a knowledge graph that represents
the structure and relationships of the resources in the target system
(thus, the Semantic Model of Sect. 2 here represents one specific
instance). The Evolving Semantic Model will further incorporate
penalties for spare resources, which can be utilised during opti-
misation to manage resource allocation effectively. The evolving
semantic model acts as a runtime model of the target system, sup-
porting semantic reflection and adaptation during operation [3, 5].

Without semantic lifting and subsequent reflection, deviations
introduced by operator decisions or emergency practices would re-
main invisible to the DT’s reasoning mechanisms, leading to model
drift and potentially unsafe optimisation decisions. The choice of
such a model enables integration with reasoners to support ad-
vanced decision making. The Digital Twin Orchestrator coordinates
component interactions and manages the adaptation process. The
Lifecycle Manager monitors DT component states, triggers adap-
tations under predefined conditions, and applies penalty-based
optimisation to determine resource allocations, enabling dynamic
adaptation while minimising associated penalties.

Key design challenges include integrating components, detecting
and responding to lifecycle state changes, and maintaining the con-
sistency of the Evolving Semantic Model during runtime adaptation
to preserve alignment with the real system.

The remainder of this section describes semantic model adapta-
tion via the Digital Twin Orchestrator (Sect. 4.1), followed by life-
cycle management (Sect. 4.2) for monitoring states and triggering
adaptation when changes are detected.

4.1 An Evolving Semantic Model

The Evolving Semantic Model forms the basis for self-adaptation in
the DT. It is a knowledge graph that virtually represents the data
and relations regarding the structure of the different resource con-
cepts of the target system, as well as domain knowledge concerning
their use. The Evolving Semantic Model captures resource concepts
with attributes that capture which resources are in a system by
default and which resources are spare, i.e., resources that are not
available by default, but can be activated by the target system if
required. In the Evolving Semantic Model, spare resources have as-
sociated penalties expressing the cost of making these resources
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Figure 2: Alignment procedure between the runtime knowl-
edge graph of the DT and the knowledge graph in the Evolv-
ing Semantic Model.

available. These penalties are used by the Lifecycle Manager’s con-
straint solver to optimise penalty costs when solving the resource
configuration allocation problem, e.g., to generate a configuration
that has sufficient capacity, with minimum penalty.

Drifts in the underlying domain model can happen both from
changes in the overall behaviour (e.g., the system needs to adapt
due to a lack of resources) or because of structural changes (e.g., the
user might add, update or remove one or more components in the
real system). To keep track of these cases and ensure that we can
properly align the Evolving Semantic Model with the real system,
we make use of semantic lifting and semantic reflection to enrich
the knowledge graph in the Evolving Semantic Model. Semantic lift-
ing [18] is a technique to create an additional knowledge graph of
the runtime state of the DT. Semantic reflection [17, 20] then com-
bines the knowledge graph of the runtime state with the Evolving
Semantic Model for introspection and reasoning. Our architecture
makes use of semantic reflection to reason in the knowledge graph
of the Evolving Semantic Model about changes in the configura-
tion of available resources in the real system. Semantic lifting here
ensures a consistent semantic model throughout the overall execu-
tion. In our implementation, semantic reflection is realised using
SMOL [18, 19], a programming language that supports the lifting
of runtime states into a knowledge base, which can be accessed in
programs via SPARQL and SHACL queries (e.g., [12]).

4.2 Lifecycle Management

The Lifecycle Manager organises the self-adaptive capabilities for re-
source management in the DT. We capture the condition associated
to the different states of a lifecycle as concepts in the Evolving Se-
mantic Model, and we make use of penalty-based optimisation when
changing the configuration of available resources in the Semantic
Model, depending on the state in the lifecycle of the monitored
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system. Declarative lifecycles [15] separate the conditions for self-
adaptation (the “when”), here partially formalised in the Evolving
Semantic Model, from the way the self-adaptation is realised (the
“how”), here implemented in the Digital Twin Orchestrator.

The Lifecycle Manager monitors the different components of the
real system with respect to conditions in the current state of their
lifecycles. If these conditions indicate a change to a different state
in their lifecycle, the Lifecycle Manager triggers a self-adaptation
process in the DT through semantic reflection. Namely, for each
resource component that is considered during the self-adaptation
process, we use their associated penalties to ensure that that the
system reconfigures to an optimal configuration of resources that
minimises the incurring penalty. This way, the lifecycle manage-
ment process leverages penalty-based optimisation in collecting
and analysing penalties associated with the different resources that
can be added to the system, and minimises the overall penalty from
adding the external resource to the resource management process.

The Lifecycle Manager is implemented as a separate component,
invoked periodically by the Digital Twin Orchestrator to find a new
optimal system configuration. Keeping the Lifecycle Manager as a
separate component enhances modularity and separation of con-
cerns in the DT architecture and allows for easier maintenance and
potential future extensions, such as adding more complex lifecycle
management strategies or integrating with other systems. Figure 2
illustrates how the Lifecycle Manager aligns with the Evolving Se-
mantic Model and the Semantic Reflection Layer via the Digital Twin
Orchestrator. The Lifecycle Manager monitors the runtime state of
the DT, e.g., the current state in terms of current resource usage and
incoming resource demand, and based on the penalties associated
with the different resource components, it updates the Evolving
Semantic Model with a new optimal configuration of resources by
prompting the Digital Twin Orchestrator, when needed. The Digital
Twin Orchestrator then aligns the new configuration of resources
to the DT’s knowledge graph (see Fig. 2), considering both the
structural and runtime knowledge graphs in the Evolving Semantic
Model of the self-adaptive DT. The alignment uses the following
operations, all based on semantic reflection:

(1) updateNodes checks whether the runtime state needs to be
updated by aligning the attributes that might have changed.

(2) addNodes checks for nodes that have to be added in the runtime
knowledge graph and adds them, if needed.

(3) removeNodes checks for nodes that have to be removed in the
runtime knowledge graph and removes them, if needed.

While we aligned existing nodes first and removed former nodes
last, this order of the operations is not binding. The operational
flow of the DT is shown in Fig. 3, detailing how the DT compo-
nents interact to address both resource requests and reconfiguration
requests.

BedreFlyt processes the operational stream in discrete time steps.
At each step, new patient events may create a resource-request
condition. The Digital Twin Orchestrator invokes the Lifecycle
Manager once per step (i.e., periodically) to evaluate thresholds
and, when needed, initiate reconfiguration via the Optimiser and
Semantic Reflection. The result is then returned to the human op-
erator, who will make the final decision and take action. Since the
human operator may make changes to the suggested configuration
of resources, the DT will update the model, using semantic lifting
to represent the new configuration.

The lifecycle management process can be tailored to specific
needs, with respect to when the process should be triggered. In our
implementation, we let the Lifecycle Manager be triggered period-
ically, using a simple notion of time steps to capture the passing
of time. However, it is straightforward to adapt the architecture to
use conditional triggers instead.

By integrating penalties associated with resource usage into the
optimisation model, the DT can make more informed decisions that
balance resource usage with operational costs. The penalty-based
optimisation is integrated into the existing Constraint-based Optimi-
sation model of BEDREFLYT, explained below. The penalties improve
the optimisation model by accounting for the costs associated with
using spare resources when determining the optimal configuration
of resources and how they should be used.

5 DyYNREsSDT

We now discuss the integration of our self-adaptive DT architecture
with the BEDREFLYT DT. Previously, BEDREFLYT [22, 31] assumed a
fixed layout of a hospital ward in the Semantic Model. Our approach
lifts this assumption to allow different ward layouts, increasing or
decreasing capacity by, respectively, opening and closing rooms for
bed bay allocation. This scenario shows how a DT can adapt to a
stressful workload caused by incoming patients by changing to a
different ward layout depending on the workload of the ward.
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Figure 4: Part of the ontology in the Evolving Semantic Model
that captures the ward layout.

The Evolving Semantic Model. In BEDREFLYT, the existing lay-
out of a hospital ward is captured in its Semantic Model [22, 31].
The ward is composed of a set of treatment rooms, each with a
certain capacity (number of bed bays) and category, e.g., High Mon-
itoring. We extend the existing Semantic Model of the ward with
spare rooms, which corresponds to corridors and offices that can
be used to temporarily accommodate patients. Furthermore, such
spare rooms have an associated penalty greater than zero, while
treatment rooms that are in the default layout have no penalty.
Figure 4 shows part of the ontology of the Evolving Semantic model,
which captures the layout of hospital wards with extra spare rooms
concepts and their associated penalties. The Digital Twin Orchestra-
tor lifts the layout of the ward in the ontology during the alignment
procedure. The Evolving Semantic Model also includes the param-
eter ¢ that allows to monitor the lifecycle conditions of the ward.
Concretely, we set the threshold ¢, which indicates the percent-
age of capacity at which the ward is considered to be under- or
over-loaded. The integration of the Evolving Semantic Model in the
existing BEDREFLYT architecture allows the DT to adapt resource
supply in response to patient demand.

The Lifecycle Manager. We consider a Lifecycle Manager for the
load of the ward. Given the initial default capacity of a ward Q,
the load threshold I is a number calculated as follows: ' = L% ,
with threshold ¢ from the Evolving Semantic Model. Given a current
number of occupied bed bays O, to calculate the conditions in each
state of the lifecycle, the Lifecycle Manager uses the following states:
(1) under-loaded if 0 < ® < T and (2) over-loaded if ©® > T. The
periodic triggers on the Lifecycle Manager aligns both the layout as

shown in Fig. 5, and the I' when the capacity changes.

Extending the Constraint-based Optimisation Model. The existing
Constraint-based Optimisation model of BEDREFLYT solves the bed
bay allocation of patients, detailed in [22, 31]. It encodes an optimi-
sation problem that considers constraints related to room capacity,
gender of patients, isolated patients, patients’ monitoring needs
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Figure 5: Lifecycle manager procedure for DYNREsSDT.

(related to the room categories), and minimisation of room reallo-
cation of patients during their hospitalisation period. In this paper,
we further extend the Constraint-based Optimisation model to solve
the ward layout and refine the solution for the bed bay allocation
of patients to include the penalties associated with rooms.

We encode an optimisation problem that finds an optimal ward
layout for a given set of patients P. Let R be a collection of rooms
that can be opened in a given ward. For room r € R’, o, € {0,1}
indicates whether r is opened, o, = 1, or closed, o, = 0. Let §, € N
be the penalty associated with r and b, € N the capacity of r. The
objective function to minimise the maximum penalty for opening
rooms required to host P patients is

min Z oy -6, - by,

rer’

Zo,«br2|P|

rerR’

subject to

with the constraint of uniqueness for the different &, - b,. To find
an optimal assignment for the bed bay allocation of patients, in
addition to the existing constraints, we also consider penalty min-
imisation in the equation below, which accumulates penalties for
each patient’s room assignment. To encode this constraint, we in-
troduce the following variables. For patient id € P and room r € R,
variable a;q, € {0, 1} encodes whether patient id is placed in room
r, and o,y encodes whether the patient was moved from their pre-
vious bed bay. We now express the minimisation of penalties for
the bed bay allocation problem as follows:

min Z oiq + Z Z Or * Aiar

ideP ideP reR

The Constraint-based Optimisation model uses Optimisation Mod-
ulo Theories (OMT) and the tool Z3 [7] to solve both optimisation
problems. The solver finds optimal solutions for both (1) the ward
layout and (2) the bed bay allocation with minimal penalties.
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Figure 6: Hospital ward scenario used to evaluate DYNRESDT, specifying room capacities/categories, spare-room penalties, and
the ward-load lifecycle threshold. Here O is the number of occupied beds and T' is computed as in Section 5.

6 Evaluation

In this section, we address RQ1-RQ3 by evaluating DYNRESDT
under realistic, varying-load scenarios!

6.1 Experimental Setup

For evaluation purposes, we use the ward in Fig. 6 with load thresh-
old ¢ = 90% in the Evolving Semantic Model. The ward has three
room categories (Standard, Intermediate, High Monitoring) plus Cri-
sis spare rooms. Default capacity is 45 bed bays and maximum
capacity is 93, enabled by 48 temporal resources progressively ac-
tivated when I' = 40 (i.e., 90% of default capacity) is reached. The
Crisis category simplifies spare-room identification and allows allo-
cation to any patient type, subject to contagion constraints.

Events. To simulate the patient influx, we developed an Event
Stream Generator (ESG) that produces different allocation scenarios.
The ESG samples the number of patients arriving in a day from a
Poisson distribution with average A. The construction of individual
events is modular, splitting the steps for generating an event by sam-
pling of different distributions. In our experiments, the ESG consists
of an Event Timestamp Generator (ETG) and an Event Sample Space
(ESS). The ETG component generates the timestamp of the event,
and the ESS component generates the event instance from a given
set of possible event instances. For every sample, a constraint check
is made, and if it does not satisfy the scenario-defined constraint, a
resample is triggered.

Event Orchestration Engine. The Event Orchestration Engine (EOE)
triggers the sampling of ETG and ESS, and appends the generated
events to the Future Events Queue (FEQ). The EOE ensures that at
least one event is always stored in the FEQ, and that the events in
the FEQ are sorted in ascending order by their timestamps.

When running the EOE, events are generated in the 7-step pro-
cess, depicted in Fig. 7. The process is detailed as follows:

(1) Initialise the FEQ with an initial event
(2) Loop through the event generation procedure until the desired
number of steps is generated

The results reported in this section can be reproduced with the additional material [30].

‘ :Event Orchestrator | ‘ :ESG | ‘ :ETG ‘ :ESS | ‘ :Event Handler | ‘ :FEQ |
M Initialise queue M
SS S - S SO
loop steps)
Initialize new event
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, event
loop events]
sample event data
sample event instance
,,,,,,,,, eventinstance U
event sample
notify
S dome . 1
update list with event
e fone

Figure 7: ESG procedure for Experiments.

(3) Loop through each step and initialise the events by sampling
via the ETG and ESS component

(4) Notify the event handler of the new event

(5) Append the event to the FEQ

Peak generation. To further enhance the capability of the ESG,
we extend it to account for patient peaks over time, to mimic a
period of time of high stress in the ward, switching between high
load and low load every v time steps, and increasing and lowering
the occurrences by a factor of ¢.

The expectation of the Poisson distribution is chosen based on
realistic-world data of incoming patients, see Fig. 8, and with actual
diagnoses and treatments performed in the ward.

The ESG generates a stream containing, for each time step, a
patient identifier and a corresponding treatment. Concretely, (1) to
answer RQI, we test the system with the ESG with an average 1
of 40 for the Poisson distribution, to vary the incoming number
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Table 1: Execution times of the simulation for the different elements that compose DYNREsDT.

Component 50°" percentile (s) Average (s) [Std. dev. ()] Max Value (s) Min Value (s)
Data Retrieval 0.0090 0.0108 [0.0103] 0.1310 0.0040
Optimal Ward Layout Allocation 0.0000 0.0019 [0.0035] 0.0290 0.0000
SMOL Alignment 29.6330 286.8063 [521.0410] 3917.1150 0.0000
Components Retrieval 9.5280 51.2426 [75.5458] 278.7290 1.1140
Simulation-driven Forecasting 1.2360 1.5462 [3.5318] 47.8900 0.9270
Bed Bay Allocation 0.1290 0.1289 [0.0258] 0.2110 0.0720
Overall Execution (s) 40.535 339.7368 [600.1582] 4244.1050 2.1530

Daily Patient Distribution

Number of Patients

° Days

Figure 8: Distribution of patients in a 6 months span of time.
The graph shows the number of new incoming patients on a
daily basis; the state of the ward is not captured since some
treatments require a multi-day stay at the hospital.

sufficiently, autonomously triggering the semantic reflection align-
ment process during the adaptation of the capacity of the ward.
By varying the number of patients frequently, the opening and
closing of additional rooms is demonstrated, as well as the different
selections of room combinations; (2) to answer RQ2, we use the ESG
with peak generation. Thereby, the expected number of incoming
patients each day fluctuates between ~ 30 and ~ 60 every five steps.

The experiment demonstrates the principled adaptation capabil-
ity of the architectural design to properly adapt to unpredictable
scenarios; for RQ3, we show how penalty-guided optimisation en-
ables cost-aware decisions under dynamic demand, preserving re-
silience. Specifically, the Lifecycle Manager selects additional rooms
by minimising cumulative room penalties; thus, additional rooms
are only opened when the additional capacity is needed.

6.2 Results

RQ1: Semantic Reflection. For the first research question, we want
to evaluate whether the Lifecycle manager triggers self-adaptation
when needed via the procedure depicted in Fig. 5. The Lifecycle
manager further calls the alignment procedure with semantic re-
flection, depicted in Fig. 2. This is done to ensure that the Evolving
Semantic Model and the knowledge graph with the runtime state of
the DT are aligned and adapt according to the current ward’s layout.
This property is critical in DT architectures, as it must remain trust-
worthy under structural changes, not only in the healthcare domain
but across dynamic resource management domains in general.

As shown in Fig. 9, when the number of incoming patients
were going above the load threshold I' = 40, extra room were

pre-emptively given to the system based on the requirements and.
With the set of penalty chosen, the offices took precedence for
opening and, when the number of patients was too high for a single
office, or both offices, the corridor was then opened to supplement
the system with extra capacity. Furthermore, to avoid moving pa-
tients around rooms, as it is the primary goal of the allocation
process, spare rooms are closed only when the load goes below the
T'. While, getting below a certain threshold might make the system
more reactive by switching from the corridor to the offices, it would
move patients, violating the main objective.
We further define the following research sub-question

RQ1.1. (integration & scalability): How does the integration of
semantic reflection, lifecycle management, and optimisation affect
scalability and responsiveness ina self-adaptive DT?

To address RQ1.1, we computed the execution time of the differ-
ent components of DYNRESDT and, for each, the median, average,
and standard deviation of the different times, the execution time of
these different components that are recorded during the running
scenario is shown in Tbl. 1, where:

o Data Retrieval reflects the execution time of retrieving the current
allocation of patients and the current ward layout.

o Optimal Ward Layout Allocation reflects the execution time of
the OMT problem that find the subset of available rooms to
open/close that minimises the overall penalty.

o SMOL Alignment reflects the execution time that processes the
semantic reflection procedure.

e Components Retrieval reflects the time to process the different
elements required for the bed bay allocation process. The exe-
cution time can fluctuate during the adaptation process since
elements change and the cache needs to be updated.

o Simulation-driven Forecasting reflects the execution time of the
simulation model to collect the patient needs.

e Bed Bay Allocation reflects the execution time for the bed bay
allocation problem to solve the OMT problem for the allocation
of patients in the ward.

The different values show good performance for most of the
components, with a higher overhead for the semantic reflection
process that is required by SMOL to achieve alignment. While the
overhead is significant, the median for the component is still within
a reasonable execution time.

RQ2: Lifecycle adaptation. To ensure the correctness of the life-
cycle manager approach, we need to ensure that the system can
correctly reflect the two states in the lifecycle of the load in the
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Adaptation of capacity over time with varying allocations
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Figure 9: Single-iteration scenario showing ward capacity adaptation under varying patient load. Capacity increases incre-
mentally by opening appropriate rooms as demand changes. Maximum capacity includes offices and the corridor. To reduce
movement, adaptation is skipped when demand can be met by opening a single office (e.g., time step 5).

Adaptation of capacity over time with varying allocations
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Figure 10: Combined running scenarios that show the variation of ward capacities with a varying number of patients over ten
different iterations. The distribution has been evaluated by creating peaks in the number of incoming patients to mimic the
condition of high stress and crisis in the hospital ward. The different range of values defined by the different percentiles is also

shown to describe the variation that is given by the ESG.

ward, namely Under-loaded and Over-loaded, at all times, especially
when the ward is exposed to variation of patients with peaks, requir-
ing the DT to avoid both premature reconfigurations and delayed
responses. While the operational results highlighted in RQ1 showed
timely allocation of spare rooms, the lifecycle manager provides a
principled temporal structure for adaptation.

When the number of patients varies heavily over time, as in a
crisis scenario where the hospital is expected to be stressed and
overloaded, the adaptation process is critical to ensure that the hos-
pital is resilient and can maintain operations for a prolonged period

of time, as well as to being able to get back to normal operational
conditions after the crisis is over. To simulate a crisis scenario with
sudden patient peaks, the experiment is using the peak generation
feature of the ESG introduced in Sect. 6.1 by applying the process
with time steps v = 5 and factor £ = 1.5 that increases and low-
ers the occurrences to ensure that, for non-peak time, the ward
resource needs could be covered without spare rooms, and, for
periods of time with high load, a default capacity layout will not be
enough to accommodate the incoming patients, and the ward needs
to increase its capacity. The overall process is then achieved and
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Table 2: Execution times over ten iterations for DYyNREsDT components under high-load patient peaks.

Component 50°" percentile (s) Average (s) [Std. dev. ()] Max Value (s) Min Value (s)
Data Retrieval 0.0090 0.0114 [0.0132] 0.1460 0.0050
Optimal Ward Layout Allocation 0.0000 0.0021 [0.0157] 0.2090 0.0000
SMOL Alignment 0.0020 21.3316 [52.9186] 474.1070 0.0000
Components Retrieval 2.8700 7.3759 [9.9360] 44.6160 0.7480
Simulation-driven Forecasting 1.2340 1.2742 [0.2218] 2.5610 0.8900
Bed Bay Allocation 0.1225 0.1364 [0.0614] 0.4170 0.0440
Overall Execution (s) 4.2375 30.1316 [63.1667] 522.0560 2.1280

shown in Fig. 10, where experiments show that the self-adaptive
system was consistently able to respond to the crisis period and
ensure allocation of incoming patients.

This illustrates that the Lifecycle Manager described in Sect. 4.2
can serve as a reusable design pattern for resource management in
DTs. Experiments confirm that in our evaluation scenario, whenever
the load fluctuates over time, and the monitored component (e.g. the
ward load) changes state according to certain conditions, lifecycle
can declaratively capture the monitoring conditions attached to
each state and trigger a self-adaptation process.

Our experiments in Fig. 10 show that when the patient influx is
more consistent over time (i.e., the current capacity in the ward is
not fluctuating as often as in the experiments shown in Fig. 9), the
overhead of the adaptation process is lower due to better stability
of spare rooms for longer periods. This improvement is reflected in
Tbl. 2, where, compared to Tbl. 1, the semantic reflection process
introduces less overhead, since there are fewer fluctuations in the
load, which triggers fewer requirements for the system to adapt.

One further aspect that might affect the adaptation procedure
in the Lifecycle Manager is the load percentage threshold ¢, stored
in the Evolving Semantic Model, that is used to calculate the load
threshold I' that is further used to determine the conditions of
the states in the lifecycle of the ward load. If the threshold is too
high, the system might not open spare rooms before it exceeds its
maximum capacity, requiring extra effort in the immediate time;
if it is too low, the system might open the spare rooms too soon,
resulting in a non-needed computational overhead. As such, it
is important to find the right ¢ that balances between the two
extremes. This, at the moment, is done ad hoc in our system; it
could be interesting to automate the process of finding an optimal
value for ¢; however, this, for now, remains as future work.

RQ3: Decision-making under constraints. Results from the previ-
ous questions highlight the resilience of DYNREsSDT to deal with
uncertainties in the resource needs. To answer RQ3 and evaluate
trade-offs between resilience and penalty cost, we now focus on
penalties. In our evaluation scenario, we selected a set of penalties
to be incurred by the system if the corridor or spare rooms are used
when applying the penalty-related constraints (see Sect. 5).

In our scenario described in Fig. 6, we modelled the ward with
lower penalties for office usage, and higher penalties for corridor
usage. This choice reflects conditions in which patients might be
contagious, and isolation would be the choice for adaptation. To
avoid using spare rooms when there is no need, and to always prefer

offices over the corridor, we set the penalties to be 1000 for Office 1
and 2000 for Office 2, and the penalty for the corridor to be 4000.
Our experiments in Fig. 9 showed that such wanted behaviour was
respected by the self-adaptive procedure, where Office 1 was always
chosen when the extra requirement was enough to be covered by a
single spare office; even if the capacity of both offices is the same, the
first one was always chosen due to the incurring minimum penalty
calculation. The choice of penalties and the previous experiments
in RQ1 and RQ2 show that, if there is a solution for the allocation
of patients to bed bays, DYNREsDT will find such a solution, and it
will be minimal with respect to the incurring penalties, showing
the trade-offs between resilience and cost.

While the chosen penalties ensured that a solution was always
found with the desired layout, the choice of penalties is in this
work fairly arbitrary, and set to be sufficiently high and distributed
for the penalty-based optimisation to always have a consistent
behaviour with respect to a given policy. Remark that a strategy for
penalties could also change over time, to reflect, e.g., seasonality.
Since penalties are captured in the Evolving Semantic Model, the
architecture makes it easy to manually change them to reflect other
policies. It would be interesting to automate the process of finding
optimal values for penalties, but this remains future work.

Summary of Results. RQ1 was answered by reporting that the
adaptation process occurred correctly with fluctuations of incoming
patients exceeding or dropping below the lifecycle load threshold
I' = 40, shown in Fig. 9. RQ2 was answered by Fig. 10, where the
variation of patients with peaks in the allocation was correctly cap-
tured. Table 2 shows how a more stable condition during such fluc-
tuations improved the overall execution time. RQ3 was answered
by applying different penalty-related constraints in the equations
from Sect. 5, demonstrating that the system was able to find a solu-
tion which was minimal penalties wise. Conceptually, this positions
penalty-based reasoning as an abstraction for balancing operational
resilience and cost in self-adaptive DTs, applicable across scenarios.

6.3 Threats to validity

While the reconfiguration of available resources in hospital wards
by means of penalty-based reasoning allows the system to adapt to,
e.g., crisis scenarios in which the current ward capacity may not
suffice for the hospital’s needs, it may still not be robust enough
for the system to ensure the allocation of patients to bed bays.
The adaptation process improved the responsiveness to a varying
number of incoming patients to the ward, even when there were
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spikes in seasonal periods. However, the allocation process is not
only constrained by the number of patients; other parameters are
also taken into account when allocating patients to rooms. As such,
the lifecycle management might not be capturing completely edge
cases, e.g., too high a number of contagious patients, or patients
with special needs that will require rooms that make the solution
non-satisfiable. In this regard, considering only the current load
of the ward with the percentage load threshold ¢ might leave out
cases in which we allocate enough space to cover the number of
patients, but not enough rooms to satisfy all constraints. Moreover,
the condition for adaptation might differ in terms of performance
(see Sect. 4.2). While our implementation uses periodic adaptation,
some applications might require conditional triggers; e.g., in real-
time safety-critical systems, where both safety and efficiency is key,
the current approach might require further de-coupling to improve
the overall performance, as the computational overhead introduced
by the semantic lifting might be too high for such systems. However,
in terms of flexibility, our system can be extended with different
policies for resource management by providing other optimisers.
Solver inaccuracies may also influence the quality of the found
bed allocations; machine precision and stochastic solving strategies
are known caveats for solving complex optimisation problems. We
here used Z3, which implements globally optimal solutions, and
did not further investigate the solution quality. Our evaluation
assesses architectural feasibility and adaptive behaviour, rather
than optimising hospital capacity planning or operational policies.

7 Discussion: Architectural Lessons

This section summarises what we have learnt from the experiments
and from integrating semantic reflection, lifecycle management, and
penalty-guided optimisation in DYNREsDT. The lessons concern
trade-offs exposed by the architecture behaves under varying load.

Lesson 1: Semantic reflection costs to invest in principled correctness.
Semantic reflection and lifecycle management introduce measur-
able overhead, especially when the twin must realign its internal
model frequently. In return, they ensure consistency of the runtime
model with the structural representation of the real system and that
adaptations are triggered in a timely manner. This is the key archi-
tectural trade-off between correctness and runtime efficiency [18].

Lesson 2: Stable demand reduces reflection overhead. When de-
mand is sustained rather than oscillatory, the number of structural
updates decreases and the semantic reflection overhead becomes
negligible. The bottleneck then shifts to data retrieval and simula-
tion, which can be scaled using standard engineering techniques.
This shows that the cost of principled reflection is proportional to
how dynamic the environment is, not to the base system size.

Lesson 3: Penalties make resilience—cost trade-off explicit. Penalty-
guided optimisation turns the resilience-versus-cost relation into
an explicit reasoning element of the architecture. Overflow capacity
is opened only when necessary and released once demand falls,
allowing the system to balance robustness and efficiency without
manual intervention. This mechanism provides a systematic way
to capture operational policies as quantitative penalties. In our
implementation, fixed penalties reflected the usage status in the
ward. However, penalties might also be constructed dynamically,
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by keeping track of whether a given room is already open, and
adjusting the overall penalty to the available bed bays. While this
approach can be achieved within our system, it would require the
admitting nurse to have knowledge of the optimisation process; this
would impose a higher level of complexity, as the admitting nurses
might only have knowledge of the domain of the real system.

Implications. Together, these lessons suggest that integrating
semantic reflection, lifecycle management, and penalty-guided op-
timisation provides a principled yet practical way to design self-
adaptive digital twins for dynamic resource management. Future
work will extend this approach to multi-ward and multi-hospital
settings and explore its applicability to other domains.

Architecture applicability. While BEDREFLYT is tailored to hos-
pital ward management, the proposed architecture is applicable
to other domains where resource layouts must adapt to changing
conditions. To this aim, the semantic model, lifecycle conditions,
and penalty functions need to capture the target system’s charac-
teristics and adaptation goals. The semantic model should capture
the essential entities, relationships, and constraints relevant to the
domain. Lifecycle conditions should reflect the states and transi-
tions that require adaptation. Penalty functions should quantify the
costs associated with different resource configurations and opera-
tional states. While the current implementation focuses on simple
conditions, the architecture is designed to support more complex
adaptation strategies. A key aspect is that the semantic model pro-
vides a structured representation of ward state and constraints,
which can be extended with richer adaptation logic.

8 Conclusion and Future Work

This paper introduced a self-adaptive DT architecture integrating
semantic reflection, lifecycle management, and penalty-guided op-
timisation for runtime resource reconfiguration. The approach was
realised in DYNREsSDT, a prototype for hospital bed allocation.

The experiments demonstrated that the DT maintains runtime
alignment with the structural representation of the real system,
adapts its structure in response to fluctuating demand, and makes
cost-aware allocation decisions. While semantic reflection intro-
duces measurable overhead, this cost is justified by improved cor-
rectness and becomes negligible under sustained load.

The study shows how semantic reflection and OMT-based optimi-
sation can be combined in a practical architecture for self-adaptive
DTs. Semantic reflection and lifecycle mechanisms provide reliable
adaptation triggers, and penalties encode explicit trade-offs between
resilience and operational cost that reflect allocation policies.

Our results indicate that combining semantic reflection, lifecycle
adaptation, and penalty-guided optimisation is a promising archi-
tectural pattern for self-adaptive DTs in the ward setting. Future
work will test this in multi-ward federation, explore probabilistic
decision models (e.g., MDPs) for branching treatment pathways,
automatic selection and runtime learning of penalties and threshold
parameters, and assess applicability beyond healthcare.
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