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Abstract—Network protocol fingerprinting is used to identify
a protocol implementation by analyzing its input-output behav-
ior. Traditionally, fingerprinting operates under a closed-world
assumption, where models of all implementations are assumed to
be available. However, this assumption is unrealistic in practice.
When this assumption does not hold, fingerprinting results in
numerous misclassifications without indicating that a model for
an implementation is missing. Therefore, we introduce an open-
world variant of the fingerprinting problem, where not all models
are known in advance. We propose an incremental fingerprinting
approach to solve the problem by combining active automata
learning with closed-world fingerprinting. Our approach quickly
determines whether the implementation under consideration
matches an available model using fingerprinting and conformance
checking. If no match is found, it learns a new model by exploiting
the structure of available models. We prove the correctness of our
approach and improvements in asymptotic complexity compared
to naive baselines. Moreover, experimental results on a variety of
protocols demonstrate a significant reduction in misclassifications
and interactions with these black-boxes.

Index Terms—Fingerprint recognition, active learning, confor-
mance testing.

I. INTRODUCTION

Fingerprinting is the problem of identifying a system. In
this paper, we study how to identify a (network) protocol
that is running on a black-box system. That is, we want
to know the version of the protocol that is used on a
device. We identify the protocol by the input-output behavior
observed while interacting with the device, thus we consider
behavioral fingerprinting. Concrete instances of the behavioral
fingerprinting problem are to identify the Bluetooth chip used in
car keys or the SSH version used in a doorbell camera [1], [2].
Determining the protocol version allows us to conclude whether
the system is subject to (known) security vulnerabilities.

The need to fingerprint. Bluetooth communication is ubiquitous
in modern internet-of-things (IoT) systems. In 2024 alone, 4.9
billion Bluetooth devices were shipped.1 Given its security-
critical role, for example, in the locking system of cars [2],
the Bluetooth protocol demands rigorous implementation. This
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urgency was reinforced by recent vulnerabilities that allowed
attackers to forcibly pair earbuds with Google Fast Pair without
user consent [3], [4] or enabled unpaired attackers in proximity
to hijack headphones that internally used an Airoha chip [5].
In the latter, many headphone and earbud vendors build on top
of these vulnerable chips and many of them were unaware that
these chips were used in their devices. Fingerprinting methods
allow for determining whether a given Bluetooth device is
susceptible to such attacks.

Fingerprinting Finite State Machines. In our work, we consider
protocols that can be represented by Finite State Machines
(FSMs). FSMs can represent various security-relevant network
protocols, including TLS [6], [7], SSH [8] and Bluetooth Low
Energy (BLE) [9]. The standard assumption for behavioral
finterprinting is to assume access to all protocol versions [6],
[8], [10], [7]. This assumption is called a closed-world
assumption and is overly optimistic: There is no exhaustive
list of BLE chips or SSH implementations. In this paper,
we propose studying fingerprinting without a closed-world
assumption, that is, we study fingerprinting in an open world.
Section II demonstrates that wrongly assuming a closed world
leads to a significant number of misclassifications.

Fingerprinting in a closed world. In a closed world, we are
given a reference set of (known) FSM models and a set of
black-box devices (from here onwards: implementations). This
is a variation on behavioral fingerprinting of a single device and
is also known as group matching [11]. Behavioral fingerprinting
techniques similar to [12] use the reference set to compute a
fingerprint, a small set of so-called separating sequences that
together identify any model in the reference set. Fingerprinting
an implementation in a closed world is easily done by executing
the fingerprint on them. The result will match any black-box
implementation with exactly the matching reference model.

Fingerprinting in an open world. In an open-world setting,
instead, the reference set cannot be assumed to be complete.
As a result, closed-world fingerprinting techniques may not
match with any model (no match) or with the wrong model
(a misclassification). In Section II, we show that they tend to
misclassify an implementation instead of indicating that there is
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no matching reference. Misclassification due to missing models
can be avoided by learning a model of each implementation
from scratch using, e.g., Active Automata Learning (AAL),
see below. However, we demonstrate in Section II that this
requires an excessive amount of interactions with the black-box
protocols. This raises a key challenge:

How can we limit the number of needed interactions, while
keeping the number of misclassifications to a minimum?

Active Automata Learning. To address the above challenge, our
approach tightly integrates fingerprinting and AAL to deal with
the open-world setting. AAL is a well-established technique
for constructing models of black-box systems. In fact, if the
reference models are not known in advance during closed-world
fingerprinting, they are often learned using AAL as a prepro-
cessing step [12], [13], [10], [7]. These AAL algorithms learn
a behavioral model of the so-called System Under Learning
(SUL) through interactions [14], [15]. In this work, we consider
AAL algorithms designed for deterministic, data-less FSMs
equipped with a reliable reset mechanism. The state of the art
in AAL for such FSMs includes algorithms such as L∗ [16],
TTT [17] and L# [18]. They construct a hypothesis by targeted
interactions with the SUL, where a hypothesis is an FSM. Then
they extensively test the hypothesis using conformance check-
ing against the SUL. The conformance check is the main bot-
tleneck as it typically requires millions of interactions for real-
world systems. Expert knowledge is often used to terminate the
conformance check and the resulting model is assumed correct.

Our approach. We present INFERNAL, a novel and incremental
fingerprinting algorithm to accurately and efficiently identify
black-box devices under an open-world assumption. INFERNAL
matches implementations with any previously learned reference
model and then tests whether this match is not a misclassifica-
tion. Only if the implementation cannot be matched, we learn
its model. Instead of learning a new model from scratch, we use
adaptive AAL, which ensures amortized costs by considering
similar reference models [19], [20]. After learning a new model,
we add it to the reference set. Compared to closed-world
fingerprinting, incremental fingerprinting is proven to correctly
classify all implementations and to only learn a model of an
implementation when it is distinct from all previous models
given an adequate conformance testing oracle. We illustrate
its effectiveness on a motivating example and in the empirical
evaluation using various common network protocols.

Contributions. In summary, this paper presents:
1) Formalization of the open-world fingerprinting problem

for FSMs and showing the necessity to solve it.
2) The incremental fingerprinting algorithm, called INFER-

NAL, that solves open-world fingerprinting problems.
3) Proofs of the correctness of INFERNAL (Thm. 1) and

improved query complexity w.r.t. baselines (Thm. 2).
4) The efficiency and robustness of INFERNAL in exhaustive

experiments demonstrated on several network protocols.

Outline. Section II motivates incremental fingerprinting in an

open world by example. The incremental fingerprinting problem
is formally introduced in Section III and the state of the art is
presented in Section IV. Section V details our novel INFERNAL
algorithm, which is then evaluated in Section VI. Sections VII,
VIII, and IX discuss the approach, situate it with respect to
related work, and conclude with final insights and future work.

II. OVERVIEW

In this section, we motivate the necessity to account for
an open world in fingerprinting, even when most models are
already known. Additionally, we show that simply learning
every model from scratch is prohibitively expensive. We
formalize our models as Finite State Machines (FSMs). We
introduce FSMs and separating sequences by example and refer
to Section III-A for formal definitions.

Example 1 (Finite State Machines). Fig. 1 depicts three FSMs
M0, M1 and M2 representing simplified TLS protocols. The
models use input alphabet I = {hello, kex, data} representing
a hello message, key exchange and data sending, respec-
tively. These inputs can generate outputs from the alphabet
O = {hello, kex, data, error}. The FSMs behave differently with
respect to handling hello messages at unexpected times. For
example, FSMs M0 and M1 are distinct as M0 responds
to hello · hello with hello · hello, while M1 responds with
hello · error. The input sequence hello · hello is therefore called
a separating sequence for M0 and M1.

A common approach to fingerprinting with a set of reference
models, represented as FSMs, is to compute a fingerprint, i.e.,
a set of separating sequences that together uniquely identify
any of the original FSMs (e.g., [7]). When such a fingerprint
for a set of reference models is executed on an implementation
that is not already represented in the set, two outcomes are
possible. Ideally, the considered implementation disagrees
with each reference model on at least one separating sequence
in the fingerprint, thereby indicating that the implementation
is new. For example, {hello · kex · hello · hello} is a fingerprint
for the set of models {M0,M1} (Fig. 1). If we regard M2 as
an implementation and execute this fingerprint on it, we find
that M2 is a new implementation. However, for a different
fingerprint, the considered implementation may match a
reference model on all fingerprint sequences, even though it
represents a distinct system. For instance, if we take instead
the fingerprint {hello · hello} for {M1,M2}, then M2 is
incorrectly matched with M1.
Closed-world fingerprinting in an open world. We conduct
a motivational experiment to assess how often closed-world
fingerprinting methods detect that an implementation behaves
differently from all the references. We use 596 implementations
of the TLS protocol with 22 underlying FSMs from [13,
Section 6.4] and assume that 21 of the 22 FSMs that underlie
the 596 implementations are known. Then, we evaluate the
performance of closed-world fingerprinting using separating
sequences (see Section IV for details) based on the number
of misclassifications and implementations that could not be
matched to a reference. We average over 10 runs, each with
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Fig. 1: Finite state machines representing simplified TLS protocols.

one random model removed and shuffling the references before
constructing the fingerprint. We observe that 4.5% of the im-
plementations are misclassified and all implementations can be
matched to some model. The number of misclassifications and
implementations that cannot be identified grows with the num-
ber of missing models. When presented with 11 out of 22 mod-
els, 45.9% of the matches are misclassified and 2.2% cannot be
matched. These misclassification rates suggest that closed-world
fingerprinting methods lack robustness when the references are
incomplete. In such cases, they are more likely to misclassify
a model rather than recognize the absence of a match.
Learning models from scratch. As an alternative approach,
the state-of-the-art AAL algorithm L# [18] can be used
to learn a model of each implementation and evaluate the
correctness of the learned models. We find that L# requires
roughly 2.6 million interactions to learn a model of each
black-box protocol implementation. However, this results in an
incorrect model for 75.9% of the implementations. The high
number of incorrectly learned implementations originates from
the conformance check being inadequate. Even with a more
exhaustive conformance check, where learning the model set
requires a total of 14.3 million iterations, this still leads to
32.6% of the implementations being incorrectly learned.
INFERNAL. Algorithmically, we suggest two key adaptations
over learning a model of each implementation from scratch.
First, to avoid relearning previous models, we test whether
the implementations match a model that we have previously
seen. Second, to enable the reuse of previous models instead
of learning from scratch, we consider adaptive AAL [19].
Adaptive learning reuses existing reference models in order to
reduce the number of required interactions. These adaptions
lead to a two-step approach: First, identify a likely match with
the previously seen models. If such a match is found, check
conformance between the black-box and this hypothesis model.
If no match is found or the match fails the conformance check,
learn the model, guided by previously learned models. We
exemplify this approach below.

Example 2 (Incremental Fingerprinting (INFERNAL)). We
continue Example 1 and consider fingerprinting four black-box
implementations, I0, I1, I2 and I3 such that

I0 ∼M0, I1 ∼M1 ∼ I3, I2 ∼M2

where ∼ denotes behavioral equivalence (see Section III-A).

Initially, the set of reference model M is empty, therefore, we
learn model M0 representing I0 and add it to M.

Subsequently, we consider I1. We forego fingerprinting, as
there is only one model in M and use a conformance check
to determine whether M0 ∼ I1. When testing hello · hello,
the outputs produced by M0 and M1 show that these
implementations are distinct. This indicates the need to learn
a model of I1, leading to the inclusion of M1 in M.

Next, we consider I2 and derive M0 ≁ I2 using fingerprint
{hello · hello}. Observing that both M1 and I2 generate the
output hello · error, we initially hypothesize that M1 ∼ I2.
However, a conformance check containing sequence hello ·
kex · hello · hello refutes this hypothesis. The learning process
is triggered and learned model M2 is added to M.

Finally, when considering I3, we apply the fingerprint
{hello · kex · hello · data}, which leads to hypothesis I3 ∼M1.
Because this hypothesis is correct, we terminate after a passed
conformance check and conclude I3 ∼M1.

Misclassifications are absent in this example but tend to
arise in larger models when conformance checks, either after
fingerprinting or during learning, fail to cover the complete
behavior. When using incremental fingerprinting in the mo-
tivational experiments, no misclassifications are produced by
the algorithm when starting with 21 reference models. When
starting with 11 reference models, incremental fingerprinting
beats learning from scratch both in the misclassification rate
(0.7% instead of 32.9%) and in the number of interactions (3.5
million instead of 14.2 million).

III. PROBLEM STATEMENT

In this section, we introduce the preliminaries required to
formalize both the fingerprinting problem in a closed world as
described in the literature, and the new open world variation.

A. Preliminaries

Throughout this paper, we fix a finite set I of inputs and a
finite set O of outputs.

Definition 1. A Finite State Machine is a tuple M =
(Q, q0, δ, λ) with finite set Q of states, initial state q0 ∈ Q,
transition function δ : Q × I → Q and output function
λ : Q× I → O.
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The transition and output functions are extended to input
sequences of length n ∈ N as functions δ : Q× In → Q and
λ : Q× In → On. We use superscript M to refer to elements
of an FSM, e.g., QM and δM. We denote the concatenation of
inputs and outputs for two sequences v, v′ ∈ I∗, respectively
O∗, as v · v′. We write λ(w) instead of λ(q0, w) for some
w ∈ I∗. We denote the size of an object S, such as a set or
list, by |S|. Given an FSM M, |M| refers to |QM|.

Definition 2. Given a language L ⊆ I∗ and FSMs M0 and
M1, two states p ∈ QM0 and q ∈ QM1 are L-equivalent,
written as p ∼L q, if λM0(p, w) = λM1(q, w) for all w ∈ L.

FSMs M0 and M1 are L-equivalent, written M0 ∼LM1,
if qM0

0 and qM1
0 are L-equivalent. The states p and q are

equivalent, written p ∼ q, if they are I∗-equivalent. Analo-
gously,M0 andM1 are equivalent if qM0

0 ∼ qM1
0 . Intuitively,

separating sequences witness the inequality of FSMs:

Definition 3. Given FSMsM0 andM1, a sequence σ ∈ I∗ is
a separating sequence for M0 and M1 if λM0(σ) ̸= λM1(σ).
A set of sequences L ⊆ I∗ is a fingerprint for a set of models
M if every pair of non-equivalent models M0,M1 ∈M has
a separating sequence in L, and every σ ∈ L separates some
pair of models M0,M1 ∈M.

B. Formal Problem Statement

We define the fingerprinting problem under a closed-world
assumption, also known as group matching fingerprinting [21].

Closed-World Fingerprinting
Given a set of inequivalent models M and a list of black-
box implementations I ⊆M, compute a map µ : I→M
s.t. for all I ∈ I, M∈M: µ(I) =M iff I ∼M.

By the inclusion I ⊆ M, we indicate that for every I ∈ I
there existsM∈M such that I ∼M. The assumption I ⊆M
ensures that every implementation is equivalent to a reference
model. In Section II, we saw that this assumption is often too
strict. This motivates the open world variation of fingerprinting,
where the set of models is not known a priori. Thereby, building
the set M becomes a part of the problem.

Open-World Fingerprinting
Given a list of black-box implementations I, compute
a set of models M and a map µ : I → M s.t. for all
I ∈ I, M∈M: µ(I) =M iff I ∼M.

If an initial set of inequivalent models is available, the problem
can easily be adapted to support a “warm start”.

IV. STATE OF THE ART

In this section, we discuss the state of the art for fingerprint-
ing, conformance checking and active automata learning.

A. Fingerprinting Algorithms

Given an implementation, a fingerprinting algorithm returns
a potentially matching model from a fixed set of reference
models. An algorithm executes a sequence by running it on the

implementation. Contrary to standard definitions, we assume
that the fingerprinting algorithm also returns the set of all
executed sequences.

Definition 4. A fingerprinting algorithm requires an imple-
mentation I and a set of models M as inputs. The algorithm
executes a subset LF ⊆ I∗ of the fingerprint for M. It returns
LF andM if there is a modelM∈M which is the only model
that satisfies I ∼LF

M; otherwise, it returns LF and None.

If the closed-world assumption holds, i.e., for each I ∈ I
there exists M ∈ M such that I ∼ M, fingerprinting algo-
rithms always return exactly one model. To solve the fingerprint-
ing problem under a closed-world assumption, we execute a
fingerprinting algorithm to each implementation I ∈ I such that
a reference model M∈M is found for which I ∼M holds.
Static fingerprinting algorithms compute a set of separating
sequences and run these sequences on implementation I in
an arbitrary order, terminating once at most a single model
remains [7], [21]. Because each separating sequence distin-
guishes a pair of models in M, and the fingerprint includes one
separating sequence for every such pair, executing all sequences
on I guarantees the elimination of at least |M| − 1 models.
Dynamic fingerprinting algorithms also compute a set of
separating sequences but determine on-the-fly which sequence
to run next. A simple approach is to only select separating
sequences that are guaranteed to rule out at least one of the
remaining models. This can be accomplished through, e.g.,
adaptive distinguishing graphs (ADGs) [13]. An alternative
implementation of ADGs might order the separating sequences
based on the expected number of inequivalent models after
applying the sequence, following the definition of adaptive
distinguishing sequences [18]. We use the latter ADG interpre-
tation throughout this paper.

Example 3. Suppose we want to construct a fingerprint of refer-
ences M0,M1 and M2 from Fig. 1. The separating sequence
hello ·hello distinguishes the pairs (M0,M1) and (M0,M2),
whereas hello · kex · hello · hello separates (M1,M2). A
static fingerprinting algorithm begins by applying the sep-
arating sequence for (M0,M1); if the implementation is not
equivalent to M0, a second sequence is required. The ADG
approach described above observes that hello ·kex ·hello ·hello
distinguishes all models, and thus only requires one sequence
during application.

B. Conformance Checking

Conformance checking [22], [23] studies whether a given
model coincides with a black-box implementation. Under a
closed-world assumption, a fingerprint is sufficient evidence
to conclude that the implementation coincides with a model.
However, in an open world, the selected model may not actually
be equivalent to the implementation. A conformance query (CQ)
checks if a given implementation I and model M conform,
using a conformance checking algorithm.

Definition 5. A conformance checking algorithm requires an
implementation I and a model M as inputs. The algorithm
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returns LCQ ⊆ I∗ along with a Boolean outcome: true if
I ∼LCQ

M and false otherwise.

We consider three categories of conformance checking: (a)
algorithms with strong guarantees, (b) lightweight algorithms,
and (c) algorithms providing a trade-off between them.

Wp (in cat. a) is an established conformance checking algo-
rithm [24]. It creates a test suite of input sequences by: (1)
accessing all states in the model, (2) performing k input steps
from each state, and (3) checking whether the expected state
has been reached using a separating sequence. Wp guarantees
that if the implementation has at most k more states than the
model, then the test suite contains a separating sequence if the
implementation and model are inequivalent. Wp is expensive
as it is exponential in k.

RandomWord (in cat. b) generates random input sequences of
a specified length and compares the outputs from the model
and implementation [16]. While random sequences are very
cheap to generate, only statistical guarantees can be given.

RandomWp (in cat. c) combines Wp and RandomWord based
on ideas described in [25]. It visits all states in the model,
performs a random walk, and then checks whether the expected
state has been reached. It does not give the same guarantees
as Wp, but is very effective in finding separating sequences
with few queries [26], [27].

C. Learning Algorithms

Active automata learning (AAL) aims to learn models of
black-box systems by systematically providing inputs and
observing outputs. AAL algorithms are a natural candidate
to learn implementations and incrementally build the reference
set in our setting. We refer the reader to the surveys by Howar
and Steffen [28] and Vaandrager [15] for an overview of AAL.

Definition 6. An AAL algorithm requires an implementation
I as input and returns a model M such that I ∼M.

AAL algorithms are often implemented within Angluin’s
Minimally Adequate Teacher (MAT) framework [16]. In this
framework, the learning algorithm has access to a teacher
who has perfect knowledge of the System Under Learning
(SUL). The teacher can answer two types of queries: Output
Queries (OQs) and Equivalence Queries (EQs). When asked
an OQ with a given input sequence w, the teacher returns
the output sequence as produced by SUL M, i.e., λM(q0, w).
When asked an EQ, the teacher answers whether a provided
hypothesis model H is equivalent to SUL M, i.e., whether
H ∼ M holds. If the provided hypothesis is incorrect, the
teacher returns a counterexample that witnesses the behavioral
difference. The counterexample can be used by the learner
to refine the hypothesis.

Example 4. Suppose we want to learn a model of M0 from
Fig. 1. A learning algorithm might start by posing OQs: hello,
kex and data. Based on the teacher’s responses, we construct
initial hypothesisH0 shown in Fig. 2. Next, we pose an EQ with
H0. The teacher might respond with counterexample hello ·kex,

h0h0

kex/error,
data/error,
hello/hello

h0h0 h1h1

kex/error,
data/error

hello/hello

hello/hello,
data/error,

kex/kex

Fig. 2: Hypotheses H0 and H1 for SUL M0.

which produces hello · error in H0 but hello · kex in M0. This
discrepancy reveals the existence of a second state.

To construct the next hypothesis, we need to identify transi-
tions that lead to different states. This can be done using a sepa-
rating sequence, such as kex.2 For instance, to find the target of
the transition hello·kex, we pose OQ hello·kex·kex. If this path
reaches the initial state, then kex should yield error; if it reaches
the second state, it should return kex. Using kex as separating
sequence to identify all transitions, we build refined hypoth-
esis H1. This hypothesis can be refuted by counterexample
hello ·kex ·data, which discovers the last state. After identifying
each transition once more, we arrive at the correct hypothesis
which is equivalent toM0. Posing an EQ at this point confirms
its correctness, and the learning process terminates.

We consider the state-of-the-art algorithm L# [18]. This
algorithm efficiently learns a model from scratch by using an
efficient data structure to store all interactions with the SUL.
L# outperforms the automata learning algorithm L∗ [16] and
is competitive with algorithms like TTT [17]. Additionally,
we consider adaptive active automata learning [19], [29],
in particular the algorithm AL# [20] built on top of L#.
Adaptive learning algorithms reuse information from a set of
reference models M. If these models closely resemble the
SUL, the learning process can speed up significantly. For open-
world fingerprinting, the models learned so far can be used as
reference models.

Approximating the EQ. Assuming a teacher with perfect
knowledge of the SUL, L# and AL# learn the correct model
using a number of queries polynomial in the number of states
and inputs of the SUL, as well as the length of the longest
counterexample. However, such a perfect teacher often does
not exist as the SUL is a black-box implementation. Thus,
a teacher is often implemented by executing OQs directly
on the SUL and approximating the EQs using conformance
checking, see Section IV-B. When using conformance checking,
the learning algorithm returns a model M that is equivalent
with the SUL w.r.t. all input sequences posed during learning
and conformance checking.

Definition 7. An adaptive AAL algorithm using conformance
checking requires an implementation I, a set of models M,
and LF ⊆ I∗ as inputs. The algorithm returns a model M
and LL ⊆ I∗ such that I ∼LF∪LL

M.

2This example is consistent with the L# algorithm which identifies states
by distinguishing them from all but one state, in contrast to algorithms like
L∗ that aim to establish equivalence.
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In this setting, we allow initialization of the data structure
using a set of sequences LF . Data structure initialization using
logs is frequently used in AAL to speed up the learning process,
as described in [30].

V. INCREMENTAL FINGERPRINTING

In this section, we introduce a framework for incremen-
tal fingerprinting, combining closed-world fingerprinting and
automata learning to solve the open-world fingerprinting
problem efficiently and accurately. We detail the algorithm, its
correctness and complexity. We conclude this section with a
recommended configuration of the algorithm, which we refer
to as the incremental fingerprinting algorithm INFERNAL.

A. Incremental Fingerprinting Algorithm

Algorithm 1 lists INCREMENTALFINGERPRINTING which
solves the open-world fingerprinting problem, i.e., it returns
M such that for all I ∈ I there is an equivalent model in M.
The algorithm iteratively builds a model set M, and functions
µ and γ. For each I ∈ I, µ stores an equivalent model
M∈M, while γ records the input sequences L ⊂ I∗ used to
identify I. Upon termination, µ(I) = M ↔ I ∼γ(I) M
holds for each implementation I ∈ I. The workflow of
INCREMENTALFINGERPRINTING is outlined in Fig. 3 and
the algorithm is listed in Alg. 1.

In Lines 1–2 of Alg. 1, we initialize M and iterate over all
implementations I. In Line 3, we run the algorithm IDENTIFY-
ORLEARN, discussed below, with the current implementation
I and set of references M. The IDENTIFYORLEARN algorithm
either matches I with a reference in M or learns a new model.
In Lines 4–7, the model M and language L returned by
IDENTIFYORLEARN are used to update M, µ and γ. When
all I ∈ I are considered, we return M, γ and µ.

Before discussing IDENTIFYORLEARN, we explain the
behavior of the LEARN algorithm used in Lines 1 and 7.
LEARN requires an implementation I , a set of models M and
a language LF ⊆ I∗ to initialize the learning data structure.
Internally, it makes use of several CQs to approximate the EQ.
Algorithm LEARN returns a model M and language LL of
OQs used during learning, for which I ∼LL∪LF

M holds.
IDENTIFYORLEARN, presented in Alg. 2, either identifies

a matching model M in the set of references M, or learns a
new model. In Line 1, we handle the special case where M is
empty and call LEARN with M = ∅ and LF = ∅. We return
the result of LEARN: found model M and language LL.

In Line 2, we use fingerprinting to identify the reference in
M that is a candidate for equivalence with implementation I.
FINGERPRINTING requires an implementation I and a set of
inequivalent models M as inputs. The algorithm returns the
set of executed sequences LF to avoid reposing the sequences
during the CQ or when learning a new model. Additionally, a
candidate reference M∈M if M is the only reference in M
for which I ∼LF

M holds and None otherwise.
In Lines 3–6, we test the candidate reference M using

a CQ if fingerprinting resulted in a non-None model M.
CONFQUERY requires an implementation I and a modelM as

Algorithm 1 INCREMENTALFINGERPRINTINGC

Require: implementations I, initial references M0

1: Initialize M←M0

2: for I ∈ I do
3: M, L = IDENTIFYORLEARNC(I,M)
4: M←M ∪ {M}
5: γ(I) = L ▷ For Thm. 1
6: µ(I) =M
7: return M, γ, µ

Algorithm 2 IDENTIFYORLEARNC

Require: implementation I, references M
1: if M = ∅ then return LEARNC(I,M, ∅)
2: M, LF ← FINGERPRINTINGC(I,M) ▷ Section IV-A
3: if M is not None then
4: b, LCQ ← CONFQUERYC(I,M) ▷ Section IV-B
5: LF ← LF ∪ LCQ

6: if b then return M, LF

7: M, LL ← LEARNC(I,M, LF ) ▷ Section IV-C
8: return M, LF ∪ LL

inputs. CONFQUERY returns LCQ and a Boolean b set to true
if I ∼LCQ

M and false otherwise. After execution, we update
LF to include the input sequences LCQ posed during the CQ.
If the conformance check passes, i.e., b = true, we return the
found model M and the language LF . Lines 7–8 handle the
case where I ≁M for all M∈M after fingerprinting or con-
formance checking. The algorithm LEARN in Line 7 receives
the set of models M and the language LF ∪ LCQ as inputs.
We return the found model M and the language LF ∪ LL.

Alg. 1 and 2 are parameterized by a tuple C which
contains the algorithms for fingerprinting (FINGERPRINTINGC),
fingerprinting CQ (CONFQUERYC), learning (LEARNC), and
learning CQ (LEARNINGCONFQUERYC).

B. Correctness of Incremental Fingerprinting

Incremental fingerprinting is correct if I ∼γ(I) µ(I) →
I ∼ µ(I) holds for any implementation I, thus, if we can
correctly generalize from the constructed language γ(I). We
prove the correctness of INCREMENTALFINGERPRINTING w.r.t.
I ∼LM by formalizing the contracts of IDENTIFYORLEARN
and INCREMENTALFINGERPRINTING. Additionally, we prove
that INCREMENTALFINGERPRINTING is correct when CONF-
QUERY has complete knowledge.

Lemma 1. IDENTIFYORLEARNC (Alg. 2) requires an imple-
mentation I and a set of inequivalent models M as inputs. After
execution, a model M and a language L ⊆ I∗ are returned
such that I ∼L M and there is at most one M′ ∈ M for
which I ∼LM′. Additionally, if CONFQUERY and LEARN-
INGCONFQUERY in C are perfect teachers, then I ∼M.

With a perfect teacher, INCREMENTALFINGERPRINTING pre-
cisely solves the open-world fingerprinting problem.
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IDENTIFYORLEARNC(I,M)

INCREMENTALFINGERPRINTINGC(I,M0)
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Implementation I
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No Model, LF
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M,
µ(I) :=M,
γ(I) := LF ∪ LCQ

M := M ∪ {M},
µ(I) :=M,
γ(I) := LF ∪ LCQ ∪ LL

M, µ, γ

Fig. 3: Overview of Incremental Fingerprinting.

Theorem 1. INCREMENTALFINGERPRINTINGC (Alg. 1)
requires a list of implementations I and a set of distinct models
M0 as inputs. The algorithm returns M, γ and µ such that
for I ∈ I there exists a M ∈ M for which I ∼γ(I) M iff
µ(I) = M. Additionally, if CONFQUERY and LEARNING-
CONFQUERY in C are perfect teachers, then I ∼M.

C. Complexity of Incremental Fingerprinting

The complexity of learning algorithms is often measured
in number of queries used to learn the SUL [28], [15]. For
L#, learning a model M has asymptotic query complexity
O(kn2+n log l) where n = |QM|, k = |I| and l is the length
of the longest counterexample [18]. Additionally, we can prove
that at most n EQs are required. We now analyze the complexity
of learning a set of models M representing a list of implemen-
tations I when a perfect teacher is available. We first consider
repeated application of L# (RL#) as a baseline and INCRE-
MENTALFINGERPRINTING using L# as LEARN algorithm.

Theorem 2. Let m = |M|, i = |I|. Assume that a perfect
teacher is available and that allM∈M have at most n states,
k inputs and counterexamples of length at most l. RL# learns
the the correct set of models M within O(i(kn2+n log l)) OQs
and at most in EQs. INCREMENTALFINGERPRINTING with
SepSeq and L# learns the correct set of models M within
O(m(kn2 + n log l) + im2) OQs and at most mn+ i EQs.

Clearly, if i is significantly larger than m, our approach
asymptotically outperforms RL# when considering the learn-
ing queries. An overview of the asymptotic complexities is
presented in Table I and proven in App. A.

D. Misclassifications

CQs may yield misclassifications, i.e., they can wrongly
conclude I is equivalent to some M. As CQs are used within
INCREMENTALFINGERPRINTING, our approach may also
yield misclassifications. A misclassification for INCREMEN-
TALFINGERPRINTING occurs when a model µ(I) =M while
I ≁M, caused by either the CQ on Line 4 of Alg. 2 or the
final learning CQ on Line 1 and 8. However, if incremental
fingerprinting starts with a complete set of references, as in
the closed-world scenario, no misclassifications can occur.

Theorem 3. Let I be a list of implementations and M0 a
set of inequivalent models such that I ⊆ M0. Executing
INCREMENTALFINGERPRINTINGC with initial references M0

and implementations I returns M and µ such that M0 = M
and for I ∈ I, µ(I) =M iff I ∼M for some M∈M.

This implies that once the algorithm has learned a set of
models such that all implementations can be correctly identified,
i.e., the reference set is complete, no further misclassifications
occur. The same statement holds for repeated AL# but cannot
be proven for repeated L# because no information from
previously learned models is used by L#.

E. INFERNAL Algorithm

The incremental fingerprinting algorithm can be instantiated
with different algorithms for fingerprinting, conformance
checking, learning and conformance checking during learning,
as indicated by parameter C. This also exhibits the algorithm’s
flexibility; components are easily replaced when improved
algorithms are designed. We use INFERNAL to refer to the incre-
mental fingerprinting algorithm instantiated with ADG for fin-
gerprinting, RandomWp to implement both conformance checks,
and AL# for learning, as these are all state of the art algorithms.
The effects of different possible instantiations will be investi-
gated in the experimental evaluation of RQ2 in Section VI.

VI. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the performance
of our incremental fingerprinting algorithm INFERNAL (Sec-
tion V), which solves the open-world fingerprinting problem
(Section III). The source code and benchmarks are available
online [31].3 In our experiments, we focus on fingerprinting
network protocols. We aim to answer the following research
questions:
RQ1: How does INFERNAL compare against baselines?
RQ2: What algorithmic design choices are crucial for the

performance of INFERNAL?
RQ3: To what extent do misclassifications produced by learn-

ing CQs influence misclassifications generated by the
fingerprinting CQ?

3https://github.com/lkruger27/IncrementalFingerprintingOpenWorld
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TABLE I: Query complexity under a perfect teacher with m = |M|, i = |I|, n ≤ |M| for all M ∈ M, k = |I| and
counterexamples of length at most l. We assume i > m when fingerprinting black-box implementations of the same protocol.

Algorithm Maximum OQs Maximum EQs
Repeated L# i(kn2 + n log l) in
INCREMENTALFINGERPRINTING with L# m(kn2 + n log l) + im2 mn+ i
Repeated AL# i(kn2 + kmn2 + n3m2) +mn log l mn+ i−m
INCREMENTALFINGERPRINTING with AL# m(kn2 + kmn2 + n3m2 + n log l) + im2 mn+ i

A. Benchmarks

We consider several benchmarks representing network pro-
tocol implementations, see App. B for details.

TLS. Transport Layer Security (TLS) is a well-known security
protocol. We use the 596 implementations and 22 underlying
models of mbedTLS and OpenSSL learned and fingerprinted
by [13]. These models range between 6 and 14 states.

SSH. The Secure Shell Protocol (SSH) is a prominent security
protocol of which three implementations have been learned [8]
using AAL. These models have between 17 and 66 states. We
create 17 additional models by applying mutations [20], such
as diverting transitions, removing states, adding states, and
changing transition outputs. We consider 100 implementations,
where each of the 20 models occurs 5 times.

BLE. Bluetooth Low Energy (BLE) is a low-power variant of
the Bluetooth communication protocol. BLE devices have pre-
viously been learned and fingerprinted [10]. For our evaluation,
we use 4 of their models (CC2650, CC2652R1, CYW43455,
nRF52832). We extend the BLE model suite by a model of BLE
car access systems of a Tesla Model 3 [32] and, additionally,
we use models of 3 devices: (1) a proof-of-concept version of
CYBLE-416045-02, (2) an updated version of CC2652R1, and
(3) Apollo3 Blue. These last three models were learned for this
paper; learning details can be found in App. B. The 8 models
range between 2 and 16 states and use the same 7 inputs. We
copy each model 5 times, leading to 40 implementations.

BLEDiff. Furthermore, we consider 6 BLE models learned using
the black-box protocol noncompliance checking framework
BLEDiff and provided by the authors of [33]. We make the
model input-complete by adding self-loops with a unique output
ϵ for undefined transitions. The 6 models range between 5 and 8
states and have 32 inputs. Due to a difference in the input names
and number of inputs, we do not merge BLE and BLEDiff.
We copy each model 5 times, resulting in 30 implementations.

MQTT. Message Queuing Telemetry Transport (MQTT) is a
publish/subscribe protocol often used in IoT [34]. MQTT has
been learned and fuzz tested [35]. We consider an extended
set of MQTT brokers containing: HiveMQ 1.3.5, emqx 5.8.6,
ejabberd 25.3.0, VerneMQ 2.0.1, Eclipse Mosquitto 2.0.11,
and mochi 2.7.9 with a broadened alphabet. The models range
between 7 and 53 states. Many of the available MQTT clients
include broker logic to improve communication and implement
broker behavior already on the client side, e.g., responses to
invalid requests. Therefore, to communicate with the broker,
we utilize a custom Java client to test the broker behavior in

isolation. We use the Py4J library to connect the incremental
fingerprinting setup, which is written in Python, to the custom
Java client. Implementations are learned using L# with a state
prefix oracle with 10 walks per state and a walk length of 12.
The state prefix oracle is similar to RandomWp but does not
append a separating sequence after the random walk. We copy
each model 5 times to model 30 implementations.

B. Experiment Set-up

We implement INCREMENTALFINGERPRINTING using the
automata learning library AALpy [36], using its AL# and
L# algorithms. When learning a specific implementation, we
rely on a cache containing all OQ responses for fingerprinting,
conformance checking, and learning.

Measurements. The performance of the algorithms is measured
based on the number of symbols (sum of the number of
inputs and number of resets) sent to the SUL, as is standard
in active automata learning [18]. Interacting with a black-
box system usually requires more time than computing the
next OQ, indicating that the number of interactions accurately
represents performance. For example, setting up the connection
and waiting for network packets to arrive takes a consider-
able amount of time when interacting with a BLE device.
Additionally, we measure the percentage of misclassifications
while learning a list of implementations, defined as the ratio of
misclassifications to implementations. To determine whether
a misclassification occurs, we check bisimilarity between the
ground truth model for an implementation I and µ(I). Unlike
conventional automata learning experiments, we do not abort
the learn process or CQ based on any side information. In some
experiments, we set a maximum symbol budget. The symbol
budget is the maximal number of symbols that may be used
during learning and testing. In this case, the learning process
can stop either when all tests pass or when the budget runs
out. If the budget is exceeded during learning, we return the
previous hypothesis. If it happens during testing, we return the
hypothesis currently under evaluation. In this scenario, a model
is learned correctly if the returned hypothesis is equivalent to
the implementation. We run all experiments with 30 seeds.

Configuration C. We call the naive separating sequence
fingerprinting approach from Section IV-A SepSeq and use
ADG to refer to the second discussed ADG implementation.
Inside INFERNAL, we use either AL# or L# as discussed
in Section IV-C. We use the following specific settings in
our experiments concerning the CQ implementations, see
Section IV-B:

8



(a) RQ1A: Perfect teacher. (b) RQ1B: Maximum symbol budget. (c) RQ1C: Testing until all tests pass.

Fig. 4: Comparison of INFERNAL, RL# and RAL# for Experiment 1. The colors of bars indicate the algorithms for Figs. 4a
and 4b. For Fig. 4c, the colors indicate the benchmarks, and the markers indicate the algorithms. The results are averaged over
all seeds in all plots. For Fig. 4c, the black lines indicate the standard deviations.

• Wp: The test suite of the Wp method grows exponentially
with its parameter k. We use k = 2 in line with
conclusions from [37] and as also done in [27].

• RandomWord: We execute 1000 sequences with lengths
ranging from 10 to 30.

• RandomWp: The number of walks per state is 100 unless
indicated otherwise. Each walk has a random length
between 1 and 5 sampled from a uniform distribution.

• Budget RandomWp: The random walk length is set to
a geometric distribution with minimum length 3 and
expected length 8, see [25].

Baselines. We assume that no models are available at the
start of an experiment, which rules out comparisons with
closed-world fingerprinting. The automata learning algorithm
L∗ is often used to learn a set of models that is later used in
closed-world fingerprinting [7], [9] We use RL# (repeated L#)
and RAL# (repeated AL#) as baselines instead of repeated
RL∗ as L# outperforms L∗ [18]. In RL#, we maintain a
set M and a mapping from implementations to models. For
every I, we run L#, add the model if it is not equivalent to
any in M and update the mapping. RAL# follows the same
procedure, using the current M as the reference set. We note
that RAL# can be seen as a simplification of INFERNAL that
omits the fingerprint and subsequent CQ.

C. Experiment 1: INFERNAL vs Baselines RAL# and RL#

To answer RQ1, we compare the performance of INFERNAL
to baselines RAL# and RL#. Given the teacher’s significant
impact on the performance of INFERNAL and the baselines, we
examine RQ1 across three scenarios. To this end, we address
the following subquestions: How does INFERNAL compare
against baselines when using

1) A perfect teacher,
2) RandomWp and a maximum symbol budget, and
3) RandomWp until all tests pass?

Results. The results for Experiment 1 are depicted in Fig. 4,
per subquestion. Fig. 4a shows the number of symbols (log-
scaled) sent to the SUL while learning the set of models
using a perfect teacher; lower is better. Fig. 4b shows the

percentage of correctly learned models when learning is
terminated after exceeding the budget which is included on the
x-axis; higher is better. Finally, Fig. 4c shows both the number
of interactions (log-scaled) and the number of misclassifications.
The interactions in Fig. 4c are not limited by a budget, instead
the experiment ends when the CQ indicates that all tests passed.
This last plot can be used to determine the trade-off between
misclassifications and number of interactions; low and left is
best. We perform an additional experiment for RQ1c varying
the number of walks per state in RandomWp for SSH and
TLS, displayed in Fig. 7 and 8 (App. E).

Answer RQ1
When a perfect teacher is available, INFERNAL performs
almost an order of magnitude better than the baselines
across all benchmarks. When a maximum budget is used,
INFERNAL and RAL# are more accurate than RL#.
When testing until all tests pass, INFERNAL and RAL#

provide a better trade-off between few interactions and
few misclassifications compared to RL#.

On RL#. The baseline RL# is not a reasonable solution to
open-world fingerprinting as it leads to an excessive number of
interactions with the system under a perfect teacher compared to
INFERNAL (Fig. 4a). Moreover, RL# leads to an exceptionally
high misclassification rate compared to INFERNAL and RAL#

when using a maximal budget or when testing until convergence
(Fig. 4b). The high misclassification rate is especially noticeable
in Fig. 4c, RL# has a misclassification of 75.9% for TLS while
INFERNAL and RAL# have a misclassification rate under 9%.
On INFERNAL vs RAL# When considering a perfect teacher
(Fig. 4a), INFERNAL clearly outperforms RAL#. However,
when such a teacher is not available (Figs. 4b and 4c), the
trade-off between INFERNAL and RAL# is more nuanced:
INFERNAL often requires fewer symbols than RAL# while
RAL# often produces fewer misclassifications.

Additionally, it can be observed that the same CQ im-
plementation for all benchmarks leads to widely different
misclassification rates in Fig. 4c. This shows that to obtain an
accurate model, it is essential that the CQ is well-configured.
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We hypothesize that RAL# has fewer misclassifications
because relearning is more effective at revealing distinct
implementations than some CQ configurations. Therefore, we
performed additional tests with a more exhaustive CQ. In Fig. 7
for SSH, the difference in misclassification for INFERNAL and
RAL# diminishes. Moreover, the same experiment for TLS
(Fig. 8) reveals that INFERNAL outperforms RAL# for TLS
when the CQ is exhaustive enough. Thus, the trade-off between
INFERNAL and RAL# is benchmark and resource specific.

D. Experiment 2: Ablation Study

To answer RQ2, we perform an ablation study to check
whether other configurations for INFERNAL are better per-
forming and to gain insights into the effect of the individual
algorithms on the overall performance. We compare all combi-
nations of the algorithms mentioned in Section IV:

• FINGERPRINTING: SepSeq and ADG,
• CONFQUERY: Wp2, RandomWp100 and Random-

Word1000,
• LEARN: L# and AL#.

Results. Fig. 5 contains subplots for the TLS, SSH, MQTT, and
BLEDiff benchmarks. The results for BLE are presented in
Table XII in App. D, as all BLE models are well differentiable.
The axis interpretation matches Experiment 1c: lower and left is
better. Fig. 9 in App. E depicts an additional experiment where
fingerprinting and learning use different CQ implementations.

Answer RQ2
The selected CQ algorithm has the biggest impact on the
performance, with RandomWp100 providing the best trade-
off between misclassifications and number of symbols.
Additionally, we conclude that ADG outperforms SepSeq
and AL# outperforms L#. These results justify the
choices for INFERNAL.

On ADG vs SepSeq. ADG usually leads to fewer misclassi-
fications; the circle marker is more to the left compared to
the triangle marker. However, in BLEDiff SepSeq outperforms
ADG. The number of interactions is largely dictated by CQ,
rendering the fingerprinting algorithm’s influence negligible.

On AL# vs L#: Misclassifications. We observe that us-
ing AL# during learning leads to fewer misclassifications
compared to L#; the opaque color is more to the left. We
hypothesize that this is because AL# tests whether states in the
known models are also present in the current implementation,
leading to bigger and more accurate models. This explanation
is in line with Experiment 1c.

On AL# vs L#: Interactions. The number of interactions
does not seem to be impacted as much when using AL#

over L#. This can be explained by the fact that learning
only occurs when the implementation does not match any
of the models in M, which happens 27% of the time for
TLS and 20% of the time for the other benchmarks. When
only considering learning symbols, AL# usually requires
fewer symbols than L# (Table XII, App. D). For example,

incremental fingerprinting with L#, RandomWp100 and ADG
requires 25.6% more learning symbols compared to AL# with
the same fingerprinting and CQ settings on average.

On the CQ algorithm. RandomWp100 has fewer misclassifi-
cations compared to RandomWord1000 while using the same
number of interactions, indicating that RandomWp100 should
be preferred over RandomWord1000. Wp2 produces almost no
misclassifications but requires significantly more interactions.
The data points for Wp2 with INFERNAL-AL# are hidden
behind the data points for INFERNAL-L#. If the number of
misclassifications should be minimal, Wp2 may be preferable
over to RandomWp100.

On the number of RandomWp tests. In Fig. 9 (App. E), we
experiment with combinations of RandomWp25, RandomWp50
and RandomWp100 during the fingerprinting CQ (FCQ) and
learning CQ (LCQ). As expected, using RandomWp100 during
the FCQ and LCQ produces the fewest misclassifications.
Performing a less exhaustive CQ during either the FCQ or
LCQ leads to more misclassifications but fewer symbols. The
exact trade-off varies depending on the benchmark.

E. Experiment 3: Propagation of Misclassifications

To evaluate how misclassifications produced by learning
affect misclassifications produced by fingerprinting (RQ3), we
begin by distinguishing two categories of misclassifications,
defined by the termination point of Alg. 2.
FCQ misclassifications: Terminating with an incorrectM on

Line 6, i.e., with the CQ after fingerprinting.
LCQ misclassifications: Terminating with an incorrectM on

Line 8, i.e., with the CQ within learning.
We consider a configuration of INFERNAL with AL#, ADG
and RandomWp100 for the FCQ. For the LCQ, we vary
between RandomWp25, RandomWp50 and RandomWp100.
We deliberately use weak CQs to ensure the effect of LCQ
misclassifications on FCQ misclassifications is visible.

Results. The influence of the LCQ misclassification rate on the
FCQ misclassification rate is depicted in Fig. 6. Colors indicate
the implementation of LEARNINGCONFQUERY. Misclassifica-
tion rates are shown as stacked bars: LCQ misclassifications
in solid color, FCQ misclassifications transparently.

Answer RQ3
Both CQs are essential for a low misclassification rate.
A more exhaustive LCQ usually increases the number
of correct models and may reduce the misclassifications
during the FCQ.

Discussion. The results indicate that a more exhaustive LCQ
influences both the LCQ misclassifications and its downstream
effects on the FCQ misclassifications. First, we note that for
MQTT and BLE the FCQ is sufficiently exhaustive to detect
wrongly learned models, as seen by the non-existent FCQ
misclassifications. For the BLEDiff benchmark, we observe a
disproportional increase in correct models as FCQ misclassifica-
tions are prevented when fewer incorrect models are provided.
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Fig. 5: Comparison of different algorithms for the components of incremental fingerprinting for Experiment 2. In each subplot,
color shows CQ, opacity the learning algorithm, and marker the fingerprinting algorithm.

Fig. 6: Influence of the LCQ misclassifications on the FCQ
misclassifications for Experiment 3. Colors show the LEARN-
INGCONFQUERY. LCQ errors are shown in opaque color and
FCQ errors are layered transparently above in the stacked bars.

For SSH, we find that a less LCQ misclassification translates to
a lower number of overall misclassifications, but increases the
number of FCQ misclassifications; both CQs cannot uncover the
wrong matches. In the TLS benchmark, there is no clear trend;
the number of FCQ misclassifications fluctuates, while the LCQ
misclassification rate marginally improves with more tests.

VII. DISCUSSION

We discuss limitations of the proposed approach and our
experiments, explore a commonly studied problem variation
in machine learning, and emphasize the trade-off between
misclassifications and performance.
Finite state machine learning. Our approach requires the
ability to learn Finite State Machines (FSMs) representing
implementations with active automata learning, which means
we assume that interaction with the System Under Learning
(SUL) is possible and that the SUL can be represented as
an FSM. Such FSMs abstract away from data and timing
information. Many network protocols can be represented as
FSMs in theory but exhibit non-determinism in practice due to,
e.g., packet loss. It would be interesting to use non-deterministic
learning algorithms during incremental fingerprinting. However,

the currently available non-deterministic automata learning
algorithms are rather pragmatic, inefficient or make assumptions
on the type of non-determinism, see e.g. [38], [39], [40].
However, when better suited non-deterministic learning
algorithms or efficient algorithms for richer types of automata
get developed, such as extended FSM which allow (user-
entered) data values or FSMs with timers, they can easily be
integrated into our incremental fingerprinting framework. While
tools such as Nmap fingerprinting [41] and ssh-audit [42] can
identify implementations with only a few probing sequences,
they rely on a closed-world assumption and are typically
tailored to specific protocol families. In contrast, state-machine
learning is agnostic to both the protocol and its implementation.

Black-box learning. We do not use side information in the form
of source code, documentation, or standards in our approach;
we assume a completely black-box scenario. On the one hand,
this means we do not rely on side information which allows us
to learn models of proprietary software like BLE. On the other
hand, many protocol implementations are open-source and,
thus, their source code is freely available and could have been
used to improve the performance of automata learning and the
CQ [43]. In future work, we plan to investigate gray-box open-
world fingerprinting, where, for example, the source code for a
subset of the implementations is accessible, or the source code
is available but the run-time configuration remains unknown.

Acceptable misclassification percentage. Misclassifying a black-
box implementations leads to the false belief that it behaves like
a certain reference model. Using this flawed reference model
to assess vulnerabilities can then lead to false conclusions,
such as assuming the implementation is secure when it is not.
Thus, preferably an incremental fingerprinting algorithm leads
to a 100% accuracy rate. We aimed for 90% accuracy when
using INFERNAL in Experiment 1b, as 100% typically requires
significantly more symbols (see Experiment 2, 99% with Wp).

Duplicate distribution. For all benchmarks except TLS, no
realistic distribution of the number of implementations per
unique model is available. As we focused on using INFERNAL
for learning a list of implementations with diverse models and
duplications, we included five copies of each model in the
benchmark sets. When repeating Experiment 1c with different
numbers of copies per unique model of MQTT, we find that
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the gain of INFERNAL increases with the number of copies, see
Table XV in App. E. However, this experiment uses a constant
number of copies per unique model while in TLS, some of the
22 models have no duplicates while other have 99 duplicates. It
would be interesting to gain further insights into the distribution
of duplicates and their likeliness in real-world legacy systems
and investigate their impact of the performance of INFERNAL.
Implementation clustering. Machine learning approaches for
fingerprinting often consider a variation of the fingerprint-
ing problem where equivalent implementations are clustered
without building a model set, see e.g. [44], [45], [46], [47].
We call this variant the implementation clustering problem.
A solution to the open-world fingerprinting problem trivially
solves the implementation clustering problem. To compute
whether implementations I and I ′ are equivalent, the returned
mapping µ alone is sufficient as µ(I) =M = µ(I ′) implies
I ∼ I ′. The reverse does not generally hold. To build the
reference set M from a given set of equivalent implementations,
a representative model from each set must be learned. Further,
the set of models returned by open-world fingerprinting favors
the explainability of the solution, as all models are individually
available and can be analyzed, which is not possible when only
implementation clusters are available.
Passive vs active. When active learning is not possible,
supervised and unsupervised learning techniques can be used,
depending on whether the problem is assumed to be closed
or open world. In a closed world, the training set contains
collected pairs of implementations and ground-truth models
from which a supervised learner generalizes. In the open-
world variant, there is no such representative training set, and
unsupervised learning needs to be used to identify equivalent
implementations [48]. Independent of the setting, the data used
to feed those expensive a priori training processes often takes
several months or years to collect [47], [49], [44]. In contrast,
the most costly operation in incremental fingerprinting, the
learning of a new model, is only triggered when such a model
is actually encountered.
Incremental fingerprinting in practice. Given a list of black-
box devices, incremental fingerprinting can be used to build
an initial reference set. As new devices appear, they can be
identified at a relatively low cost. Many IoT systems integrate
BLE devices for which firmware updates can be pulled. In
such cases, the incremental approach can be integrated into the
IoT system to automatically maintain behavioral models for
analysis and identify when potentially harmful devices connect.
Configuring the CQ. We evaluated algorithms on benchmarks
with known ground-truth models, allowing misclassification
rates to be computed. In practice, ground-truth models are
unavailable due to black-box assumptions. When using in-
cremental fingerprinting instantiated as INFERNAL, (ADG for
fingerprinting, RandomWp for CQ, and AL# for learning), it is
essential that RandomWp is well configured as the performance
of INFERNAL depend first and foremost on the CQ oracle
used. We propose the following steps to configure the CQ:
Initialize RandomWp with a walk length of 5 and 100 walks

per state, based on the results from Experiment 1c. Pick one of
the black-box implementations to be fingerprinted. Learn the
implementation multiple times over different seeds and double
the number of walks per state whenever the learned models
vary until all runs stabilize and produce the same model. If
behavior is clearly missing from the model, increment the walk
length by one. Repeat this procedure for a few of the other
black-box implementations, starting from the configuration
that was deemed acceptable for the previous implementation.
The CQ configuration leads to an empirically reasonable trade-
off. To get fewer misclassifications, we recommend a more
exhaustive CQ such as the Wp-method.
Exploitation potential. State machine learning has proven to
be a useful tool for revealing deviations in implementations
from the corresponding protocol standards [50], [8], [10]. For
example, learned models of Bluetooth implementations could
uncover logical errors in the pairing procedure, as was recently
exploited in the forced pairing behavior of Google Fast Pair
earbuds [3], [4], which allowed pairing with any nearby device.
Furthermore, state machine learning has also been proposed
for detecting security vulnerabilities [51]. This approach is
often referred to in the literature as protocol state fuzzing and
has successfully detected security issues in communication
protocols such as TLS [52] and DTLS [6]. However, these
approaches often rely on the manual analysis of the learned
models. In our framework, we could flag models that have
known vulnerabilities and check whether an implementation
matches any of these models.

We could automate the detection of security vulnerabilities
by analyzing learned models using testing or verification
techniques. Based on the idea of differential testing for
detecting security vulnerabilities [53], one technique could be
to examine differences between the learned models as indicators
for possible security vulnerabilities. Such integration can be in-
corporated directly into the CQ within the IDENTIFYORLEARN
procedure (Alg. 2) of our INFERNAL framework. For example,
we could include input sequences in our test suite that test
for the acceptance of invalid hostnames in X.509 certificates.
Another approach would be to apply model checking to verify
specific properties of the learned models, similar to [54], [8].
These properties could verify whether the models contain a
path that bypasses authentication or enables a protocol version
downgrade. Note that this extension does not violate the
open-world assumption, since test suites and properties only
depend on the investigated protocols and are independent of
the implementations. In addition, we can incorporate possible
attacks into our learning procedure by applying concepts from
learning-based fuzzing [55], [35] to capture the behavior of
the implementation under unexpected inputs.

VIII. RELATED WORK

Fingerprinting is extensively researched for finding known
security vulnerabilities in black-box systems. The survey by
Sánchez et al. summarizes fingerprinting using statistical
methods [48], and Alrabaee et al. fingerprinting for binary
code [56]. Previous works by Li et al. and Wang [57], [58]
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highlight limitations of closed-world fingerprinting and propose
open-world methods for Android apps and websites. These
rely on passively captured traffic flows. In contrast, we focus
on network protocol fingerprinting via active interactions
with a black-box. In the sequel, we discuss related work
on fingerprinting via active automata learning (AAL) and
fingerprinting using machine learning.

The most relevant works use AAL to learn a model of the
implementations under a closed-world assumption and then
perform fingerprinting on the learned models. Fingerprinting
using AAL was initially proposed by Shu et al. [21] as an
efficient alternative to passive automata learning which requires
massive logs [49]. In the past, several protocols have been
fingerprinted, e.g. [9], [13], [7]. Pferscher et al. demonstrates
that AAL can be used to learn models of BLE devices, revealing
safety-critical behavior, and how these models can be used
to fingerprint the learned BLE devices. Karim et al. present
BLEDiff, a black-box compliance checking tool for BLE devices
based on deviations between individually learned models [33].
Janssen demonstrates how TLS stacks can be learned with
AAL and then compares different methods for generating
fingerprints [13]. Further, Rasoamanana et al. demonstrates
how the TLS stack can be efficiently fingerprinted [7]. All of
those works use adapted versions of L∗, targeted at the specific
protocol. Unlike our work, each new model, even if related to
previously learned models, is learned again from scratch. Our
work proposes incremental fingerprinting to solve the finger-
printing problem in an open world. Incremental fingerprinting
only learns a new model if it is determined to be different
from all previously seen models, and then performs adaptive
learning to make optimal use of the knowledge stored in the
previous model. Fingerprinting of closely related families of
models has been studied by Damasceno et al. [59], who propose
an efficient approach that models whole families as Featured
Finite State Machines constrained over versions, instead of
individual machines. By knowing which implementations are
related, they assume a closed world.

Recent work utilizes machine learning and stochastic learning
to fingerprint black-box implementations. Marzani et al. use pas-
sive automata learning and stochastic learning for fingerprinting
versions of apps based on their network communication [44].
Further, Wang et al. fingerprint the platform of a video stream
by using machine learning [47], and Msadek et al. fingerprint
IoT devices [45]. Sabahi-Kaviani et al. use machine learning
to compute the alphabet for automata learning algorithms
to classify encrypted traffic [46]. All of these approaches
can only solve the implementation clustering problem, they
can not build a model set M. In comparison, our work uses
incremental fingerprinting with adaptive learning to detect
equivalent implementations, but also supports further analysis
by learning behavioral models of black-box systems.

IX. CONCLUSION

Identifying the network protocol version running on a
device allows to assess whether the device is susceptible
to known security flaws. Fingerprinting is often done under

a closed-world assumption, which implies that all devices
match one of a curated set of known reference models. In
an open world, this set is not complete, and it is not known
which models are missing. Learning these models on-the-fly
poses challenges in terms of resources and accuracy. We
formalized the problem of beavioral open-world fingerprinting
and present incremental fingerprinting (INFERNAL) to address
these challenges by integrating closed-world fingerprinting
and active automata learning. The experiments show that
INFERNAL improves significantly over the state of the art.

Future work. We want to evaluate INFERNAL on a more
extensive set of network protocol implementations, as well
as on models that go beyond software protocols, such as large
legacy systems. Additionally, we plan to explore gray-box
open-world fingerprinting by including side information to
improve the learning performance. Side information, such as
source code or logs, can help answer output queries without
querying the system, or can be used to initialize the learning
data structure. Finally, we will explore combining incremental
fingerprinting with machine learning techniques from the
literature to conclude equivalence of the fingerprinted version
and protocol implementation faster.
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[3] S. Duttagupta, N. Antonijević, B. Preneel, S. Wyns, and D. Singelée,
“Whisperpair: Hijacking bluetooth accessories using google fast pair,”
https://whisperpair.eu/, 2026, accessed: 2026-01-16.

[4] “Cve-2025-36911,” https://www.cve.org/CVERecord?id=
CVE-2025-36911, accessed: 2026-01-16.

[5] D. Heinze and F. Steinmetz. (2025) Security advisory: Airoha-based
bluetooth headphones and earbuds. [Online]. Available: https://insinuator.
net/2025/06/airoha-bluetooth-security-vulnerabilities/#more-15309

[6] P. Fiterau-Brostean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas,
and J. Somorovsky, “Analysis of DTLS implementations using protocol
state fuzzing,” in USENIX Security Symposium. USENIX Association,
2020, pp. 2523–2540.

[7] A. T. Rasoamanana, O. Levillain, and H. Debar, “Towards a systematic
and automatic use of state machine inference to uncover security flaws
and fingerprint TLS stacks,” in ESORICS (3), ser. Lecture Notes in
Computer Science, vol. 13556. Springer, 2022, pp. 637–657.

[8] P. Fiterau-Brostean, T. Lenaerts, E. Poll, J. de Ruiter, F. W. Vaandrager,
and P. Verleg, “Model learning and model checking of SSH implementa-
tions,” in SPIN. ACM, 2017, pp. 142–151.

[9] A. Pferscher and B. K. Aichernig, “Fingerprinting and analysis of
bluetooth devices with automata learning,” Formal Methods Syst. Des.,
vol. 61, no. 1, pp. 35–62, 2022.

[10] ——, “Fingerprinting bluetooth low energy devices via active automata
learning,” in FM, ser. Lecture Notes in Computer Science, vol. 13047.
Springer, 2021, pp. 524–542.

[11] G. Shu and D. Lee, “A formal methodology for network protocol
fingerprinting,” IEEE Trans. Parallel Distributed Syst., vol. 22, no. 11,
pp. 1813–1825, 2011.

[12] G. Argyros, I. Stais, S. Jana, A. D. Keromytis, and A. Kiayias, “Sfadiff:
Automated evasion attacks and fingerprinting using black-box differential
automata learning,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October

13

https://www.nccgroup.com/research-blog/domestic-iot-nightmares-smart-doorbells/
https://www.nccgroup.com/research-blog/domestic-iot-nightmares-smart-doorbells/
https://newsroom.nccgroup.com/news/ncc-group-uncovers-bluetooth-low-energy-ble-vulnerability-that-puts -millions-of-cars-mobile-devices-and-locking-systems-at-risk-447952/
https://newsroom.nccgroup.com/news/ncc-group-uncovers-bluetooth-low-energy-ble-vulnerability-that-puts -millions-of-cars-mobile-devices-and-locking-systems-at-risk-447952/
https://newsroom.nccgroup.com/news/ncc-group-uncovers-bluetooth-low-energy-ble-vulnerability-that-puts -millions-of-cars-mobile-devices-and-locking-systems-at-risk-447952/
https://whisperpair.eu/
https://www.cve.org/CVERecord?id=CVE-2025-36911
https://www.cve.org/CVERecord?id=CVE-2025-36911
https://insinuator.net/2025/06/airoha-bluetooth-security-vulnerabilities/#more-15309
https://insinuator.net/2025/06/airoha-bluetooth-security-vulnerabilities/#more-15309


24-28, 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi, Eds. ACM, 2016, pp. 1690–1701.

[13] E. Janssen, “Fingerprinting TLS implementations using model
learning,” MSc thesis, Radboud University, 2021. [Online]. Available:
https://www.sidnlabs.nl/downloads/2eEQaXhsxKO0Js3FKoV2Yt/
3136d1f6e7d60a1712e8e032631f7aca/Fingerprinting TLS
Implementations Using Model Learning - Erwin Janssen.pdf

[14] B. Steffen, F. Howar, and M. Merten, “Introduction to active automata
learning from a practical perspective,” in SFM, ser. Lecture Notes in
Computer Science, vol. 6659. Springer, 2011, pp. 256–296.

[15] F. W. Vaandrager, “Model learning,” Commun. ACM, vol. 60, no. 2, pp.
86–95, 2017.

[16] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87–106, 1987.

[17] M. Isberner, F. Howar, and B. Steffen, “The TTT algorithm: A
redundancy-free approach to active automata learning,” in RV, ser. Lecture
Notes in Computer Science, vol. 8734. Springer, 2014, pp. 307–322.

[18] F. W. Vaandrager, B. Garhewal, J. Rot, and T. Wißmann, “A new approach
for active automata learning based on apartness,” in TACAS, ser. Lecture
Notes in Computer Science, vol. 13243. Springer, 2022, pp. 223–243.

[19] A. Groce, D. A. Peled, and M. Yannakakis, “Adaptive model checking,”
in TACAS, ser. Lecture Notes in Computer Science, vol. 2280. Springer,
2002, pp. 357–370.

[20] L. Kruger, S. Junges, and J. Rot, “State matching and multiple references
in adaptive active automata learning,” in FM (1), ser. Lecture Notes in
Computer Science, vol. 14933. Springer, 2024, pp. 267–284.

[21] G. Shu and D. Lee, “A formal methodology for network protocol
fingerprinting,” IEEE Trans. Parallel Distributed Syst., vol. 22, no. 11,
pp. 1813–1825, 2011.

[22] T. S. Chow, “Testing software design modeled by finite-state machines,”
IEEE Trans. Software Eng., vol. 4, no. 3, pp. 178–187, 1978.

[23] M. Vasilevskii, “Failure diagnosis of automata,” Cybernetics, vol. 9, no. 4,
pp. 653–665, 1973.

[24] S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi, “Test selection based on finite state models,” IEEE Trans.
Software Eng., vol. 17, no. 6, pp. 591–603, 1991.

[25] W. Smeenk, J. Moerman, F. W. Vaandrager, and D. N. Jansen, “Applying
automata learning to embedded control software,” in ICFEM, ser. Lecture
Notes in Computer Science, vol. 9407. Springer, 2015, pp. 67–83.

[26] B. K. Aichernig, M. Tappler, and F. Wallner, “Benchmarking combina-
tions of learning and testing algorithms for active automata learning,”
in TAP@STAF, ser. Lecture Notes in Computer Science, vol. 12165.
Springer, 2020, pp. 3–22.

[27] B. Garhewal and C. D. N. Damasceno, “An experimental evaluation of
conformance testing techniques in active automata learning,” in MODELS.
IEEE, 2023, pp. 217–227.

[28] F. Howar and B. Steffen, “Active automata learning in practice - an
annotated bibliography of the years 2011 to 2016,” in Machine Learning
for Dynamic Software Analysis, ser. Lecture Notes in Computer Science,
vol. 11026. Springer, 2018, pp. 123–148.

[29] C. D. N. Damasceno, M. R. Mousavi, and A. Simao, “Learning from
difference: an automated approach for learning family models from
software product lines,” in SPLC (A). ACM, 2019, pp. 10:1–10:12.

[30] N. Yang, K. Aslam, R. R. H. Schiffelers, L. Lensink, D. Hendriks,
L. Cleophas, and A. Serebrenik, “Improving model inference in industry
by combining active and passive learning,” in SANER. IEEE, 2019, pp.
253–263.

[31] L. Kruger, P. Kobialka, A. Pferscher, E. Johnsen, S. Junges, and J. Rot,
“Incremental Fingerprinting in an Open World: Supplementary Material,”
Jan. 2026. [Online]. Available: https://zenodo.org/records/18374611

[32] A. Pferscher, “Automata learning for security testing and analysis
in networked environments.” Ph.D. dissertation, Graz University of
Technology, 2023. [Online]. Available: https://apferscher.github.io/docs/
phd-thesis.pdf

[33] I. Karim, A. A. Ishtiaq, S. R. Hussain, and E. Bertino, “Blediff: Scalable
and property-agnostic noncompliance checking for BLE implementations,”
in SP. IEEE, 2023, pp. 3209–3227.

[34] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, “MQTT version
5.0,” OASIS Standard, Tech. Rep., Mar. 2019. [Online]. Available:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
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and G. M. Pérez, “A survey on device behavior fingerprinting: Data
sources, techniques, application scenarios, and datasets,” IEEE Commun.
Surv. Tutorials, vol. 23, no. 2, pp. 1048–1077, 2021.

[49] G. Celosia and M. Cunche, “Fingerprinting bluetooth-low-energy devices
based on the generic attribute profile,” in IoT S&P@CCS. ACM, 2019,
pp. 24–31.

[50] M. Tappler, B. K. Aichernig, and R. Bloem, “Model-based testing iot
communication via active automata learning,” in 2017 IEEE International
Conference on Software Testing, Verification and Validation, ICST 2017,
Tokyo, Japan, March 13-17, 2017. IEEE Computer Society, 2017, pp.
276–287.

[51] K. Hossen, R. Groz, and J. Richier, “Security vulnerabilities detection
using model inference for applications and security protocols,” in Fourth
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2012, Berlin, Germany, 21-25 March, 2011, Workshop
Proceedings. IEEE Computer Society, 2011, pp. 534–536.

[52] J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS
implementations,” in 24th USENIX Security Symposium, USENIX
Security 15, Washington, D.C., USA, August 12-14, 2015, J. Jung and
T. Holz, Eds. USENIX Association, 2015, pp. 193–206. [Online].
Available: https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/de-ruiter

[53] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and S. Jana, “Hvlearn:
Automated black-box analysis of hostname verification in SSL/TLS
implementations,” in 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society,
2017, pp. 521–538.

[54] P. Fiterau-Brostean, R. Janssen, and F. W. Vaandrager, “Combining
model learning and model checking to analyze TCP implementations,”
in Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, ser.
Lecture Notes in Computer Science, S. Chaudhuri and A. Farzan, Eds.,
vol. 9780. Springer, 2016, pp. 454–471.

[55] A. Pferscher and B. K. Aichernig, “Stateful black-box fuzzing of
bluetooth devices using automata learning,” in NASA Formal Methods
- 14th International Symposium, NFM 2022, Pasadena, CA, USA, May
24-27, 2022, Proceedings, ser. Lecture Notes in Computer Science, J. V.

14

https://www.sidnlabs.nl/downloads/2eEQaXhsxKO0Js3FKoV2Yt/3136d1f6e7d60a1712e8e032631f7aca/Fingerprinting_TLS_Implementations_Using_Model_Learning_-_Erwin_Janssen.pdf
https://www.sidnlabs.nl/downloads/2eEQaXhsxKO0Js3FKoV2Yt/3136d1f6e7d60a1712e8e032631f7aca/Fingerprinting_TLS_Implementations_Using_Model_Learning_-_Erwin_Janssen.pdf
https://www.sidnlabs.nl/downloads/2eEQaXhsxKO0Js3FKoV2Yt/3136d1f6e7d60a1712e8e032631f7aca/Fingerprinting_TLS_Implementations_Using_Model_Learning_-_Erwin_Janssen.pdf
https://zenodo.org/records/18374611
https://apferscher.github.io/docs/phd-thesis.pdf
https://apferscher.github.io/docs/phd-thesis.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://github.com/jtesta/ssh-audit
https://github.com/jtesta/ssh-audit
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter


Deshmukh, K. Havelund, and I. Perez, Eds., vol. 13260. Springer, 2022,
pp. 373–392.

[56] S. Alrabaee, M. Debbabi, and L. Wang, “A survey of binary code
fingerprinting approaches: Taxonomy, methodologies, and features,” ACM
Comput. Surv., vol. 55, no. 2, pp. 19:1–19:41, 2023.

[57] J. Li, H. Zhou, S. Wu, X. Luo, T. Wang, X. Zhan, and X. Ma, “FOAP:
fine-grained open-world android app fingerprinting,” in USENIX Security
Symposium. USENIX Association, 2022, pp. 1579–1596.

[58] T. Wang, “High precision open-world website fingerprinting,” in SP.
IEEE, 2020, pp. 152–167.
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APPENDIX

A. Proof of Theorems

Proof of Theorem 1. Before diving into the proofs, we reiterate the contracts of the components described in Section V.
FINGERPRINTING Algorithm FINGERPRINTING requires an implementation I and a set of models M as inputs. The algorithm

executes a subset LF ⊆ I∗ of the fingerprint for M. It returns LF and M if there is a model M∈M which is the only
model that satisfies I ∼LF

M; otherwise, it returns LF and None.
CONFQUERY Algorithm CONFQUERY requires an implementation I and a model M as inputs. The algorithm returns

LCQ ⊆ I∗ along with a Boolean outcome: true if I ∼LCQ
M and false otherwise.

LEARN Algorithm LEARN requires an implementation I, a set of models M and LF ⊆ I∗ as inputs. The algorithm returns a
model M and LL ⊆ I∗ such that I ∼LF∪LL

M.

Under perfect teachers for CONFQUERY and LEARNINGCONFQUERY, we assume the following contracts:
CONFQUERY Algorithm CONFQUERY requires an implementation I and a modelM as inputs. The algorithm returns LCQ = ∅

and true if I ∼M and false otherwise.
LEARN Algorithm LEARN requires an implementation I and a set of models M and LF ⊆ I∗ as inputs. The algorithm returns

a model M such that I ∼M and LL ⊆ I∗.
Note that the bookkeeping with LF and LL is not strictly necessary under a perfect teacher. Moreover, recall that our set of
models only includes models that are distinct, i.e., all models are inequivalent.

Lemma 1. IDENTIFYORLEARNC (Alg. 2) requires an implementation I and a set of inequivalent models M as inputs. After
execution, a model M and a language L ⊆ I∗ are returned such that I ∼LM and there is at most one M′ ∈M for which
I ∼LM′. Additionally, if CONFQUERY and LEARNINGCONFQUERY in C are perfect teachers, then I ∼M.

Proof. We follow the flow of Alg. 2 throughout the proof. First, we perform a case distinction based on the size of |M|.
1) If M = ∅, we return LEARN(I, ∅, ∅) on Line 1. Following the contract of LEARN, we know that a language LL ⊆ I∗ and

a model M are returned such that I ∼LL
M. Additionally, since M = ∅ it must hold that M /∈M. Moreover, I ∼LM

because L = LL ∪ LF = LL ∪ ∅ = LL. Thus, there exists a model M with I ∼LM which is not in M. We return M
and LL.

2) If M is not empty, we perform FINGERPRINTING according to Line 2. FINGERPRINTING is guaranteed to return at most
one M ∈ M for which I ∼LF

M holds with LF ⊆ I∗. We perform a case distinction based on whether a model is
returned or not:

a) One model M is returned and we enter the if-statement starting on Line 3. For this model, we know I ∼LF
M holds.

Therefore, we execute CONFQUERY and obtain LCQ ⊆ I∗ and boolean b with value true if I ∼LCQ
M and false

otherwise. We set LF to LF ∪ LCQ in Line 5 and perform a case distinction based on boolean b in Line 6.
i) b = true, which indicates I ∼LCQ

M. When combining this with I ∼LF
M, we derive I ∼LF∪LCQ

M. We
terminate the algorithm with M, L = LF ∪ LCQ on Line 6. Thus, there exists exactly one M∈M with I ∼LM.

ii) b = false, which indicates I ≁LCQ
M. Because LF is set to LF ∪ LCQ, it holds that I ≁LF

M for all M′ ∈M.
Because we do not enter the if-branch in Line 6, we go to Line 7 and run LEARN. LEARN returns a model
M and LL, LLCQ ⊆ I∗ such that I ∼LF∪LL∪LLCQ

M. We terminate the algorithm on Line 8 with M and
L = LF ∪ LL ∪ LLCQ. Because I ≁LF

M′ for all M′ ∈ M and I ∼LF∪LL∪LLCQ
M, it must be the case that

M /∈M. Thus, there exists a model M with I ∼LM which is not in M.
b) None is returned after FINGERPRINTING, which implies that for all M∈M, I ≁LF

M. We go to Line 7 and use the
reasoning from 2aii to conclude that there exists a model M with I ∼LM which is not in M. We return M′ and LF .

The cases above cover all possible ways to terminate the algorithm IDENTIFYORLEARN. In all cases, we find a model M
such that I ∼LM. When terminating after the conformance check M∈M holds, while terminating after learning guarantees
M /∈M. Thus, in all cases, there is at most one M∈M for which I ∼LM holds.

Next, we prove: if C contains perfect teachers CONFQUERY and LEARNINGCONFQUERY, then I ∼M.
• From the perfect teacher contracts, we know that LEARN using a perfect teacher terminates with I ∼M. Combining this

information with case 1, 2aii and 2b, it follows that we terminate with I ∼M′ for some M′ /∈M.
• For case 2ai, we remark that a perfect teacher for CONFQUERY terminates with I ∼M, proving that in this case there

exist one M∈M such that I ∼M.
Thus, in both cases I ∼M holds if C contains perfect teachers for CONFQUERY and LEARNINGCONFQUERY.

16



Theorem 1. INCREMENTALFINGERPRINTINGC (Alg. 1) requires a list of implementations I and a set of distinct models M0

as inputs. The algorithm returns M, γ and µ such that for I ∈ I there exists a M∈M for which I ∼γ(I)M iff µ(I) =M.
Additionally, if CONFQUERY and LEARNINGCONFQUERY in C are perfect teachers, then I ∼M.

Proof. For each I ∈ I, IDENTIFYORLEARN is guaranteed to return a model M and L ⊆ I∗ such that I ∼LM and there is
at most one such M ∈ M. Statement µ(I) =M ⇐⇒ I ∼γ(I) M holds by construction because we update M, γ and µ
according to the output of IDENTIFYORLEARN which guarantees I ∼LM.

Proof of Theorem 2. Let m = |M|, i = |I|. Assume that a perfect teacher is available and that all M∈M have at most n
states, k inputs and counterexamples of length at most l. RL# learns the the correct set of models M within O(i(kn2+n log l))
OQs and at most in EQs. INCREMENTALFINGERPRINTING with SepSeq and L# learns the correct set of models M within
O(m(kn2 + n log l) + im2) OQs and at most mn+ i EQs.

Proof. First, we consider repeated application of L#. Because there are i implementations and learning one model using L#

requires O(kn2+n log l) OQs and at most n CQs, it trivially holds that learning all implementations requires O(i(kn2+n log l))
OQs and in CQs.
Now, we consider INCREMENTALFINGERPRINTING. Fingerprinting one implementation requires at most m2 OQs since the
fingerprint contains at most one sequence to separate each pair of models. Fingerprinting all implementations, therefore, requires
at most im2 OQs. Under the perfect teacher assumption, we always learn correct models of implementations and only need to
learn them if there is no M∈M that is equivalent to the implementation. Therefore, we only need to learn m = |M| models.
Thus, the output query complexity is O(m(kn2 + n log l) + im2).

When considering the maximum number of CQs, we note that we only learn a model m times, each time requiring at most
n CQs. Additionally, the CQ after fingerprinting occurs at most i times. Combining these results, we find that at most mn+ i
CQs are required.

Analogous Proof for AL#. First, we note that the complexity of AL# is O(kn2 + kno+ no2 + n log l) where o is the
number of equivalence classes over all reference models. In our case, o is at most mn as there are m models in M of each at
most n states. Therefore, the complexity for AL# is O(kn2 + kmn2 + n3m2 + n log l).

Let m = |M|, i = |I|. Assume that a perfect teacher is available and that all M ∈ M have at most n states, k inputs and
counterexamples of length at most l. Repeated AL# learns the the correct set of models M within O(i(kn2+ kmn2+n3m2)+
mn log l) OQs and at most mn+ i−m CQs. INCREMENTALFINGERPRINTING with SepSeq and L# learns the correct set of
models M within O(m(kn2 + kmn2 + n3m2 + n log l) + im2) OQs and at most mn+ i CQs.

Proof. First, we consider repeated application of AL#. Because we have a perfect teacher, we know that we have to learn a
model m times and rebuild it i−m times. Rebuilding may take O(kn2 + kmn2 + n3m2) OQs but is guaranteed to terminate
with all required states (see Thm. 4.8 from [20]) and thus does not require counterexample processing. Therefore, the output
query complexity is O(i(kn2 + kmn2 + n3m2) +mn log l). For each M, we may need up to n CQs and for each I that
already has a learnt model in M, we only perform a final CQ as rebuilding leads to the first hypothesis being correct. Thus, at
most mn+ i−m CQs are required.
Now, we consider INCREMENTALFINGERPRINTING with AL#. Fingerprinting one implementation requires at most m2 OQs
since the fingerprint contains at most one sequence to separate each pair of models. Fingerprinting all implementations, therefore,
requires at most im2 OQs. Under the perfect teacher assumption, we always learn correct models of implementations and only
need to learn them if there is no M∈M that is equivalent to the implementation. Therefore, we only need to learn m = |M|
models. Thus, the output query complexity is O(m(kn2 + kmn2 + n3m2 + n log l) + im2).

When considering the maximum number of output queries, we note that we only learn a model m times, each time requiring
at most n CQs. Additionally, the CQ after fingerprinting occurs at most i times. Combining these results, we find that at most
mn+ i CQs are required.

Proof of Theorem 3. Let I be a list of implementations and M0 a set of inequivalent models such that I ⊆M0. Executing
INCREMENTALFINGERPRINTINGC with initial references M0 and implementations I returns M and µ such that M0 = M and
for I ∈ I, µ(I) =M iff I ∼M for some M∈M.

Proof. For each I ∈ I, there must be a M ∈ M0 such that I ∼ M because of assumption I ⊆ M0. Additionally, we know
that FINGERPRINTING returns at most one model and since there cannot be a separating sequence that shows that I ≁M, the
returned model must be M. Next, a CQ is performed for I ∼M and this must lead to output true as there does not exist a
counterexample. Thus, exactly M∈M0 with M∼ I is returned for implementation I. Additionally, M = M0 because for
each I ∈ I there is a M∈M0 that is equivalent to I . Therefore, we never learn a new model that has to be added to M0.
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B. Benchmark Details

Model States Inputs Copies Learn Symbols EQ Symbols
mbedtls/1.1.8/TLS11 6 11 20 1065 9818
mbedtls/1.2.7/TLS12 6 11 42 1074 9323
mbedtls/1.3.3/TLS12 6 11 18 1055 12244
mbedtls/2.1.5/TLS12 6 11 81 1028 12218
mbedtls/2.7.8/TLS12 6 11 72 603 2681
mbedtls/3.0.0p1/TLS12 8 11 99 936 5875
openssl/0.9.7d/TLS10 14 11 5 1629 1796151
openssl/0.9.8a/TLS10 14 11 33 1284 1833540
openssl/0.9.8l/TLS10 10 11 1 801 5359
openssl/0.9.8y/TLS10 14 11 13 1560 130666
openssl/0.9.8zh/TLS10 11 11 15 1109 71365
openssl/1.0.0g/TLS10 11 11 4 993 20260
openssl/1.0.0m/TLS10 13 11 5 1306 133092
openssl/1.0.0p/TLS10 11 11 5 1065 68804
openssl/1.0.1/TLS10 14 11 11 1548 167539
openssl/1.0.1/TLS12 13 11 8 1390 108994
openssl/1.0.1d/TLS12 13 11 2 1315 174942
openssl/1.0.1r/TLS12 11 11 33 1065 52090
openssl/1.0.2d/TLS12 10 11 39 932 124984
openssl/1.0.2m/TLS12 8 11 27 787 127132
openssl/1.1.0a/TLS12 8 11 39 629 106845
openssl/1.1.1g/TLS12 8 11 24 614 101873

TABLE II: Details on TLS models. All models originate form [13]. Learned with L# and RandomWp set to stop early when
the correct amount of states is reached, averaged over 30 seeds. For more information on the protocols, we refer the reader to
https://github.com/Mbed-TLS/mbedtls and https://github.com/openssl/openssl.

Model States Inputs Copies Learn Symbols EQ Symbols
DropBearOrig 17 13 5 3896 17705
DropBear20 20 13 5 4208 11520
DropBear22 22 13 5 3828 13488
DropBear24 24 13 5 4157 7604
DropBear26 26 13 5 4523 4901
OpenSSH26 26 13 5 5530 351107
OpenSSHOrig 27 13 5 6294 230825
OpenSSH28 28 13 5 5362 666117
OpenSSH29 29 13 5 6597 719682
OpenSSH31 31 13 5 5911 746095
OpenSSH34 34 13 5 6630 346615
OpenSSH36 36 13 5 7691 688311
BitVise39 39 13 5 10594 178497
BitVise45 45 13 5 19569 156627
BitVise47 47 13 5 16148 143216
BitVise54 54 13 5 23330 696630
BitVise57 57 13 5 22720 1165158
BitVise59 59 13 5 26440 1586899
BitVise63 63 13 5 27342 929043
BitViseOrig 66 13 5 31236 2681762

TABLE III: Details on SSH models. Model names ending in ‘Orig’ refer to models from [18] and available on https:
//automata.cs.ru.nl/, the other models are obtained by manually mutating the base models. Learned with L# and RandomWp
set to stop early when the correct amount of states is reached, averaged over 30 seeds.

Model States Inputs Copies Learn Symbols EQ Symbols url
HiveMQ 7 20 5 2478 1000 https://docs.hivemq.com/
emqx 24 20 5 15106 5079 https://www.emqx.com/en
Mosquitto 32 20 5 20900 7066 https://mosquitto.org/
VerneMQ 19 20 5 10735 3222 https://vernemq.com/
ejabberd 53 20 5 67734 10217 https://www.ejabberd.im/
mochi 8 20 5 3480 1165 https://github.com/mochi-mqtt/server

TABLE IV: Details on MQTT Learning. Learned with L# and StatePrefixOracle with 10 walks per state and walk length 12.
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Model States Learn Symbols EQ Symbols
cc2652r1 new 6 4531 2533
cyble-416045-02 new 2 843.3 1695.3
explorable 2 654.3 1743.3

TABLE V: Details on new BLE models. Each model was learned online with L# and RandomWp with a maximum of 100 test
queries per EQ.

Model States Inputs Copies Learn Symbols EQ Symbols
CYW43455 16 7 5 1710 941
cc2650 4 7 5 284 96
cc2652r1 new 6 7 5 568 253
cc2652r1 old 4 7 5 263 77
cyble-416045-02 2 7 5 108 27
explorable 2 7 5 101 31
nRF52832 5 7 5 260 312
tesla model 3 10 7 5 813 456

TABLE VI: Details on BLE Learning from dot models (offline). Learned with L# and RandomWp set to stop early when the
correct amount of states is reached, averaged over 30 seeds.

Model States Inputs Copies Learn Symbols EQ Symbols

M1 5 32 5 1675 833
M2 8 32 5 3726 6620
M3 8 32 5 3730 8289
M4 7 32 5 3180 3062
M5 8 32 5 4073 11112
M6 7 32 5 3188 6067

TABLE VII: Details on BLEDiff Learning from dot models provided by the authors of [33], subsequently made input complete
and minimized. Learned with L# and RandomWp set to stop early when the correct amount of states is reached, averaged over
30 seeds.

C. Motivational Experiment Results

Algorithm |Initial Models| Correct Models Misclassifications No Matches Fingerprint Symbols Conformance Symbols Learn Symbols Total Symbols

RL#: RandomWp100 0 143.7 - 24.1% 452.3 - 75.9% 0 - 0.0% 0 0 0 2606357 2606357
RL#: RandomWp500 0 401.6 - 67.4% 194.4 - 32.6% 0 - 0.0% 0 0 0 14266503 14266503

Fingerprint: SepSeq 11 309.4 - 51.9% 273.6 - 45.9% 13.0 - 2.2% 7275 0 0 7275
INFERNAL 11 591.7 - 99.3% 4.3 - 0.7% 0.0 - 0.0% 8415 3399028 100276 3507719

Fingerprint: SepSeq 21 568.9 - 95.5% 27.1 - 4.5% 0.0 - 0.0% 10388 0 0 10388
INFERNAL 21 595.8 - 100.0% 0.2 - 0.0% 0.0 - 0.0% 8270 3485626 7210 3501105

Fingerprint: SepSeq 22 596.0 - 100.0% 0.0 - 0.0% 0.0 - 0.0% 10371 0 0 10371
INFERNAL 22 596.0 - 100.0% 0.0 - 0.0% 0.0 - 0.0% 8287 3491649 0 3499936

TABLE VIII: Summarized results for the motivational experiment discussed in Section II. Conformance symbols are only the
symbols used during the CQ directly after fingerprinting, the conformance symbols during learning are included in the learning
symbols.
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D. Experimental Evaluation Results

Benchmark Algorithm Fingerprint Symbols Learn Symbols Total Symbols

BLE RL# 0 23530 23530
BLE RAL# 0 23612 23612
BLE INFERNAL 154 4843 4997

BLEDiff RL# 0 127655 127655
BLEDiff RAL# 0 125310 125310
BLEDiff INFERNAL 169 25244 25413

MQTT RL# 0 494490 494490
MQTT RAL# 0 471005 471005
MQTT INFERNAL 162 101031 101193

SSH RL# 0 1433586 1433586
SSH RAL# 0 1424811 1424811
SSH INFERNAL 1476 319697 321173

TLS RL# 0 892491 892491
TLS RAL# 0 957179 957179
TLS INFERNAL 8760 39677 48437

TABLE IX: Summarized results for Experiment 1a.

Benchmark Algorithm Budget Correct Models

BLE RL# 2500 35.6 - 89.0%
BLE RAL# 2500 39.4 - 98.4%
BLE INFERNAL 2500 39.2 - 98.1%

BLEDiff RL# 10000 17.9 - 59.8%
BLEDiff RAL# 10000 27.1 - 90.2%
BLEDiff INFERNAL 10000 27.9 - 92.8%

MQTT RL# 100000 26.6 - 88.5%
MQTT RAL# 100000 29.2 - 97.5%
MQTT INFERNAL 100000 29.1 - 97.2%

SSH RL# 750000 77.2 - 77.2%
SSH RAL# 750000 91.8 - 91.8%
SSH INFERNAL 750000 93.3 - 93.3%

TLS RL# 100000 465.6 - 78.1%
TLS RAL# 100000 569.2 - 95.5%
TLS INFERNAL 100000 584.1 - 98.0%

TABLE X: Summarized results for Experiment 1b.

Benchmark Algorithm Correct Models Fingerprinting Symbols CQ Symbols Learning Symbols Total

BLE RL# 39.9 - 99.8% 0 0 155644 155644
BLE RAL# 40.0 - 100.0% 0 0 154085 154085
BLE INFERNAL 40.0 - 100.0% 176 109314 31154 140644

BLEDiff RL# 11.2 - 37.2% 0 0 157645 157645
BLEDiff RAL# 24.9 - 82.8% 0 0 255977 255977
BLEDiff INFERNAL 24.1 - 80.5% 265 112316 67115 179695

MQTT RL# 25.7 - 85.7% 0 0 1221350 1221350
MQTT RAL# 29.8 - 99.3% 0 0 1086956 1086956
MQTT INFERNAL 29.6 - 98.5% 171 499849 263114 763134

SSH RL# 22.9 - 22.9% 0 0 3480605 3480605
SSH RAL# 70.6 - 70.6% 0 0 4780912 4780912
SSH INFERNAL 64.5 - 64.5% 1652 2496480 1579190 4077322

TLS RL# 143.3 - 24.1% 0 0 2595294 2595294
TLS RAL# 546.5 - 91.7% 0 0 4106272 4106272
TLS INFERNAL 545.8 - 91.6% 9760 3204005 198114 3411879

TABLE XI: Summarized results for Experiment 1c.
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Benchmark Components Correct Models Fingerprint Symbols CQ Symbols Learn Symbols Total Symbols

BLE ADG - RandomWord1000 - RAL# 40.0 - 100.0% 176 672146 173516 845838
BLE ADG - RandomWord1000 - RL# 40.0 - 100.0% 176 672009 173161 845346
BLE ADG - RandomWp100 - RAL# 40.0 - 100.0% 176 109314 31154 140644
BLE ADG - RandomWp100 - RL# 40.0 - 100.0% 176 109300 30970 140446
BLE ADG - WpK - RAL# 40.0 - 100.0% 176 1178870 294846 1473892
BLE ADG - WpK - RL# 40.0 - 100.0% 176 1178870 294661 1473707
BLE SepSeq - RandomWord1000 - RAL# 40.0 - 100.0% 228 672434 173226 845888
BLE SepSeq - RandomWord1000 - RL# 40.0 - 100.0% 228 671884 173239 845351
BLE SepSeq - RandomWp100 - RAL# 40.0 - 100.0% 228 109292 31141 140661
BLE SepSeq - RandomWp100 - RL# 40.0 - 100.0% 228 109252 30957 140437
BLE SepSeq - WpK - RAL# 40.0 - 100.0% 228 1178872 294833 1473933
BLE SepSeq - WpK - RL# 40.0 - 100.0% 228 1178872 294568 1473668

BLEDiff ADG - RandomWord1000 - RAL# 8.8 - 29.2% 263 459260 217166 676689
BLEDiff ADG - RandomWord1000 - RL# 5.5 - 18.3% 270 459092 222335 681697
BLEDiff ADG - RandomWp100 - RAL# 24.1 - 80.5% 265 112316 67115 179695
BLEDiff ADG - RandomWp100 - RL# 20.3 - 67.7% 273 98970 68232 167474
BLEDiff ADG - WpK - RAL# 30.0 - 100.0% 203 104112844 26047499 130160546
BLEDiff ADG - WpK - RL# 30.0 - 100.0% 203 104112844 26040358 130153405
BLEDiff SepSeq - RandomWord1000 - RAL# 7.2 - 24.0% 286 472071 207137 679494
BLEDiff SepSeq - RandomWord1000 - RL# 6.0 - 19.8% 301 474918 199665 674883
BLEDiff SepSeq - RandomWp100 - RAL# 26.3 - 87.7% 325 121525 65367 187217
BLEDiff SepSeq - RandomWp100 - RL# 22.1 - 73.8% 294 105217 65003 170514
BLEDiff SepSeq - WpK - RAL# 30.0 - 100.0% 224 104112848 26047927 130160999
BLEDiff SepSeq - WpK - RL# 30.0 - 100.0% 224 104112848 26042524 130155596

MQTT ADG - RandomWord1000 - RAL# 23.6 - 78.7% 267 444971 423227 868466
MQTT ADG - RandomWord1000 - RL# 22.0 - 73.3% 294 423153 463513 886960
MQTT ADG - RandomWp100 - RAL# 29.6 - 98.5% 171 499849 263114 763134
MQTT ADG - RandomWp100 - RL# 29.1 - 97.0% 185 493004 287362 780552
MQTT ADG - WpK - RAL# 30.0 - 100.0% 156 156252748 39304431 195557335
MQTT ADG - WpK - RL# 30.0 - 100.0% 156 155831888 39179615 195011659
MQTT SepSeq - RandomWord1000 - RAL# 23.5 - 78.3% 271 447660 413195 861126
MQTT SepSeq - RandomWord1000 - RL# 22.2 - 74.0% 297 416989 455815 873102
MQTT SepSeq - RandomWp100 - RAL# 29.4 - 98.2% 170 485930 286471 772571
MQTT SepSeq - RandomWp100 - RL# 29.2 - 97.3% 175 503734 262112 766022
MQTT SepSeq - WpK - RAL# 30.0 - 100.0% 156 156252748 39302856 195555760
MQTT SepSeq - WpK - RL# 30.0 - 100.0% 156 155845715 39174490 195020360

SSH ADG - RandomWord1000 - RAL# 22.4 - 22.4% 1420 1646509 802867 2450795
SSH ADG - RandomWord1000 - RL# 10.8 - 10.8% 1671 1411471 1167240 2580381
SSH ADG - RandomWp100 - RAL# 64.5 - 64.5% 1652 2496480 1579190 4077322
SSH ADG - RandomWp100 - RL# 37.0 - 37.0% 1803 2076632 1943940 4022374
SSH ADG - WpK - RAL# 100.0 - 100.0% 1356 202410117 51018700 253430172
SSH ADG - WpK - RL# 100.0 - 100.0% 1356 203492342 51900170 255393868
SSH SepSeq - RandomWord1000 - RAL# 22.0 - 22.0% 2189 1620057 872903 2495149
SSH SepSeq - RandomWord1000 - RL# 10.8 - 10.8% 2511 1421740 1128794 2553044
SSH SepSeq - RandomWp100 - RAL# 62.0 - 62.0% 2546 2505740 1574980 4083266
SSH SepSeq - RandomWp100 - RL# 35.8 - 35.8% 2589 2052354 1922384 3977326
SSH SepSeq - WpK - RAL# 100.0 - 100.0% 2086 202438306 51026351 253466743
SSH SepSeq - WpK - RL# 100.0 - 100.0% 2086 202608001 51790165 254400252

TLS ADG - RandomWord1000 - RAL# 353.4 - 59.3% 8824 12098388 561023 12668234
TLS ADG - RandomWord1000 - RL# 304.9 - 51.1% 9808 11999406 681247 12690460
TLS ADG - RandomWp100 - RAL# 545.8 - 91.6% 9760 3204005 198114 3411879
TLS ADG - RandomWp100 - RL# 512.2 - 85.9% 10689 3109059 248937 3368686
TLS ADG - WpK - RAL# 558.0 - 93.6% 8495 146698960 5773796 152481251
TLS ADG - WpK - RL# 558.0 - 93.6% 8495 146545674 5757351 152311520
TLS SepSeq - RandomWord1000 - RAL# 353.4 - 59.3% 9905 12125882 543444 12679230
TLS SepSeq - RandomWord1000 - RL# 281.8 - 47.3% 10893 12012321 723714 12746928
TLS SepSeq - RandomWp100 - RAL# 527.9 - 88.6% 10737 3170738 197752 3379227
TLS SepSeq - RandomWp100 - RL# 448.4 - 75.2% 11312 2977946 231426 3220684
TLS SepSeq - WpK - RAL# 558.0 - 93.6% 9898 146700891 5773722 152484511
TLS SepSeq - WpK - RL# 558.0 - 93.6% 9898 146547624 5750312 152307834

TABLE XII: Summarized results for Experiment 2.
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Benchmark Fingerprinting - Learning FCQ Wrong LCQ Wrong Correct Models Entering FCQ End with FCQ End with LCQ Fingerprint Symbols Learn Symbols Total Symbols

BLE RandomWp100 - RandomWp25 0.0 - 0.0% 0.5 - 1.2% 39.5 - 98.8% 34 32 8 153 12114 119862
BLE RandomWp100 - RandomWp50 0.0 - 0.0% 0.25 - 0.6% 39.8 - 99.4% 34 32 8 150 18516 127475
BLE RandomWp100 - RandomWp100 0.0 - 0.0% 0.05 - 0.1% 40.0 - 99.9% 34 32 8 150 31135 140270

BLEDiff RandomWp100 - RandomWp25 5.0 - 16.7% 7.3 - 24.3% 17.7 - 59.0% 26 17 13 252 40607 127737
BLEDiff RandomWp100 - RandomWp50 4.3 - 14.3% 4.95 - 16.5% 20.8 - 69.2% 26 20 10 220 49448 148955
BLEDiff RandomWp100 - RandomWp100 2.7 - 9.0% 3.0 - 10.0% 24.3 - 81.0% 27 21 9 211 67635 180710

MQTT RandomWp100 - RandomWp25 0.05 - 0.2% 4.8 - 16.0% 25.1 - 83.8% 27 19 11 262 264869 609911
MQTT RandomWp100 - RandomWp50 0.0 - 0.0% 1.3 - 4.3% 28.7 - 95.7% 26 23 7 198 234359 704225
MQTT RandomWp100 - RandomWp100 0.0 - 0.0% 0.35 - 1.2% 29.6 - 98.8% 27 24 6 171 267846 767069

SSH RandomWp100 - RandomWp25 16.3 - 16.3% 27.85 - 27.9% 55.9 - 55.9% 93 58 42 2004 927287 2962899
SSH RandomWp100 - RandomWp50 19.9 - 19.9% 19.75 - 19.8% 60.4 - 60.4% 93 66 34 1934 1119367 3451109
SSH RandomWp100 - RandomWp100 21.3 - 21.3% 14.95 - 14.9% 63.8 - 63.8% 93 70 30 1799 1520484 4032741

TLS RandomWp100 - RandomWp25 54.55 - 9.2% 11.8 - 2.0% 529.6 - 88.9% 589 565 31 10433 81330 3244653
TLS RandomWp100 - RandomWp50 47.6 - 8.0% 8.45 - 1.4% 540.0 - 90.6% 589 568 28 9813 119449 3314805
TLS RandomWp100 - RandomWp100 54.2 - 9.1% 7.7 - 1.3% 534.1 - 89.6% 589 569 27 9535 198440 3383042

TABLE XIII: Summarized results for Experiment 3.

E. Additional Figures and Tables

Fig. 7: Additional experiment for RQ1. Comparison of RAL# and INFERNAL for SSH.

Fig. 8: Additional experiment for RQ1. Comparison of RAL# and INFERNAL for TLS.
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Fig. 9: Additional experiment for RQ2. Comparison of the performance of different CQs for fingerprinting and learning.

Benchmark Fingerprinting - Learning Correctly Learned Fingerprinting FCQ Learning Total

BLE RandomWp25 - RandomWp25 39.2 - 98.0% 140 29367 12849 42356
BLE RandomWp25 - RandomWp50 39.8 - 99.4% 133 30021 18564 48717
BLE RandomWp25 - RandomWp100 40.0 - 99.9% 134 30038 31104 61276
BLE RandomWp50 - RandomWp25 39.6 - 99.1% 137 57053 12221 69410
BLE RandomWp50 - RandomWp50 40.0 - 100.0% 134 57550 18583 76267
BLE RandomWp50 - RandomWp100 39.8 - 99.5% 133 57548 31129 88810
BLE RandomWp100 - RandomWp25 39.5 - 98.9% 148 107559 12327 120033
BLE RandomWp100 - RandomWp50 40.0 - 100.0% 134 109556 18484 128174
BLE RandomWp100 - RandomWp100 40.0 - 100.0% 134 109331 31275 140739

BLEDiff RandomWp25 - RandomWp25 9.5 - 31.7% 192 17223 25423 42838
BLEDiff RandomWp25 - RandomWp50 15.5 - 51.7% 184 21878 37776 59839
BLEDiff RandomWp25 - RandomWp100 19.8 - 66.0% 174 26458 50697 77329
BLEDiff RandomWp50 - RandomWp25 15.1 - 50.3% 229 42122 33543 75893
BLEDiff RandomWp50 - RandomWp50 16.9 - 56.2% 220 43853 44783 88855
BLEDiff RandomWp50 - RandomWp100 23.0 - 76.7% 210 56299 60793 117302
BLEDiff RandomWp100 - RandomWp25 19.1 - 63.7% 276 90770 42153 133198
BLEDiff RandomWp100 - RandomWp50 22.2 - 74.0% 233 103560 49281 153073
BLEDiff RandomWp100 - RandomWp100 26.6 - 88.7% 241 121551 65867 187659

MQTT RandomWp25 - RandomWp25 22.4 - 74.8% 296 82515 275074 357885
MQTT RandomWp25 - RandomWp50 26.6 - 88.8% 213 115601 270970 386784
MQTT RandomWp25 - RandomWp100 29.2 - 97.5% 164 128308 256041 384513
MQTT RandomWp50 - RandomWp25 24.2 - 80.7% 297 174681 276447 451425
MQTT RandomWp50 - RandomWp50 27.2 - 90.7% 223 222894 267886 491003
MQTT RandomWp50 - RandomWp100 29.6 - 98.5% 160 251157 276000 527317
MQTT RandomWp100 - RandomWp25 24.4 - 81.3% 285 322632 286519 609437
MQTT RandomWp100 - RandomWp50 28.0 - 93.3% 215 454233 248219 702667
MQTT RandomWp100 - RandomWp100 29.4 - 98.2% 165 494615 276490 771270

SSH RandomWp25 - RandomWp25 41.2 - 41.2% 1868 570473 829245 1401586
SSH RandomWp25 - RandomWp50 43.5 - 43.5% 1792 628178 975705 1605675
SSH RandomWp25 - RandomWp100 54.6 - 54.6% 1736 667866 1333819 2003422
SSH RandomWp50 - RandomWp25 50.4 - 50.4% 1914 1104158 862602 1968675
SSH RandomWp50 - RandomWp50 52.4 - 52.4% 1879 1216912 1041720 2260511
SSH RandomWp50 - RandomWp100 56.3 - 56.3% 1770 1294165 1405565 2701500
SSH RandomWp100 - RandomWp25 53.6 - 53.6% 2060 2062388 907471 2971920
SSH RandomWp100 - RandomWp50 59.5 - 59.5% 1955 2360563 1066350 3428868
SSH RandomWp100 - RandomWp100 62.8 - 62.8% 1855 2529312 1490268 4021435

TLS RandomWp25 - RandomWp25 480.4 - 80.6% 8542 799210 82231 889983
TLS RandomWp25 - RandomWp50 509.1 - 85.4% 8337 818179 122530 949046
TLS RandomWp25 - RandomWp100 519.3 - 87.1% 8188 829912 194812 1032913
TLS RandomWp50 - RandomWp25 517.4 - 86.8% 9083 1609942 83533 1702559
TLS RandomWp50 - RandomWp50 515.9 - 86.6% 8739 1614072 123948 1746758
TLS RandomWp50 - RandomWp100 527.8 - 88.5% 8667 1630764 198207 1837637
TLS RandomWp100 - RandomWp25 527.5 - 88.5% 8760 3153798 79750 3242308
TLS RandomWp100 - RandomWp50 532.9 - 89.4% 8940 3166015 123417 3298372
TLS RandomWp100 - RandomWp100 545.0 - 91.4% 8570 3203933 197418 3409921

TABLE XIV: Additional details for Fig. 9.
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Algorithm Copies Correct Models Fingerprint Symbols CQ Symbols Learn Symbols Total Symbols

RL# 0 4.8 - 80.0% 0 0 245147 245147
RAL# 0 5.6 - 93.3% 0 0 233369 233369
INFERNAL 0 5.6 - 93.3% 15 89 238834 238938

RL# 2 15.8 - 87.8% 0 0 732097 732097
RAL# 2 17.4 - 96.7% 0 0 658528 658528
INFERNAL 2 16.8 - 93.3% 101 222131 308863 531096

RL# 4 26.6 - 88.7% 0 0 1221398 1221398
RAL# 4 30.0 - 100.0% 0 0 1092100 1092100
INFERNAL 4 29.2 - 97.3% 215 493824 291786 785824

RL# 6 36.6 - 87.1% 0 0 1704670 1704670
RAL# 6 41.6 - 99.0% 0 0 1516457 1516457
INFERNAL 6 42.0 - 100.0% 243 768878 238334 1007455

RL# 8 46.4 - 85.9% 0 0 2173474 2173474
RAL# 8 53.4 - 98.9% 0 0 1943352 1943352
INFERNAL 8 53.6 - 99.3% 358 1023326 238891 1262575

RL# 10 58.0 - 87.9% 0 0 2680479 2680479
RAL# 10 64.6 - 97.9% 0 0 2367425 2367425
INFERNAL 10 65.4 - 99.1% 492 1270763 256849 1528103

TABLE XV: Results for MQTT when using a different number of copies per unique model. All algorithms use RandomWp100
and each experiment is repeated 5 times.
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