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Abstract—Due to a limited learning budget, a reinforcement
learning agent can only explore the most probable scenarios out of
a potentially rich and complex environment dynamics. This may
result in a limited understanding of the context and low robustness
of the learned policy. A possible approach to address this problem
is to explore the interactions between an autonomous agent and en-
vironment in rare but important situations. We propose SymSeed,
a method for initializing learning episodes for the class of rein-
forcement learning problems for which a simulation environment
(model) is available. This increases the chance of exposing the agent
to interesting states during learning. Inspired by techniques for
increasing coverage in testing of software, we analyze the simulator
implementation using symbolic execution. Then we generate initial
states that ensure that the agent explores the simulator dynamics
well during learning. We evaluate SymSeed by feeding the gen-
erated states into well-known reinforcement learning algorithms,
both tabular and approximating methods, including vanilla Q-
Learning, DQN, PPO, A3C, SAC, TD3, and CAT-RL. In all test
cases, the combination of SymSeed with uniform sampling from
the entire state space enables all algorithms to achieve faster con-
vergence and higher success rates than the baseline. The effect is
particularly strong in presence of sparse rewards or local optima.

Index Terms—Reinforcement Learning, Symbolic Execution,
Initialization

I. INTRODUCTION

Reinforcement learning is a machine learning method with
applications in, e.g., self-adaptive systems [1], [2], robotics [3],
gaming [4] and electronics [5]. With reinforcement learning, an
agent learns a behavioral policy, while using it and iteratively
self-adapting based on environment feedback [6]. In practice,
the training of a reinforcement learning agent is often con-
strained by limited time, restricting exposure to only consider
the most likely scenarios out of a large space. Limited explo-
ration restricts the agent’s understanding of the environment
and poses several challenges; (1) It increases the risk of safety
violations in critical systems, where a safe policy is needed for
all states, not just for the most-likely-reachable states; (2) It
increases the risk of terminating the learning process in a local
optimum, while better policies exist; (3) It may learn policies
that are overly sensitive to initial and observed states; (4) It

is particularly challenged by sparse reward functions, where
pockets of high reward are rare and hard to reach.

Exploration is a fundamental aspect of reinforcement learning
[7], [8], [9]. Common approaches include ϵ-greedy explo-
ration [6], count-based exploration [10], [11], [12], curiosity-
based exploration [13], as well as methods specifically designed
for exploring sparse rewards such as contextual Markov
Decision Processes (MDPs) [14], [15]. All these methods begin
by seeding initial states using a uniform distribution over a
subset of the state space. Such a uniform selection of initial
states can be problematic for several reasons. First, the agent
may spend a considerable amount of time exploring areas of
the state space that are free of immediate reward. Second,
the agent may overfit to regions that it frequently encounters
initially, while neglecting others that are critical in later stages
of training. Third, the agent might focus on suboptimal areas,
thereby reducing the utility of early policies.

Our objective is to improve the exploration process by
automatically obtaining and leveraging knowledge about the
dynamics of the agent’s environment. In particular, we aim to
identify states that are less likely to be sampled during training,
and to ensure that the agent learns how to act in these states.
We hypothesize that insights into the structure of the state space
enables more efficient exploration. Initializing the agent in
carefully selected states ensures that these states are explored,
allowing the agent to learn appropriate policies for critical
situations. This can also help the agent reach a goal state
faster, as judicious initialization helps it to start in proximity
of the high reward states and helps distributing the reward
values backwards to intermediary states more effectively. This
is particularly useful in scenarios with sparse rewards.

To provide reinforcement learning with relevant knowledge,
we use software analysis tools, namely symbolic execution.
Symbolic execution is a popular technique in program analysis,
which can be used to automatically generate test inputs for
programs or detect hidden problems in an implementation,
guaranteeing high coverage of the analyzed code [16], [17],
[18], [19]. A recent paper by the authors [20] demonstrates
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that symbolic execution can be used to partition the state space
of reinforcement learning. Be generating path conditions, sym-
bolic execution effectively identifies classes of distinct initial
states. We here exploit this method to improve exploration in
reinforcement learning.

SymSeed, our strategy for initializing reinforcement learning
episodes, is designed for problems where an environment
simulator is available. SymSeed is also suited to pre-training
scenarios, where the initial policy is obtained against a
simulation, before reinforcement learning is used in a black-
box environment, for instance in a physical environment for a
robot. We use symbolic execution to analyze the environment
simulator and to generate initial states. The hypothesis is that
states leading to exploring different execution paths through
the simulator, are also materially different from the policy
perspective. Thus, ensuring a good coverage of the simulator
during learning increases the signal between the environment
and the agent during learning, leading to better policies faster.
The main contributions are:

• SymSeed, a method for seeding reinforcement learning
episodes combining symbolic execution, SMT solving,
and rejection sampling.

• A Python implementation of SymSeed using Symbolic
PathFinder1 [21], Z32 [22], and DReal3 [23]; integrated
with the standard reinforcement learning frameworks:
Stable-Baselines34 and Gymnasium.5 The environment
models are implemented in Java. The implementation of
SymSeed will be released upon the acceptance.

• An empirical evaluation of SymSeed for well-known
learning algorithms, including both tabular and
approximating methods: Q-Learning, DQN, PPO, A3C,
SAC, TD3, and CAT-RL. The combination of SymSeed
with uniform sampling from the entire state space enables
all algorithms to achieve faster convergence and higher
success rates than the baseline in all the test cases.

We begin by presenting a motivating example in Sect. II.
Section III reviews the relevant state of the art. Section IV
recalls the required preliminaries and definitions. The SymSeed
method is detailed in Sect. V. In Sect. VI, we discuss the
experiment results. Finally, Sect. VII concludes the paper.

II. OVERVIEW

Consider an example problem, safari car (Fig. 1), a variation of
the well-known mountain car problem [24]. This small problem
exhibits relatively simple dynamics yet presents a challenge
for reinforcement learning. A car can perform three actions:
right, left, or skip. The objective is to learn the optimal policy
to achieve the goal i.e., ascending to the rightmost hill, with
the checkered flag. While ascending the first hill, the agent
receives a small positive reward. This can potentially lead to
the algorithm getting stuck in a local optimum.

1https://github.com/SymbolicPathFinder
2https://github.com/Z3Prover/z3
3https://github.com/dreal/dreal4
4https://github.com/DLR-RM/stable-baselines3
5https://gymnasium.farama.org/

Fig. 1: A safari car receives a moderate reward for climbing
the center hill, while the globally high reward is granted for
climbing the rightmost hill.

Let us define the safari car MDP formally. The state space
is S ∋ (p, v) where −1.2 ≤ p ≤ 2.4, −0.07 ≤ v ≤ 0.07 are
the position and velocity of the car. The initial state S0 is a
subset of S . One of the well-known initializations is uniformly
choosing the state from the entire state space, which means
S0 = S . The action space is defined as the set A = {0, 1, 2},
in which 0, 1, and 2 represent accelerate to the left, skip,
and accelerate to the right, respectively. For the state (pt, vt),
representing the position and velocity of the car at time t,
the output of the transition function T (pt, vt) is (pt+1, vt+1),
which is defined as:

vt+1=

{
vt+(a−1)f − g cos(3pt), −1.2 < pt ≤ 0.6

vt+(a−1)f − g cos(3(pt−1.8)), 0.6 < pt ≤ 2.4

pt+1=pt+vt+1 ,
(1)

where f = 0.001 and g = 0.0025. When the car reaches the
leftmost position it stops there in state (−1.2, 0). Further moves
left are ignored. The reward function is:

R(pt, vt) =


1000, if pt = 2.4.

1, if 0.6 ≤ pt ≤ 0.65.

−1, otherwise.
(2)

The predicate F(pt, vt) = (pt ≥ 2.4) defines the final states.
Reinforcement learning algorithms often choose initial states

by uniformly sampling from a subset of the state space.
However, this approach has several significant challenges,
particularly in problems where the state space is extremely large
or continuous, such as robotic control or autonomous vehicles.

In continuous state spaces, the probability of selecting any
specific state using a uniform distribution across the entire space
is effectively zero. This makes uniform sampling impractical, if
some important classes of states have very low measure. Hitting
them randomly requires an infeasible number of samples.
Moreover, the number of samples needed grows exponentially
with the dimensionality of the state space, a phenomenon
known as the “curse of dimensionality” [6]. In general, uniform
sampling also fails to prioritize states that are more likely to
occur during optimal or exploratory policies. As a consequence,
two issues emerge. First, under-sampling of critical states;
that is, important states, such as those near rewards or
key decision points, may not be sampled frequently enough.
Secondly, missing rare but meaningful states, which means



Fig. 2: Partitioning of the state space for the Safari car: 58 partitions in total. Many of the partitions are too small to visualize.
Two of the small examples are marked by ∗ and ∗∗.

states that are rare but crucial for learning may be overlooked
entirely, reducing the diversity of experience. Additionally,
uniform sampling leads to inefficient resource allocation. For
instance, training algorithms may waste computational effort
processing states that are rarely encountered under actual
policies. This inefficiency contributes to two main issues:
poor generalization, whereby the policy may fail to prioritize
frequently occurring states in the environment, and slower
convergence, whereby the policy must adapt to the actual
distribution of encountered states, which differs significantly
from a uniform distribution. Finally, in environments with
sparse rewards, uniformly sampling states exacerbates the
difficulty of finding reward-relevant states, making it even
harder for the agent to learn an effective policy.

Figure 2 shows a possible partitioning of the state space
of the safari car into important classes of states. We explain
how such a partitioning can be obtained in Sect. V. There
are 58 classes in the partitioning, but only seven partitions
are sufficiently large to be readily observed in the figure. The
rest are mostly single state partitions. An example of a large
partition is (v + 0.001 − 0.0025 cos(3p) > −0.07) ∧ (v +
0.001− 0.0025 cos(3p) < 0.07) ∧ (p < 0.6) ∧ (v < 0.07) ∧
(v > −0.07) ∧ (p > −1.2), shown in blue. It captures the
states of the car in the first valley. The formula restricts the
positions (horizontal in the figure) and velocities (vertical in the
figure). The trajectory of the car in this partition is overlaid as
a line, for convenience. Note that it aligns with the horizontal
axis, and the right vertical scale (height). However, as height is
not part of the state, the colored partitions only relate horizontal
position and velocity (left). The height is purely informational—
the agent does not know about it.

Given the size of the partitions, it is reasonable to assume
that the agent may start from the left valley with the probability
of 50%. Ascending the first mountain is technically identical
to solving the classic mountain car problem. Upon reaching
the summit of the first mountain, the agent tends to remain in
that position. It is also possible that the agent learns to ascend
the center mountain even if initialized in the right-most valley,

and then remains in the local optimum for a period of time.
Similarly, the logical expression shown in green refers to

the car movement in the right valley. Two other interesting
examples of partitions are marked with asterisks (∗, ∗∗). As
these constraints use equality, they have zero surface (zero
measure). The partition p = 2.4 ∧ v = 0.07 is one of the goal
states. Notice that uniform sampling from the entire state space
is likely to hit one of the two large areas (green and blue),
but extremely unlikely to hit zero measure areas, even if these
states are interesting.

The main idea of SymSeed is to represent partitions as
logical predicates obtained from a program analysis tool. Then,
use solutions for the corresponding logical predicate to seed a
rejection sampler, which in turn produces initialization values
for the learning episodes. SymSeed first ensures that at least
one solution from each partition is generated using a solver.
Then inflates each solution to a set by adding noise. With such
hierarchical generative approach, the probability of initializing
an episode from any partition is 1/58, independently of the size
of the partition. When using uniform sampling the probability
is about 1/2 for the big partitions and zero for all the others.

III. RELATED WORK

Although the initial states of a trained model play an instru-
mental role in performance of reinforcement learning [25],
[26], state seeding has received much less attention than policy
initialization [27], [28], [29], [30]. Policy initialization, which
is useful for policy optimization, makes the agent learn a policy
that is roughly analogous to an initial policy, but does not trigger
a more comprehensive exploration of the environment. Thus,
the exploration of the state space remains limited to a specific
range. A reinforcement learning algorithm may get stuck in
local optima, impeding its ability to explore the state space ef-
fectively. Furthermore, states that are less likely to be observed
may be entirely bypassed with policy initialization. This poses
a significant risk for safety-critical systems. Another line of
work that also emphasizes the importance of the initial states,
optimizes an ensemble of policies over different “slices” of the



1 def step(p, v, a):
2 v += a+math.cos(3*p)
3 p += v
4 r = -1.0
5 if p == 0.5:
6 r = 100
7 return p, v, r

Fig. 3: A simple step function

[PC : True] p = P, v = V, a = A

[PC : True] v = V + A + cos(3P)

[PC : True] p = P + V + A + cos(3P)

[PC : True] r = -1

[PC : True] P + V + A + cos(3P) == 0.5

[PC : P + V + A + cos(3P) == 0.5] r=100 [PC : P + V + A + cos(3P) != 0.5] END

[PC : P + V + A + cos(3P) == 0.5] END

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

T F

Fig. 4: Execution tree for the symbolic input p = P, v = V, a = A and the function of Fig. 3

state space [31]. Their objective is to partition the state space
in order to simplify the complex tasks, which has no impact on
the exploration of the state space. The work is constrained to
problems with multiple tasks, due to the necessity of an MDP
with a contextual structure. Furthermore, the partitioning of
the state space is based on a limited number of samples, which
may still result in the exclusion of small but critically important
partitions of the state space. In contrast, we develop a method
for seeding initial states for a broader class of reinforcement
learning problems that leads to better state exploration.

In robotics research, where agents are commonly trained
on simulators, there is interest in mapping the trained initial
states from the simulation level to states in the real world [32],
[33]. These works do not address the initial states that an agent
would take at the training level in the simulator but focus on
the initial states that an agent, such as a robot, should adopt
when retrained or tested in the real world. In robotics, another
branch of study attempts to learn the reset function or initial
states [34]. Similarly, Messikommer et al. select states from
previous experiences and use them to initialize the agent in
the environment, thereby guiding it toward a more informative
state [35]. The use of past experiences to improve policy has
been the subject of extensive study in the literature [36], [37],
[38]. These works demonstrate the significance of maintaining
sufficiently limited initial states to facilitate the repetition of
previously explored states. Moreover, the set of initial states
should be sufficiently expansive to guarantee that the agent has
adequately explored the state space, which is not considered
in the above-mentioned works.

IV. BACKGROUND

Symbolic Execution is a software analysis technique used
to automate software testing to find program errors [39]. It
extends normal execution by running the basic operators of a
language using symbolic inputs, i.e. logical variables, instead of
concrete values [40]. The values of program variables become
mathematical expressions over the symbolic inputs. For each
path executed through the program, the analysis maintains
a symbolic path condition which encodes the conditions on
the inputs for the execution to follow that path. Each path
condition is built by accumulating the branch conditions
encountered during the execution of the program. Subsequently,

the symbolic executor performs a satisfiability check of the
path condition, thereby determining whether the corresponding
branch to the path condition can continue to grow or whether
it should be terminated. Additionally, in the presence of loops
and recursion, symbolic execution does not terminate. To halt
symbolic execution, one may set a predefined timeout, an
iteration limit, or a program statement limit [20]. This results
in an under-approximation of the set of path conditions. The
symbolic execution engine maintains an internal representation,
a symbolic execution tree, to keep track of the observed
conditions during the execution.

Figure 3 shows an example of a simple step function, and
Fig. 4 the corresponding symbolic execution tree for this
function, generated by symbolic execution in a step-by-step
manner, with each level of the tree corresponding to the same
line in the code. For example, there is a condition in line 5
of the program, which, when executed symbolically, results
in two branches in the execution tree: one for the true case of
the condition and the other for the false case. As illustrated,
the execution tree carries a path condition PC in each node.
The tree’s leaf nodes show the logical expressions that must
be satisfied to execute the corresponding execution path in
the program. This use of symbolic execution in reinforcement
learning is discussed in detail in a recent paper [20].

Markov Decision Processes (MDPs) are discrete-time
stochastic control structures, which assume that the distribution
of the future states is only dependent on the present state and in-
dependent of the past execution history [41]. Formally, an MDP
is a tuple (S ,S0,A, T ,R,F), where S is a set of states, S0 ∈
pdf S is a probability density function for initial states, A is a
finite set of actions, T ∈ S ×A → pdf S is the transition prob-
ability function for successor states for transitions from a given
state with a given action, R ∈ S ×A → R is the reward func-
tion, and F ∈ S → {0, 1} is a predicate defining final states.

Reinforcement Learning is a data-driven controller synthesis
method for tasks where an agent interacts with an environment
through actions, observations and rewards [6]. A reinforcement
learning problem can be modeled using an MDP, in which the
task is to find a policy π that selects actions in different states to
maximize the expected accumulated reward (so reinforcement
learning is a statistical method for solving MDPs). To learn an
optimal policy π∗, the action-value function can be represented
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Fig. 5: The SymSeed method

in, e.g., a Q-table [42], which we update using the equation

Q(st, at)← Q(st, at) + α
[
rt+1 + γ max

a′
Q(st+1, a

′)

−Q(st, at)
]
, (3)

where rt+1 is the reward received after taking action at ∈ A in
state st ∈ S , 0 < α ≤ 1 is the learning rate, 0 < γ ≤ 1 is the
discount factor, maxa′ Q(st+1, a

′) is the maximum Q-value for
the next state st+1 ∈ S across all possible actions a′ ∈ A. The
optimal action-value function Q∗(s, a) can then be obtained
by Q∗(s, a) = maxπ Q

π(s, a). We give a brief overview of
the reinforcement learning algorithms that will be used for the
evaluation of the methodology proposed in this paper.

Deep Q-Network (DQN) learning overcomes challenges
arising when the dimensions of the state space increase [43].
Unlike traditional Q-learning, which relies on a Q-table, DQN
leverages Deep Neural Networks (DNNs) to approximate value
functions for continuous state spaces. In each episode, the DQN
updates its parameters by learning from the agent’s experiences,
allowing it to estimate the expected cumulative reward more
efficiently. The DNN model is optimized to approximate the
optimal action-value function by adjusting its parameters based
on observed state transitions and rewards.

Asynchronous Advantage Actor-Critic (A3C) is a reinforce-
ment learning algorithm in which multiple agents (or copies of
the environment) work in parallel to learn. These agents operate
independently and asynchronously, meaning they collect experi-
ences at different times [44]. Each agent uses an actor network
to decide on actions and a critic network to evaluate how
good those actions are, based on the current state. By working
together, the agents share their learned experiences with a global
model, allowing it to learn more efficiently and effectively.

Proximal Policy Optimization (PPO) is a policy gradient
algorithm that combines ideas from Asynchronous Actor-Critic
(A2C-having multiple workers) and Trust Region Policy Opti-
mization (TRPO; using a trust region to improve the actor) [45].
It iteratively learns a parameterized policy πθ. In standard imple-
mentations, PPO regularizes policy updates with clipped proba-

bility ratios, and parameterizes policies with either continuous
Gaussian distributions or discrete Softmax distributions [46].

Twin Delayed Deep Deterministic Policy Gradient (TD3)
is an improved variant of Deep Deterministic Policy Gradient
(DDPG) designed to enhance stability and performance
in continuous action spaces [47]. TD3 addresses several
critical limitations of DDPG, particularly its vulnerability to
overestimated Q-values, which can lead to unstable policies.
TD3’s improvements include clipped double Q-learning, which
reduces overestimation by training two separate Q-networks
and using the minimum of their estimates for policy updates.
Furthermore, it uses delayed policy updates, i.e., it reduces
instability by updating the policy network at a slower rate than
the Q-networks, allowing for more accurate value estimations
before each policy change. Finally, target policy smoothing
introduces noise to the target actions, reducing the likelihood
of exploiting minor errors in Q-value estimation.

Soft Actor-Critic (SAC) is a reinforcement learning algorithm
which optimizes a stochastic policy using an off-policy method,
bridging the gap between stochastic policy optimization and
DDPG approaches [48]. SAC performs well in environments
that require a delicate balance between exploration and
exploitation, making it well-suited for continuous control tasks.
To stabilize learning, SAC employs the clipped double-Q trick
to stabilize learning, and its stochastic policy benefits from
target policy smoothing, which enhances performance. A core
aspect of SAC is entropy regularization, where the policy
maximizes a trade-off between expected return and entropy.

Conditional Abstraction Trees for Sample-Efficient Rein-
forcement Learning (CAT-RL) is a top-down approach for
constructing state abstractions while learning [49]. Starting
with state variables and a simulator, it dynamically computes an
abstraction based on the dispersion of temporal difference errors
in abstract states as the agent continues acting and learning.

V. SYMBOLIC STATE SEEDING (SYMSEED)

We propose a methodology for generating a set of initial
states for reinforcement learning algorithms by analyzing the
environment dynamics, which we assume to be simulated by a
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(c) Safari Car trained by A3C
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(f) Pendulum trained by TD3
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Fig. 6: Reinforcement learning algorithms evaluated per 100 training episodes, for ten uniformly sampled initial states. Each
plot shows the accumulated reward (overall performance), minimum reward, and maximum reward (range of outcomes) for the
baseline (0%, sky blue), pure SymSeed (100%, red), and a mixture of the two (varying color and percentage).

computer program. To this end, the environment simulator is
executed symbolically to extract path conditions (PC s), using
an off-the-shelf tool. Each PC is a logical expression over
the input variables of the program, in this case the state and
the action of the reinforcement learning agent. We can then

solve each PC using an SMT solver, resulting in a concrete
state and action that together satisfy the given PC . Finally, we
introduce noise around these states (by a rejection sampling
technique) in order to increase the number of samples, and
use all the obtained states as initial states for a reinforcement



learning algorithm, see Fig. 5.
The environment simulator is a program that takes the current

state of the agent and its action, and computes the next state
that the agent reaches and the immediate reward obtained for
the current transition, a so-called step function. In other words,
the environment simulator implements a single-step transition
of the MDP for the given problem, reflecting the environment
dynamics. Remark that the simulator does not necessarily need
to be a faithful rendition of the real environment, in full detail.
On the contrary, abstract environment models can be used for
pre-training simulations.

The symbolic execution of a program explores the program’s
feasible execution paths and generates a set of PC s; each PC
characterizes a specific execution path within the program. To
execute a program symbolically, two key elements must be
in place: the program itself (or the byte code of the program)
and the variables within the program that are to be treated as
symbolic variables. The symbolic execution of a given step
function captures the environment dynamics in a set of PC s,
where each PC becomes a logical expression over the state
and action variables. The specific techniques used to solve the
PC s may vary depending on the chosen SMT solver. When
asked for the solution to a PC expression, the solver returns
concrete values for the variables of the formula that can satisfy
this logical expression. These concrete values can be used as
initial states for learning. It should be noted that the symbolic
executor verifies the satisfiability of PC s; it follows that each
PC has at least one solution.

SMT solvers typically yield one solution for a given formula,
even if multiple solutions exist. Although feasible, obtaining
more solutions from an SMT solver is time-consuming, as
the formula to be solved typically grows with each iteration.
Instead, we obtain a single solution from the SMT solver and
then add a small amount of noise to this solution to obtain
multiple states. The samples are selected via an accept/reject
sampling technique [50]. In this manner, for each noisy sample,
we ascertain whether it remains within the same partition. This
process is repeated until either k states are obtained from each
partition or the new samples are rejected k times. This is due
to the fact that the size of the partitions may be very small,
which makes it impossible to generate additional states from
them. It is highly probable (heuristically) that this approach
increases the number of samples for each PC .

The result of solving each PC using the SMT solver, is
a set of concrete values for state and action variables that
can satisfy the given PC . Notice that although these solutions
include values for both state and action variables, actions are not
initialized in reinforcement learning. Consequently, the action
values are excluded from the answers, yielding a set of concrete
values for state variables. Next, we introduce noise around each
state value to avoid sample bias. Ultimately, this set can now be
fed into learning algorithms, either in tabular or deep methods.

We implemented SymSeed using Symbolic PathFinder6 [21]
to calculate the path conditions. As PathFinder works with

6https://github.com/SymbolicPathFinder

mixing states max freq. mean freq. std. mean rew. max rew.

0% 159028 35662 5.64 127.03 724.32 6923.4
10% 176573 29131 10.82 112.74 10570.62 10785.5
20% 194564 20766 11.15 80.69 3321.27 10454.0
30% 153059 27072 12.84 249.43 2095.24 3798.7
40% 178155 14351 11.93 87.79 2699.39 4279.4
50% 177352 21108 10.82 117.84 5472.33 6786.0
60% 149587 21543 4.99 118.35 2975.95 7685.4
70% 109722 47648 11.7 307.09 5393.39 5685.9
80% 160338 40829 11.72 264.9 6294.42 8073.2
90% 138977 45349 11.74 329.14 7135.45 9260.9

100% 145279 40533 9.31 267.8 9811.23 10377.0

TABLE I: States visited by Safari Car trained by CAT-RL

JVM, we need to provide the simulation programs in this format
(we use Java in the experiments). Z37 [22] is used as the main
SMT-Solver. We switch to DReal8 [23] to handle problems
with non-linear functions such as trigonometric functions. We
will release the implementation in a public repository upon the
acceptance of the paper.

VI. EVALUATION

A. Experiment Setup

We ask the following research questions to evaluate the
performance and efficacy of SymSeed.
RQ1. Can SymSeed decrease the number of visited states and

yet improve the reward?
RQ2. Does SymSeed help to avoid local optima?
RQ3. How much does SymSeed improve the performance in

the presence of sparse rewards?
To answer these questions, we apply SymSeed to well-known
reinforcement learning algorithms: Q-Learning [6], DQN [43],
A3C [44], TD3 [47], SAC [48], PPO [46], using the Stable-
Baselines3 implementations [51], and CAT-RL [49]. For each
algorithm, we conduct a series of experiments with several
classic case studies. The training of each agent is conducted
using three distinct initialization strategies: (a) a uniform
sampling over the entire state space, (b) a solving-and-sampling
using SymSeed, and (c) a mixture of (a) and (b), whereby the
percentage of the mix is controlled.

To answer RQ1, we collect the visited states during training
for each initialization strategy. Additionally, we measure the
mean, minimum, and maximum of the accumulated rewards
for ten randomly selected states at specified episodes.

To answer RQ2, we designed a series of examples, e.g., the
Safari Car test case, which demonstrate how local optima may
impede an agent’s progress if the environment is not adequately
explored. We say that the agent has succeeded if it identifies
the global optimum. In these experiments, the success rate
was measured during training for each initialization strategy.

To answer RQ3, we designed a series of examples based on
Office World, in which the agent only obtains a reward in final
states (i.e., no intermediate rewards). The goal is to show how
SymSeed helps the agent to find goal states in early episodes

7https://github.com/Z3Prover/z3
8https://github.com/dreal/dreal4



Fig. 7: Visited states of Safari Car example during 100K episodes training of CAT-RL. Each plot corresponds to a specific
strategy of using SymSeed, starting from 0% in the top-left corner and increasing in 10% increments, progressing row by row
from left to right, until reaching 100% in the bottom-right one.

and to expand awareness of these goal states to the rest of states.
We measure the accumulated reward to evaluate the trained
policy every ten episodes for ten randomly selected states.

B. Test Problems

We use three modifications of the Office World environ-
ment [49]. Office World 1 problem is a grid map comprising
four distinct rooms at its corners. The objective is to collect
and deliver mail and coffee to the designated office location,
resulting in a positive reward; otherwise, no reward is given.
Office World 2 is analogous to Office World 1, with the
exception that the location of the goal is situated at the farthest
distance from the start position of the agent. Office World 3
is a combination of the first and the second one. It has two
distinct goal states. The agent only succeeds in one of the two
possible outcomes, while the other goal acts as a local optimum.
Braking Car describes a car moving towards an obstacle with a
given velocity and distance. The goal is to stop the car to avoid
a crash with minimum braking pressure [52]. Safari Car aims
to learn how to obtain enough momentum to move up two
steep slopes and has similar dynamics to the mountain car [24],
cf. Sect. II. The Pendulum environment comprises a pendulum
attached at one end to a fixed point, and the other end is free
to move. The goal is to apply a torque on the free end to
swing it into an upright position. Cart Pole problem concerns a

pole attached to a cart by an unactuated joint, which is moved
along a frictionless track. The pendulum is placed in an upright
position on the cart, and the objective is to balance the pole
by applying forces in the left and right directions on the cart.

C. Results

RQ1 (efficiency of learning). Figure 6 summarizes the
performance of reinforcement learning algorithms when seeded
with SymSeed. Three scenarios are considered: initialization
purely with SymSeed (100%), not using SymSeed at all (0%,
baseline uniform initialization), and a mixture of SymSeed
and uniform. The baseline (0%) is shown against the two
best mixtures in all the plots. The comparison of achieved
accumulated rewards for each of these strategies (Fig. 6)
shows that SymSeed has enhanced the performance of all
the studied reinforcement learning algorithms, resulting in
higher rewards. Furthermore, SymSeed obtains higher rewards
faster than uniform state initialization. It is noteworthy that
the cart pole environment only branches on the final states.
Consequently, the symbolic execution generates only few path
conditions. For this reason, we did not anticipate the observed
significant improvement over the uniform sampling (figures 6g
to 6i). Another interesting observation is that mixing uniform
sampling over the state space with SymSeed yields a more
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(a) Safari Car trained by DQN
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(d) Safari Car trained by CAT-RL
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(e) Braking Car trained by PPO
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(f) Braking Car trained by A3C
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(g) Braking Car trained by SAC
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(h) Braking Car trained by TD3

Fig. 8: The success rate is calculated during the learning by counting success for all training episodes. The baseline (0%, sky
blue), all initial states generated by SymSeed (100%, red), and a mixed method are selected.

notable improvement for almost all the cases, so the method
works best when combined with a random initialization.

An analysis of the visited states is presented in Table I for
CAT-RL and Safari Car. The table aggregates the number of
new states observed by the agent during training (states), the
maximum number of times that a state is visited (max freq.),
the mean of the frequency of visited states (mean freq.), the
standard deviation of the frequency of visited states (std.), the
mean of the accumulated reward during training (mean rew.),
and the maximum accumulated reward (max rew.). The results
show that even though the initial states provided by SymSeed
lead to CAT-RL exploring a smaller number of new states
than the uniform baseline (0%), CAT-RL still achieves higher
accumulated reward with SymSeed. Figure 7 displays heatmap
plots of visited states in the same experiment. The weight of
points in the plots refers to the frequency with which a given

state has been visited. As the training for all strategies is fixed to
100,000 episodes for all the ten runs, a higher number of visits
to a single state/region in this plot indicates a lower number of
new states visited. The plots show that SymSeed concentrates
learning around different classes, which seems to accelerate the
reward accumulation and enhances the efficiency of exploration.

RQ2 (local vs global optima). The success rate (the rate of
achieving the globally optimal reward in policy evaluation)
for each of the aforementioned initialization strategies is
summarized in Fig. 8. It shows that each of those algorithms
learns policies that achieve the global optimum more often
when using SymSeed-generated initial states than otherwise.
However, there is no clear trend in the observed outcomes
when the percentage in the mixture is increased. In some cases,
including more SymSeed states leads to better performance,
while in others the opposite is true. Furthermore, while
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5K episodes. The evaluation has been run ten times every 100 episodes starting from the same ten randomly selected initial
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Fig. 10: The success rate is calculated during the learning by counting success for all training episodes over three runs of
tabular reinforcement learning algorithms on three Office World domains with 5K episodes.

SymSeed-generated initial states generally enhance success
rates across reinforcement learning algorithms, the optimal
balance of SymSeed states versus random states varies
depending on the specific algorithm and environment. This
indicates that the integration of SymSeed states should be
carefully calibrated, as an increase does not always correlate
with improved performance, suggesting a nuanced interaction
between state initialization and algorithm dynamics.
RQ3 (sparse rewards). We are using Office World with
two goals at the different levels of reward and CAT-RL to
investigate this question. We chose CAT-RL as the Office
World is a discrete state environment, so approximate methods
do not naturally apply. Moreover, CAT-RL (with a fixed
initialization) has been shown to perform well in this kind
of environment already. Recall that Office World 2 has sparse
rewards, and Office World 3 has a local optimum and sparse
information about the global optimum. Figure 9 shows that
CAT-RL initialized by SymSeed, converges to an optimal policy
faster than with other initialization strategies; the green line
labelled CAT-RL uses a single initial state, and the blue line
uses uniformly random initialization. Q-Learning is plotted to
underline that the problem is hard for classic algorithms. The
faster convergence with SymSeed can be attributed to the fact
that the agent may start from states that are in close proximity
to the final states (given that in many cases, the final states are
conditionally defined, and SymSeed is capable of acquiring this

knowledge through symbolic execution). This allows the agent
to observe the final state earlier. This also leads to succeeding
earlier in reaching the global optimum (Fig. 10), as it enables
the distribution of the reward across the neighboring states
of the final state. Consequently, the impact of the reward is
distributed rapidly, which is equivalent to an environment with
a non-sparse reward. Subsequently, initializing with SymSeed-
seeded states provides a strategic advantage by facilitating
early exposure to rewarding states, thereby accelerating pol-
icy convergence. This advantage highlights the potential of
SymSeed to optimize reinforcement learning training efficiency
by transforming sparse reward environments into effectively
denser ones, improving both learning speed and stability.

D. Limitations

SymSeed can only handle environments that are implemented as
programs. The worst case for SymSeed are problems for which
the environment has very limited branching; e.g., Cart Pole
discussed above. The simulation of Cart Pole only branches
on final states; its dynamics is a physical formula over the
position and velocity of the cart, and the angle and angular
velocity of the pole. The path conditions found by symbolic
execution are of little help here. In these cases, SymSeed
acts similar to sampling uniformly from the entire state space.
As our experiments show, combining SymSeed with uniform
sampling in some cases outperform standalone SymSeed. This



may be because the coverage of SymSeed is sensitive to the
selected standard deviation of the added noise. Furthermore, the
SMT solver is not guaranteed to provide solutions (or different
unique solutions that enable sufficient coverage); this issue
can be mitigated by means of SMT sampling [53]. Finally,
the partitioning using symbolic execution is sensitive to the
level of granularity [20], which can influence the results of
SymSeed.

VII. CONCLUSION

This paper shows that reinforcement learning algorithms are
sensitive to how initial states are selected for each learning
episode. The acquisition of additional knowledge about the
environment can facilitate more optimal seeding of the algo-
rithms. Furthermore, we have introduced a method SymSeed
that facilitates more effective exploration and performance of re-
inforcement learning algorithms. In this context, a pre-analysis
with an environment simulator allows for the generation of a
set of initial states for reinforcement learning algorithms that
can enhance exploration and facilitate more effective response
to sparse rewards and local optima in the policy state. SymSeed
is using a simple idea for adding noise around the models that
are obtained from path conditions of a symbolic executor with
help of an SMT-Solver. Other sampling techniques exist that
may lead to a better set of initial states, for instance using
SMT-samplers [53] or MCMC inference methods for guiding
in the reward space [54]. At the same time, examining the
impact of the number of noisy samples and the magnitude
of the noise can provide valuable insights, enabling informed
parameter selection. From software engineering perspective
on reinforcement learning, it would be interesting to integrate
better adaptive learning and testing of the reliability of policies,
to harden the reliability guarantees.
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