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Abstract

Self-adaptation, meant to increase reliability, is a crucial feature of cyber-physical systems
operating in uncertain physical environments. Ensuring safety properties of self-adaptive
systems is of utter importance, especially when operating in remote environments where
communication with a human operator is limited, like under water or in space. This pa-
per presents a software model that allows the analysis of one such self-adaptive system, a
configurable underwater robot used for pipeline inspection, by means of the probabilistic
model checker ProFeat. Furthermore, it shows that the configurable software model is easily
extensible to further, possibly more complex use cases and analyses.
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Table 1: Code Metadata
Code metadata description
Current code version v1.1.2
Permanent link to code/repository used for this code version https://github.com/remaro-network/auv_profeat/releases/tag/iFM2023
Permanent link to reproduce capsule https://doi.org/10.5281/zenodo.13946884
Legal code license Apache License 2.0
Coder versioning system used git
Software code languages, tools and services used PRISM input and property language, ProFeat, iFM23 virtual machine
Compilation requirements, operating environments and dependencies Linux, Windows, MacOS (Intel for capsule)
If available, link to developer documentation/manual https://github.com/remaro-network/auv_profeat/blob/ifm_artifact/README.md
Support email for questions julipas@uio.no

1. Motivation and Significance

Self-Adaptive Systems (SASs) often operate in dangerous and dynamic environments
where human supervision is limited or impossible, like under water or in space. Therefore,
it is important to ensure that safety properties are maintained by the system throughout
system operation. Once in operation, SASs are frequently reconfigured, which often means
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switching between different system configurations during runtime. The analysis of all these
different yet partially redundant configurations separately is a tedious, time-consuming, and
error-prone task, especially because this ignores the changes between configurations.

In Päßler et al. [20], we showed the advantages of modelling such an SAS as a family of
systems, where each family member corresponds to a possible configuration, which allows
for family-based modelling and analysis as a means to combat redundancy [25]. To do so,
we used formal models and tools from the field of Software Product Lines (SPL) [2]. We also
used the fact that SASs can be implemented using a two-layered approach, decomposing the
system into a managed and a managing subsystem [15, 27], with the managed subsystem
implementing the domain concerns (e.g., navigating a robot to a specific position) and the
managing subsystem implementing the adaptation logic (e.g., reconfiguring due to changing
environmental conditions). This separation of concerns is catered for by ProFeat [9], a tool
for probabilistic family-based model checking. ProFeat provides a means to simultaneously
analyse, in one single run, a family of models, each corresponding to a valid configuration.

This paper contributes a configurable software model of a self-adaptive robotic system,
namely an Autonomous Underwater Vehicle (AUV) used to search for and follow a pipeline
located on a seabed. Furthermore, the paper illustrates how to perform analyses of such mod-
els with ProFeat, and how to modify and extend the model.to obtain some safety guarantees
and to provide system operators with a means to estimate mission duration or the AUV’s
energy consumption. The model has been used for a case study, presented in Päßler et al.
[20, 21], and is inspired by the exemplar SUAVE [22]. In contrast to Päßler et al. [20], this
paper does not detail the software model. Instead, it shows with the software model, how
an existing framework for modelling and analysing family-based systems can be used for
SAS research. Furthermore, it shows how the software model can be extended for further,
possibly more complex SAS models and analyses.

2. Software Description

Our configurable software model is built for analysis with the family-based model checker
ProFeat. ProFeat 1 is a tool that extends the probabilistic model checker PRISM 2 [16] with
functionalities such as family models, features, and feature switches, thus enabling family-
based modelling and analysis of probabilistic systems in which feature configurations may
dynamically change during runtime. ProFeat translates its input to the input language of
PRISM to use PRISM’s reasoning engine for probabilistic (family-based) model checking.

Akin to SASs, an input model of ProFeat can be seen as a two-layered model in which
the behaviour of a family of systems that differ in their feature configurations, as defined by
a feature model that specifies the features and their relations and constraints, is specified as
feature modules (i.e., the ‘managed’ behavioural model) along with a feature controller that
can activate and deactivate features at runtime (i.e., the ‘managing’ behavioural model),

1https://pchrszon.github.io/profeat/
2https://www.prismmodelchecker.org/manual
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thus changing (reconfiguring) system behaviour. Furthermore, possible environments can
be specified as separate modules that interact with the modules of the behavioural models.

The software model of the AUV case study in Päßler et al. [21] contains the following
ProFeat modules:

• a feature model, defining the functionalities of the AUV as features and specifying
their relations and constraints as well as feature-specific costs implemented as rewards
(e.g., time and energy);

• a probabilistic, feature-guarded model of the managed subsystem (i.e., a probabilistic
featured transition system [11]), defining the behaviour of the different configurations
of the SAS as well as the possible switches between them (i.e., reconfigurations);

• a probabilistic model of the environment (i.e., water visibility);

• a feature controller, representing the managing subsystem of the SAS, that activates
and deactivates features of the feature model during runtime (while satisfying the
constraints of the feature model), based on both environmental and internal conditions,
thereby enabling and disabling specific configurations and behaviour of the managed
subsystem;

• properties concerning expected rewards (a.k.a. costs) and probabilities.

It is also possible to specify more modules that interact with the already existing ones,
like, e.g., a model of how the hardware of the managed subsystem fails or a model of the
battery consumption of the AUV. The case study’s repository 3 contains one such extension
by including two sensors for vision (i.e., a camera and a (side-scan) sonar) and a separate
hardware module that models how these sensors can fail (permanently) or get blocked (in
case of the camera, e.g., due to natural or human waste sticking to it) at runtime, causing
the need to switch between vision sensors or abort the mission. During operation, the sonar
is preferred for searching, because it can cover a wider area and operate at a higher altitude,
whereas the camera is preferred for following and inspecting the pipeline because it is easier
to detect faults in the pipeline with the camera.

3. Illustrative Examples

To use the software model for analysis with ProFeat, download the iFM 2023 artefact
evaluation virtual machine (VM) [18]. In the VM, first open a terminal window. Then
download the artefact4 with the command

1 wget h t t p s : // zenodo . org / r e c o r d s /8275533/ f i l e s / auv_pro feat . z i p

3https://github.com/remaro-network/auv_profeat
4We will assume in the following that you saved the file in the home directory. It is also possible to save

it in another directory, but then the path to this directory must be used in all commands using paths.
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and unzip it with

1 unz i p auv_pro feat . z i p

Then run the following.

1 cd ~/pr i sm
2 . / i n s t a l l . sh

The artefact contains a file casestudy . profeat with the models of the managed subsystem,
the managing subsystem, and the environment, files casestudy . fprops and casestudy_all.
fprops with properties to analyse, a folder experiments with files for conducting PRISM
experiments, a license, and a README file.

3.1. Running Analyses
To run an analysis, navigate to auv_profeat in the terminal. Then execute the following.

1 ~/ p r o f e a t / b i n / p r o f e a t −t c a s e s t ud y . p r o f e a t c a s e s t ud y . f p r o p s
2 ~/pr i sm / b i n / pr i sm out . p r i sm out . p rops > out . l o g

The first command translates the ProFeat model and the ProFeat property file to a PRISM
model and property file, respectively. The second command uses PRISM to compute the
results and saves them in the out. log file. To view the results, open the out. log file which
is saved in the auv_profeat folder.

To analyse additional properties to the ones analysed here, these need to be included in
the casestudy . fprops file, making sure to include any ProFeat-specific constructs like, e.g.,
features and variables, within ${...}.

3.2. Understanding the Output
The out. log file, which contains the results of the analysis, is structured as follows. After

a PRISM header, it specifies the model type, the modules, and the variables of the PRISM
file that was automatically translated from the ProFeat file. It then lists the analysed
properties. These are slightly different from the properties specified in casestudy . fprops
because they have been translated to PRISM properties. For each of the properties, the
out. log file includes a paragraph, separated by −−−−, with the analysis results. The result
of the analysis (Result) can be found at the bottom of the paragraph, preceded by the time
that was used for model checking (Time for model checking).

3.3. Changing Scenarios
The ProFeat model comes equipped with two different, predefined scenarios, each of

them implementing a different behaviour of the environment. To change the scenario, open
the file ~/auv_profeat/casestudy.profeat, uncomment the parameters of the desired scenario,
and comment the parameters of the other scenario. To create a new scenario, change the
values of the parameters min_visib, max_visib, current_prob, and inspect . It is also possible
to change the influence that the thruster failures have on the path (i.e., movement) of the
AUV by changing infl _tf.
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3.4. PRISM Experiments
It is possible to use PRISM’s functionality of so-called experiments to perform the analy-

sis of a parametric property for a predefined parameter range. To use this functionality with
the parametric properties defined for this case study, it suffices to do as described below.
The files for the PRISM experiments for the two predefined scenarios can be found in the
folder ~/auv_profeat/experiments as scenario1 .prism and scenario2 .prism. The necessary
property file, which contains the properties used for the experiments, is experiments.props
in the same folder.

Open the PRISM GUI via the command

1 ~/pr i sm / b i n / xp r i sm

Open the model file of one of the two scenarios by going to Model −> Open model and
selecting scenario1 .prism or scenario2 .prism. Parse and build the model by pressing F2
and F3, respectively. To load the properties, go to the Properties Tab in the lower left
corner. Open the properties list by going to Properties −> Open properties list and select
experiments.props. The experiments will use a variable named k for the number of time steps.
Declare this variable by double-clicking in the empty Constants area, which will create an
entry named C0. Change the name of the entry from C0 to k.

To run an experiment, click one of the properties and press F7. In the dialogue that
opens, first decide the desired range of parameters, i.e., how many time steps to consider.
For example, to create a graph from the first property, select the radio button for Range
(deselecting Single Variable ), and fill in 0 for Start , 80 for End and 1 for Step. Then click
on Okay, give the graph a name, and either print it to an already existing graph or to a new
one.

It is also possible to inspect the values that were calculated for the graph. To do so,
in the Experiments pane, first select (left-click) the property whose results to inspect, then
right-click and select View results from the context menu. This will enable us to determine
after how many time steps the probability for the respective property to be satisfied is above
a certain threshold. In this way, we for instance determined that the probability of reaching
a safe state from an unsafe state is above 0.95 after 5 time steps in both scenarios.

For more information about PRISM experiments, including how to run them from the
command line, consult the PRISM manual 5.

3.5. Model Extensions
The artefact can be modified and extended in different ways, some ideas are as follows.

• Explore new scenarios;

• Analyse different properties;

• Change the probabilities of the transitions;

5https://www.prismmodelchecker.org/manual/RunningPRISM/Experiments)
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• Introduce different environmental or internal parameters that can trigger adaptation
(i.e., feature changes by the feature controller);

• Include new modules (e.g., introducing failures in the hardware or modelling battery
consumption) that synchronise with the already existing ones and with the feature
controller;

• Make the feature model richer by including more functionalities of the AUV that can
be changed during runtime;

• Include new states in the AUV’s feature module (e.g., a further task that the AUV
has to perform).

The latter four suggestions require extending the AUV’s feature modules, feature controller,
or both.

4. Impact

The software model of the AUV case study presented in this paper is relevant for both
new and existing questions in research on SASs and on dynamic SPLs as well as in industry.
Below, we present the research areas in which the software model can be used and we discuss
directions that highlight its relevance.pose some questions for which it can be relevant.

• SASs can be realised by internal self-adaptation, which embeds the adaptation logic in
the system itself through exception handling or fault-tolerance mechanisms, or external
self-adaptation, which separates the adaptation logic from the application logic through
an external feedback loop [15, 24, 27]. Internal self-adaptation has been criticised
for poor maintainability and scalability. Our software model implements external
self-adaptation by separation of concerns between the application logic (the managed
subsystem) and the adaptation logic (the managing subsystem) of the SAS as proposed
in [15]. Thus, the software model provides an example of how to model and analyse
use cases with this separation of concerns. The separation of concerns makes it easy to
reuse the software model since it caters for modifications or extended use cases. , thus
improving reusability. Our software model also exemplifies how to improve scalability
of the models by modelling all configurations and reconfigurations of an SAS in one
modular model, enabling the analysis of all configurations and reconfigurations in a
single run while maintaining the separation of concerns between the application and
the adaptation logic.Our approach also improves scalability by providing a means to
model all configurations and reconfigurations in one modular model, enabling multiple
analyses in single runs while maintaining this separation of concerns.

• Dynamic SPL research distinguishes between bounded adaptivity, which models con-
text variation that is anticipated at design time, and open adaptivity, which models
context variation that is not planned at design time and requires model extension [7].
Our software model implements bounded adaptivity (the feature controller), for which
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dynamic SPLs have been advocated as a means to constrain the evolution of SASs,
thus enabling the assessment of important properties of an SAS prior to its implemen-
tation [4].

• Dynamic SPLs have been proposed to manage runtime reconfiguration for self-adaptive
robots [8, 13]. While appealing, this is still considered an unsolved challenge [12] since
managing runtime reconfiguration for SASs is in general very difficult and “there is
a need to validate the proposals, either in an industrial environment or in different
test cases, expanding the application areas” [1]. In fact, a recent literature review [3]
on testing, validation, and verification of robotic and autonomous systems does not
discuss any research that uses family-based analysis techniques for SASs as exem-
plified with our software modelas enabled by our modelling approach. Therefore, our
software model can provide an example of how to use dynamic SPLs for modelling self-
adaptive robots and for using family-based analysis techniques to analyse the robot’s
configurations and reconfigurations.

• Kentaro Yoshimura, chief researcher at Hitachi, recently addressed the SPL community
in his keynote address entitled “The 20-year journey of SPLE in Hitachi and the next”
at the 2023 SPL Conference (SPLC 2023) [17]. In his keynote, he presented the
use of dynamic SPLs for autonomous robotic systems as a new industrial challenge.
He said that the dynamicity is in the runtime behaviour of the autonomous robots
that need to adapt and reconfigure based on input perceived from the environment
without continuous human guidance. Our software model responds to this challenge
by capturing the uncertainties of the environment in a separate probabilistic model
that interacts with the behavioural models of the SAS.

5. Conclusions

This paper contributes a configurable software model of a dynamic SPL, reflecting the
self-adaptive AUV introduced in [20]. The model is part of a growing body of family-
based models including, e.g., probabilistic variants of the well-known SPL benchmarks called
the Body Sensor Network (BSN) SPL [23], based on the BSN from [14], and the Elevator
SPL [10], based on the Lift system from [19]benchmarks, both of which were analysed with
ProFeat by Chrszon et al. [9] and the latter also with QFLan by ter Beek et al. [5] and its
original, non-probabilistic version also with the well-known mCRL2 model-checking toolset 6

in [6]. QFLan is a software tool for the modelling and analysis of highly reconfigurable sys-
tems, including dynamic SPLs. These software models are all publicly available.7,8,9 While
ProFeat provides tool support for family-based (quantitative) analysis of dynamic SPLs with
probabilistic behaviour through probabilistic model checking, QFLan [26] provides tool sup-
port for statistical model checking.

6https://mcrl2.org/
7https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ProFeat/
8https://github.com/qflanTeam/QFLan/wiki
9https://github.com/SjefvanLoo/VariabilityParityGames

7

https://mcrl2.org/
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ProFeat/
https://github.com/qflanTeam/QFLan/wiki
https://github.com/SjefvanLoo/VariabilityParityGames


6. Future Plans

In the future, it would be interesting to analyse larger dynamic SPL models of SASs,
which might require resorting to statistical model-checking techniques that yield statistical
approximations by probabilistic simulations, thus trading 100% precision for scalability.
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