
An LAGC Semantics for Timed Rebeca

Reiner Hähnle1 , Einar Broch Johnsen2 , and S. Lizeth Tapia Tarifa2

1 Technical University Darmstadt, Darmstadt, Germany
reiner.haehnle@tu-darmstadt.de

2 University of Oslo, Oslo, Norway
{einarj,sltarifa}@ifi.uio.no

Abstract. Timed Rebeca is an actor-based language for modeling and
analyzing timed reactive systems. Timed Rebeca has a formal SOS-style
semantics, as well as one in terms of rewrite rules. While the latter is
suitable for model exploration and bounded model checking, it is less
so for the purpose of deductive verification. Since we believe there is
great potential in deductive verification of Timed Rebeca programs, as
a preparatory step, in the present paper we provide a locally abstract,
globally concrete (LAGC) semantics. This is a new approach to the se-
mantic foundation of programming languages. An LAGC semantics is a
highly modular, incremental trace semantics, particularly suited to en-
sure soundness of global program analyses such as deductive verification.
We provide the first LAGC-style semantics for Timed Rebeca and discuss
possible future applications.

1 Introduction

With her work on Rebeca [20,21], Marjan Sirjani has been a driver for the usage
of formal methods in a broad range of applications, based on the modeling
and analysis of actor systems [1]. Rebeca has been used to analyze a broad
range of systems, clearly demonstrating the usefulness of formal methods for
real-world problems, and in particular of the actor perspective in modeling and
analyzing real-world systems. In this line of work, Sirjani and her colleagues
developed and adapted a range of analysis techniques to actor systems, such as
simulation [18], model checking [12,15,23], statistical model checking [11], partial
order reduction [2], and rewriting logic [19], in particular for timed systems with
Timed Rebeca [18].

The development of formal analyses techniques for a modeling language relies
on the semantics of the language. For timed actor languages, timing constraints
introduce particular challenges related to the synchronization of parallel behavior
in the distributed actors [3] and the allocation of time-sensitive resources [14].
For Timed Rebeca, significant effort has gone into formalizing its semantics to
match different analysis techniques. At present, Timed Rebeca has an SOS-like
semantics [18], as well as a formalization in the rewriting language Maude [19].
The latter is well-suited for bounded model checking and model exploration,
however, less so for deductive verification and the analysis of global properties
such as fairness.

https://orcid.org/0000-0001-8000-7613
https://orcid.org/0000-0001-5382-3949
https://orcid.org/0000-0001-9948-2748

2 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

M ∈ Model ::= CD msc

CD ∈ ClassDecl ::= reactiveclass C { KR SV Ctr MS }
KR ∈ KnownRebecs ::= knownrebecs{ d }

SV ∈ stateVars ::= statevars{ d }
Ctr ∈ constructor ::= C(d){ sc }

MS ∈ MsgSrv ::= msgsrv m(d) { sc }
sc ∈ Scope ::= d s

d ∈ VarDecl ::= ε | T x; d
s ∈ Stmt ::= for-stm | new-stm | call-stm | delay(e) | s; s |

skip | x = e | x =?(e) | if e { s }
for-stm ∈ For ::= for (s; e; s) { s }

new-stm ∈ New ::= x = new C (e) : (e)
call-stm ∈ Call ::= e.m(e) [after(e)] [deadline(e)]

msc ∈ mainScope ::= main { InDcl }
InDcl ∈ InstanceDcl ::= C x(e) : (e)

Fig. 1: Syntax of Timed Rebeca. Overlined identifiers, such as e, indicate lists or
sets and square brackets [] indicate optional elements.

Recently, the authors were involved in the design of a denotational semantics,
suitable for parallel and distributed systems, named locally abstract, globally
concrete (LAGC) semantics [7]. In contrast to operational semantics such as
SOS [17], which are well-suited to define execution aspects of a model needed
for, e.g., simulation or model checking, denotational aspects shift the focus from
how a model executes to what the resulting semantic object will be. LAGC-style
semantics was developed to match with calculi for deductive verification [5, 7]
and can also be used to analyze fairness in asynchronous languages [8]. In this
paper, we provide an LAGC semantics for the asynchronous modeling language
Timed Rebeca [18].

Paper overview. Section 2 gives a brief introduction to Timed Rebeca and Sec-
tion 3 explains the basics of LAGC semantics to make the paper self-contained.
Section 4 then presents our LAGC semantics for Timed Rebeca and Section 5
briefly reflects on our effort in developing this semantics, before Section 6 con-
cludes the paper and suggests some lines of future work.

2 Timed Rebeca

Rebeca [21] models the behavior of a system as a set of active objects with
encapsulated states, where communication happens via asynchronous message
passing. Rebeca is an active object language [4] in the sense that it combines
object-oriented features with actors, specifically actors are instances of classes
that define how these instances react to messages, and messages are structured
like method calls (using dot notation for sending messages). Timed Rebeca ex-
tends Rebeca with timed constructs.

An LAGC Semantics for Timed Rebeca 3

Various versions of the syntax and semantics of Timed Rebeca [18,19,22] have
been studied, for example, with timed semantics based on a global clock [19,22]
versus distributed local clocks [18]. In this paper, we consider the syntax and
semantics as given in [19].3 We first explain informally the syntax constructs of
Timed Rebeca, then illustrate it with an example of a small model.

2.1 Syntax of Timed Rebeca

Figure 1 shows the syntax of Timed Rebeca as given in [19]. A model M consists
of a number of reactive class declarations, specifying the behavior of the classes
of the actors in the model, as well as a main block that statically defines the
initial instances of the actor classes. An instance of a reactive class InDcl is an
actor x of type C in the system model, also called a rebec. The meta notation e
is for expressions of the appropriate type.

Class declarations. The declaration of a reactive class CD starts with the key-
word reactiveclass, followed by the reactive class name C. A reactive class
declares known rebecs KR and state variables SV . The former are the statically
known rebecs, declared with the keyword knownrebecs and may be the empty
set. The keyword statevars declares state variables of a rebec with a basic
(non-class) type. These are initialized to a default value and correspond to ob-
ject fields. They are fully encapsulated and can only be read and set by sending
messages to their owner. Each reactive class has one constructor Ctr , used to
initialize instances of the class by initializing (some) state variables and possibly
sending messages to other rebecs or to itself. The keyword self is reserved in
the context of the body of a message to refer to the rebec currently executing
this message.

Message servers. A rebec responds to an incoming message by executing the
corresponding message server, each reactive class declares message signatures
MS , handled using message servers. Their declaration starts with the keyword
msgsrv, followed by a name m, the formal parameters, and a message body. The
body of a message server sc contains local variable declarations and a sequence
of statements with standard control structures, including a skip statement, se-
quential composition,4 variable assignment, random variable assignment of the
form x =?(e), where x is randomly assigned to one of the expressions in e, an if
statement, and a for loop of the form for (s1; e; s2) { s3 }, where counters are
initialized in s1, the loop guard is in e, the increment of the counters is according
to s2, and the body of the loop is declared in s3.
3 The language constructs also differ slightly between these papers: [18] does not con-

sider dynamic actor creation and the for loop, whereas a now-statement is featured
in [22].

4 The Timed Rebeca grammar [19] has no explicit constructors for empty and con-
catenated statements. Instead, it admits possibly empty sequences of statements s∗.
Since our local rules evaluate one statement at a time, it is more natural to base the
grammar on an explicit empty statement skip and concatenation s; s′. Obviously,
both grammars result in an equivalent language.

4 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

Actor configurations. Rebecs may be created statically in the main block, or
dynamically using the new statement of the form x = new C (e1) : (e2), which
dynamically creates an instance of class C, where the set of known rebecs is
initialized according to e1, and the constructor of C is immediately executed
with the arguments in e2. A constructor Ctr is very similar to a message server,
with the exception that its name is identical to the name of the class.

Communication structure. Each rebec has a separate FIFO message queue con-
taining its pending received messages. The effect of sending a message is append-
ing the message to the FIFO message queue of the receiving rebec. In Rebeca,
the execution of a message server is non-preemptive: The executing rebec does
not take the next message from its queue before the running message server is
finished. The general behavior of each rebec is a loop which first takes a message
from the queue and then executes it in the corresponding message server. The
actor is idle when there is no enabled message in the FIFO queue. The order of
execution of enabled concurrent rebecs in Timed Rebeca is arbitrary.

Time and timed message passing. The delay statement models computation
time. Timed Rebeca assumes that all statements other than delays are executed
instantaneously, and non-zero computation time must be specified via the delay
statement of the form delay(t), which indicates the current rebec will be blocked
(i.e., it is unable to perform any action) within the next t units of time. Rebecs
communicate with each other by sending messages of the form o.m(e), where
o specifies the recipient of the message. The execution of the message is non-
blocking, meaning that the corresponding message m along with its arguments
e is put in the receiver’s message queue and the sender continues executing the
subsequent statements in the message server. Timed Rebeca’s call-statement
may include timing constraints:

– The after(t) tag may be attached to a message and defines the earliest
time that the message can be served as t time units after the time when the
message was sent. This means that the receiver can take the message from
its queue only after t units of time elapsed.

– The deadline(t) tag may be attached to a message and defines the expira-
tion time of the message, the last time the message can be served, as t time
units after the time when the message was sent. This means that the message
remains at most t units of time in the receiver’s queue, and is ignored5 later
if its processing has not already started.

A deadline parameter can have the special value Inf, representing a deadline
that never expires. These after and deadline tags need to be considered for
the enabledness of rebecs. In Timed Rebeca, a rebec is enabled if it is not busy
handling a message and its message queue has a message with after(t) such
that t is less than the time in an after tag of any messages of any other actor.
Such a message is also called an enabled message. This corresponds to an implicit
model of global time which will later be made explicit in our semantics.
5 An implementation may or may not garbage collect expired messages.

An LAGC Semantics for Timed Rebeca 5

2.2 Example: A Thermostat and a Heater in Timed Rebeca

1 reactiveclass Thermostat {
2 knownrebecs { Heater heater; }
3 statevars { int period; int temp; }
4 Thermostat(int p, int t) {
5 self.period = p;
6 self.temp = t;
7 self.checkTemp();
8 }
9 msgsrv checkTemp() {

10 if (self.temp >= 30) self.heater.off() deadline(20);
11 if (self.temp <= 25) self.heater.on() deadline(20);
12 self.checkTemp() after(self.period);
13 }
14 msgsrv changeTemp(int delta) { self.temp = self.temp + delta; }
15 }
16 reactiveclass Heater {
17 knownrebecs { Thermostat thermostat; }
18 statevars { boolean on; int delta; }
19 Heater() {
20 self.on = false;
21 self.run();
22 }
23 msgsrv on() { delay(2); self.on = true; }
24 msgsrv off() { delay(2); self.on = false; }
25 msgsrv run() {
26 self.delta = ?(1,2,3);
27 if (self.on == false) self.delta = −1 ∗ self.delta;
28 self.thermostat.changeTemp(self.delta);
29 self.run() after(10);
30 }
31 }
32 main { Thermostat t(h):(5, 25); Heater h(t):(); }

Fig. 2: A model of a thermostat and a heating system in Timed Rebeca.

We use a simple example, originally presented in [19], that models a thermo-
stat and a heater. The goal of the system is to keep the temperature between 25
and 30 degrees. The system consists of two objects or rebecs, a thermostat and a
heater. The thermostat checks the temperature periodically. If the temperature
is outside the desired range, the thermostat sends to the heater the appropriate
“on” or “off” message. It takes two time units for the heater to turn on or off. The
temperature is non-deterministically changed every 10 time units, depending on
whether the heater is on or off.

The Timed Rebeca model, shown in Figure 2, consist of two classes Thermostat
(lines 1–15) and Heater (lines 16–31). The main block (line 32) instantiates one

6 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

rebec for each reactive class. The main block starts the system with an initial
temperature of 25 and specifies that the period of checking the temperature by
the thermostat is 5.

A Thermostat rebec knows a rebec of type Heater, and has two integer state
variables period and temp. The latter models the temperature sensor. Hence, the
temperature can be changed simply by setting the temp variable. The Thermostat
constructor initializes the two state variables from the values received as argu-
ments, and sends to itself a checkTemp message to initiate its periodic behavior:
When temp >= 30 it sends a message to heater to turn it off, when temp <= 25
it sends a message to heater to turn it on, both messages have deadline(20).
It finally calls itself again, so the periodic behavior restarts after at least period
time units, using the tag after. Observe that the fields of a rebec (i.e., the state
variables and known rebecs) are accessed via a preceding the keyword self.

A Heater rebec knows a rebec of type Thermostat, and has two state variables
on and delta. The constructor initializes the variable on = false, assigns the default
value 0 to delta, and calls itself to run its periodic behavior: it randomly selects a
value for delta, then sends a message to the Thermostat with the effect to decrease
(increase) the temperature in case the heater is off (on) by delta. It finally calls
itself again, so the periodic behavior starts again after 10 time units, using the
tag after. A Heater receives messages to turn itself on or off which takes two
time units, using the delay statement.

3 Basics of LAGC Semantics

We briefly introduce the ideas underlying LAGC semantics. For space reasons, we
do not give full technical definitions of LAGC, but introduce essential notions in
a compact manner (for a fully precise account, see [7]). Remark that this section
may be skipped on first reading and consulted if clarifications are needed; it is
included to make the paper more self-contained (furthermore, the text contains
some excerpts from [8]).

The main principle of LAGC semantics [7] is to strictly separate two phases:
The first evaluates statements to sets of parameterized, symbolic local traces.
The second instantiates the parameters and composes local traces. Composed
traces must respect a well-formedness predicate derived from the semantics of the
underlying programming language, without referring to program syntax or in-
termediate structures. Together, well-formed traces over states and events avoid
complex data structures in configurations of reduction rules as it is the case in
SOS rules [17]. LAGC configurations contain not only the current state, but the
whole trace leading to it, including any events that occurred. This richer struc-
ture makes it easy to extract information. The modular separation of progress
and composition is also crucial for our presentation. It permits an incremental
presentation of LAGC for Timed Rebeca.

An LAGC Semantics for Timed Rebeca 7

3.1 States

To permit symbolic expressions (i.e., containing variables) occurring as values in
program states, we use the star expression ∗ to represent an unknown value that
cannot be further evaluated. The ∗ symbol does not occur in programs, only in
the semantics. We adopt the notational convention of using capital letters for
symbolic variables; but symbolic and non-symbolic variables belong to the same
syntactic category and some operations transform a symbolic variable into a
non-symbolic one. We keep the syntax and semantics of expressions abstract (as
does [19]). In the examples we use standard arithmetic and boolean expressions
with their canonical semantics informally.

Definition 1 (Symbolic State, State Update). A symbolic state σ is a
partial mapping σ : Var ⇀ Sexp from variables to symbolic expressions Sexp =
Exp ∪ {∗}. A symbolic variable is a variable X bound to an unknown value
σ(X) = ∗. Sexp are expressions that contain symbolic variables. The notation
σ[x 7→ se] expresses the update of state σ at x with symbolic expression se.

In a symbolic state σ, its symbolic variables symb(σ) act as parameters,
relative to which a local computation is evaluated. They are used to represent,
for example, call parameters that cannot be known locally. We assume there are
no dangling references.6 States without symbolic variables are called concrete.
We denote by σ ⊆ σ′ that state σ′ extends (as a mapping) state σ.

Example 1. σ = [x 7→ Y + 42, Y 7→ ∗] is a symbolic state with symb(σ) = {Y }.

Timed Rebeca requires a notion of time that extends the languages that were
given an LAGC semantics in [7]. For the semantics, this means that evaluation
must track the (global) time when time evolves. In the sequel, the parameter N
over non-negative integers serves this purpose.

Timed Rebeca classes are instantiated into rebecs o. These are represented by
the domain RId. In Timed Rebeca, each rebec is an actor with its own processor;
therefore, it is necessary to keep track of the object where semantic evaluation
takes place. We use the parameter O for this purpose.

We assume an evaluation function valO,N
σ : Sexp → Sexp for symbolic ex-

pressions se in the context of a state σ, an object O and execution time N ,
defined as usual for concrete expressions, and defined as valO,N

σ (X) = X for
symbolic variables X ∈ symb(σ). The evaluation of most expressions simply
ignores the parameters O, N , with the exception of the self reference, where
valO,N

σ (self) = O, and fields self.v, where valO,N
σ (self.v) = σ(O.v).

It is always possible to evaluate expressions without symbolic variables to
values and one could define a set of simplification rules on symbolic expressions,
but they are not needed in the context of this article. The evaluation function
is trivially extended to sets of expressions.

6 A dangling reference is a reference to a variable that is not in the symbolic store.

8 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

3.2 Traces and Events

Traces are sequences over states and structured events. For example, the pres-
ence of synchronization events makes it possible to express restrictions on call
sequences via well-formedness conditions. Symbolic states imply symbolic traces,
which motivates to constrain traces by path conditions:

Definition 2 (Path Condition). A path condition pc is a finite set of Boolean
expressions. A fully evaluated concrete pc is exactly one of ∅, {ff}, {tt}, {ff, tt}. It
is consistent when it does not contain ff. For any concrete state σ, path condition
valO,N

σ (pc) is fully evaluated.

Definition 3 (Event Marker, Conditioned Symbolic Trace). An event
marker over expressions e is a term of the form ev(e). A symbolic trace τ is
defined inductively by the following rules (ε denotes the empty trace):

τ ::= ε | τ ↷ ν ν ::= σ | ev(e) .

A conditioned symbolic trace has the form pc ▷τ , where pc is a path condition
and τ is a symbolic trace. If pc is consistent, we simply write τ for pc ▷ τ .

Traces can be finite or infinite. Let ⟨σ⟩ denote the singleton trace ε ↷ σ.
Concatenation of two traces τ1, τ2 is written as τ1 · τ2 and defined when τ1 is
finite. The final state of a non-empty, finite trace τ is selected with last(τ), the
first state with first(τ), respectively.

Example 2. A conditioned symbolic trace is τ = {Y > 0} ▷ ⟨σ⟩ ↷ σ[w 7→ 17],
where σ is as in Example 1.

Traces semantically model sequential composition of program statements.
Assume τr, τs are traces of statements r, s, respectively. To obtain the trace
corresponding to sequential composition r; s, traces τr and τs must be concate-
nated, but the first state of the second trace should be identical to (or more
precisely an extension of) the final state of the first trace. The chop operator
gets rid of the redundant intermediate state.

Definition 4 (Chop on Traces [10, 16, 25]). Let pc1, pc2 be path conditions
and τ1, τ2 be symbolic traces, and assume that τ1 is a non-empty, finite trace.
The semantic chop (pc1 ▷ τ1) ∗∗ (pc2 ▷ τ2) is defined as follows:

(pc1▷τ1)∗∗(pc2▷τ2) = (pc1∪pc2)▷τ ·τ2 where τ1 = τ↷σ, τ2 = ⟨σ′⟩·τ ′ if σ⊆σ′ .

Chop is well-defined when the first argument is a finite non-empty trace, we
only use it this way.

Events are uniquely associated with that state in a trace, where they occur.
Events do not update a state, but may extend it with new symbolic variables. To
do so, an event ev(e) is inserted into a trace after a state σ, which can be extended
by fresh symbolic variables V , using an event trace evVσ (e) of length three:

evVσ (e) = ⟨σ⟩↷ ev(e) ↷ σ′, where σ′ = σ[V 7→ ∗].

An LAGC Semantics for Timed Rebeca 9

Given a trace of the form τ1 ↷ σ and event ev(e) with fresh symbolic variables
V , appending the event is achieved by the trace τ1 · evVσ (e). Def. 4 ensures that
events in traces are joinable: τ ∗∗ evVσ (e) is well-defined whenever last(τ) = σ. If
V is empty then the state is unchanged, in this case we omit the set of symbolic
variables: evσ(e) = ev∅σ(e).

Example 3. To insert event ev(Z), introducing symbolic variable Z, into trace τ

from Example 2 at σ we use the event trace ev{Z}
σ (Z) = ⟨σ⟩↷ ev(Z) ↷ σ[Z 7→

∗]. The result is: {Y > 0} ▷ ⟨σ⟩↷ ev(Z) ↷ σ[Z 7→ ∗] ↷ σ[Z 7→ ∗, w 7→ 17].

Traces are assumed to be well-formed, for example the domains of their states
match, variables in events are defined, events evσ(e) in traces must be aligned
with the states before and after, and so on [7].

To enable tracking of the actor where a statement is evaluated, we will tag
traces with objects.

Definition 5 (Tagged Trace). Let ev(e) be an event, τ a trace, and o ∈ RId
an object. A tagged trace τo is defined inductively as follows:

(ev(e)) o = ev o(e)
σ o = σ
(τ ↷ ν) o = τo ↷ νo

3.3 Making Traces Concrete

Traces with symbolic variables model program executions relative to an unknown
context. The symbolic variables in such traces become instantiated when the
execution they represent is scheduled in a concrete context. At this point a
symbolic trace is concretized by instantiating all of its symbolic variables. This
results in a concrete trace with a path condition that is either consistent or not.
Technically, we use the notion of a concretization mapping. A concretization
mapping is defined relative to a state. It associates a concrete value to each
symbolic variable of the state.

Definition 6 (State Concretization Mapping). A mapping ρ : Var → Val
is a concretization mapping for a state σ if dom(ρ) ∩ dom(σ) = symb(σ).

A concretization mapping ρ may also define the value of variables not in the
domain of σ. Concretization mappings are canonically extended to events and
conditioned traces [7].

Example 4. Consider σ of Example 1 with symb(σ) = {Y }. We define a con-
cretization mapping ρ = [Y 7→ 3] for σ with ρ(σ) = [x 7→ 45, Y 7→ 3]. Applying
ρ to the trace in Example 2, we obtain ρ(τ) = {3 > 0} ▷ ⟨ρ(σ)⟩↷ ρ(σ)[w 7→ 17].
We adopt the convention to strip away consistent path conditions such as here.

10 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

3.4 Continuations

The LAGC semantics evaluates one single statement “locally”. Obviously, it is
not possible to fully evaluate composite statements in this manner. Therefore,
local LAGC rules perform one evaluation step at a time and defer evaluation
of the remaining statements, which are put into a timed continuation, to be
subjected to subsequent rule applications at a later time. Timed continuations
extend the continuations of the original LAGC paper [7] to accommodate timed
semantics. Syntactically, timed continuations are simply statements s wrapped
in the symbol K and tagged by the time when they can be executed: Kt(s).
To achieve uniform definitions we allow the case that no further evaluation is
required (i.e., the evaluation has been completed) and use the “empty bottle”
symbol () for this purpose.

Definition 7 (Timed Continuation Marker). Let s be a program statement
or the symbol , and let t0 be a non-negative integer. Then a timed continuation
marker has the form Kt0+N (s), where N is the time parameter.

4 LAGC Semantics for Timed Rebeca

Local evaluation defines sets of parameterized, symbolic traces that can later be
composed into global executions. Local evaluation is defined such that for each
statement s and state σ, the result of valO,N

σ (s) is a set of tagged, conditioned,
symbolic traces, so-called continuation traces, of the form

pc ▷ τ ·Kt(s′) ∈ CTr ,

where τ is a finite symbolic trace and s′ the remaining statements to be eval-
uated. Let Θ be the set of traces of s′ and ρ any concretization mapping; then
the expression pc ▷ τ · Kt(s′) is used to describe the set of traces: {ρ(τ) ∗∗ τ ′ |
ρ(pc) consistent, τ ′ ∈ Θ}. In other words, the traces in this set can be consis-
tently instantiated from τ , and extended by executing s′ at time t.

4.1 LAGC Semantics of For

We now define the LAGC semantics of For, the imperative fragment of Timed
Rebeca.

The rule for skip generates an empty path condition, returns the state σ it
was called in, and produces the empty continuation, resulting in a single trace:

valO,N
σ (skip)= {∅ ▷ ⟨σ⟩ ·KN ()} .

The assignment rules generate an empty path condition and traces from the
current state σ to a state updating σ at x, and produce the empty continuation.

valO,N
σ (x = e)= {∅ ▷ ⟨σ⟩↷ σ[x 7→ valO,N

σ (e)] ·KN ()} .

An LAGC Semantics for Timed Rebeca 11

valO,N
σ (x =?(e1, . . . , em))=

⋃
1≤j≤m valO,N

σ (x = ej) .

The conditional statement is a complex statement and cannot be evaluated
locally in one step, so we expect it to produce a non-empty continuation. The rule
branches on the value of the condition, resulting in two traces with complemen-
tary path conditions. The first trace is obtained from the current state and the
continuation corresponding to the if-branch, and the second trace corresponds
to an empty else-branch:

valO,N
σ (if (e) { s })= {{ valO,N

σ (e)} ▷ ⟨σ⟩ ·KN (s), {valO,N
σ (!e)} ▷ ⟨σ⟩ ·KN () }

Timed Rebeca’s conditional has an optional else branch which we do not
model here. It is obvious and not needed in the examples.

The rule for sequential composition r; s is obtained by first evaluating r to
traces of the form pc ▷ τ ·KN (r′) with continuation r′, and then adding s to r′:

valO,N
σ (r; s) = {pc ▷ τ ·Kt(r′; s) | pc ▷ τ ·Kt(r′) ∈ valO,N

σ (r)} .

If r′ is the empty continuation , it must be ignored. To achieve this the
rewrite rule “ ; s⇝ s” is exhaustively applied to statements inside continuations.

Example 5. We start evaluation of the statement sseq = (x := 1; y := x + 1)
in an arbitrary symbolic state σ. The rule for sequential composition yields
valO,N

σ (sseq) = {∅ ▷ ⟨σ⟩ ↷ σ[x 7→ 1] · KN (y := x + 1)} . It uses the result of
evaluating the first assignment in the context of σ: valO,N

σ (x := 1) = {∅ ▷ ⟨σ⟩↷
σ[x 7→ 1] ·KN ()} .

We use the semantics of for to illustrate that the semantics of a statement
can be expressed in terms of the semantics of other statements (here if and
sequence), without having to expose intermediate states:

valO,N
σ (for (s1; e; s2) { s3 })
= valO,N

σ (s1; if (e) {s3; s2; for (skip; e; s2) { s3 }}) .

Note that this definition is not circular because the evaluation of if puts the
for statement inside a continuation. In practice, loops are rarely used in actor
languages such as Timed Rebeca.

4.2 Event Structure

Events in LAGC traces record behavioral aspects that cannot be recovered from
a sequence of states alone. In Timed Rebeca, this concerns the creation of rebecs
(actors), the invocation and scheduling of messages, and the evolution of time.

Definition 8. The following events are used in the LAGC semantics for actor
and timed constructs. All events but the last are tagged by the object o on which
the event is observed.

12 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

– newEvo(createdRebec, knownRebecs, constrParams) observes the creation of
a new rebec createdRebec with known rebecs knownRebecs and constructor
parameters constrParams.

– invEvo(callParams, callee,msgName, callId, after, deadline) observes the in-
vocation of a message msgName from caller o to callee with call identifier
callId and arguments callParams. The message cannot be called before time
after is reached and it expires after time deadline. The call identifier is cho-
sen in a way such that it uniquely identifies a message call.

– invREvo(callParams,msgName, callId) observes that a called message can be
scheduled for execution and stands for “invocation reaction event” [6]. The
parameters are a subset of those for invocation events.

– delayEvo(time) observes that the currently executed message on rebec o takes
non-zero time to execute and it can continue at the earliest at time.

– timeEv(time) observes an advance of the global system clock to time. Since
the clock does not belong to any specific actor, it is not tagged.

Since a call identifier uniquely determines a message call, one can ask why
the message name and call arguments are needed as parameters of invocation
reaction events. This allows the evaluation of all statements the LAGC semantics
to be completely local. Rule (1) below needs not only to guess the call identifier,
but also the matching call (i.e., the message name and arguments).

To enhance readability, event parameters in the previous definition have
mnemonic names. To save space in the semantic rules we use o, o′,. . . for rebecs,
e, e′, e,. . . for (sequences of) expressions, , v, v′, v,. . . for (sequences of) concrete
semantic values, m for message names, i for call identifiers, and t, t′,. . . for time
points.

4.3 LAGC Semantics of Dynamic Object Creation

The local evaluation rule for dynamic object creation emits a new event and
extends the given state σ with the variables declared in the object’s class C.

valO,N
σ (x = new C (e1) : (e2)) =

{∅ ▷ newEv{X}
σ (X, v1, v2) ↷ σ[x 7→ X,X 7→ ∗, X.kr 7→ v1] ·KN (X.C(v2)) |

X ∈ RId, class(X) = C, kr ∈ knownRebecs(C), X ̸∈ dom(σ),

v1 = valO,N
σ (e1), v2 = valO,N

σ (e2)} .

The rule creates a fresh symbolic variable X to represent the unknown object
identity that is returned. The name of the new object is simply guessed; the well-
formedness predicate in the composition rules will later check that the name is
indeed fresh (see Section 4.7). A new actor creation event is issued that records
the new object, its known rebec parameters, and its initial value parameters.
Next, the current state σ is extended with the as yet unknown object X as well
as with the known rebec arguments. The continuation of this rule is a call to
the constructor function of class C with the values of parameters e2. The path
condition is empty.

An LAGC Semantics for Timed Rebeca 13

In the creation of new actors, care must be taken to avoid name clashes
between the fields of different actors. Concretely, this problem can be solved by
systematically prefixing fields by the symbolic identifier X of the new actor, to be
concretized later. Here, the names of the known rebec declarations are prefixed
by the symbolic actor identifier and mapped to the actual parameter values
e1. We assume that fields are similarly prefixed by the object identifier when
evaluating the constructor function and that field accesses are always prefixed
by self (for example, self.v).

4.4 LAGC Semantics for the Timed Constructs

We now define evaluation rules for the timed constructs of Timed Rebeca. The
rule for delay extends the trace with a delay event that has as parameter a time
t = N + valO,N

σ (e), the absolute time relative to the current global time N , at
which the currently executing message can continue. The continuation is empty.

valO,N
σ (delay(e))= {∅ ▷ delayEvσ(t) ·Kt() | t = N + valO,N

σ (e)} .

The rule for asynchronous message passing of m to a receiver e1 with ar-
guments e, as well as time constraints after(e2) and deadline(e3), extends
the trace with an invocation event invEv(valO,N

σ (e), valO,N
σ (e1),m, i, t1, t2), then

ends with the empty continuation. It has an empty path condition. This cor-
responds to a non-blocking semantics of message calls: The code following the
message call can continue executing. Observe that the event includes absolute
time point t1 relative to the current global time N when the message that is
appended to the recipient valO,N

σ (e1) can be earliest scheduled, as well as the
absolute expiration time t2 after which the message cannot longer be scheduled.
Messages have a unique identifier i which is guessed during trace composition.
The well-formedness rules will ensure that i is unique.

valO,N
σ (e1.m(e) after(e2) deadline(e3))

= {∅ ▷ invEvσ(valO,N
σ (e), valO,N

σ (e1),m, i, t1, t2) ·KN ()

| t1 = N + valO,N
σ (e2), t2 = N + valO,N

σ (e3), i ∈ MId} .

The time constraints after and deadline are optional. When they are not
present, they are implicitly added as follows:

valO,N
σ (e.m(e))=valO,N

σ (e.m(e) after(0) deadline(Inf))

valO,N
σ (e1.m(e) after(e2))=valO,N

σ (e1.m(e) after(e2) deadline(Inf))

valO,N
σ (e1.m(e) deadline(e2))=valO,N

σ (e1.m(e) after(0) deadline(e2))

The time model of Timed Rebeca assumes a global clock which has always
a positive integer value starting at 0. Observe that when calculating the after
value t1 of an invocation event as N + 0, this means that the message can
potentially be scheduled immediately in the receiver’s (FIFO) queue. Similarly,
when calculating the deadline value t2 of an invocation event as N + Inf, it
will evaluate to Inf which is greater than any value of N . This means that a
message with deadline(Inf) never expires.

14 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

4.5 Message Servers and Classes

The semantics of a message server is a trace that starts with an invocation re-
action event corresponding to a previous invocation event. The values of the
formal parameters cannot be known locally, so we introduce symbolic variables
for them. These are instantiated during trace composition such that the invoca-
tion reaction event matches a previous invocation event. At this time also the
correct call identifier is guessed.

valO,N
σ (msgsrv m(T x) {sc}) =
{∅ ▷ invREvZσ (Z,m, i) ↷ σ[z 7→ Z,Z 7→∗, z′ 7→dx′] ·KN (sc[x, x′←z, z′])
| z, Z ̸∈ dom(σ), i ∈ MId } .

(1)

There is a subtlety in Timed Rebeca concerning the formal parameters of
messages: Not all state variables need to occur among them, some may be ini-
tialized with default values. Let x′ be the state variables in m’s class that do not
occur in x. To avoid name clashes in formal parameters x, x′ of different message
executions, these are renamed to fresh names z, z′, where the z are given symbolic
values Z and the z′ default values in the new state σ[z 7→ Z,Z 7→ ∗, z′ 7→ dx′].
We repeat the renaming trick for local variables in the following rule:

valO,N
σ (T x; d s)= {∅ ▷ ⟨σ⟩↷ σ[x′ 7→ 0] ·KN ({ d s[x← x′] }) | x′ /∈ dom(σ)} .

Although we elide the exact expression syntax and its semantics, it may be
useful to remind the reader of how to evaluate the self reference self:

valO,N
σ (self)=O .

4.6 The Trace Composition Rules

We observed that local evaluation returns an empty continuation when the
execution is complete. Therefore, in the composition rules below, the empty
continuation may occur as an input and needs to be locally evaluated. The
evaluation of the empty continuation yields the empty set of traces:

valO,N
σ () = {} .

Local traces are instantiated and composed into concrete global ones. Since
the code in the body of a message server is non-blocking, sequential and deter-
ministic, there is exactly one trace, provided that the execution starts in a con-
crete state that assigns values to all the variables of a program [7]. Consequently,
no scheduler needs to be defined for the execution of a message, only for when
messages are executed. However, in general different actors process messages si-
multaneously at any given time. This is reflected in the semantic configurations.

Definition 9 (Configuration). An LAGC configuration for semantic evalu-
ation is a pair sh, Σ, where sh is a concrete, tagged trace and Σ is a partial
mapping from rebec identifiers in RId to timed continuations of the form KN (s).

An LAGC Semantics for Timed Rebeca 15

The task of the composition rule for message servers is to evaluate statements
in a concrete state until the next continuation, then stitch the resulting concrete
traces together. Given a configuration with concrete trace sh having final state σ
and a continuation Σ(o) = KN (s), we can evaluate s starting in σ. The auxiliary
function now(sh) returns the current global time at the end of trace sh, which
we need to schedule and evaluate the continuation KN (s). The result is a set of
conditioned traces from which one trace with a consistent path condition and
a trailing continuation KN (s′) is chosen for the execution on o (via tagging the
resulting concrete trace ρ(τ)).

Rule (2) models progress in the execution of an activated message. A subtle
point is that the rule is not applicable when s = , because then, by definition,
the evaluated trace set is empty.

Σ(o) = Kn(s) σ = last(sh) n = now(sh) pc ▷ τ ·KT (s′) ∈ valo,nσ (s)
s ̸= ρ concretizes τ, T ρ(pc) consistent wf(sh ∗∗ ρ(τ)o)

sh,Σ → sh ∗∗ ρ(τ)o, Σ[o 7→ Kρ(T)(s′)]
(2)

Rule (3) models the activation of a new message on o. This is only possible,
when these conditions are fulfilled: (i) the actor o is idle, i.e. Σ(o) = Kt() (or it
has not yet executed anything); (ii) since the semantics is denotational, there is
an invocation event corresponding to the activation in sh; and (iii) the time con-
straints given at invocation time must be satisfied. The rule “guesses” values for
an invocation reaction event fulfilling these conditions and the well-formedness
of global traces (Section 4.7) will ensure that they hold. In this semantic model,
actors are only created once they start processing the first message.

n = now(sh) (Σ(o) = Kt() or o ̸∈ dom(Σ)) σ = last(sh)
lookup(m,G) = m(x) sc pc ▷ τ ·Kn(s) ∈ valo,nσ (m(x) sc)

ρ concretizes τ ρ(pc) consistent wf(sh ∗∗ ρ(τ)o)
sh,Σ → sh ∗∗ ρ(τ)o, Σ[o 7→ Kn(s)]

(3)

Rule (4) models time advance. In this rule, pending(sh, o) is an auxiliary
function over traces sh (defined in Section 4.7) that expresses that there is a
pending message ready to be executed on rebec o. Thus, the premises of the rule
express two constraints: (i) there is no non-empty enabled continuation for o at
the current time n, and (ii) there is no executable message at current time n for
any o. Rule (4) can then be expressed as follows:

∀o.
(
Σ(o) = Kt(s) ∧ s ̸= =⇒ n < t

)
n = now(sh) σ = last(sh) ∀o. |pending(sh, o)| = 0

sh,Σ → sh ∗∗ timeEvσ(n+ 1), Σ
(4)

4.7 Well-formedness

We use the well-formedness predicate wf(sh) on concrete, tagged traces to ensure
that only traces conforming to the Timed Rebeca semantics can be produced

16 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

by the trace composition rules (2)–(4). The relevant information is contained
in the various events emitted during local evaluation, therefore, we define well-
formedness inductively over the final event in a trace. The correct evolution of
states and delay events is ensured by local evaluation, so no restriction is neces-
sary here. The correctness of time events is guaranteed by a separate condition
in the premise of rule (4), so we have four trivial cases:

wf(ϵ) = true
wf(sh ↷ σ) = wf(sh)

wf(sh ↷ delayEv(t)) = wf(sh)
wf(sh ↷ timeEv(t)) = wf(sh)

When creating a new rebec on actor o, two conditions must be ensured. First,
there cannot be another rebec associated with the name o; second, the known
rebecs passed to the new rebec must be known to the caller o′.

wf(sh ↷ newEvo
′
(o, o, v)) =

wf(sh)∧ ̸ ∃o′′, o′, v′.newEvo
′′
(o, o′, v′) ∈ sh ∧ o ⊆ knows(sh, o′) .

Known rebecs are tracked in the function knows, It extracts from the “new”
events in a tagged concrete trace the rebecs known by o: Whenever o is created,
by definition it knows the known rebecs o passed as the second argument of
the event (first equation). Whenever o creates a new rebec o′ this is added to
its known rebecs (second equation). The third equation deals with initialization
and is explained in the subsequent section.

knows(sh ↷ newEvo
′
(o, o, v), o) = o

knows(sh ↷ newEvo(o′, o, v), o) = {o′} ∪ knows(sh, o)
knows(shinit ,main) =OR

knows(sh ↷ ν, o) = knows(sh, o) otherwise

Interestingly, the tracking of known rebecs is not modeled in the existing
Timed Rebeca semantics [18, 19]. It is a clear advantage of the compositional
design of the LAGC semantics that this can be added simply by extending well-
formedness by one more predicate.

Turning to message calls, the central property that invocation events need to
ensure is that each call identifier is unique in a given trace. In addition, the rebec
o on which the message is invoked must exist and be known to the caller o′:

wf(sh ↷ invEvo
′
(v, o,m, i, t1, t2)) =

wf(sh) ∧ o ∈ knows(sh, o′) ∧ ∃o′′, o, v′.newEvo
′′
(o, o, v′) ∈ sh

∧ ̸ ∃o′′, v′, o′′′,m′, t′1, t
′
2. invEvo

′′
(v′, o′′′,m′, i, t′1, t

′
2) ∈ sh .

The most complex definition is that for invocation reaction events, because
two properties must be ensured: The call with identifier i to be executed has not

An LAGC Semantics for Timed Rebeca 17

already been selected earlier (second conjunct) and the message can actually be
scheduled at the current time. The formula in the third conjunct first retrieves
an invocation event with matching callee, identifier, message name, and call
arguments, then makes sure that the current time is within the specified bounds.
Observe that now(sh) ≤ Inf is always true.

wf(sh ↷ invREvo(v,m, i)) = wf(sh) ∧ ̸ ∃o′, v′,m′. invREvo
′
(v′,m′, i) ∈ sh

∧
(
∃o′, t1, t2.invEvo

′
(v, o,m, i, t1, t2) ∈ sh ∧ t1 ≤ now(sh) ≤ t2

)
. (5)

Remark 1. By inspection of the well-formedness equations, one can see that
delay events are not required in the LAGC semantics. However, they are often
useful to reconstruct the full timed behavior from a given trace.

To find the current clock time in a given trace, we simply look for the most
recent time event and take its argument:

now(sh ↷ timeEv(n)) = n
now(sh ↷ ν) = now(sh) otherwise

It remains to define the pending function used in rule (4). Let us first make
precise what we mean by pending:

Definition 10 (Pending Invocation Event). A tagged concrete trace sh con-
tains a pending invocation event if:

1. sh contains an invocation event for message m, arguments v, call identifier
i, and time constraints t1, t2;

2. sh contains no subsequent invocation reaction event with call identifier i;
3. such an invocation reaction event could be scheduled now.

The first and third condition correspond to the third conjunct of equation (5),
the second condition to its second conjunct. This means we can define the
pending function with the help of well-formedness as follows:

pending(sh, o) = {i | ∃m, v.wf(sh ↷ invREvo(v,m, i))} . (6)

This definition implies that the sh argument is well-formed itself, but since
well-formedness of sh is an invariant guaranteed by the trace composition rules,
this is no restriction.

Timed Rebeca imposes FIFO order on messages sent to the same actor. As
shown in [7, Section 6.2], it is possible to add such constraints to the well-
formedness predicate in a compositional manner. With the help of the pending
function, the definition becomes succinct. Let the notation i ≺sh i′ express that
call identifier i appears the first time syntactically before i′ in a trace sh. Then
we can express FIFO simply by adding to well-formedness of invocation reaction
events the constraint that the scheduled event must be the syntactically first
event that can be scheduled:

wffifo(sh ↷ invREvo(v,m, i)) =

wf(sh ↷ invREvo(v,m, i)) ∧ (i = min
≺sh

pending(sh, o)) .

18 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

Remark 2. This definition of FIFO embodies a subtle semantic choice: Assume
now(sh) = 1 and invEvo

′
(v, o,m, i, 2, 3) ∈ sh, invEvo

′′
(v′, o,m, i′, 1, 2) ∈ sh such

that i ≺sh i′. Then the call with identifier i′ is scheduled, because the call with
identifier i is not yet pending. But the call with identifier i′ might cause a delay
beyond time 3, in which case call i is never scheduled, even though i ≺sh i′. We
implemented first in first schedulable out, i.e., time constraints take precedence
over FIFO constraints. Other semantics, where a queue is blocked until the first
pending call is available, can be obtained by adjusting the definition of pending.

4.8 Initialization

For a given Timed Rebeca program, let us denote the rebecs declared in the
main block by R. We assign a fixed, unique object or to each r ∈ R and define
the set of all initial objects to be OR = {or | r ∈ R}.

The semantic evaluation of a Timed Rebeca program initially sets the global
time to 0 and assigns the object or to each r ∈ R:

shinit := timeEvσϵ(0) ↷ ⟨σmain
ϵ [r 7→ or]⟩

The third clause of the definition of the knows predicate in Section 4.7 ensures
that at this point the main object knows about all initial rebecs. The semantic
evaluation starts in the initial concrete trace shinit ↷ newEvmain

σ (main, OR, ϵ).
Observe that this trace is well-formed.

To define the initial configuration, we transform each instance declaration in
the main block of the form C r(r):(e); into a regular object declaration of the form
r= new C(r):(e);. This saves us from defining different mechanisms for static and
dynamic object creation. Let smain be the sequence of instance declarations in
the main block transformed in this way. Now we start semantic evaluation with
the configuration

shinit ↷ newEvmain(main, OR, ϵ), [main 7→ K0(smain)] .

For each r= new C(r):(e);, according to the semantics of new, a new object is
created with a fresh abstract identifier Xr which must be concretized and as-
signed to r. The concretization must match the initial state where r has value
or. Hence Xr, and therefore r, will be bound correctly to or. The semantic rule
for new also adds or 7→ K0(r.C(e)) to the tasks in the configuration, i.e., a call
to the constructor C of r’s class which initiates program execution.

Let sh,Σ
∗→ sh′, Σ′ denote the transitive closure of applying rules (2)–(4),

expressing that sh′, Σ′ can be reached from sh,Σ in zero or more steps. We can
now formally define the trace set of a Rebeca model as follows:

Definition 11 (Trace semantics of Rebeca models). Given a Rebeca model
M = CD main { InDcl } with initially known rebecs R; the traces of M , denoted
Tr(M) is the set of reachable traces from the initial trace of M :

Tr(M) = {sh |shinit ↷newEvmain(main, OR, ϵ), [main 7→K0(smain)]
∗→ sh,Σ} .

An LAGC Semantics for Timed Rebeca 19

Observe that the trace set given in Definition 11 is prefix closed. On the
other hand, executions in our semantics are infinite; in particular, rule (4) can
be applied indefinitely when no further tasks (either progress or messages) can
be processed. Even finite computations end in an unbounded sequence of time
advance events. Hence, it might be useful to define final configurations:

Definition 12 (Final Configuration). A configuration sh,Σ is final when

(i) ̸ ∃o. (Σ(o) = Kt(s) ∧ s ̸= ∧ now(sh) < t) and
(ii) ̸ ∃o, t. (now(sh) < t ∧ |pending(sh ↷ timeEv(t), o)| > 0)

Whether a given configuration is final can be effectively computed, because it
suffices to consider t until the maximal after constraint in sh. Now we can adapt
the trace semantics of Rebeca in Definition 11 to finitely terminating traces by
choosing traces in Tr(M) that reach final configurations.

5 Discussion

This paper has proposed an LAGC style [7] semantics for Timed Rebeca [19]. We
here analyze our effort. Typically for LAGC semantics, there is exactly one local
evaluation rule for each kind of statement, which characterizes its behavior in a
succinct manner, independent of context. Rules without events are completely
modular ; i.e., they can be freely modified or added without affecting the remain-
ing definitions. For example, all rules of the For language in Section 4.1 are either
identical to or minor modifications of existing rules [7, Section 3.1]. Events are
used in LAGC semantics to characterize non-local behavior. Of the five event
types introduced in Section 4.2, three are variations of events in [7, Section 7.2]
and one is not strictly required. Also two of the three trace composition rules
are variations: the rules for progress (2) and for scheduling message calls (3).
Likewise, traces tagged with a parameter O for the caller object as well as the
object-to-task mapping Σ are taken from [7].

The novel aspects in the LAGC semantics of Timed Rebeca concern (i) the
handling of time, (ii) initialization including the main block, and (iii) keeping
track of known rebecs. Of these, the most interesting is the first. The central
concepts we needed are timed local evaluation and timed continuations. We be-
lieve it is natural that evaluation and continuations not only express what to
execute, but also when. Timed continuations for an LAGC-style semantics were
first introduced by Tapia Tarifa [24] to capture time and time-sensitive resources
in Real-Time ABS [3, 14]. Real-Time ABS is a real-time extension of ABS [13],
an active object language that extends Timed Rebeca with non-preemptive sus-
pension points via await statements and futures, but has an unordered message
queue. Timed Rebeca differs from Real-Time ABS by combining message delay
and expiry with a FIFO message queue. This combination requires additional
care in capturing the enabledness of pending messages, and its interaction with
time advance. In this paper, we have considered a discrete time domain for
Timed Rebeca; however, a dense time domain can be realized in a straightfor-
ward manner, by forcing the time advance rule (4) to a advance to maximum

20 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

elapsed time (see [24]). We expect that timed continuations will also be useful
in other language settings with timed semantics.

With timed continuations and delay events, the semantic rule for the delay
statement becomes obvious. The global clock is modeled by time events that are
inserted into the current trace by the trace composition rule (4), whenever a
program is in a quiescent state; thus we opted for a maximal progress semantics,
where all pending message calls have been processed before time can advance.
Using time events, it is easy to extend invocation (reaction) events to handle
delayed message calls, but the advance-time-when-quiescent approach makes ex-
ecutions infinite. For this purpose, we suggest a notion of final configuration
(Definition 12) to stop the semantic evaluation.

Handling main blocks uniformly requires the dedicated setup described in
Section 4.8, because the Timed Rebeca designers chose to have both static (in
the main block) and dynamic (with new) rebec creation. This issue was not
addressed formally in previous semantics for Timed Rebeca (e.g., [18, 19]). To
define the “knows” function and use it to check correct usage of known rebecs is
a straightforward addition to the well-formedness rules in our setting. As far as
we know, this is the first formal semantics which incorporates the knownrebecs
mechanism in the language semantics.

To summarize, we needed five event types of which two are new (one of them
essential), eleven local rules (one for each kind of statement) of which one is new,
three trace composition rules of which one is new, and six well-formedness rules
of which one is new and one (FIFO) is formulated differently than in [7]. We
stress that all additions are conservative extensions of the LAGC framework:
None of the fundamental definitions needed to be changed, the well-formedness
rules merely add conjuncts for the checks of time and known rebecs.

6 Conclusion and Future Work

This paper contributes a LAGC semantics for Timed Rebeca, which is a highly
modular, trace-based denotational semantics. We believe this is the first deno-
tational, trace-based semantics for Timed Rebeca. Additionally, the semantics
in this paper addresses certain corner-cases of Timed Rebeca that were left
open in previous work [19]: the main block and the semantic representation of
knownrebecs. The latter is particularly tricky for variations of Timed Rebeca
that include dynamic creation of rebecs, which allows dynamic topologies, and
deserves a semantic treatment.

In general, denotational semantics are challenging to achieve for concurrent
languages because scheduling between different parallel activities goes against
compositionality. The framework of LAGC semantics addresses this challenge by
means of a locally symbolic, denotational semantics that include events, com-
bined with global composition rules to address synchronization between these
events. Timed languages add an additional level of complexity to this synchro-
nization; in this paper we have in particular addressed the issue of how con-
straints on message passing (i.e., delay and deadline) combine with FIFO mes-

An LAGC Semantics for Timed Rebeca 21

sage ordering and time advance within the LAGC semantic framework. This
paper shows how the LAGC semantic framework naturally extends to timed
actors in Timed Rebeca.

We believe that the modular nature and succinct formulation of the LAGC
semantics for Timed Rebeca makes it easy to understand it and to extend it when
further language features are added in the future. The semantics presented in
this paper enables the design a calculus for deductive verification [9] for Timed
Rebeca programs, following [5, 7], and prove its soundness for the LAGC se-
mantics. Furthermore, the non-deterministic scheduling rule (3) of the proposed
semantics could be refined into a set of deterministic rules and show some varia-
tion of weak fairness for it, following [8]. This requires to define a suitable timed
version of weak fairness, because messages with a deadline do not stay enabled.

References

1. Agha, G.A.: ACTORS - a model of concurrent computation in distributed systems.
MIT Press series in artificial intelligence, MIT Press (1990)

2. Bagheri, M., Sirjani, M., Khamespanah, E., Hojjat, H., Movaghar, A.: Partial or-
der reduction for timed actors. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina,
N. (eds.) Proc. 13th International Conference on Software Verification (VSTTE
2021). LNCS, vol. 13124, pp. 43–60. Springer (2021), https://doi.org/10.1007/
978-3-030-95561-8_4

3. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng. 9(1),
29–43 (2013), https://doi.org/10.1007/s11334-012-0184-5

4. de Boer, F., Din, C.C., Fernandez-Reyes, K., Hähnle, R., Henrio, L., Johnsen, E.B.,
Khamespanah, E., Rochas, J., Serbanescu, V., Sirjani, M., Yang, A.M.: A survey of
active object languages. ACM Computing Surveys 50(5), 76:1–76:39 (Oct 2017),
https://doi.org/10.1145/3122848

5. Bubel, R., Gurov, D., Hähnle, R., Scaletta, M.: Trace-based deductive verification.
In: Proceedings of 24th International Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning. EPiC Series in Computing, vol. 94, pp. 73–95
(2023). https://doi.org/10.29007/vdfd

6. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: Component reasoning for concurrent objects. J. Log. Algebraic Methods
Program. 81(3), 227–256 (2012), https://doi.org/10.1016/j.jlap.2012.01.003

7. Din, C.C., Hähnle, R., Henrio, L., Johnsen, E.B., Pun, V.K.I., Tapia Tarifa,
S.L.: Locally abstract, globally concrete semantics of concurrent programming
languages. Transactions on Programming Languages and Systems 46(1) (2024).
https://doi.org/https://doi.org/10.1145/3648439

8. Hähnle, R., Henrio, L.: Provably fair cooperative scheduling. The Art, Sci-
ence, and Engineering of Programming 8(2) (2024), https://doi.org/10.22152/
programming-journal.org/2024/8/6

9. Hähnle, R., Huisman, M.: Deductive verification: from pen-and-paper proofs to
industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Sci-
ence: State of the Art and Perspectives, LNCS, vol. 10000, pp. 345–373. Springer,
Cham, Switzerland (2019). https://doi.org/10.1007/978-3-319-91908-9_18

https://doi.org/10.1007/978-3-030-95561-8_4
https://doi.org/10.1007/978-3-030-95561-8_4
https://doi.org/10.1007/s11334-012-0184-5
https://doi.org/10.1145/3122848
https://doi.org/10.29007/vdfd
https://doi.org/10.29007/vdfd
https://doi.org/10.1016/j.jlap.2012.01.003
https://doi.org/https://doi.org/10.1145/3648439
https://doi.org/https://doi.org/10.1145/3648439
https://doi.org/10.22152/programming-journal.org/2024/8/6
https://doi.org/10.22152/programming-journal.org/2024/8/6
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18

22 R. Hähnle, E. B. Johnsen, and S. L. Tapia Tarifa

10. Halpern, J.Y., Manna, Z., Moszkowski, B.C.: A hardware semantics based on tem-
poral intervals. In: Díaz, J. (ed.) Automata, Languages and Programming, 10th
Colloquium, Barcelona, Spain. LNCS, vol. 154, pp. 278–291. Springer, Berlin, Hei-
delberg (1983). https://doi.org/10.1007/BFb0036915

11. Jafari, A., Khamespanah, E., Kristinsson, H., Sirjani, M., Magnusson, B.: Statisti-
cal model checking of timed rebeca models. Comput. Lang. Syst. Struct. 45, 53–79
(2016), https://doi.org/10.1016/j.cl.2016.01.004

12. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: the model-checking engine
of Rebeca. In: Haddad, H. (ed.) Proc. Symposium on Applied Computing (SAC
2006). pp. 1810–1815. ACM (2006), https://doi.org/10.1145/1141277.1141704

13. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.,
Bonsangue, M.M. (eds.) Proc. 9th International Symposium on Formal Methods for
Components and Objects (FMCO 2010). LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011), https://doi.org/10.1007/978-3-642-25271-6_8

14. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Log. Algebraic
Methods Program. 84(1), 67–91 (2015). https://doi.org/10.1016/j.jlamp.2014.07.
001

15. Khamespanah, E., Mechitov, K., Sirjani, M., Agha, G.A.: Schedulability analy-
sis of distributed real-time sensor network applications using actor-based model
checking. In: Bosnacki, D., Wijs, A. (eds.) Proc. 23rd International Symposium on
Model Checking Software (SPIN 2016). LNCS, vol. 9641, pp. 165–181. Springer
(2016), https://doi.org/10.1007/978-3-319-32582-8_11

16. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step
semantics of While. Logic Methods in Computer Science 11(1) (2015). https://doi.
org/10.2168/LMCS-11(1:1)2015

17. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60–61, 17–139 (2004)

18. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingólfsdóttir, A.,
Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time systems
using Timed Rebeca. Science of Computer Programming 89, 41–68 (2014). https:
//doi.org/10.1016/J.SCICO.2014.01.008

19. Sabahi-Kaviani, Z., Khosravi, R., Ölveczky, P.C., Khamespanah, E., Sirjani, M.:
Formal semantics and efficient analysis of Timed Rebeca in Real-Time Maude.
Science of Computer Programming 113, 85–118 (2015). https://doi.org/10.1016/
J.SCICO.2015.07.003

20. Sirjani, M.: Rebeca: Theory, applications, and tools. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) Proc. 5th International Symposium on
Formal Methods for Components and Objects (FMCO 2006). LNCS, vol. 4709,
pp. 102–126. Springer (2006), https://doi.org/10.1007/978-3-540-74792-5_5

21. Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca experience. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems - Essays Dedicated to Carolyn Talcott on the Occasion of Her
70th Birthday. LNCS, vol. 7000, pp. 20–56. Springer (2011), https://doi.org/10.
1007/978-3-642-24933-4_3

22. Sirjani, M., Khamespanah, E.: On time actors. In: Ábrahám, E., Bonsangue, M.M.,
Johnsen, E.B. (eds.) Theory and Practice of Formal Methods - Essays Dedicated
to Frank de Boer on the Occasion of His 60th Birthday. LNCS, vol. 9660, pp.
373–392. Springer (2016). https://doi.org/10.1007/978-3-319-30734-3_25

https://doi.org/10.1007/BFb0036915
https://doi.org/10.1007/BFb0036915
https://doi.org/10.1016/j.cl.2016.01.004
https://doi.org/10.1145/1141277.1141704
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1007/978-3-319-32582-8_11
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2015.07.003
https://doi.org/10.1016/J.SCICO.2015.07.003
https://doi.org/10.1016/J.SCICO.2015.07.003
https://doi.org/10.1016/J.SCICO.2015.07.003
https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.1007/978-3-319-30734-3_25

An LAGC Semantics for Timed Rebeca 23

23. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Informaticae 63(4), 385–410 (2004), http:
//content.iospress.com/articles/fundamenta-informaticae/fi63-4-05

24. Tapia Tarifa, S.L.: Locally abstract globally concrete semantics of time and re-
source aware active objects. In: Ahrendt, W., Beckert, B., Bubel, R., Johnsen,
E.B. (eds.) The Logic of Software. A Tasting Menu of Formal Methods. LNCS, vol.
13360, pp. 481–499. Springer (2022), https://doi.org/10.1007/978-3-031-08166-8_
23

25. Venema, Y.: A modal logic for chopping intervals. J. of Logic and Computation
1(4), 453–476 (1991). https://doi.org/10.1093/LOGCOM/1.4.453

http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05
http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05
https://doi.org/10.1007/978-3-031-08166-8_23
https://doi.org/10.1007/978-3-031-08166-8_23
https://doi.org/10.1093/LOGCOM/1.4.453
https://doi.org/10.1093/LOGCOM/1.4.453

	An LAGC Semantics for Timed Rebeca

