
Inside Every Multithreaded Program There Are
Active Objects Struggling To Get Out

Frank de Boer 1, Einar Broch Johnsen2 ,
Rudolf Schlatte2 , and S. Lizeth Tapia Tarifa2

1 CWI, Amsterdam, the Netherlands
F.S.de.Boer@cwi.nl

2 Department of Informatics, University of Oslo, Oslo, Norway
{einarj,rudi,sltarifa}@ifi.uio.no

Abstract. Multithreading and actors offer different models of concur-
rency to the programmer. With multithreading, the programmer needs
to deal with shared-state and data races, which make programs complex
to understand, error-prone and challenging to verify, but potentially very
efficient if these issues are mastered to perfection. On the other hand, ac-
tors — and their object-oriented incarnation as active objects, — which
are inherently concurrent and protect their internal state against races,
seem easy to understand and intuitive, but programs may be exposed to
deadlocks due to callbacks. Is it possible to simply transition programs
from the one concurrency model to the other at will, and thereby get
the best of both worlds? We believe such a seamless transition between
these concurrency models opens an interesting direction of research that
remains to be investigated. As a step in this direction, this paper provides
a high-level, informal outline of the translations between multithreading
and active object concurrency, highlighting how intuitive or non-intuitive
it is to move from one concurrency model to the other.

Keywords: Active objects · Actors · Multithreading · Asynchronous program-
ming · Object-oriented programming

1 Introduction

The title of this paper is inspired by a quote, attributed to Tony Hoare [44]:

“Inside every large program, there is a small program trying to get out.”

Reflecting on this quote in the context of concurrency, Marjan Sirjani’s work
has often championed the simple program trying to get out: the abstract actor-
based model that is amenable to automated verification. In particular, her persis-
tent efforts in actor-based modeling and verification in Rebeca [40–42] explores
a number of analysis techniques based on formal semantics [35, 36], including
simulation [35], model checking [27, 32, 43], statistical model checking [26], par-
tial order reduction [8], and rewriting logic [36]. At the root of this effort lies

https://orcid.org/0000-0003-3950-6271
https://orcid.org/0000-0001-5382-3949
https://orcid.org/0000-0001-5601-5517
https://orcid.org/0000-0001-9948-2748

2 F. de Boer et al.

(we believe) an intuition that actor-based programs [4] are in fact simpler and
more intuitive than the competition, namely multithreaded programs (e.g., [7]).
In particular, active objects [12], which combine actor-based concurrency with
object-based structuring mechanisms seem particularly attractive. In this paper,
we expand on this intuition by studying the relation between these two concur-
rency paradigms. We scope our study to multithreaded programs in Java [33]
and active objects in ABS [28]; the further translation of active objects into
actors can be achieved via an encoding.

Our study shows that a multithreaded program can be transformed into
active objects without affecting the main class structure. This transformation
basically consists of a change of the global perspective of the multithreaded
flow of control to the local perspective of active objects. That is, instead of
the parallel execution of the different threads of method calls (implemented by
stacks) the focus is on the parallel execution of the called methods within an
object. This paradigm shift is enabled by the basic synchronization mechanisms
of the cooperative scheduling of the method execution within active objects, as
featured in ABS.

Conversely, modeling a program based on active objects by a multithreaded
program requires an invasive and disruptive transformation which involves the
introduction of complex synchronization mechanisms, notably mechanisms for
suspending and resuming threads which are notoriously complex and error-prone
in a multithreaded setting.

Outline. In the following section, we introduce the main programming concepts
underlying multithreaded programs (MT, for short) and active objects (AO, for
short), respectively. In Sections 3 and 4 we discuss the relation between the two
paradigms.

We abstract from the technical details and provide a high-level, informal
outline of the translations between the two concurrency models. This allows us
to focus on the main, basic ideas which otherwise would be obscured by the
many technical details of the formal syntax and semantics. However, we think
this high-level outline provides a clear guideline for a further formalization.

2 Preliminaries

Object-oriented programming abstractions were first introduced in Simula [17,
18]. The basic idea is that of an object as an instance of an abstract data type
which is represented by a class. A class specifies the data structures (referenced
by ‘fields’) and the methods which describe the data operations. Objects are
dynamically created instances of classes. Abstracting from the method imple-
mentations, calling a method of an object thus forms the basic operation of an
object-oriented program.

One can distinguish two different ways of calling a method of an object.
The first one follows the rendez-vous pattern of procedure calls in languages like
PASCAL (e.g., [46]). This gives rise to synchronous method calls: the caller sus-
pends when the method is executed and resumes its execution after the method

Inside Every Multithreaded Program. . . 3

has returned (a value). A sequence of such method calls is called a thread (and
is usually implemented by a stack [19]). This naturally gives rise to sequential
execution. On the other hand, a method can be called asynchronously ; that is,
the caller continues its execution after the call, without waiting for the callee
to respond. This naturally gives rise to the parallel execution of the caller and
the execution of the called method by the callee, which in turn gives rise to a
co-routine (used for simulation of parallelism in Simula [17]), a mode of exe-
cution of the methods of an object by means of explicit local suspend/resume
operations. In the AO language ABS, asynchronous method calls further involve
the dynamic creation of futures [9]; In ABS, futures are first-class values that act
as references to the return value uniquely associated with each method call [13].

In this paper, we consider the AO model of ABS3 because of its high-level
programming abstractions of cooperative scheduling and futures. However, it is
worthwhile to mention that these abstractions themselves can be translated into
the pure asynchronous AO model of the Rebeca language [43], where methods are
executed in a run-to-completion mode. A translation of Boolean await statements
in ABS [28], for example, can be given by introducing for each occurrence of such
a statement a new method. The body of this method consists of a conditional
statement statement such that the syntactic continuation of the await statement
(as given by the method containing this await statement) is executed if the
condition of the await statement holds, otherwise a self-call to this new method
is executed. Subsequently, all occurrences of await statements (including those
appearing in the new methods) are translated into a self-call of the associated
method, followed by the return statement (so that the method containing the
await statement immediately returns after this self-call). Futures can be modeled
by a special class and passing as an additional parameter of an asynchronous
method call a newly created instance of this class.

In contrast, in the setting of synchronous method calls, parallel execution of
code is achieved by creating threads, e.g., via the C function pthread create or by
calling the method start on a Java Thread object. The new thread is started with
a programmer-specified “run method”, e.g., in C by passing in a function pointer
and in Java by either subclassing the Thread class or passing in an object instance
of type Runnable. The calling thread continues its execution (run methods do
not return a value). Execution of a run method thus spawns a new thread of
(synchronous) method calls. In Java, threads further synchronize on so-called
synchronized methods or blocks, which guarantee mutual exclusion, that is, such
wrapped code cannot be executed in parallel on a single object.

2.1 Executing Multithreaded Programs

A characteristic feature of multithreaded programs in an object-oriented setting
is the presence of one or more threads of execution that keep their identity as they
execute in the context of different objects. Observe that this thread identifier is
different from the self-reference this typically used by the programmer. When

3 ABS webpage: abs-models.org

abs-models.org

4 F. de Boer et al.

class C { private int x = 0; private int y = 0; private int z = 0;
public void m1(){this.x = this.x+this.z; this.y = this.y+this.z; };
public void m2(){this.z = 5; };

}
final C c = new C();
new Thread (() −> { c.m1(); }).start();
new Thread (() −> { c.m2(); }).start();

Fig. 1: Example of a Java MT system accessing shared state

class C { /∗private fields declaration∗/
public void m1(/∗parameter declaration∗/){ s1m1 ; s2m1 ; · · ·; sn1m1 ;}
public void m2(/∗parameter declaration∗/){ s1m2 ; s2m2 ; · · ·; sn2m2 ;}
...

}
final C c = new C();
new Thread (() −> {c.m1(/∗parameter instantiation∗/);}).start();
new Thread (() −> {c.m2(/∗parameter instantiation∗/);}).start();
...

Fig. 2: Pattern of a Java MT system accessing shared state

executing a method call in a thread in Java, the self-reference this evaluates to
the callee object in which the thread executes the method.

In multithreaded programs, it is possible for this to evaluate to the same
object at the same time in multiple threads. If multiple threads change “their”
object’s state at the same time, data races occur. To illustrate this issue, Figure 1
shows an example of a Java MT system where both methods m1 and m2 start
execution concurrently in an interleaved manner via lambda expressions, and
as a result, it is unclear if the final state of the fields will be {x=0,y=0,z=5},
{x=0,y=5,z=5}, or {x=5,y=5,z=5}. Such a pattern of interleaved execution is
depicted in Figure 2.

To avoid data races in this setting, all threads have to cooperate and employ
locks to define critical sections. Some syntactic sugar can be used to ease this
process; for example, Java’s synchronized methods and blocks guarantee that
only one thread executing synchronized code can execute at a time, thus protect-
ing the shared state from races from other synchronized threads. For the example
in Figure 1, by synchronizing the execution of the method bodies, we restrict
the final state to be either {x=0,y=0,z=5} or {x=5,y=5,z=5}. Such a pattern
of atomic execution with synchronized (atomic) blocks is depicted in Figure 3,
where a method can contain multiple atomic blocks. Note that multiple threads
can still execute “on” such an object if they execute code outside the protected
code parts. It is worth noting that Java supports reentrance [1]: a thread that
holds a lock by executing a synchronized method may take the lock again, thus
Java supports recursion for synchronized methods. Also note that a thread may

Inside Every Multithreaded Program. . . 5

class C { /∗private fields declaration∗/
public void m1(/∗parameters’ declaration∗/){ synchronized(this){s1m1 ; s2m1 ; · · ·; sn1m1 ;}}
public void m2(/∗parameters’ declaration∗/){ synchronized(this){s1m2 ; s2m2 ; · · ·; sn2m2 ;}}
...

}
final C c = new C();
new Thread (() −> {c.m1(/∗parameters’ instantiation∗/);}).start();
new Thread (() −> {c.m2(/∗parameters’ instantiation∗/);}).start();
...

Fig. 3: Pattern of a Java MT system accessing shared state with methods that
are executed atomically via synchronized methods.

interface I { Unit method(Int i); }

class C(I o) {
Int x = 0;
Unit run() {
println(”Before Boolean await”);
await x > 0;
println(”After Boolean await”);
Fut<Unit> f = o!m(x);
println(”Before future await”);
await f?;
println(”After future await”);

}

Unit incX() { x = x + 1; }
}

Fig. 4: Example of await statements with Boolean and future conditions

acquire locks to multiple objects by nested synchronized method calls, which
may lead to deadlocks if, e.g., threads try to acquire locks in different order.

Multithreaded program execution can be seen as if, after each atomic state-
ment, execution switches to another thread. This makes correctness proofs for
multithreaded code very challenging.

2.2 Executing Active Objects

A characteristic feature of active object programs is that communication and
synchronization are decoupled [29]: there is no transfer of control associated
with method calls. Each object “owns” its threads. Calling a method creates a
fresh thread on the callee object. The caller receives a future that represents the
fresh thread and can be used to obtain the result of the method call.

Since the object owns its threads, it is not possible for multiple threads to
execute at the same time on the same object. This means that all code is implic-
itly protected as if surrounded by synchronous blocks, and that the execution

6 F. de Boer et al.

inside an active object is race free by design. Instead, with cooperative con-
currency [28, 29, 37], explicit await-statements allow the object to switch from
executing one thread to executing another thread, leaving the first thread sus-
pended. These await-statements can carry a condition that expresses when the
current thread becomes eligible to run again. In the simplest case, the condi-
tion can be simply true. Other conditions include waiting for a future to obtain
the result of the method call associated with that future, and waiting for a
Boolean condition over the object state to hold (e.g., a thread can wait until a
counter reaches zero). Figure 4 shows a code example with these different await-
statements. ABS finally supports unconditional cooperative scheduling with the
statement suspend, which always releases control when executing and is always
schedulable when suspended. A formal account of cooperative scheduling in ABS
have been given in terms of an operational semantics [28] as well as a recent de-
notational semantics [21].

From the perspective of verification, since await-statements in ABS models
are explicit in the code, it becomes feasible to prove object invariants and other
correctness conditions of active object code. Thus, active objects can be seen as
the maintainers of local invariants [13, 20, 22]. Another interesting aspect of the
active object concurrency model is that a transition system can be translated to
active objects with cooperative concurrency in a way that preserves global prop-
erties [10,15]; this translation enables the use of a transition system model with
very expressive synchronization to inductively establish global properties, then
obtaining a decentralized active object program with the same global properties.

Of further note is that ABS has a notion of blocking : a thread can wait for
the result of a future without relinquishing control by having a get-statement to
a future right after an asynchronous call associated with such future; the get-
statement will block the active object until the result of the associated method
call is available in that future. This behavior can be used to express synchroniza-
tion similar to synchronous method calls in Java, but does not directly support
reentrance. The drawback of this synchronization is that the object cannot switch
to another thread, including the one created from the process the original thread
is waiting for, in the case of recursion. Such callbacks lead to deadlock; we will
explore this area further in the sequel.

3 From Multithreading to Active Objects

A faithful translation of code from the multithreaded (MT) programs to the
active object (AO) programs should preserve the interleaving structure of code
segments of the multithreaded execution model. The basic idea underlying the
translation of a multithreaded (MT) program is to model a synchronous method
call directly by an asynchronous method call followed by a so-called await-
statement which suspends the calling method instance until the called method
returns. This suspension allows for the execution of other methods by the ob-
ject, while the calling thread must wait for the return of the call. We can further
model that the entire calling object is blocked for execution during the call by

Inside Every Multithreaded Program. . . 7

interface C {Unit m1(); Unit m2();};
class C() implements C {Int x = 0; Int y = 0; Int z = 0;

Unit m1(){x = x+z; suspend; y = y+z; }
Unit m2(){z = 5; } }

{ C c = new C(); c!m1(); c!m2();}

Fig. 5: The AO version of the example in Figure 1.

interface C {Unit m1(/∗parameters’ declaration∗/); Unit m2(/∗parameters’ declaration∗/); ...};
class C() implements C {/∗private fields declaration∗/

Unit m1(/∗parameters’ declaration∗/){s1m1 ; suspend; s2m1 ; suspend; · · ·; suspend; sn1m1 ;}
Unit m2(/∗parameters’ declaration∗/){s1m2 ; suspend; s2m2 ; suspend; · · ·; suspend; sn2m2 ;}
}...

{ C c = new C(); c!m1(/∗parameters’ instantiation∗/); c!m2(/∗parameters’ instantiation∗/); ...}

Fig. 6: The AO version of the pattern in Figure 2

waiting on a get-statement instead of the await-statement; this models a syn-
chronous call from a synchronized method [29]. However, this approach does not
directly support recursive calls; in fact, the semantics of Creol [29] (that was
inherited in ABS [28]), treated this case separately — but the proposed solu-
tion did not address the general case of reentrance (as we would encounter with
mutual recursion between synchronized methods in different objects).

To model the mechanism of reentrance for synchronized method calls from
the multithreaded setting in the active object setting, we introduce for each
object a lock which specifies the thread id and the number of times that this
id has acquired the lock. The thread id corresponds to the unique reference
to the initial instance of the corresponding thread class. To allow each method
invocation of a thread to access its thread id, the thread id is simply passed on as
an additional parameter to synchronous method calls. A method instance holds
a lock of an object if the lock stores its thread id in the lock with a non-zero
counter. A lock is free if its counter is zero. We then extend every method (body)
with an initial await-statement which checks whether the method instance holds
the lock or whether the lock is free. In both cases the counter of the lock is
incremented (by one). In case the lock is free the stored thread id is updated,
that is, set to the thread id of the executing method instance. Upon return of a
method, the lock is simply decremented.

In ABS, the granularity of the interleaving of the execution of different
method instances by an object, is controlled by explicit suspend/resume state-
ments (similar to await-statements without condition guards). To allow for the
arbitrary interleaving needed to model the behavior of multithreaded execution,
we need to inject interleaving points in code that would otherwise be “too syn-
chronized” when executing in the active object. In ABS, one simply adds to

8 F. de Boer et al.

interface C {Unit m1(/∗parameters’ declaration∗/); Unit m2(/∗parameters’ declaration∗/); ...};
class C() implements C {/∗private variable declaration∗/

Unit m1(/∗parameters’ declaration∗/){ s1m1 ; s2m1 ; · · ·; sn1m1 ; }
Unit m2(/∗parameters’ declaration∗/){ s1m2 ; s2m2 ; · · ·; sn2m2 ;} }
...

{ C c = new C(); c!m1(/∗parameters’ instantiation∗/); c!m2(/∗parameters’ instantiation∗/); ...}

Fig. 7: The AO version of the pattern with synchronized methods in Figure 3.

the different control points a suspend-statement which unconditionally releases
and resumes control. Figure 5 shows the AO version of the example in Figure 1,
where to capture the interleaved execution inside implicit atomic execution of
threads in an AO setting, we introduce a suspend-statement after each state-
ment, giving the possibility to another suspended thread to become active and
start execution. The AO pattern version of the MT pattern in Figure 2 is de-
picted in Figure 6. Furthermore, synchronized MT methods or blocks are similar
to the implicit atomic execution of threads in an AO setting, as can be seen in
the depicted AO pattern version in Figure 7 of the MT pattern in Figure 3,
where capturing various atomic blocks inside one method can be done by adding
a suspend-statement between the blocks.

The code of an arbitrary Java class may mix synchronized and unsynchro-
nized blocks of execution in different methods. This effect can be translated into
ABS by combining the two concerns we have discussed, namely the counting
lock for synchronized code over explicit thread identifiers that are passed in syn-
chronous calls, and the injected suspension points to allow arbitrary interleaving
on unsynchronized code. Observe that in a pure actor setting, these effects need
to be modeled by decoupling the translated code into smaller blocks correspond-
ing to atomic statements in Java, that are successively triggered by separate
messages, and by renaming the actor to force synchronization for call-backs by
providing unique return-addresses to calls that need to be synchronized. This
line of encoding was studied in early work by Agha et al. (e.g., [2]). This kind
of encoding breaks the class method structure of the Java program that we are
able to preserve in ABS because of the supported cooperative scheduling and
futures.

4 From Active Objects to Multithreading

A faithful translation of code from the active object model (AO) to the multi-
threaded model (MT) preserves the following properties:

– Only one process at a time executes on an object.
– When a method is called, the calling process continues execution.
– Processes on an object can interleave execution via suspension points.
– Processes can obtain method call results via future variables.

Inside Every Multithreaded Program. . . 9

Note that the first two properties are enough to implement pure actor behav-
ior, the remaining points are necessary to realize the active object semantics. We
consider two approaches to this encoding problem, by means of thread suspen-
sion (Section 4.1) and by means of continuations (Section 4.2). Both approaches,
as presented, create potentially large numbers of threads, so they are most suited
to languages like Erlang or Java ≥ 21 (which adds so-called virtual threads) that
do not place restrictions on thread count. If thread creation is an expensive op-
eration in the chosen language, for example because each language thread is
implemented as an operating-system thread, the approaches in this chapter can
be adapted to use thread pools and/or task queues.

4.1 From AO to MT with Thread Suspension

AO classes can be directly translated into MT classes, with no special provisions
except for synchronization points; this section presents a simplified version of
the JCoBox model [37], which was used in the original Java interpreter for ABS.
AO method calls, which are asynchronous, are naturally modeled in the MT
model by executing each call on a separate thread, but care must be taken to
preserve the AO properties. In Java and similar languages, this can be done by
wrapping each method call together with its argument values either in a closure
(a lambda expression) or in an object implementing the Runnable interface, that
is then executed on a MT thread. Figure 8 shows a worked example using the
ExecutorService library class that also produces a Java Future object that the
caller can use to obtain the method’s return value.

AO suspension points are points in code where the MT translation must
give up its lock on the object to let other threads execute. Figure 8 shows the
encoding of await statements both for futures and for Boolean conditions. A
future is monotonic in the sense that, once completed, it will always remain
available. Boolean conditions, on the other hand, can change between every
suspension point, and must be always re-checked before continuing execution.
Note that the transformation also inserts a call to this.notifyAll() before each
suspension point. This is necessary so that threads waiting on a Boolean await
can check the await condition. Since in ABS all members are private and can
only be changed via method calls, these calls are also sufficient.

4.2 From AO to MT with Continuations

An alternative translation of AO code into the MT model introduces a new
method for each suspension point, following the pattern of the translation of
ABS await-statements into Rebeca discussed in Section 2. This section presents
a simplified version of this approach, studied by Serbanescu [39]. Figure 9 shows
the example of Figure 4 translated in this style. This translation method intro-
duces one synchronized “continuation method” for each occurrence of an await-
statement in the AO method such that each such occurrence is modeled by the
creation of a fresh thread continuing after the suspension point, passing along
local variables in scope at the point of the await. Then, the original thread

10 F. de Boer et al.

import java.util.concurrent.∗;

interface I { void method(int i); }

class C {
I o;
int x = 0;
public C(I o) { this.o = o; }

void run() {
final Future f;
synchronized(this) {
System.out.println(”Before Boolean await”);
while (!(x > 0)) {
this.notifyAll();
this.wait(); // Releases lock

}
System.out.println(”After Boolean await”);

ExecutorService executor = Executors.newSingleThreadExecutor();
f = executor.submit(() −> o.method(x));
System.out.println(”Before future await”);
this.notifyAll();

}
f.get(); // other methods can run in the meantime
synchronized(this) {
System.out.println(”After future await”);
this.notifyAll();

}
}

synchronized void incX() { x = x + 1; this.notifyAll(); }
}

Fig. 8: A Java translation of cooperative scheduling in ABS, using thread sus-
pension (exception handling elided for brevity)

ends and releases the object lock, letting other methods execute on the object.
The continuation of the method can start executing when the await condition is
fulfilled.

The body of the continuation of the run method itself starts with a prelude
consisting of a transformation of the await-statement and its syntactic continu-
ation into a waiting loop which checks the condition of the await-statement. If
this condition holds, the loop is exited and the method executes the rest of the
AO method. Note that differently from the translation of await-statements in
the Rebeca language, it is not necessary to spawn a new process each time the
condition of the await-statement does not hold; instead, the thread checks its
await condition multiple times and starts running when the condition holds. As
with the other translation, any threads waiting on the object lock are notified
before exiting a synchronized method, so they can check their await condition.

Inside Every Multithreaded Program. . . 11

import java.util.concurrent.∗;
interface I { void method(int i); }

class C {
I o;
int x = 0;
public C(I o) { this.o = o; }

synchronized void run() {
System.out.println(”Before Boolean await”);
new Thread(() −> this.run2()).start();
this.notifyAll();

}
synchronized void run2() {
while (!(x > 0)) { this.notifyAll(); this.wait(); }
System.out.println(”After Boolean await”);
ExecutorService executor = Executors.newSingleThreadExecutor();
final Future f = executor.submit(() −> o.method(x));
new Thread(() −> this.run3(f)).start();
System.out.println(”Before future await”);
this.notifyAll();

}
void run3(Future f) {
while (!f.isDone()) { f.get(); }
synchronized(this) {
System.out.println(”After future await”);
this.notifyAll();

}
}

synchronized void incX() { x = x + 1; this.notifyAll(); }
}

Fig. 9: Java translation of cooperative scheduling in ABS, using continuations
(exception handling elided for brevity)

5 Conclusion

This paper has discussed differences between MT and AO, and in particular
the nature of their basic underlying communication mechanisms. In AO, meth-
ods are called asynchronously and as such the generated method invocations
are executed in parallel. In other words, the paradigm of AO programming is
intrinsically parallel. In MT, methods are called synchronously, which imposes
a last-in-first-out (LIFO) ordering of the execution of the method invocations,
and as such gives rise to an intrinsically sequential thread-based execution. Par-
allel execution of threads in MT is obtained by calling asynchronously the run
method (or start method) of an instance of a predefined class Thread.

We have shown that it is straightforward to model a synchronous method call
in AO, using the await-statement of ABS to suspend the caller. To model the
arbitrary interleaving of threads in AO simply requires the introduction of await-
statements at the interleaving points. This is cumbersome, but only syntactically:
It does not complicate the object structures. Thread synchronization is modeled

12 F. de Boer et al.

in a straightforward manner by a basic semaphore. This requires the introduc-
tion of an additional parameter for a (synchronized) method which denotes the
executing thread (i.e., the initial object executing the run method). It should
be observed that our outlined encoding from MT to AO relies heavily on the
synchronization features of ABS, with asynchronous method calls and coopera-
tive scheduling. The further translation into a pure actor language would require
carefully encoding synchronization and call-backs that are naturally supported
in ABS through asynchronous message passing and through control restrictions
on th e message-interface(e.g, by means of the become-statement in pure ac-
tors). On the other hand, modeling arbitrary asynchronous method calls in MT
requires quite complex explicit handling of concurrency mechanisms, which gives
rise to complicated object structures to handle synchronization points in the AO
programs (e.g., wrapping each method call into a proxy of the called object).

We believe a more formal study of these encodings and how they preserve
the semantics of the two concurrency paradigms would be an interesting line
of research. Research on the relationship between MT on the one side and AO
and actors on the other side, is surprisingly scarce. Among interesting work
pointing in this general direction, Agha and Palmskog [3] studied how to learn
actor structure from the execution traces of MT programs, and de Boer and
Hiep [14] the synthesis of actor programs from traces. Haller and Odersky [24]
studied how MT execution can be unified with event-based communication. Sev-
eral papers compare different mechanisms for asynchronous communication with
futures (e.g., [23]). Other papers study the extension of AO models in ABS with
resource-sensitive behavior [6, 11, 31, 38], these resources act as global synchro-
nizers that affect the intrinsic compositionality of the underlying actor model
(for example to model virtualized systems [5,30]). Varela and Agha [45] discuss
drawbacks of MT and argue for actors, and Lee [34] highlight challenges with
MT and discuss different alternatives, including actors, suggesting that a solu-
tion might lie in more abstract coordination languages. Brandauer et al. [16]
and Henrio and Rochas [25] discuss different ways to overcome the intra-actor
sequentialization in the AO model.

References

1. Ábrahám-Mumm, E., de Boer, F.S., de Roever, W.P., Steffen, M.: Verification for
Java’s reentrant multithreading concept. In: Nielsen, M., Engberg, U. (eds.) Proc.
5th International Conference on Foundations of Software Science and Computation
Structures (FOSSACS 2002). Lecture Notes in Computer Science, vol. 2303, pp.
5–20. Springer (2002), https://doi.org/10.1007/3-540-45931-6 2

2. Agha, G.: Concurrent object-oriented programming. Commun. ACM 33(9), 125–
141 (1990), https://doi.org/10.1145/83880.84528

3. Agha, G., Palmskog, K.: Transforming threads into actors: Learning concurrency
structure from execution traces. In: Lohstroh, M., Derler, P., Sirjani, M. (eds.)
Principles of Modeling - Essays Dedicated to Edward A. Lee on the Occasion of
His 60th Birthday. Lecture Notes in Computer Science, vol. 10760, pp. 16–37.
Springer (2018), https://doi.org/10.1007/978-3-319-95246-8 2

https://doi.org/10.1007/3-540-45931-6_2
https://doi.org/10.1145/83880.84528
https://doi.org/10.1007/978-3-319-95246-8_2

Inside Every Multithreaded Program. . . 13

4. Agha, G.A.: ACTORS - a model of concurrent computation in distributed systems.
MIT Press series in artificial intelligence, MIT Press (1990)

5. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tapia Tarifa,
S.L., Wong, P.Y.H.: Formal modeling and analysis of resource management for
cloud architectures: an industrial case study using real-time ABS. Serv. Oriented
Comput. Appl. 8(4), 323–339 (2014). https://doi.org/10.1007/S11761-013-0148-0

6. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R.,
Tapia Tarifa, S.L.: Simulating concurrent behaviors with worst-case cost bounds.
In: Butler, M.J., Schulte, W. (eds.) Proc. 17th International Symposium on Formal
Methods (FM 2011). Lecture Notes in Computer Science, vol. 6664, pp. 353–368.
Springer (2011). https://doi.org/10.1007/978-3-642-21437-0 27

7. Andrews, G.R.: Concurrent programming - principles and practice. Benjam-
in/Cummings (1991)

8. Bagheri, M., Sirjani, M., Khamespanah, E., Hojjat, H., Movaghar, A.: Partial order
reduction for timed actors. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina, N.
(eds.) Proc. 13th International Conference on Software Verification (VSTTE 2021).
Lecture Notes in Computer Science, vol. 13124, pp. 43–60. Springer (2021), https:
//doi.org/10.1007/978-3-030-95561-8 4

9. Baker, H.G., Hewitt, C.: The incremental garbage collection of processes. In: Low,
J. (ed.) Proceedings of the 1977 Symposium on Artificial Intelligence and Program-
ming Languages. pp. 55–59. ACM (1977), https://doi.org/10.1145/800228.806932

10. Bezirgiannis, N., de Boer, F.S., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Im-
plementing SOS with active objects: A case study of a multicore memory system.
In: Hähnle, R., van der Aalst, W.M.P. (eds.) Proc. 22nd Intl. Conf. on Funda-
mental Approaches to Software Engineering (FASE 2019). Lecture Notes in Com-
puter Science, vol. 11424, pp. 332–350. Springer (2019), https://doi.org/10.1007/
978-3-030-16722-6 20

11. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng. 9(1),
29–43 (2013), https://doi.org/10.1007/s11334-012-0184-5

12. de Boer, F., Din, C.C., Fernandez-Reyes, K., Hähnle, R., Henrio, L., Johnsen, E.B.,
Khamespanah, E., Rochas, J., Serbanescu, V., Sirjani, M., Yang, A.M.: A survey of
active object languages. ACM Computing Surveys 50(5), 76:1–76:39 (Oct 2017),
https://doi.org/10.1145/3122848

13. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In:
Nicola, R.D. (ed.) Proc. 16th European Symposium on Programming (ESOP 2007).
Lecture Notes in Computer Science, vol. 4421, pp. 316–330. Springer (2007), https:
//doi.org/10.1007/978-3-540-71316-6 22

14. de Boer, F.S., Hiep, H.A.: Axiomatic characterization of trace reachability for
concurrent objects. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) Proc. 15th Inter-
national Conference on Integrated Formal Methods (IFM 2019). Lecture Notes in
Computer Science, vol. 11918, pp. 157–174. Springer (2019), https://doi.org/10.
1007/978-3-030-34968-4 9

15. de Boer, F.S., Johnsen, E.B., Pun, V.K.I., Tapia Tarifa, S.L.: Proving correctness
of parallel implementations of transition system models. ACM Trans. Program.
Lang. Syst. 46(3) (Sep 2024), https://doi.org/10.1145/3660630

16. Brandauer, S., Castegren, E., Clarke, D., Fernandez-Reyes, K., Johnsen, E.B.,
Pun, K.I., Tapia Tarifa, S.L., Wrigstad, T., Yang, A.M.: Parallel objects for multi-
cores: A glimpse at the parallel language Encore. In: Bernardo, M., Johnsen, E.B.
(eds.) Formal Methods for Multicore Programming (SFM 2015). Lecture Notes in

https://doi.org/10.1007/S11761-013-0148-0
https://doi.org/10.1007/978-3-642-21437-0_27
https://doi.org/10.1007/978-3-030-95561-8_4
https://doi.org/10.1007/978-3-030-95561-8_4
https://doi.org/10.1145/800228.806932
https://doi.org/10.1007/978-3-030-16722-6_20
https://doi.org/10.1007/978-3-030-16722-6_20
https://doi.org/10.1007/s11334-012-0184-5
https://doi.org/10.1145/3122848
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-030-34968-4_9
https://doi.org/10.1007/978-3-030-34968-4_9
https://doi.org/10.1145/3660630

14 F. de Boer et al.

Computer Science, vol. 9104, pp. 1–56. Springer (2015), https://doi.org/10.1007/
978-3-319-18941-3 1

17. Dahl, O.J., Myhrhaug, B., Nygaard, K.: SIMULA 67 common base language. Tech.
Rep. S-2, Norwegian Computing Center (1968)

18. Dahl, O.J., Nygaard, K.: SIMULA - an ALGOL-based simulation language. Com-
mun. ACM 9(9), 671–678 (1966), https://doi.org/10.1145/365813.365819

19. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976), https://www.
worldcat.org/oclc/01958445

20. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: A deductive verification tool for
the concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.)
Proc. 25th International Conference on Automated Deduction (CADE-25). Lec-
ture Notes in Computer Science, vol. 9195, pp. 517–526. Springer (2015), https:
//doi.org/10.1007/978-3-319-21401-6 35

21. Din, C.C., Hähnle, R., Henrio, L., Johnsen, E.B., Pun, V.K.I., Tapia Tar-
ifa, S.L.: Locally abstract, globally concrete semantics of concurrent program-
ming languages. ACM Trans. Program. Lang. Syst. 46(1), 3:1–3:58 (2024).
https://doi.org/10.1145/3648439, https://doi.org/10.1145/3648439

22. Din, C.C., Tapia Tarifa, S.L., Hähnle, R., Johnsen, E.B.: History-based specifica-
tion and verification of scalable concurrent and distributed systems. In: Butler,
M.J., Conchon, S., Zäıdi, F. (eds.) Proc. 17th International Conference on For-
mal Engineering Methods (ICFEM 2015). Lecture Notes in Computer Science,
vol. 9407, pp. 217–233. Springer (2015). https://doi.org/10.1007/978-3-319-25423-
4 14

23. Fernandez-Reyes, K., Clarke, D., Henrio, L., Johnsen, E.B., Wrigstad, T.: Godot:
All the benefits of implicit and explicit futures. In: Donaldson, A.F. (ed.) Proc. 33rd
European Conference on Object-Oriented Programming (ECOOP 2019). LIPIcs,
vol. 134, pp. 2:1–2:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019),
https://doi.org/10.4230/LIPIcs.ECOOP.2019.2

24. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based
programming. Theor. Comput. Sci. 410(2-3), 202–220 (2009), https://doi.org/10.
1016/j.tcs.2008.09.019

25. Henrio, L., Rochas, J.: Multiactive objects and their applications. Log. Methods
Comput. Sci. 13(4) (2017), https://doi.org/10.23638/LMCS-13(4:12)2017

26. Jafari, A., Khamespanah, E., Kristinsson, H., Sirjani, M., Magnusson, B.: Statisti-
cal model checking of timed rebeca models. Comput. Lang. Syst. Struct. 45, 53–79
(2016), https://doi.org/10.1016/j.cl.2016.01.004

27. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: the model-checking engine
of Rebeca. In: Haddad, H. (ed.) Proc. Symposium on Applied Computing (SAC
2006). pp. 1810–1815. ACM (2006), https://doi.org/10.1145/1141277.1141704

28. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer,
F.S., Bonsangue, M.M. (eds.) Proc. 9th International Symposium on Formal
Methods for Components and Objects (FMCO 2010). Lecture Notes in Com-
puter Science, vol. 6957, pp. 142–164. Springer (2010), https://doi.org/10.1007/
978-3-642-25271-6 8

29. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Softw. Syst. Model. 6(1), 39–58 (2007), https://doi.org/10.
1007/s10270-006-0011-2

30. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic resource real-
location between deployment components. In: Dong, J.S., Zhu, H. (eds.) Proc.

https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1145/365813.365819
https://www.worldcat.org/oclc/01958445
https://www.worldcat.org/oclc/01958445
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1145/3648439
https://doi.org/10.1145/3648439
https://doi.org/10.1007/978-3-319-25423-4_14
https://doi.org/10.1007/978-3-319-25423-4_14
https://doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.23638/LMCS-13(4:12)2017
https://doi.org/10.1016/j.cl.2016.01.004
https://doi.org/10.1145/1141277.1141704
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/s10270-006-0011-2
https://doi.org/10.1007/s10270-006-0011-2

Inside Every Multithreaded Program. . . 15

12th International Conference on Formal Engineering Methods, ICFEM 2010.
Lecture Notes in Computer Science, vol. 6447, pp. 646–661. Springer (2010).
https://doi.org/10.1007/978-3-642-16901-4 42

31. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Log. Algebraic
Methods Program. 84(1), 67–91 (2015), https://doi.org/10.1016/j.jlamp.2014.07.
001

32. Khamespanah, E., Mechitov, K., Sirjani, M., Agha, G.A.: Schedulability analysis of
distributed real-time sensor network applications using actor-based model check-
ing. In: Bosnacki, D., Wijs, A. (eds.) Proc. 23rd International Symposium on Model
Checking Software (SPIN 2016). Lecture Notes in Computer Science, vol. 9641, pp.
165–181. Springer (2016), https://doi.org/10.1007/978-3-319-32582-8 11

33. Lea, D.: Concurrent Programming in Java. Addison Wesley (1996)
34. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006), https://doi.

org/10.1109/MC.2006.180
35. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingólfsdóttir, A.,

Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time systems
using Timed Rebeca. Science of Computer Programming 89, 41–68 (2014), https:
//doi.org/10.1016/J.SCICO.2014.01.008

36. Sabahi-Kaviani, Z., Khosravi, R., Ölveczky, P.C., Khamespanah, E., Sirjani, M.:
Formal semantics and efficient analysis of Timed Rebeca in Real-Time Maude.
Science of Computer Programming 113, 85–118 (2015), https://doi.org/10.1016/
J.SCICO.2015.07.003

37. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to con-
current components. In: D’Hondt, T. (ed.) Proc. 24th European Conference,
on Object-Oriented Programming (ECOOP 2010). Lecture Notes in Com-
puter Science, vol. 6183, pp. 275–299. Springer (2010), https://doi.org/10.1007/
978-3-642-14107-2 13

38. Schlatte, R., Johnsen, E.B., Mauro, J., Tapia Tarifa, S.L., Yu, I.C.: Release the
beasts: When formal methods meet real world data. In: de Boer, F.S., Bon-
sangue, M.M., Rutten, J. (eds.) It’s All About Coordination — Essays to Cel-
ebrate the Lifelong Scientific Achievements of Farhad Arbab. Lecture Notes in
Computer Science, vol. 10865, pp. 107–121. Springer (2018), https://doi.org/10.
1007/978-3-319-90089-6 8

39. Serbanescu, V., de Boer, F.S., Jaghoori, M.M.: Actors with coroutine support in
Java. In: Bae, K., Ölveczky, P.C. (eds.) Proc. 15th International Conference, FACS
2018. Lecture Notes in Computer Science, vol. 11222, pp. 237–255. Springer (2018),
https://doi.org/10.1007/978-3-030-02146-7 12

40. Sirjani, M.: Rebeca: Theory, applications, and tools. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P. (eds.) Proc. 5th International Sym-
posium on Formal Methods for Components and Objects (FMCO 2006). Lec-
ture Notes in Computer Science, vol. 4709, pp. 102–126. Springer (2006), https:
//doi.org/10.1007/978-3-540-74792-5 5

41. Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca experience. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems - Essays Dedicated to Carolyn Talcott on the Occasion of Her
70th Birthday. Lecture Notes in Computer Science, vol. 7000, pp. 20–56. Springer
(2011), https://doi.org/10.1007/978-3-642-24933-4 3

42. Sirjani, M., Khamespanah, E.: On time actors. In: Ábrahám, E., Bonsangue, M.M.,
Johnsen, E.B. (eds.) Theory and Practice of Formal Methods - Essays Dedicated

https://doi.org/10.1007/978-3-642-16901-4_42
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1007/978-3-319-32582-8_11
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2014.01.008
https://doi.org/10.1016/J.SCICO.2015.07.003
https://doi.org/10.1016/J.SCICO.2015.07.003
https://doi.org/10.1007/978-3-642-14107-2_13
https://doi.org/10.1007/978-3-642-14107-2_13
https://doi.org/10.1007/978-3-319-90089-6_8
https://doi.org/10.1007/978-3-319-90089-6_8
https://doi.org/10.1007/978-3-030-02146-7_12
https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-642-24933-4_3

16 F. de Boer et al.

to Frank de Boer on the Occasion of His 60th Birthday. Lecture Notes in Com-
puter Science, vol. 9660, pp. 373–392. Springer (2016), https://doi.org/10.1007/
978-3-319-30734-3 25

43. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Informaticae 63(4), 385–410 (2004), http:
//content.iospress.com/articles/fundamenta-informaticae/fi63-4-05

44. Turski, W. (ed.): Efficient Production of Large Programs. Computation Centre
of the Polish Aacdemy of Science (Aug 10–14 1970), https://www.cs.ox.ac.uk/
publications/publication8100-abstract.html

45. Varela, C.A., Agha, G.: What after Java? From objects to actors. Comput. Net-
works 30(1-7), 573–577 (1998), https://doi.org/10.1016/S0169-7552(98)00079-8

46. Wirth, N.: The programming language Pascal. Acta Informatica 1, 35–63 (1971),
https://doi.org/10.1007/BF00264291

https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.1007/978-3-319-30734-3_25
http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05
http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05
https://www.cs.ox.ac.uk/publications/publication8100-abstract.html
https://www.cs.ox.ac.uk/publications/publication8100-abstract.html
https://doi.org/10.1016/S0169-7552(98)00079-8
https://doi.org/10.1007/BF00264291

	Inside Every Multithreaded Program There Are Active Objects Struggling To Get Out

