
RDFMutate: Mutation-Based Generation of
Knowledge Graphs

Tobias John1 , Einar Broch Johnsen1 , and Eduard Kamburjan2,1

1 University of Oslo, Oslo, Norway
{tobiajoh,einarj}@ifi.uio.no

2 IT University of Copenhagen, Copenhagen, Denmark
eduard.kamburjan@itu.dk

Abstract. This paper introduces RDFMutate, the first mutation-based
tool to generate RDF knowledge graphs. RDFMutate enables developers
to analyze the robustness of applications that operate on RDF, by gen-
erating variants of seed knowledge graphs, which are mutated according
to a set of mutation operations and SHACL constraints. In contrast to
existing tools to generate synthetic RDF graphs, RDFMutate provides a
mutation-based approach that is accessible for both researchers and ap-
plication developers, by providing a framework to define mutation rules
and flexible selection of generated graphs.

Keywords: Graph Generator · Graph Mutation · Application Testing

1 Introduction

Software applications that work with knowledge graphs (KGs) are subject to
multiple quality criteria. While the quality of the graph data is a crucial con-
cern, the quality of the software itself is of equal importance. Software testing of
such applications relies on readily available input graphs, and automated soft-
ware testing relies on readily available graph generators. As the input graphs
must satisfy numerous constraints to be considered valid input, e.g., use the
right vocabulary, be logically consistent or satisfy SHACL constraints, the use
of arbitrary graphs is not possible. Furthermore, a few manually created KGs
are often available for an application.

Synthetic KGs can be used as test inputs to perform integration and sys-
tem testing of applications [14, 20] and have lead to the discovery of several,
previously unknown bugs in state-of-the-art Web Ontology Language (OWL)
reasoners and other mature software tools [16, 20]. Two approaches to generate
synthetic KGs have been used for testing applications: language-based meth-
ods [20] and mutation-based methods [14]. While there is decent tool support
for language-based generation of KGs [36], we are not aware of existing tools
for mutation-based generation of KGs. Our tool, RDFMutate, fills this gap. It
is available on github3 together with its documentation4.
3 https://github.com/smolang/RDFMutate
4 https://github.com/smolang/RDFMutate/wiki

https://orcid.org/0000-0001-5855-6632
https://orcid.org/0000-0001-5382-3949
https://orcid.org/0000-0002-0996-2543
https://github.com/smolang/RDFMutate
https://github.com/smolang/RDFMutate/wiki

2 T. John et al.

RDFMutate generates Resource Description Framework (RDF) graphs [24]
based on mutations. Given an existing KG, called seed, it applies a sequence of
mutation operators to generate new graphs. For example, it may remove or add
new nodes. The final KG is the result of a sequence of mutations. To ensure that
it is a valid input, RDFMutate enables the following customization options.

Mutation Operators RDFMutate predefines general, application-independent
mutation operators, and allows the user to input additional mutation oper-
ators. These operators can be provided either as Java code, or in a format
based on SWRL [11] rules.

Shape Validation RDFMutate applies SHACL shapes to ensure the structure
the result. If the resulting graph does not adhere to the shapes, different
mutation operators are applied until an eventual adherence. In particular,
users can reuse SHACL shapes that already exist for specific domains.

In the end, not the whole generated KG is synthetic, but only local changes to
parts of the seed KG are applied. If the mutation operators are chosen correctly,
with respect to the application domain, the generated mutant KGs are still
within the domain that is of interest.

This paper contains an evaluation of RDFMutate in two dimensions: First,
we demonstrate how RDFMutate can be used to find unknown bugs in common
applications working on KGs in a qualitative evaluation. Secondly, we analyze
the performance of RDFMutate and show that the generation times are short
enough to use RDFMutate in practice. Our main contribution are as follows:

– The first tool for mutation-based generation of RDF graphs.
– Custom mutation operators that are application-specific. The mutation op-

erators can be specified using a custom input format based on SWRL rules.
– Synthetic KG generation with respect to provided constraints. The con-

straints can contain SHACL shapes that the KG must conform to.

Predecessors of RDFMutate have been applied in previous work [14, 16].
RDFMutate was developed with a focus on reuse and usability. Changes are,
beyond minor refactoring, the following: (a) A configurable frontend to define
all aspects of the mutation process. (b) Custom mutation operators in the form of
SWRL rules are supported. (c) Custom strategies to select mutation operators.
Furthermore, we have provided extensive online documentation that describes
how to install, use and extend RDFMutate. This paper also provides a new
quantitative performance evaluation

This work is structured as follows: We discuss related works in Section 2 and
the architecture of RDFMutate in Section 3. Usage and evaluation are given in
Section 4. Section 5 discusses use cases, possible extensions, and limitations.

2 Related Work

RDF generation tools. There are numerous tools to generate synthetic RDF
graphs, and we only discuss those that consider additional constraints on the

RDFMutate: Mutation-Based Generation of Knowledge Graphs 3

Table 1: Comparison of KG generation tool features. #Schema Properties
refers to the number of IRIs that can be generated to express schema information.
Tool Generation #Schema Constraints Tool

Method properties available

GDD [4] schema-based all GDDx conformance no
DLCC [32] random 3 no yes
PyGraft [13] schema-based 13 consistency check yes
RDFGraphGen [35] schema-based all SHACL conformance yes
RDFmutate mutation-based all consistency check +

SHACL conformance
yes

resulting KG, and are not merely generating triples representing data. Tools
that generate RDF graphs but do not fulfill this criterion are discussed in [13].

Tools that generate graphs according to constraints follow one of two ap-
proaches: (i) Consistency of the encoded axioms, or (ii) the conformance to a
schema such as SHACL or GDDx. However, our tool is the only one that takes
both forms of constraints into account.

Table 1 shows an overview of methods that are comparable to our tool. The
tools GDD, DLCC, PyGraft and RDFGraphGen all use some schema informa-
tion, e.g. SHACL shapes, GDDs or OWL axioms to generate the KG. Our tool
is the only approach that is based on mutation operators to generate the KG.

Some of them, DLCC and PyGraft, are only able to generate specific schema
properties, i.e. properties that express subclass relations or other OWL axioms,
while our tool is able to generate arbitrary schema information and use a reasoner
to treat it accordingly in the consistency check. Additionally, our tool is able to
generate not only object-property relations but also data-property relations with
literals, which PyGraft and DLCC can not do. In general, our tool RDFMutate
can generate all kinds of RDF graphs, which not all other tools can do.

Ontology Mutation. There exist some proposals for mutation operators on OWL
ontologies for quality control, similar to methods of test-driven development of
ontologies [23]. The approaches focus on different aspects, e.g. on domain-specific
mutation operators [25], on quality control of ontologies [1] or on proposing low-
level mutation operators [31]. Tool support for these approaches is limited. Only
the alpha version of a tool for the mutations discussed in [1] is available, which
lacks documentation and does not seem to be maintained any more. Additionally,
our tool is not restricted to a specific set of operations on OWL ontologies but
allows using arbitrary mutation operations on the triples in the KG.

Test Case Generators. Test case generators, which are also known as fuzzers [36],
are well established tools in testing software applications [28]. The idea is to gen-
erate a huge number of examples of random input data for the application that
is tested and monitor its execution for undesired behavior. There are many such
tools available [2, 5, 8, 9, 33], which use different techniques techniques, such as

4 T. John et al.

language-based generation or mutation-based generation. While language-based
generation bears similarity to schema-based approaches to RDF generation, our
tool falls in the category of mutation-based generators, which have so far not
been explored for KGs. It is the only tool that is specifically designed to gener-
ated RDF graphs. In particular, the mutations that we use are not defined on
a syntactic level, i.e, on the input format, which varies for different serializa-
tions of RDF graphs. Instead, we use mutation operators that are defined on the
semantic level, i.e. the interpretation of input data as a graph structure.

3 Architecture and Description

RDFMutate generates knowledge graphs (KGs) in the form of RDF graphs [24].
The way how the KGs are generated is defined by mutation operators and masks.

Mutation Operator. RDFMutate uses mutation operators, which describe
changes in KGs. Most mutation operators contain a graph pattern to select the
locations where they can be applied and a graph pattern how the KG should be
changed. Those patterns contain variables, i.e., a mutation operator can be ap-
plicable at multiple locations in a KG. One can distinguish two types of mutation
operators based on their semantics: (i) domain-independent mutation operators
represent general mutations that can be used across diverse domains and (ii)
domain-specific mutation operators are designed for KGs from one particular
domain [14]. Section 3.3 describes how to select and define mutation operators.

Mask. Masks are a concept to define a criterion when a generated KG is
valid and were introduced in [14]. A mask can have two components: (i) a set of
SHACL shapes and (ii) a reasoner, e.g. an OWL reasoner, that decides if the KG
is consistent, e.g. if the entailed OWL axioms form a consistent set. A generated
KG is valid, iff it conforms to the SHACL shapes and is classified “consistent”
by the reasoner. Both components, the shapes and the reasoner, can be omitted
to only use one of those criteria. It is also possible to use no criterion at all and
we call such a mask an empty mask.

3.1 System Overview

Figure 1 shows the architecture of RDFMutate, which at a high level consists of a
frontend managing the input, and a backend that manages the actual generation.

Frontend. The frontend of RDFMutate parses all the input files and saves the
generated mutant KGs. The frontend also checks if all the input elements are
correct, e.g., it checks if the output file already exists and no generation is trig-
gered if the mutant KG can not be saved. More details about how the mutations
and shapes can be specified can be found in Section 3.3 and Section 3.4. Note,
that all the files shown in Figure 1 contain RDF graphs, i.e., we use a format
that users are already familiar with.

Additionally, we use a yaml-configuration file to contain all the information
about how to perform the mutation and where to find all resources. The frontend

RDFMutate: Mutation-Based Generation of Knowledge Graphs 5

Mutator

Operator Sequence

Strategy

mutation
operators

Mutation
Operator

Class

names of
operators

Parser
files with

mutation rules

number of
mutations

seed KG
Parser

seed file

mutant KG

Mask

mutant KG

Reasoner
name of
reasoner

graph
shapesParser

SHACL shapes

mutant KG
Serializer

mutant file

consistent?

valid not valid

input/output backendfrontend

Fig. 1: The most important components of RDFMutate’s architecture. The bold
(blue) arrows are used iteratively (starting from the strategy) until a valid mu-
tant is found. All the elements on the left are specified via the configuration file.

6 T. John et al.

seed_graph:
f i l e : examples/simpleKG.ttl
type: rdf

output_graph:
f i l e : examples/outputKG.ttl
o v e rw r i t e : true
type: rdf

number_of_mutations: 10
number_of_mutants: 5
s t r a t e g y :

name: random
mutat i on_ope ra to r s:

- module:
l o c a t i o n : org.smolang.robust.mutant.operators
o p e r a t o r s :

- c lassName: AddSubclassRelationMutation
- c lassName: AddObjectPropertyRelationMutation

- r e s o u r c e :
f i l e : examples/addRelation.ttl
s yn t a x: swrl

c o n d i t i o n :
r e a s o n i n g:

c o n s i s t e n c y : true
r e a s o n e r: hermit

masks:
- f i l e : examples/AsubClassOfB.ttl
- f i l e : examples/AsubClassOfC.ttl

Fig. 2: An example yaml-configuration file that contains all information on how
to run the generation of the mutant KGs.

also parses this file (omitted from Figure 1 for clarity). An example of such a
configuration file is depicted in Figure 2. An explanation of all the elements that
can be specified in the configuration file can be found online [19].

Backend. The backend is the main component of RDFMutate. It is depicted on
the right-hand side in Figure 1. We describe the most important components
and the Kotlin classes that implement them.

RDFMutate contains a class that represents mutation operators. They im-
plement a function that takes a KG and applies a change to it, i.e., performs
a mutation. Currently, RDFMutate provides 59 different mutation operators.
Descriptions of their behaviors are contained in our online documentation [19].
The following three components implement the workflow of RDFMutate.

Strategy Provided a set of mutation operators and an integer, the search strat-
egy produces a sequence of mutation operators of the requested length. RDF-
Mutate comes with a default strategy that selects mutation operators ran-

RDFMutate: Mutation-Based Generation of Knowledge Graphs 7

domly from the set of mutation operators. To avoid generating the same
sequence again, a strategy can also hold some state information.

Mutator The mutator takes a sequence of mutation operators and applies them
to a seed KG one after the other. If an operator can be applied at several
locations in the KG, one such location is chosen randomly. At the end, a
mutant KG is obtained.

Mask The mask decides the validity of a mutant KG, i.e, its adherence to exter-
nal constraint. The mask might consult a reasoner to check the consistency
of the KG and RDFMutate provides HermiT [7], Pellet [34], ELK [22] and
the Apache-Jena reasoner as options. Furthermore, the mask checks, if a
mutant KG conforms to provided SHACL shapes.

Execution. The generation of a valid mutant KG works a follows:

1. RDFMutate reads the yaml-configuration file that contains the information
about how to perform the generation (this step is omitted in Figure 1 for
the sake of clarity). All files mentioned in the configuration file are parsed.

2. The set of selected mutation operators is created handed over to the strategy
component. The set can contain existing operators or operators specified by
the user via files containing mutation rules.

3. The strategy component generates a sequences of mutation operators.
4. The generated sequence of mutation operators is handed to the mutator,

which applies is to the seed KG to generate the mutant KG.
5. The mask analyzes if the mutant KG is valid by taking the provided SHACL

shapes and the consistency classification from the reasoner into account.
6. If the mutant KG is not valid, the execution continues at step 3. If the mutant

KG is valid, it is saved to the output file using the desired serialization.

Using the yaml-configuration, the user can also select to generate a batch of
several mutant KGs. In this case, the cycle of generating mutant KGs is repeated
until the desired number of KGs is generated.

3.2 Implementation

RDFMutate is implemented in Kotlin and uses Apache Jena 5.2 [6] to parse and
serialize the files containing RDF graphs. For the consistency checks, off-the-shelf
reasoners are used, namely HermiT [7], Pellet [34] and ELK [22].

3.3 Mutation Specification

There are two ways to specify the mutation operators that RDFMutate should
consider to apply: (i) name classes that implement operators and (ii) import
operators from files. Both options are shown in the configuration file in Figure 2.

For the first option, the name of the module that contains the operator and
the name of the class that implements the operator are provided. The class is

8 T. John et al.

class PizzaMutation (model : Model) : Mutation (model) {
val topping : Resource = model . getResource (":Topping")
val p i zza : Resource = model . getResource (":Pizza")
val hasTopping : Property = model . getProperty (":hasTopping")

override fun createMutat ion () {
val toppings = model . l i s tResourcesWithProper ty (RDF. type , topping)
val t = toppings . toSet () . random ()
val p = model . c reateResource (":newPizza" + Random . next Int ())
addSet . add (model . c reateStatement (p , RDF. type , p i z za))
addSet . add (model . c reateStatement (p , hasTopping , t))
super . c reateMutat ion ()

}
}

(a) Example as a Kotlin class (import omitted).

rdfmutate:newNode(?p) ∧ :Topping(?t) → :Pizza(?p) ∧ :hasTopping(?p, ?t)

(b) Example as a SWRL rule (?p and ?t are IRIs of SWRL variables).

Fig. 3: Comparison of two versions of the same mutation operator.

dynamically loaded at runtime. The user can refer to multiple operators from
the same module and several modules can be listed to import operators from.

The second option is more flexible and allows to import mutation operators
from files. We chose to encode the mutation operators as RDF graphs, more
specifically, we use SWRL rules [11]. SWRL is a rule language for the semantic
web that describes rules of the form body→head, which are implications between
two sets of assertions about graph structures. We use the syntax of the SWRL
rules, but use a custom interpretation. While the standard interpretation of a
SWRL rule is to infer additional assertions in the KG, we interpret a SWRL rule
as a change of the KG, which is similar to the interpretation in [26]. A mutation
operator described by a SWRL rule can be applied at all locations in a KG where
its body matches. Note, that this matching is done directly on the KG, without
prior inference steps. When the mutation operator is applied, the consequences
described by the assertions in its head are performed. In the simplest case, this
means that the atoms in the head are added to the KG. To express more complex
consequences, we use SWRL’s feature of using custom “buit-in” atoms. A list of
all the built-ins that RDFMutate can parse and execute is shown in Table 2.

As an additional extension, we allow arbitrary IRIs to be used as proper-
ties in property-atoms, whereas the SWRL standard only allows object or data
properties. This extension allows the user to target arbitrary triples, including
those that specify schema-information.

Example 1. Consider the mutation operator that is shown in Figure 3. The op-
erator selects a node t that is of type :Topping and creates a new node of type
:Pizza that has t as a topping. I.e., the operator selects a random topping and
creates a new pizza with this topping.

RDFMutate: Mutation-Based Generation of Knowledge Graphs 9

Table 2: Additional built-ins that we use to specify mutation operators. We
use the prefix owl: for http://www.w3.org/2002/07/owl# and rdfmutate: for
https://smolang.org/rdfMutate#. #arg is the number of arguments.
IRI #arg place semantic

owl:NegativePropertyAssertion 3 body relation is not contained in KG
rdfmutate:newNode 1 body argument (must be a variable) is a new

node that will be added to the KG
owl:NegativePropertyAssertion 3 head relation is removed from KG
rdfmutate:deleteNode 1 head all triples containing this node are

deleted from KG
rdfmutate:replaceWith 2 head the first node is replaced by the second

node in all triples

On the top of Figure 3, the operator is implemented as a Kotlin class. The
KG is represented as the Jena Model “model”. To make the additions to the KG,
the new statements, i.e. triples, are added to the attribute “addSet”. The actual
performance of the addition is taken care of by the super-class “Mutation”.

On the bottom of Figure 3, the same operator is expressed using a SWRL
rule. Apart from declaring the nodes with the IRIs ?p and ?t as SWRL variables,
no further elements need to be specified.

3.4 Mask Specification

To specify a mask, two types of constraints can be specified in the configuration
file (see Figure 2): (i) the type of reasoning and (ii) the mask shapes. If the
generated KG should be consistent, the corresponding flag needs to be set and
the name of a reasoner needs to be provided. Furthermore, a list of files with
SHACL shapes can be provided. All the shapes from all the files are combined
into one shape graph by RDFMutate and the mutant KG is only valid if it
conforms to this combined shape graph.

4 Usage and Evaluation

To demonstrate how to use RDFMutate, we first describe the general procedure
followed by discussing RDFMutate’s capabilities using two case studies where
KGs generated with RDFMutate were used to analyze software applications.
Afterwards, we evaluate the performance of RDFMutate. In particular, we in-
vestigate how much time and attempts are needed to generate (valid) KGs.

4.1 Usage

To use RDFMutate, one has to provide all the necessary inputs, i.e. the elements
on the left in Figure 1, and provide them via a configuration file (see Figure 2).
In particular, one has to perform the following steps.

10 T. John et al.

Setup. The user selects a set of suitable seed KGs, possibly from existing or
recorded inputs to the systems. Afterwards, mutation operators need to be se-
lected, which should keep a KG within the domain when they are applied. If such
operators are not provided by RDFMutate, they must be specified using SWRL
rules or developed manually. Constraints that are not ensured by the mutation
operators but are relevant for the domain are encoded using SHACL shapes.

Constraint and operator selection can be iterative [14], i.e., if KGs are gen-
erated that intuitively should not be considered valid, then new constraints or
operators may be added.

Configuration. The number of mutation operators that is applied needs to be
selected. Because the optimal number depends on the domain and is hard to
predict, we advice to start with a low number and increase it, if the generated
KGs are too similar to seed KG. One also needs to decided if the KG must be
consistent and if yes, a reasoner must be selected. The number of generated KGs
needs to be defined. We advice to start with a mall number and observe if the
generated KGs are shaped as expected.

All this information is put in the configuration file (see Figure 2).

Execution. One runs RDFMutate using the command line as follows, assuming
the configuration is in the file configuration.yaml:

java -jar rdfmutate.jar –config=configuration.yaml

4.2 Qualitative Evaluation

To demonstrate the capabilitis of RDFMutate, we briefly report on two instances
where preliminary versions of RDFMutate have been used to test applications
working with knowledge graphs. Detailed discussions of the setup and results
can be found in the corresponding publications [14,16].

Testing OWL Reasoners. RDFMutate has been successfully used to perform
system testing on OWL reasoners [16]. More specifically, common reasoners for
the OWL-EL profile where tested. To test the reasoners, RDFMutate was set up
to create KGs that contain ontologies within the restrictive OWL-EL profile [12].
Ontologies from the 2015 OWL Reasoner Evaluation competition [30] where
used as seed KGs. Using RDFMutate and 55 well-chosen mutation operators,
the generated mutant KGs differ from the seed KGs but only contain ontologies
within the OWL-EL profile. At the same time, the mutation operators ensure
that all features, i.e. types of axioms, that are allowed in the OWL-EL profile
occur in some of the generated KGs.

This testing campaign lead to the discovery of six previously unknown bugs,
five bugs in the reasoner Pellet and one bug in the reasoner HermiT [15]. Table 3
contains an overview of the found bugs. Most of the bugs are exceptions on valid
inputs, some of them are logical errors where the class hierarchy computed by
the reasoners is not correct. This shows that RDFMutate can be used to find
crucial bugs in common applications working with KGs.

RDFMutate: Mutation-Based Generation of Knowledge Graphs 11

Table 3: Bugs when testing OWL-EL reasoners. The issueId refers to the id in
the corresponding online issue tracker [29] (this table is copied from [16])
reasoner bugID issueId type summary

Pellet

P1 94 Exception Exception when doing pre-computation
for class hierarchy; occurs non-
deterministically

P2 93 Completeness A sub-class axiom is missing from inferred
class hierarchy; combination of reflexive
property and existential quantification

P3 97 Exception Exception when doing pre-computation for
class hierarchy

P4 95 Exception Exception when doing pre-computation for
class hierarchy

P5 96 Completeness A sub-class axiom is missing from inferred
class hierarchy because sub-typing of dif-
ferent string data types is not considered

HermiT H1 — Exception Exception when reasoner is initiated if on-
tology contains the axiom ⊥ ⊑ ⊤

Extracting Shape Constraints for Applications interacting with KGs. RDFMu-
tate has been successfully used to perform integration testing of software appli-
cations that use a KG as a knowledge base [14]. The tested applications have
strong constraints on the shape of the KGs as they need to extract specific infor-
mation from the KGs in order to work correctly. Our goal was to extract those
constraints in the form of SHACL shapes. We did so by iteratively refining the
SHACL shapes that the generated KGs need to conform to until no KGs could
be generated where the applications did not work correctly. The refinement was
performed manually by domain experts based on the results of the test runs. We
used domain-specific and domain-independent mutation operators for this study
and were able to extract shapes for all tested applications.

4.3 Performance Evaluation

We evaluate the performance of RDFMutate in two dimensions: (i) the time to
generate a mutant KG and (ii) the number of attempts that are necessary to
generate a valid mutant in the presence of restrictive masks.

The variability in specifying mutation operators, input KGs and masks makes
it non-trivial to evaluate RDFMutate in a way that resembles how users will ac-
tually use it. To consider reasonable generation scenarios, we base our evaluation
on the existing use cases, where the selected mutation operators and masks have
been able to generate helpful mutant KGs.

Scripts and all data to replicate the evaluation are available on Zenodo [17].
We ran the experiments on a laptop with an Intel i7-1165G7 CPU @ 2.80GHz
running Ubuntu 22.04 with 8GB RAM, which took about 85 minutes.

https://github.com/Galigator/openllet/issues/94
https://github.com/Galigator/openllet/issues/93
https://github.com/Galigator/openllet/issues/97
https://github.com/Galigator/openllet/issues/95
https://github.com/Galigator/openllet/issues/96

12 T. John et al.

10 20 40 50 60 70 80 90 100
0.001

0.01

0.1

1

10

30

timeout

number of applied mutations

ti
m

e
[s

]

(a) Generation time w.r.t. number of mutations that are applied to input.

102 103 104
0.001

0.01

0.1

1

10

100

timeout

number of triples in input graph

ti
m

e
[s

]

(b) Generation time w.r.t. size of input graph when 30 mutations are applied.

Fig. 4: Time to generate. For both plots, we generate 1000 data points, used a
timeout of 10s and recorded computation time in milliseconds.

Execution Time. RDFMutate needs to be fast enough to generate mutant KGs
in reasonable time. Ideally, the generation time should be at most a few seconds.

We use the campaign of testing OWL-EL reasoners as the basis for this
evaluation. We chose this setup as it was the only existing one with a variety
of input KGs and because generation time is very relevant for this case as the
run time of the reasoners is rather short. We use the same setup as the original
study [16]: the same 307 input KGs, the same 55 mutation operators and an
empty mask, representing no restrictions on the shape of the generated KGs.

We evaluate the generation time in two experiments, based on two parame-
ters: (i) the number of applied mutation operators and (ii) the size of the input
KG. In the original campaign, 30 mutation operators where applied per mutant
KG. Hence, we consider applying 1–100 mutation operators in the first experi-
ment and applying 30 mutation operators in the second experiment. We sample
1000 data points per experiment, selecting the input KGs randomly. We use a
time limit of 10s for the generation.

RDFMutate: Mutation-Based Generation of Knowledge Graphs 13

0 1 2 3 4 5 6 7
0

5

10

15

iteration of SHACL shapes

av
g.

#
at

te
m

pt
s

5x domain-independent 2x domain-independent
5x domain-specific 2x domain-specific

Fig. 5: Necessary attempts to generate a KG conforming to the provided shapes.

The results of the experiments are shown in Figure 4. The plot on the top
shows the relation between the generation time and the number of applied mu-
tations. Nearly all generations are performed within the time limit of 10s and
the vast majority of mutants is generated in under 1s. Note that this is also true,
if the number of mutation operators that are applied exceeds the number used
in the case study (30) by a factor of three. As expected, there is a correlation
between the number of applied mutation operators and the generation time. In-
terestingly, there is a huge spread in computation times, note that the y-axis is
logarithmic. For a given number of applied mutation operators, the generation
times often differ by more than two orders of magnitude.

The spread in generation times can partially be explained with the data from
the second experiment, which is shown in the lower plot of Figure 4. Note, that
both axis are logarithmic. Remember, that we applied a constant number of 30
mutation operators in this experiment. We see a strong correlation between the
size of the input KG and the generation time. Still, the computation times vary
considerably by a factor of about 10 for a given size of input KG. This shows
that the structure of the specific KG and the applied mutation operators must
also have a significant impact on the generation time.

The time to generate a valid KG depends on the concrete inputs and pa-
rameters, for example, shapes and number of mutations. However, based on the
above results, we consider the time to generate a valid KG acceptable (<1s),
and in practice we were able to generate sufficient KGs in a short time.

Attempts to Generate Valid Mutants. RDFMutate is intended to be used to
generate KGs that conform to provided SHACL shapes. The stronger the re-
strictions expressed by the shapes are, the harder it is to find a mutant KG that
conforms to them. Hence, the more sequences of operators have to be tried until
a valid KG is found. We use the testing campaign of the tool Suave [14] for this
evaluation as it provides a sequence of increasingly more strict SHACL shapes.
Furthermore, the ontologies contained in the generated KGs are required to be

14 T. John et al.

consistent for this application. For each shape, we investigate four scenarios by
varying the used mutation operators (domain-independent vs. domain-specific)
and the number of applied mutations (two vs. five). In the original testing cam-
paign, a mixture of both types of mutation operators was used and two operators
where applied to generate a mutant. We generated 100 valid mutant KGs for
each data point and calculated the average number of attempts.

Figure 5 show the result of this experiment. The shape has a huge impact
on the number of attempts that are necessary to generate a conforming mutant.
As expected, a stricter shape requires more attempts. The more operators are
applied, the more attempts are necessary as the mutant KG differs more from
the seed KG, which conforms to all of the shapes. Interestingly, the types of the
mutation operators also have a large impact. We see that operators specifically
designed for the application domain require fewer attempts and thus speed up
the generation of valid mutant KGs.

Overall, it is hard to make a definitive statement about how hard it is to
generate a mutant that is valid as this depends on the specific shapes, input KG
and mutation operators. However, the limited number of attempts needed seem
feasible in practice.

5 Discussion

RDFMutate is the first proposal of a mutation-based KG generator and has some
limitations that we are aware of. In particular, we expect users of RDFMutate to
have very specific constraints on the KGs for their software application, so they
are interested in implementing custom extensions. Our developer documentation
on github provides instructions on how to implement possible extensions [19].

5.1 Limitations and Extensions

RDFMutate only provides a simple, random generation strategy to select the
mutation operators that get applied. Other tools that generate random KGs
have more sophisticated search algorithms to find valid KGs [4, 35]. However,
deciding if there is a sequence of mutations such that the mutant KG is valid
is undecidable [10]. This makes finding an optimal, general strategy difficult, so
users may extend RDFMutate by custom strategies for specific domains.

We distribute RDFMutate with four different reasoners to check the consis-
tency of the ontology in the generated KG. Users might extend the selection by
custom reasoners, e.g., by the reasoner that is later used in their application.

RDFMutate only supports one input format (plus implementation in Kotlin)
to specify custom mutation operators, which is based on SWRL rules. Alternative
formats might be of interest, e.g. SPARQL queries using an update term. To
add support, one needs to extend both frontend and backend.

RDFMutate: Mutation-Based Generation of Knowledge Graphs 15

5.2 Sustainability and Future Work

RDFMutate is part of the SMOL [21] ecosystem (smolang.org), which aims to
develop techniques and tools to increase the reliability of semantic web applica-
tions. To make usage of RDFMutate as easy as possible, we provide instructions
for different methods to run RDFMutate: a JAR-file, a docker image and built
instructions for the source code. Additionally, we not only provide a user doc-
umentation, but also a developer documentation that explains how others can
extend and customize RDFMutate. We aim to use feedback from the community
to continuously improve RDFMutate. In particular, we welcome contributions
on GitHub in the form of issues and pull request to overcome limitation of RDF-
Mutate. We are looking forward to incorporating extensions that proved to be
useful for KGs in some domains to make them available for all users.

Further Use Cases. RDFMutate does not allow to specify parameters of the gen-
erated KGs, e.g. the number of nodes or the density of the relations, which limits
its usage as a general synthetic data generator. However, we see use cases, apart
from testing applications, for which the mutation-based generation is applicable.

In testing itself, further use cases remain to be explored as well, for example,
using RDFMutate to perform metamorphic testing [3] or for quality control
of ontologies. As discussed in the related work (see Section 2), mutations of
axioms in OWL ontologies can be used as a technique for quality control [1,31].
The idea is to investigate if the answers to predefined queries change when the
ontology is mutated, which is expected for well-crafted ontologies. We are not
aware of usage of this idea in recent years, which may be due to a lack of tool
support. RDFMutate fills this gap and might help ontology engineers to apply
the proposed approaches by being easily able to create mutant ontologies.

6 Conclusion

RDFMutate is the first tool for mutation-based KG generation. It allows the
user to generate KGs for constrained input domains by defining custom mutation
operators and constraints. Test data generated by RDFMutate was used to find
bugs in widely-used applications and demonstrated that the generation times are
short enough to use RDFMutate in practice. In the future, we aim to investigate
test case generation for more KG-specific tasks, such as entity alignment, fusion,
and generating synthetic data for training embeddings.

Resource Availability Statement. Source code for RDFMutate, data and source
code to reproduce the evaluation experiments and the documentation are avail-
able from github [18,19]. Additionally, we made RDFMutate permanently avail-
able on Zenodo [17]. Some ontologies for our evaluation are from the ORE 2014
reasoner competition dataset, which is available from Zenodo [27].

Acknowledgments This work was partially supported by the EU projects
REMARO (956200) and SM4RTENANCE (101123490).

smolang.org

16 T. John et al.

References

1. Bartolini, C.: Mutating owls: Semantic mutation testing for ontologies. In: Calabrò,
A., Lonetti, F., Marchetti, E. (eds.) Proceedings of the International Workshop
on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn,
AMARETTO@MODELSWARD 2016, Rome, Italy, February 19-21, 2016. pp. 43–
53. SciTePress (2016). https://doi.org/10.5220/0005844600430053

2. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Symposium on Operating
Systems Design and Implementation (OSDI 2008). pp. 209–224. USENIX Associa-
tion (2008), http://www.usenix.org/events/osdi08/tech/full_papers/cadar/
cadar.pdf

3. Chen, T.Y., Cheung, S., Yiu, S.: Metamorphic testing: A new approach for gener-
ating next test cases. CoRR abs/2002.12543 (2020), https://arxiv.org/abs/
2002.12543

4. Feng, Z., Mayer, W., He, K., Kwashie, S., Stumptner, M., Grossmann, G., Peng,
R., Huang, W.: A schema-driven synthetic knowledge graph generation approach
with extended graph differential dependencies (GDDxs). IEEE Access 9, 5609–
5639 (2021). https://doi.org/10.1109/ACCESS.2020.3048186

5. Fioraldi, A., Maier, D.C., Eißfeldt, H., Heuse, M.: AFL++: Combining In-
cremental Steps of Fuzzing Research. In: Workshop on Offensive Technologies
(WOOT). USENIX Association (2020), https://www.usenix.org/conference/
woot20/presentation/fioraldi

6. Foundation, A.S.: Apache Jena, available at: https://jena.apache.org/, accessed
01-Mai-2025

7. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An OWL 2
reasoner. Journal of Automated Reasoning 53(3), 245–269 (2014). https://doi.
org/10.1007/S10817-014-9305-1

8. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: Conference on Programming Language Design and Implementation (PLDI).
pp. 213–223. ACM (2005). https://doi.org/10.1145/1065010.1065036

9. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: Whitebox fuzzing for secu-
rity testing. Commun. ACM 55(3), 40–44 (2012). https://doi.org/10.1145/
2093548.2093564

10. Hariri, B.B., Calvanese, D., Montali, M., Giacomo, G.D., Masellis, R.D., Felli, P.:
Description logic knowledge and action bases. J. Artif. Intell. Res. 46, 651–686
(2013). https://doi.org/10.1613/JAIR.3826

11. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining OWL and RuleML. W3C member
submission, W3C (May 2004), https://www.w3.org/submissions/SWRL/

12. Horrocks, I., Wu, Z., Grau, B.C., Fokoue, A., Motik, B.: OWL 2 web ontology
language profiles (second edition). W3C recommendation, W3C (Dec 2012), https:
//www.w3.org/TR/2012/REC-owl2-profiles-20121211

13. Hubert, N., Monnin, P., d’Aquin, M., Monticolo, D., Brun, A.: PyGraft: Con-
figurable generation of synthetic schemas and knowledge graphs at your fin-
gertips. In: Proc. 21st International Conference on The Semantic Web (ESWC
2024). Lecture Notes in Computer Science, vol. 14665, pp. 3–20. Springer (2024).
https://doi.org/10.1007/978-3-031-60635-9_1

14. John, T., Johnsen, E.B., Kamburjan, E.: Mutation-based integration testing of
knowledge graph applications. In: Proc. 35th IEEE International Symposium on

https://doi.org/10.5220/0005844600430053
https://doi.org/10.5220/0005844600430053
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2002.12543
https://doi.org/10.1109/ACCESS.2020.3048186
https://doi.org/10.1109/ACCESS.2020.3048186
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://jena.apache.org/
https://doi.org/10.1007/S10817-014-9305-1
https://doi.org/10.1007/S10817-014-9305-1
https://doi.org/10.1007/S10817-014-9305-1
https://doi.org/10.1007/S10817-014-9305-1
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1613/JAIR.3826
https://doi.org/10.1613/JAIR.3826
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211
https://doi.org/10.1007/978-3-031-60635-9_1
https://doi.org/10.1007/978-3-031-60635-9_1

RDFMutate: Mutation-Based Generation of Knowledge Graphs 17

Software Reliability Engineering (ISSRE 2024). pp. 475–486. IEEE (2024). https:
//doi.org/10.1109/ISSRE62328.2024.00052

15. John, T., Johnsen, E.B., Kamburjan, E.: ESE 2025 knowledge graph mutation
virtual machine (Feb 2025). https://doi.org/10.5281/zenodo.14899988

16. John, T., Johnsen, E.B., Kamburjan, E.: Mutation-based testing of knowledge
graph applications (2025), submitted

17. John, T., Johnsen, E.B., Kamburjan, E.: RDFMutate (ISWC 2025 submission)
(May 2025). https://doi.org/10.5281/zenodo.15394157

18. John, T., Johnsen, E.B., Kamburjan, E.: RDFMutate repository. https://github.
com/smolang/RDFMutate (2025)

19. John, T., Johnsen, E.B., Kamburjan, E.: RDFMutate wiki. https://github.com/
smolang/RDFMutate/wiki (2025)

20. John, T., Johnsen, E.B., Kamburjan, E., Steinhöfel, D.: Language-based testing
for knowledge graphs. In: Proc. 22st International Conference on The Semantic
Web (ESWC 2025). Lecture Notes in Computer Science, vol. 15719, pp. 24–46.
Springer (2025). https://doi.org/10.1007/978-3-031-94578-6_2

21. Kamburjan, E., Klungre, V.N., Schlatte, R., Johnsen, E.B., Giese, M.: Pro-
gramming and debugging with semantically lifted states. In: The Semantic
Web - 18th International Conference, ESWC 2021. Lecture Notes in Computer
Science, vol. 12731, pp. 126–142. Springer (2021). https://doi.org/10.1007/
978-3-030-77385-4_8

22. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. Journal of Automated Rea-
soning 53(1), 1–61 (2014). https://doi.org/10.1007/S10817-013-9296-3

23. Keet, C.M., Lawrynowicz, A.: Test-driven development of ontologies. In: Sack,
H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) The
Semantic Web. Latest Advances and New Domains - 13th International Confer-
ence, ESWC 2016, Heraklion, Crete, Greece, May 29 - June 2, 2016, Proceed-
ings. Lecture Notes in Computer Science, vol. 9678, pp. 642–657. Springer (2016).
https://doi.org/10.1007/978-3-319-34129-3_39, https://doi.org/10.1007/
978-3-319-34129-3_39

24. Lanthaler, M., Cyganiak, R., Wood, D.: RDF 1.1 concepts and abstract syntax.
W3C recommendation, W3C (Feb 2014), https://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/

25. Lee, S., Bai, X., Chen, Y.: Automatic mutation testing and simulation on OWL-S
specified web services. In: Proceedings 41st Annual Simulation Symposium (ANSS-
41 2008), April 14-16, 2008, Ottawa, Canada. pp. 149–156. IEEE Computer Society
(2008). https://doi.org/10.1109/ANSS-41.2008.13

26. Louadah, H., Papadakis, E., Mccluskey, T.L., Tucker, G., Hughes, P., Bevan, A.:
Translating ontological knowledge to pddl to do planning in train depot manage-
ment operations. In: 36th Workshop of the UK Planning and Scheduling Special
Interest Group. AAAI press (2021)

27. Matentzoglu, N., Parsia, B.: ORE 2014 reasoner competition dataset (Jul 2014).
https://doi.org/10.5281/zenodo.10791

28. Miller, B.P., Fredriksen, L., So, B.: An Empirical Study of the Reliability of
UNIX Utilities. Commun. ACM 33(12), 32–44 (1990). https://doi.org/10.1145/
96267.96279

29. Openllet, issue tracker, https://github.com/Galigator/openllet/issues, last
accessed on 30.04.2025

https://doi.org/10.1109/ISSRE62328.2024.00052
https://doi.org/10.1109/ISSRE62328.2024.00052
https://doi.org/10.1109/ISSRE62328.2024.00052
https://doi.org/10.1109/ISSRE62328.2024.00052
https://doi.org/10.5281/zenodo.14899988
https://doi.org/10.5281/zenodo.14899988
https://doi.org/10.5281/zenodo.15394157
https://doi.org/10.5281/zenodo.15394157
https://github.com/smolang/RDFMutate
https://github.com/smolang/RDFMutate
https://github.com/smolang/RDFMutate/wiki
https://github.com/smolang/RDFMutate/wiki
https://doi.org/10.1007/978-3-031-94578-6_2
https://doi.org/10.1007/978-3-031-94578-6_2
https://doi.org/10.1007/978-3-030-77385-4_8
https://doi.org/10.1007/978-3-030-77385-4_8
https://doi.org/10.1007/978-3-030-77385-4_8
https://doi.org/10.1007/978-3-030-77385-4_8
https://doi.org/10.1007/S10817-013-9296-3
https://doi.org/10.1007/S10817-013-9296-3
https://doi.org/10.1007/978-3-319-34129-3_39
https://doi.org/10.1007/978-3-319-34129-3_39
https://doi.org/10.1007/978-3-319-34129-3_39
https://doi.org/10.1007/978-3-319-34129-3_39
https://doi.org/10.1109/ANSS-41.2008.13
https://doi.org/10.1109/ANSS-41.2008.13
https://doi.org/10.5281/zenodo.10791
https://doi.org/10.5281/zenodo.10791
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://github.com/Galigator/openllet/issues

18 T. John et al.

30. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
reasoner evaluation (ORE) 2015 competition report. Journal of Automated Rea-
soning 59(4), 455–482 (2017). https://doi.org/10.1007/S10817-017-9406-8

31. Porn, A.M., Peres, L.M.: Semantic mutation test to OWL ontologies. In: Ham-
moudi, S., Smialek, M., Camp, O., Filipe, J. (eds.) ICEIS 2017 - Proceed-
ings of the 19th International Conference on Enterprise Information Systems,
Volume 2, Porto, Portugal, April 26-29, 2017. pp. 434–441. SciTePress (2017).
https://doi.org/10.5220/0006335204340441

32. Portisch, J., Paulheim, H.: The DLCC node classification benchmark for an-
alyzing knowledge graph embeddings. In: Sattler, U., Hogan, A., Keet, C.M.,
Presutti, V., Almeida, J.P.A., Takeda, H., Monnin, P., Pirrò, G., d’Amato, C.
(eds.) Proc. 21st International Semantic Web Conference (ISWC 2022). Lecture
Notes in Computer Science, vol. 13489, pp. 592–609. Springer (2022). https:
//doi.org/10.1007/978-3-031-19433-7_34

33. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2005). pp. 263–272. ACM (2005). https://doi.org/10.1145/
1081706.1081750

34. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Journal of Web Semantics 5(2), 51–53007 (2007). https://doi.org/
10.1016/J.WEBSEM.2007.03.004

35. Vecovska, M., Jovanovik, M.: Rdfgraphgen: A synthetic RDF graph generator
based on SHACL constraints. CoRR abs/2407.17941 (2024). https://doi.org/
10.48550/ARXIV.2407.17941

36. Zeller, A., Gopinath, R., Böhme, M., Fraser, G., Holler, C.: The Fuzzing
Book. CISPA Helmholtz Center for Information Security (2024), https://www.
fuzzingbook.org/, retrieved 2024-07-01 16:50:18+02:00

https://doi.org/10.1007/S10817-017-9406-8
https://doi.org/10.1007/S10817-017-9406-8
https://doi.org/10.5220/0006335204340441
https://doi.org/10.5220/0006335204340441
https://doi.org/10.1007/978-3-031-19433-7_34
https://doi.org/10.1007/978-3-031-19433-7_34
https://doi.org/10.1007/978-3-031-19433-7_34
https://doi.org/10.1007/978-3-031-19433-7_34
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1016/J.WEBSEM.2007.03.004
https://doi.org/10.1016/J.WEBSEM.2007.03.004
https://doi.org/10.1016/J.WEBSEM.2007.03.004
https://doi.org/10.1016/J.WEBSEM.2007.03.004
https://doi.org/10.48550/ARXIV.2407.17941
https://doi.org/10.48550/ARXIV.2407.17941
https://doi.org/10.48550/ARXIV.2407.17941
https://doi.org/10.48550/ARXIV.2407.17941
https://www.fuzzingbook.org/
https://www.fuzzingbook.org/

	RDFMutate: Mutation-Based Generation of Knowledge Graphs

