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Abstract
Counterfactuals are widely used in AI to explain
how minimal changes to a model’s input can lead to
a different output. However, established methods
for computing counterfactuals typically focus on
one-step decision-making, and are not directly ap-
plicable to sequential decision-making tasks. This
paper fills this gap by introducing counterfactual
strategies for Markov Decision Processes (MDPs).
During MDP execution, a strategy decides which
of the enabled actions (with known probabilistic ef-
fects) to execute next. Given an initial strategy that
reaches an undesired outcome with a probability
above some limit, we identify minimal changes to
the initial strategy to reduce that probability below
the limit. We encode such counterfactual strate-
gies as solutions to non-linear optimization prob-
lems, and further extend our encoding to synthesize
diverse counterfactual strategies. We evaluate our
approach on four real-world datasets and demon-
strate its practical viability in sophisticated sequen-
tial decision-making tasks.

1 Introduction
Consider an application procedure in which clients
who want to obtain a loan, interact with a bank
to establish their eligibility. Although estab-
lished prediction methods [Leo et al., 2019;
Teinemaa et al., 2019] can be used to filter for eligible
clients, the overall application procedure is far from auto-
mated. In practice, to receive a loan from the bank, a client
must follow a complicated application procedure, involving,
e.g., multiple consultations with loan advisors, providing var-
ious documents and filling out complex forms. Eligible but
impatient clients are prone to abandoning the application pro-
cedure before they receive their loan, causing losses for both
parties: the client spent time without reaching their goal and
the bank invested resources without return. Markov Decision
Processes (MDPs) [Baier and Katoen, 2008] can be used
to model such procedures and improve their transparency;
however, methods are currently lacking to address questions
about recourse and process improvement; e.g., what would

enable an ineligible client to obtain a loan? and how can we
simplify the application procedure for eligible clients?

Counterfactual explanations can help answer such ques-
tions by showing how minimal changes in user applications
would lead to a desired change of the output, e.g., to make the
client eligible for the previously refused loan. However, most
available methods for computing counterfactuals target one-
step prediction tasks [Guidotti, 2024], and are not applicable
to sequential decision making settings, where the output of a
process is determined by a sequence of steps.

Contributions. To fill this gap, we propose a method to
compute counterfactual explanations for sequential decision
making processes modeled by an MDP. In each state of these
non-deterministic discrete-time models, a finite number of
actions with a known probabilistic effect are enabled. Dur-
ing execution, strategies decide which enabled action to ex-
ecute next. Given an initial strategy that visits some unde-
sired states with a probability above some limit, we propose
to compute explanations in terms of counterfactual strategies
that reduce the reachability probability below this limit, while
staying as close to the initial strategy as possible. To for-
malize these requirements, we introduce a distance measure
d on strategies and encode counterfactual strategy synthesis
as nonlinear optimization problems. By enforcing that only
user-controllable actions can be selected in the MDP, we en-
sure that the resulting counterfactual strategies are indeed ac-
tionable. Furthermore, we extend our encoding to compute
not only a single solution but a collection of counterfactual
strategies, which are optimized for diversity, as several stud-
ies emphasize that providing different counterfactuals is key
for user understanding [Russell, 2019; Mothilal et al., 2020;
Bove et al., 2023]. The method is evaluated on four real-
world datasets. The evaluation shows that the method is
computationally feasible, and can synthesize counterfactual
strategies for sophisticated sequential decision making tasks,
modeled as MDPs with thousands of states and ten thousands
of transitions.

In summary, our main contributions are (1) to introduce
counterfactual strategies for MDPs as post-hoc explanations
for sequential decision making, (2) to encode a counterfactual
strategy synthesis problem for MDPs as a nonlinear optimiza-
tion problem, (3) to synthesize diverse counterfactual strate-
gies, and (4) to experimentally evaluate the feasibility and



performance of our counterfactual strategy synthesis method.

Outline. After recalling some background on MDPs, non-
linear optimization and counterfactuals in Section 2, we for-
malize counterfactual strategies for MDPs in Section 3, and
present our encoding of the MDP counterfactual synthesis
problem as a non-linear optimization problem in Section 4.
We evaluate our approach in Section 5, discuss related work
in Section 6, and conclude the paper in Section 7.

2 Preliminaries
A (discrete probability) distribution is a function µ : X →
[0, 1] with a discrete domain X such that

∑
x∈X µ(x) = 1.

We write Distr(X) for the set of distributions with domain
X . Given two distributions µ1 and µ2 with domain X , their
total variation distance is ∆(µ1, µ2) = 1

2

∑
x∈X |µ1(x) −

µ2(x)| [Levin and Peres, 2017, Prop. 4.2], where | · | stays for
the absolute value.

For n ∈ N, v ∈ Rn and i = 1, . . . , n, we denote the ith
element of v as vi, and use the standard norms ∥v∥0 = |{vi |
vi ̸= 0}|, ∥v∥1 =

∑
i |vi|, and ∥v∥∞ = maxi |vi|.

2.1 Markov Decision Processes
A Markov decision process (MDP)M is a tuple ⟨S,A, s0, δ⟩,
where S is a finite set of states, A is a finite set of actions,
s0 ∈ S, and δ : S × A ⇀ Distr(S) is a partial function. For
each state s ∈ S, let A(s) be the set of all actions a ∈ A for
which δ(s, a) is defined; we require A(s) ̸= ∅ and say that
the actions in A(s) are enabled in s. By δ(s, a, s′) we denote
δ(s, a)(s′) if δ(s, a) is defined and 0 otherwise.

A (finite or infinite) path τ of M is a non-empty se-
quence of alternating states and actions s0a0s1 . . . such that
δ(sj , aj , sj+1) > 0 for all j ≥ 0. The cylinder set Cyl(τ̂)
of a finite path τ̂ is the set of all infinite paths with τ̂ as a
prefix. Let ΩM(s) and and Ωfin

M(s) be the set of all infinite
respectively finite paths ofM starting in the state s ∈ S.

A state t ∈ S can be reached from state s ∈ S if there
exists a finite path from s to t. We use Reach(t) to denote the
set of all states from which t can be reached.

A (memoryless) strategy is a function σ : S → Distr(A)
that maps states to distributions over actions with σ(s)(a) =
0 for all s ∈ S and a ∈ A\A(s). We denote the set of
strategies for M by ΣM; we omit the index if it is clear
from the context. Given two strategies σ, σ′ ∈ Σ, we over-
load notation and define their distance vector as ∆(σ, σ′) =
(∆(σ(s), σ′(s)))s∈S (entries in fixed but arbitrary order).

Applying a strategy σ to an MDP M induces a de-
terministic model. Thus we omit the actions and
define the discrete-time Markov chain (DTMC) in-
duced by σ on M as the tuple Mσ = ⟨S, s0, δσ⟩
with S and s0 as before and δσ : S × S → [0, 1] with
δσ(s, s′) =

∑
a∈A σ(s)(a) · δ(s, a, s′) for all s, s′ ∈ S.

We associate with D=Mσ the probability space (ΩD(s0),

{
⋃

τ̂∈R Cyl(τ̂) | R ⊆ Ωfin
D (s0)},PrD(s0)) where the prob-

ability of the cylinder set of a finite path τ̂ = s0 . . . sn is
PrD(s0)(Cyl(τ̂)) =

∏n
i=1 δ(si−1, si). By PrD(s0, t) we de-

note the probability of reaching state t ∈ S from s0 in D.
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(a) MDP model. The only service provider action Provider appears
deterministically, thus the user has full strategy control.

state s
action a Apply Consult Quit Submit

s0 1 0 0 0
Error 0 0.2 0.8 0

Consultation 0 0 1 0
Rework 0 0 0.7 0.3

(b) Probability values σ(s)(a) of the impatient client strategy σ.

state s
action a Apply Consult Quit Submit

s0 1 0 0 0
Error 0 0.2 0.8 0

Consultation 0 0 1 0
Rework 0 0 0.14 0.86

(c) Counterfactual strategy σ∗ for the impatient client.

Figure 1: Running example of a loan application procedure.

Example 1. Figure 1a shows an MDP modelM of a loan ap-
plication procedure. Starting in s0, the client either directly
fills out an application or requests a consultation to increase
the probability of direct acceptance. However, when inde-
pendently filling out the application, there is a 5% chance to
make a mistake in the application, which requires a consulta-
tion to fix. If the application is not accepted directly, it can be
reworked before it is evaluated. The client may decide to quit
the application procedure after making a mistake in the form,
after the consultation, or if the application is not directly ac-
cepted. The behavior of the service provider is captured by
several occurrences of the Provider action.

The client’s goal is to receive a loan, i.e. reach the Re-
jected state with a probability of at most 20%. For an impa-
tient client who directly fills out the application using strategy
σ ∈ ΣM in Fig. 1b, the probability of reaching Rejected is
PrMσ (s0,Rejected) = 0.411.



2.2 Non-linear Optimization
Mixed Integer Quadratically Constrained Quadratic Prob-
lems (MIQCQPs) [Billionnet et al., 2016] are a class of non-
linear optimization problems, where the objective function
and the constraints are at most quadratic in variables with real
and integer domains. Formally, an MIQCQP has the form

min f0(x)
subject to fi(x) ≤ bi for i = 1, . . . ,m,

0 ≤ xj ≤ uj for xj ∈ VZ ∪ VR,
xj ∈ Z for xj ∈ VZ,
xj ∈ R for xj ∈ VR,

where m ∈ N is the number of constraints, x = (x1, . . . , xn)
are the variables divided into the sets VZ and VR of integer-
respectively real-valued variables, fi(x) = xTQix+ cTi x for
all i ∈ {0, . . . ,m} with symmetric matrices Qi ∈ Rn×n and
ci ∈ Rn. Bounds conform to the variable domains, i.e. uj ∈
Z for xj ∈ VZ, and uj ∈ R for xj ∈ VR. MIQCQPs are not
convex and in general hard to solve [Billionnet et al., 2016;
Garey and Johnson, 1979].

2.3 Counterfactual Explanations
Informally, counterfactual explanations answer the question
“If A were true, would C have been true?” by providing
a counterfactual antecedent A such that under its observa-
tion the counterfactual consequent C would have evaluated
to true [Balke and Pearl, 1994a]. Our notion of counter-
factual strategies echoes common formalizations in machine
learning [Russell, 2019; Mothilal et al., 2020; Guidotti, 2024;
Molnar, 2020], which typically define counterfactual expla-
nations as follows. For a set of classes C, a classifier f :
Rn → C, and an input x ∈ Rn, a counterfactual is a clos-
est input to x w.r.t. a distance measure d that yields a desired
class c ∈ C:

argmin
x′

d(x, x′) subject to f(x′) = c.

This basic formulation of counterfactuals requires x′ to be
close to the initial input x, to ensure that the changes sug-
gested by the counterfactual are realistic.1 Further properties
might be required for counterfactual explanations (see, e.g.,
the recent survey [Guidotti, 2024]). In the next section we
discuss some of them, and map them to the MDP setting.

3 Counterfactual Explanations for MDPs
In this section, we first discuss desired properties of coun-
terfactuals (as formalised in the machine learning literature)
and how they translate to MDPs. Based on these, we then in-
troduce our definition of counterfactual strategies for MDPs.
We refine our definition to account for different notions of
distances between the counterfactual strategy and the initial
strategy, while also extending the running example.

We consider the following four desired properties of coun-
terfactual explanations from machine learning (ML) [Gajcin
and Dusparic, 2024; Guidotti, 2024] and translate them to
MDPs:

1Note that if f(x) = c then x′ = x is a counterfactual.

• Validity: ML: The counterfactual does change the clas-
sification to the desired class, i.e. f(x′) = c. MDP:
Following the counterfactual strategy reduces the prob-
ability of reaching t below a given threshold.

• Proximity: ML: The distance between initial input and
counterfactual is minimal. MDP: The distance between
initial strategy and counterfactual strategy is minimal.

• Actionability: ML: Only features from a set of action-
able features are mutated. MDP: Only actions controlled
by the user are altered in the counterfactual strategy.

• Sparsity: ML: The number of changed features is mini-
mal. MDP: The number of actions changed in the coun-
terfactual strategy is minimal.

To define distance measures for strategies, for any two
strategies σ, σ′ ∈ Σ, let

d0(σ, σ
′) := ∥∆(σ, σ′)∥0

d1(σ, σ
′) := ∥∆(σ, σ′)∥1 / |S|

d∞(σ, σ′) := ∥∆(σ, σ′)∥∞
where |S| is the number of states. Here, d0 captures the
sparsity of the counterfactual by measuring the number of
states where a decision was changed, while d1 and d∞ ad-
dress proximity by measuring the average, respectively maxi-
mal, changes over all states between counterfactual and input
strategy.

A strategy distance measure forM is a function d : ΣM×
ΣM → R using some r0, r1, r∞ ∈ R to define d(σ, σ′) =
r0 ·d0(σ, σ′)+r1 ·d1(σ, σ′)+r∞ ·d∞(σ, σ′) for σ, σ′ ∈ ΣM.

Now we are ready to define counterfactual strategies for
MDPs.
Definition 1 (Counterfactual Strategy). Assume an MDP
M = (S,A, s0, δ), a strategy σ ∈ ΣM, a bound γ ∈ [0, 1],
and a target state t ∈ S such that PrMσ (s0, t) > γ. Let fur-
thermore d be a strategy distance measure forM. We call a
strategy σ∗ ∈ ΣM a counterfactual strategy to σ (under d for
reaching t within γ in M) if (i) PrMσ∗ (s0, t) ≤ γ and (ii)
d(σ, σ∗) ≤ d(σ, σ′) for all σ′ ∈ ΣM with PrMσ′ (s0, t) ≤ γ.
Example 2. Consider again the MDP M and the strategy
σ from Ex. 1 with strategy distance measure d(σ′, σ′′) :=
d0(σ

′, σ′′) + d1(σ
′, σ′′) + d∞(σ′, σ′′). Strategy σ∗ ∈ ΣM

from Fig. 1c is a counterfactual strategy to σ under d for
reaching Rejected within γ = 0.2 inM by asking the client
to continue after Rework.

To reduce computational cost, we also define ϵ-
counterfactual strategies by replacing the requirement of
smallest distance by the requirement of bounded distance.
Definition 2 (ϵ-Counterfactual Strategy). Assume an MDP
M = (S,A, s0, δ), a strategy σ ∈ ΣM, a bound γ ∈ [0, 1],
and a target state t ∈ S such that PrMσ (s0, t) > γ. Let
furthermore d be a strategy distance measure for M and
ϵ > 0. We call a strategy σ∗ ∈ ΣM an ϵ-counterfactual
strategy to σ (under d for reaching t within γ in M) if (i)
PrMσ∗ (s0, t) ≤ γ and (ii) d(σ, σ∗) ≤ ϵ.

In this paper we focus on counterfactual strategies, but our
methods can be easily adapted to ϵ-counterfactual strategies,



which need less computational effort because the optimality
criterion is dropped.
Example 3. Strategy σ∗ from Ex. 2 changes the decision
only in state Rework, thus ∆(σ, σ∗) = (0, 0, 0, 0.56). There-
fore, strategy σ∗ is a 0.56-counterfactual strategy under d∞,
0.14-counterfactual strategy under d1 and a 1-counterfactual
strategy under d0. Only all three measures combined reveal
an accurate picture of the changes required for adapting to
the counterfactual. Note that for ϵ < 0.51, there exists no
valid counterfactual strategy under d∞ for γ = 0.2.

4 Computing Counterfactual Strategies
We propose to generate counterfactual strategies σ∗ by solv-
ing non-linear optimization problems, minimizing the dis-
tance d(σ, σ′) = r0 ·d0(σ, σ′)+r1 ·d1(σ, σ′)+r∞ ·d∞(σ, σ′)
to the initial strategy σ over all strategies σ′ that reach the tar-
get state t with a probability below the given limit of γ:

argmin
σ′∈ΣM

d(σ, σ′) subject to PrMσ′ (s0, t) ≤ γ.

To formalize the above optimization problem in arithmetic
terms, we use for each s ∈ S and a ∈ A(s) the following real
variables: (1) psa to encode the probability σ′(s)(a) that in
the state s the counterfactual strategy σ′ chooses the action a;
(2) ps to encode the probability of reaching t from s inMσ′

;
(3) ∆s to encode ∆(σ(s), σ′(s)); (4) D▷◁ for ▷◁∈ {0, 1,∞}
to encode the distances d▷◁(σ, σ′). In addition, we introduce
for each state s an integer variable is ∈ {0, 1}, whose value is
1 iff σ and σ′ define different distributions at state s. For fixed
input MDPM = ⟨S,A, s0, δ⟩, state t, limit γ, strategy σ, and
real coefficients r0, r1 and r∞, the encoding is as follows:

min r0 ·D0 + r1 ·D1 + r∞ ·D∞ (1)

subject to

∀s ∈ S, a ∈ A(s) : 0 ≤ psa ≤ 1 (2)

∀s ∈ S :
∑

a∈A(s)

psa = 1 (3)

pt = 1 (4)
∀s ∈ S\Reach(t) : ps = 0 (5)
∀s ∈ Reach(t)\{t} : 0 ≤ ps ≤ 1 (6)

∀s ∈ Reach(t)\{t} : ps=
∑

a∈A(s)

∑
s′∈S

psa·δ(s, a, s′)·ps′ (7)

ps0 ≤ γ (8)

∀s ∈ S : ∆s =
1

2

∑
a∈A(s)

|σ(s)(a)9psa| (9)

∀s ∈ S : 0 ≤ is ≤ 1 ∧∆s ≤ is (10)

∀s ∈ S : D0 =
∑
s∈S

is (11)

D1 =
1

|S|
∑
s∈S

∆s (12)

∀s ∈ S : ∆s ≤ D∞ (13)

Here, Eq. (1) encodes the objective function value d(σ, σ′).
Constraints (2)-(3) encode psa as the probabilistic choices of

σ′. Constraints (4)-(7) use the Bellman equations for comput-
ing the probabilities to reach t from individual states, where
Reach(t) is the set of all states from which t is reachable (this
can be easily computed by graph analysis). Constraint (8) en-
forces that PrMσ′ (s0, t) ≤ γ. Finally, Constraints (9)-(13)
encode the distances d▷◁(σ, σ

′). Constraint 10 ensures that
a positive distance ∆s, indicating a difference between σ(s)
and σ′(s), enforces is = 1, and minimization will ensure is =
0 for ∆s = 0. Note that for the infinity norm, even though
Constraint 13 only encodes that D∞ is an upper bound on
the distribution distance ∆(σ(s), σ′(s)) for all s ∈ S, mini-
mizing the objective function will ensure that D∞ equals the
smallest such value (i.e. the maximum) over all states.

Note that the non-linearity of the problem stems from the
calculation of ps in Constraint (7), since we allow probabilis-
tic strategy decisions.

Let in the following P denote the MIQCQP optimization
problem defined by the Constraints (1)-(13).

Lemma 1. Assume a solution to P , assigning to each vari-
able v the value ν(v). Let σ′ be the strategy for M with
σ′(s)(a) = ν(psa) for all s ∈ S and a ∈ A(s). Then the
objective function value as specified in Constraint (1) equals
d(σ, σ′).

Proof sketch. We observe:

• ∆s = ∆(σ(s), σ′(s)) according to Constraint (9);

• D0 = d0(σ, σ
′) denotes the number of non-zero ele-

ments in ∆(σ, σ′), using the counting mechanism from
Eq. (10). The variables is indicate whether the entry ∆s

for s in ∆(σ, σ′) is non-zero. As ∆s ≤ 1 holds for all
s ∈ S, it follows that for is = 1 we have ∆s ≤ is. By
minimizing D0, each is is set to 1 if and only if ∆s ̸= 0.

• D1 = d1(σ, σ
′) denotes the average over ∆(σ, σ′).

• D∞ = d∞(σ, σ′) encodes the maximal entry
in ∆(σ, σ′): by limiting each element ∆s =
∆(σ(s), σ′(s)) from above by D∞ and by minimizing
D∞, D∞ is forced to be the maximum.

Thus, the value of the objective function (1) is per definition
d(σ, σ′).

Theorem 1 (Soundness and Completeness). P admits a so-
lution iff there exists a counterfactual strategy to σ (under d
for reaching t within γ inM).

Proof sketch. →. Let ν be a solution to P assigning to each
variable v the value ν(v). The values of the variables psa in-
duce a valid strategy σ′ ∈ Σ forM, with σ′(s)(a) = ν(psa)
for all s ∈ S and a ∈ A(s). By satisfying (8), σ′ satisfies
PrMσ′ (s0, t) ≤ γ. According to Lemma 1, the objective
function value is d(σ, σ′). As the solution minimizes the ob-
jective function value, there exists no strategy with smaller
distance. Hence, σ′ is a counterfactual strategy to σ (under d
for reaching t within γ inM).
←. Let σ′ ∈ Σ be a counterfactual strategy to σ. The

strategy can be extended to a solution for the optimization
problem by (1) encoding σ′ into variables psa = σ′(s)(a),
(2) computing reachability values for ps satisfying the Bell-
man optimality equation, (3) setting is = 1 iff any decision in



state s was changed, and (4) setting ∆s and the distance vari-
ables D0, D1 and D∞ accordingly. As σ′ is well-defined, all
constraints in P are satisfied, and from Definition 1 it follows
that σ′ minimizes d(σ, σ′).

The following theorem prohibits efficient, i.e. polynomial-
time, algorithms for solving the MIQCQP optimization prob-
lem for counterfactual strategies.

Theorem 2. The presented optimization problem for coun-
terfactual strategies is generally nonconvex.

Proof. Recall that an optimization problem is convex iff the
target function and all constraints are convex [Boyd and Van-
denberghe, 2004]. We show that the constraints of our opti-
mization problem are, in general, not convex by providing a
counterexample: Consider the MDP defined in Fig. 1a. The
quadratic constraint stemming from (7) for encoding ps0 can
be expressed as follows:

ps0 = ps0Apply · 0.95 · pApplication + ps0Apply · 0.05 · pError+

ps0Consult · 1 · pConsultation =
ps0Apply
pApplication
pError

ps0Consult
pConsultation


T


0 0.95
2 0 0 0

0.95
2 0 0.05

2 0 0
0 0.05

2 0 0 0
0 0 0 0 1

2
0 0 0 1

2 0


︸ ︷︷ ︸

Ps0


ps0Apply
pApplication
pError

ps0Consult
pConsultation



Our goal is now to check whether the function f : R5 → R
defined by f(x) = xTPs0x for x ∈ R5 is convex. Oberserve
that the Hessian of xTPs0x is 2Ps0 . The eigenvalues of 2Ps0

are −1, 1, −
√
362
20 ,

√
362
20 , and 0. As the matrix is symmetric

and has a negative eigenvalue, it is not positive semi-definite.
By the second-order condition of convexity [Boyd and Van-
denberghe, 2004], the constraint is thus not convex, and the
whole problem is neither.

Remark. We note that validity, actionability, proximity,
and sparsity are ensured by construction in our approach. Va-
lidity of counterfactual strategies requires that PrMσ (s0, t) ≤
γ, i.e. following the counterfactual strategy σ′ reduces the
chance of reaching t below the limit γ, ensured by Constraint
(8). Proximity minimizes the changes in the counterfactual
strategy σ′. The minimization of the strategy distance mea-
sure d ensures that σ′ is as close to σ as possible but yet satis-
fies PrMσ (s0, t) ≤ γ. Actionability of counterfactual strate-
gies follows from a valid MDP where only actually control-
lable features are controllable. Sparsity between initial strat-
egy σ and counterfactual strategy σ′ follows from minimizing
the strategy distance measure.

Diverse Counterfactual Strategies. A single counter-
factual strategy provides only a single alternative, e.g., for
recourse. However, recent work [Bove et al., 2023] has
shown that offering diverse counterfactuals demonstrating
different possibilities for recourse may improve the inter-
pretability of AI decisions. To this end, we extend our
method for computing an individual counterfactual strategy

to an iterative method where the nth counterfactual mini-
mizes the distance to the initial strategy while maximizing
the distance to all previously generated solutions.

We define the diversity of a collection of strategies
σ0, . . . , σn ∈ Σ as the determinant of the matrix of inverse
pairwise distances D ∈ Rn×n with Dij = 1

1+∥∆(σi,σ′
j)∥1

, as

done in [Mothilal et al., 2020].
Further, we adjust the objective function (1) to additionally

optimize for diversity:

min r0 ·D0 + r1 ·D1 + r∞ ·D∞ − λ · det(D).

To avoid ill-defined determinants, a small perturbation is
added to the diagonals. In comparison to [Mothilal et al.,
2020], we do not average the ∥ · ∥1 norm as each element is
smaller than 1 and we wish to maximize for diversity. The
parameter λ weights the diversity part of the target function.
In this work, we use r0 = r1 = r∞ = 1 and λ = 2 to
weight each distance component equally and to weight diver-
sity higher than distances.

To evaluate the diversity of counterfactual strategies, we
consider the fraction of novel state-action pairs introduced.
By this, a diverse counterfactual strategy contains many state-
action pairs not utilized in previously.

5 Experimental Evaluation
Our aim is to demonstrate that (1) counterfactual strategies
can be efficiently computed for complex sequential decision
processes and (2) diverse counterfactual strategies can be
generated. This is done by experiments Exp1 and Exp2, re-
spectively, conducted on complementary real-world datasets.

5.1 Experimental Design and Setup
In our experiments, we consider four real-world datasets.
GrepS records customer interaction with a programming skill
evaluation service [Kobialka et al., 2022]. BPIC12 [van Don-
gen, 2012] and BPIC17 [van Dongen, 2017], which record
the loan application procedure in a bank, stem from the Busi-
ness Process Intelligence Challenge2 of the IEEE Task Force
on Process Mining.3 MSSD is the Music Streaming Sessions
Dataset [Brost et al., 2019] from Spotify; we consider the
small version of MSSD, with 10 000 listening sessions.

We briefly outline the experimental setup (for further de-
tails, see the extended version [Kobialka et al., 2025]). After
standard preprocessing of the datasets, stochastic automata
learning [Mao et al., 2016] was used to generate the MDPs.
Given the size of the MSSD dataset, we construct 10 models
depending on the number of included traces; e.g., MSSD10
and MSSD40 include 10% and 40% of the data set, respec-
tively. For MSSD, the number of states in each model is dras-
tically higher than for the other datasets: already MSSD10
has on average 40 times more states than BPIC12 or BPIC17,
and a 100 times higher max degree. We randomly gener-
ate ten initial user strategies for each model and let the target
probability γ range over {0.0001} ∪ {0.1, 0.2, . . . , 1}, where
0.0001 represents near-perfect performance.

2https://www.tf-pm.org/competitions-awards/bpi-challenge
3https://www.tf-pm.org/

https://www.tf-pm.org/competitions-awards/bpi-challenge
https://www.tf-pm.org/


Figure 2: Runtime comparison.

Model mean(t) std(t) min(t) max(t) Opt. Inf. T.O.

Greps 0.01 0.01 0.01 0.05 90 20 0
BPIC12 0.79 0.94 0.04 4.24 110 0 0
BPIC17 1.00 1.06 0.01 5.01 100 10 0

Table 1: Averaged GrepS and BPIC runtime results in sec-
onds for computing counterfactual strategies.

5.2 Computing Counterfactual Strategies
In Exp1, we compute counterfactual strategies for all models,
showing that counterfactual strategies for models with thou-
sands of states and tens of thousands of transitions can be
computed within minutes.

Table 1 compares averaged computation times and out-
comes for all values of γ for GrepS, BPIC12 and BPIC17;
Opt. denotes optimally solved instances, Inf. infeasible in-
stances and T.O. timeouts. No computation took more than
a minute, e.g. for BPIC17 the longest computation took 5.01
seconds. The mean for all models is around one second.

Table 2 shows runtimes for the MSSD models; Sub.O.
denotes instances solved within the time limit, but not
necessarily optimally. While MSSD10–MSSD30 had few
timeouts, MSSD70–MSSD100 had 269–300 timeouts. Ta-
ble 3 shows individual results for sextiles S1 to S3 of γ; see
the full table in [Kobialka et al., 2025]. For all MSSD models
both trivial and infeasible problems are solved, see S1 and S3
in Table 3a. Figure 2 details runtimes for MSSD10–MSSD30
with γ ∈ [0.1, 0.5], highlighting the runtime peak for non-
trivial instances. The difficulty lies in computing non-trivial
counterfactual strategies around S2, where all non-trivial
models from MSSD50–MSSD100 timeout, see Table 3b.

The counterfactual strategies can be used to provide inter-
pretable recommendations to users, which is essential to en-
able users to follow the recourse suggested by the counterfac-
tual strategy. To this aim, counterfactual strategies are pre-
sented in a textual representation highlighting the suggested
changes. An example for two states of BPIC12 is given be-
low, where the client is asked not to cancel the loan offer after
receiving the first offer but to continue in the process:
State ‘negative’ is reached with probability 0.64.
You can reach ‘negative’ with probability 0.09 as follows:
In state ‘q9: A_CANCELLED’
increase probability of action ‘Nabellen offer.’ to 0.89

Model mean(t) std(t) min(t) max(t) Opt. Inf. T.O. Sub.O.

MSSD10 56.08 152.35 0.05 T.O. 710 388 2 0
MSSD20 195.77 453.00 0.10 T.O. 707 343 41 9
MSSD30 276.62 556.85 0.14 T.O. 703 320 60 17
MSSD40 412.96 718.68 0.18 T.O. 700 193 207 0
MSSD50 464.38 767.34 0.22 T.O. 700 149 251 0
MSSD60 483.53 788.52 0.24 T.O. 700 123 277 0
MSSD70 485.84 789.70 0.29 T.O. 700 131 269 0
MSSD80 493.91 799.60 0.33 T.O. 700 103 297 0
MSSD90 494.57 799.79 0.36 T.O. 700 100 300 0
MSSD100 494.39 799.90 0.39 T.O. 700 100 300 0

Table 2: MSSD runtime results in seconds for computing
counterfactual strategies.

decrease probability of action ‘negative’ to 0.07
In state ‘q27: Nabellen offer.#0’
increase probability of action ‘O_SENT_BACK’ to 0.81
decrease probability of action ‘negative’ to 0.0
decrease probability of action ‘O_CANCELLED’ to 0.0

We summarize our conclusions for Exp1: counterfactual
strategies can be efficiently computed for complex MDPs
with up to 10 000 states and 20 000 transitions; these models
are significantly larger than models used in current process
mining benchmarks but occur in, e.g., MSSD.

5.3 Diverse Counterfactuals
In Exp2, we generate a collection of diverse counterfactual
strategies for GrepS, BPIC12, and BPIC17 and compare the
distance between counterfactual strategies as well as the di-
versity of the counterfactual strategies. To evaluate diversity,
we investigate the fraction of novel state-action pairs, i.e., the
actions changed in a counterfactual strategy compared to the
initial strategy that were not changed in any previous one.

Figure 3 compares the distance between each generated
counterfactual strategy and the initial strategy (Fig. 3a), and
shows the fraction of novel state-action pairs in each strategy
(Fig. 3b). While the distance to the initial strategy varies only
slightly between consecutive counterfactual strategies, each
provides novel recourse strategies. Intermediate values of γ
offer the largest range of diversity for counterfactual explana-
tions. The individual distances to the initial strategy and the
fraction of novel state-action pairs increase with γ, until the
problem is trivially satisfied, see [Kobialka et al., 2025].

We summarize our conclusions for Exp2: diverse counter-
factual strategies can be efficiently computed for the bench-
mark problems considered. The diverse counterfactual strate-
gies introduce new recourse possibilities while remaining at
a short distance to the initial strategy, comparable to the dis-
tance of the first counterfactual strategy.

6 Related Work
We discuss related work with respect to stochastic counter-
factuals, model repair and synthesis. Balke and Pearl discuss
stochastic evaluations of counterfactual queries in their sem-
inal work [Balke and Pearl, 1994b]. Since then, much work
on counterfactual explanations has been published, summa-
rized by Guidotti [Guidotti, 2024]. An adaptation for predic-
tive business process monitoring was presented with LOR-



S1 (0, 0.17] S2 (0.17, 0.33] S3 (0.33, 0.5]
Model Opt. Inf. T.O. Sub. Opt. Inf. T.O. Sub. Opt. Inf. T.O. Sub.

MSSD10 0 200 0 0 10 188 2 0 200 0 0 0
MSSD20 0 200 0 0 7 143 41 9 200 0 0 0
MSSD30 0 200 0 0 3 120 60 17 200 0 0 0
MSSD40 0 187 13 0 0 6 194 0 200 0 0 0
MSSD50 0 149 51 0 0 0 200 0 200 0 0 0
MSSD60 0 123 77 0 0 0 200 0 200 0 0 0
MSSD70 0 131 69 0 0 0 200 0 200 0 0 0
MSSD80 0 103 97 0 0 0 200 0 200 0 0 0
MSSD90 0 100 100 0 0 0 200 0 200 0 0 0
MSSD100 0 100 100 0 0 0 200 0 200 0 0 0

(a) Categorical results by sextile.

S1 (0, 0.17] S2 (0.17, 0.33] S3 (0.33, 0.5]
Model mean(t) std(t) min(t) max(t) mean(t) std(t) min(t) max(t) mean(t) std(t) min(t) max(t)

MSSD10 39 40 0 128 266 267 73 T.O. 1 0 1 2
MSSD20 92 114 0 684 978 603 126 T.O. 2 0 1 4
MSSD30 159 167 0 567 1352 495 335 T.O. 3 1 2 5
MSSD40 468 585 0 T.O. 1793 59 1144 T.O. 3 1 2 7
MSSD50 743 796 0 T.O. T.O. 0 T.O. T.O. 3 1 2 6
MSSD60 847 865 0 T.O. T.O. 0 T.O. T.O. 3 1 2 8
MSSD70 858 867 0 T.O. T.O. 0 T.O. T.O. 4 1 3 7
MSSD80 899 901 0 T.O. T.O. 0 T.O. T.O. 5 1 3 13
MSSD90 900 902 0 T.O. T.O. 0 T.O. T.O. 6 1 3 12
MSSD100 900 902 0 T.O. T.O. 0 T.O. T.O. 5 1 4 12

(b) Runtime results by sextile, rounded to seconds.

Table 3: MSSD results for selected sextiles of γ.

(a) Boxplot over distances from three diverse counter-
factual strategies to the initial strategy.

(b) Boxplot showing novel state-action fractions for
three diverse counterfactual strategies.

Figure 3: Results for diverse counterfactual strategies.

LEY [Huang et al., 2021]. Notably, MDPs in combination
with causal models have been adapted for counterfactual rea-
soning [Tsirtsis et al., 2021; Kazemi et al., 2024]. In this line
of work, the authors define the transition probabilities of the
MDP via structural causal models and then search for a coun-
terfactual path that only diverges in k actions from the given
path. In contrast, our work does not assume causal knowl-
edge. We further define counterfactuals over strategies, as
opposed to paths in the MDP.

Although both model repair and counterfactuals start with
a model and a violated property, these problems aim for dif-
ferent solutions. Model repair considers the problem of ad-

justing a model to satisfy a desired property [Bartocci et
al., 2011; Chatzieleftheriou and Katsaros, 2018; Chen et al.,
2013; Pathak et al., 2015]. In contrast, counterfactual strate-
gies do not aim to adjust the underlying model, but rather
to propose behavior changes to the user (thus, the transition
probabilities of the model remain unchanged).

Recent work on model synthesis for parametric MDPs
consider transition probabilities expressed as functions over
variables. In this setting, one searches for a parameter val-
uation such that a given property is satisfied under every
strategy [Cubuktepe et al., 2017; Cubuktepe et al., 2018;
Cubuktepe et al., 2021]. In contrast, our work starts from a
fully specified model and a strategy, and we search for a min-
imal change of the strategy that satisfies the given property.

7 Conclusion
In this work, we introduced counterfactual strategies for
Markov decision processes as post-hoc explanations for se-
quential decision-making tasks. We presented an optimiza-
tion approach for computing counterfactual strategies and ex-
tended it to also optimize for diversity. In extensive experi-
ments on four real-world datasets, we evaluated the genera-
tion of diverse counterfactual strategies, showing that coun-
terfactual strategies can be generated within minutes for mod-
els significantly larger than current Process Mining bench-
marks.

Our work opens several interesting avenues for future
work. First, we plan to investigate the complexity of gen-
erating counterfactual strategies further, as well as techniques
to further reduce the runtime of our approach. Approxima-
tions of the optimization problem, such as those based on lin-
earization, e.g., [Cubuktepe et al., 2021], promise to reduce
the computation time while producing local optimal strate-
gies. Second, it would be interesting to study the problem of
generating counterfactual strategies for scenarios where the
environment (e.g., the service provider) adapts to counterfac-
tual changes. This will require generalizing our counterfac-
tual strategies from MDPs to Stochastic Games, thus requir-
ing novel theoretical investigations. Finally, it would be in-
teresting to investigate whether our counterfactual strategies
result in realistic recourse behaviors, e.g. by measuring sim-
ilarity to those witnessed in our dataset or by running user
studies.
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