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Improved autonomy in robotic systems is needed for innovation in, e.g., the marine sector. Autonomous robots
that are let loose in hazardous environments, such as underwater, need to handle uncertainties that stem from
both their environment and internal state. While self-adaptation is crucial to cope with these uncertainties,
bad decisions may cause the robot to get lost or even to cause severe environmental damage. Autonomous,
self-adaptive robots that operate in uncontrolled environments full of uncertainties need to be reliable! Since
these uncertainties are hard to replicate in test deployments, we need methods to formally analyse self-adaptive
robots operating in uncontrolled environments. In this paper, we show how feature-oriented techniques can
be used to formally model and analyse self-adaptive robotic systems in the presence of such uncertainties.
Self-adaptive systems can be organised as two-layered systems with a managed subsystem handling the
domain concerns and a managing subsystem implementing the adaptation logic. We consider a case study
of an autonomous underwater vehicle (AUV) for pipeline inspection, in which the managed subsystem of
the AUV is modelled as a family of systems, where each family member corresponds to a valid configuration
of the AUV which can be seen as an operating mode of the AUV’s behaviour. The managing subsystem
of the AUV is modelled as a control layer that is capable of dynamically switching between such valid
configurations, depending on both environmental and internal uncertainties. These uncertainties are captured
in a probabilistic and highly configurable model. Our modelling approach allows us to exploit powerful
formal methods for feature-oriented systems, which we illustrate by analysing safety properties, energy
consumption, and multi-objective properties, as well as performing parameter synthesis to analyse to what
extent environmental conditions affect the AUV. The case study is realised in the probabilistic feature-oriented
modelling language and verification tool ProFeat, and in particular exploits family-based probabilistic and
parametric model checking.

CCS Concepts: • Software and its engineering → Software product lines; Formal methods; Model
checking; • Computer systems organization→ Embedded and cyber-physical systems; Robotics; •
Mathematics of computing→ Probabilistic representations; • Theory of computation→ Verification
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1 INTRODUCTION
More than 70 percent of the surface of Earth is covered in water. The blue economy, which includes
expanding sectors such as marine energy, bio-industry and food production, water desalination,
mining, underwater construction and ecosystem monitoring, is crucially dependent on underwater
vehicles that are able to operate in environments that are inaccessible or hostile to humans. The
sustained growth of the blue economy and control of undesirable environmental impacts essentially
depends on two factors: increased autonomy in underwater robotics and reliability of underwater
operations, as control shifts from human operators to the robots themselves, expanding their range
of activities. However, this growth is slowed down by a gap between what the underwater robotics
industry delivers today and the required level of autonomy and reliability. While there is currently
a significant push towards increased autonomy, many underwater robots are still controlled by
human operators at the mission level. The need for human operators significantly increases cost and
restricts the activities in which underwater robots can engage. Due to low bandwidth underwater,
such control goes via cable between the underwater robot and the operator on land or on ship.
For autonomous mission control in underwater robotics, a particular challenge stems from the

environments in which the robots operate. Generally, these environments are not fully understood
and may be subject to change, potentially causing surprises for the robot. For example, a robot
performing underwater pipeline inspection may need to change how it performs its mission because
of unexpected underwater currents, reduced water visibility, or even a landslide. One approach to
dealing with such environments is through self-adaptation [87]. Self-adaptation enables the robots
to autonomously adapt their mission-level control strategies to the environment in which they
operate—during the mission itself. Enabling robots to adapt in this way provides several advantages.
Self-adaptive mission control expands the range of scenarios in which the robots are able to operate,
resulting in a higher level of autonomy. Self-adaptive mission control has been realised in, e.g.,
Metacontrol [55], in which control strategies can be manipulated by activating, deactivating or
adjusting them on the fly; MROS [17] implements Metacontrol for the Robot Operating System
(ROS) [74].

Let us briefly recall how a self-adaptive system (SAS) can be realised using a two-layered
architecture which decomposes the system into a managed and a managing subsystem [61], see
Figure 1. The managed subsystem deals with the domain concerns and tries to reach the goals
set by the system’s user, e.g., navigating a robot to a specific location. The managing subsystem
handles the adaptation concerns and defines an adaptation logic that specifies a strategy on how
the system can fulfil the goals under uncertainty [87], e.g., adapting to changing environmental
conditions. While the managed subsystem may affect the environment via its actions, the managing
subsystem monitors the environment and the internal state of the managed subsystem. By using
the adaptation logic, the managing subsystem decides whether and which changes are needed and
adapts the managed subsystem accordingly.
Unless done in the right way, autonomous controllers for underwater vehicles can potentially

be both damaging and expensive, as vehicles may get lost and even, in the worst case, cause harm
to installations or the marine environment. However, it is cumbersome to validate new designs
for autonomous mission-level control of underwater vehicles in situ: vehicles may get lost during
validation and only a few real-life scenarios get tested in practice. To address this problem, it is useful
to validate the mission control in simulation. This leads to the emergence of configurable simulators
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that target the mission control layer of robotic software stacks. Using simulation scenarios, the
autonomous mission control layer of the underwater robot can be tested and validated much more
efficiently. Simulators, such as the open-source exemplars UNDERSEA [45] and SUAVE [76], allow
scenarios for mission-level control to be tested and compared in simulation, based on a realistic robot
software stack, and enable the comparison of different strategies for autonomous mission control.

Managed Subsystem 
(domain concerns)

monitor

Managing Subsystem 
(adaptation logic)

monitor adapt

Self-Adaptive System

Environment

monitor effect

Fig. 1. The architecture of a two-layered
SAS with a mangaged subsystem imple-
menting the application logic and a manag-
ing subsystem implementing the adaptation
logic ([69])

However, testing and validation might not be enough
to assure the system operators that the autonomous
robots will operate as desired. Therefore, in addition to
testing and validation, rigorous analysis techniques such
as model checking [5] are often applied in industry [7]
to help provide safety guarantees for these and other
(mission-critical) systems even in the presence of uncer-
tainties. Our work considers analysis techniques for au-
tonomous underwater robots, based on model checking,
and complements simulation-based validation techniques
for autonomous underwater vehicles (AUVs). Specifically,
our goal in this paper is to model and analyse a case study
of mission control for an AUV, realised as a two-layered
self-adaptive system which was taken from the exemplar
SUAVE. To this aim, we organise the adaptation space
of the self-adaptive system as a reconfiguration problem, using feature-oriented modelling tech-
niques [22, 23]. The functionalities of the managed subsystem of the AUV are modelled in a feature
model, making the dependencies and requirements between the components of the AUV explicit.
The behaviour of the managed subsystem is modelled as a featured Markov decision process, i.e.,
a probabilistic transition system were feature-guarded transitions can only be taken in a system
configuration with matching features. Thus, the managed subsystem of the AUV is modelled
as a family of systems whose family members correspond to valid feature configurations which
can be understood as modes of operation of the AUV. As the behaviour of the AUV depends on
environmental and internal conditions, which are both hard to control, we opted for a probabilistic
model in which uncontrolled events, like a thruster failure, occur with given probabilities. We
model the behaviour of themanaging subsystem as a control layer that switches between the feature
configurations of the managed subsystem according to input from the probabilistic environment
model and the managed subsystem. In our case study, we consider an abstract version of an AUV,
focusing on core functionalities of the AUV with limited features and variability. The resulting
model can be refined and extended in several ways depending on the necessary degree of realism to
verify specific requirements. Finally, we model the environment as a probabilistic transition system
which abstracts from the real environments in which AUVs operate, yet captures essential aspects
of changes in the environment that can affect the behaviour of the AUV.
The analysis of the resulting model considers five different aspects: (1) safety guarantees con-

cerning a mission’s duration and energy usage that can be used for the deployment of the AUV;
(2) safety guarantees concerning unsafe states; (3) the impact of different environments on the
safety guarantees; (4) parameter synthesis to analyse to what extent environmental conditions affect
the AUV; and (5) trade-offs between mission duration and energy usage. Together, the analyses
provide a good indication of the feasibility of model checking as a viable technique to analyse AUVs.
The case study is modelled in ProFeat [23], a tool for probabilistic family-based model checking,
which provides a means to simultaneously model check, in a single run, properties of all different
configurations in a family model [83]. The analysis of the model was carried out in the backends
for ProFeat, in PRISM [62] and Storm [54], depending on the analysed properties. We close the
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paper with a discussion about the suitability of family-based modelling techniques for analysing
self-adaptive systems such as AUVs, and the relation of these techniques to dynamic software
product lines (SPLs) [14, 33, 40, 49, 81].

Contribution. This paper is an extension of the conference publication by Päßler et al. [69] and
the related artefact [70], recently published as an original software publication [68], which used
techniques from SPLs to model and analyse the case study of a self-adaptive AUV as a two-layered
system, providing the following contributions:

• a case study of an SAS from the underwater robotics domain, modelled as a probabilistic
feature-guarded transition system with dynamic feature switching [69];

• automated verification of (quantitative) properties that are important for roboticists, using
family-based analysis [69];

• a configurable software model of a dynamic SPL, reflecting the self-adaptive AUV [68, 70].
In more detail, this extended version of the work additionally provides the following contributions:

• enabling more variants of the case study which can include another environment and an AUV
that can operate at more altitudes (see Section 4), enabling analysis of how the environment
and the number of possible altitudes influence the analysis results;

• extending the analysis with
– an analysis of how the number of possible altitudes influences the analysis results using
PRISM (see Sections 5.2 and 5.3),

– an analysis of how the environments influence the analysis results using PRISM experiments
(see Section 5.4),

– an analysis of how the probability of currents influences the analysis results using para-
metric model checking with Storm (see Section 5.5), and

– multi-objective queries where we explore achievability, numerical and Pareto queries using
Storm (see Section 5.6);

• a discussion about the suitability of using SPL techniques and tools for modelling and
analysing SASs (see Section 7.1).

To the best of our knowledge, we are the first to showcase the applicability of feature-oriented
verification using Storm and performing parameter synthesis.

Outline. Section 2 presents the case study of pipeline inspection with an AUV, setting up the
context of the SAS analysed in this article. The analysis technique of family-based model checking
and a brief account on (dynamic) SPLs and ProFeat is provided in Section 3. Section 4 explains
both the behaviour of the managed and managing subsystem of the AUV and the environment, as
well as their implementation in ProFeat. Section 5 presents quantitative analyses conducted on the
case study, involving the tools ProFeat, PRISM, and Storm. Section 6 summarises related work and
Section 7 discusses our results and ideas for future work.

2 CASE STUDY: PIPELINE INSPECTION BY AUV
In this section, we introduce the case study of this article, an AUV used for pipeline inspection. The
case study is inspired by the case study of the exemplar SUAVE [76]. In SUAVE, the AUV has been
implemented in a simulator using ROS2 [66] to enable the comparison of different self-adaptation
strategies, i.e., different implementations of a managing subsystem. The full SUAVE model would
clearly exceed the limits when turning towards a formal analysis. We hence abstracted the case
study to its essential characteristics, aiming towards verification of the core functionalities and
self-adaptivity of the AUV in various exemplary environments.
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As within the SUAVE case study, an AUV has the mission to first find and then follow and
inspect a pipeline located on a seabed. For moving in different directions, the AUV has several
thrusters. All thrusters are needed for a reliable operation of the AUV, however, thruster failures are
possible. Furthermore, the AUV can operate at different altitudes, where a higher altitude provides
a wider field of view and thus increases the AUV’s chances of finding the pipeline. We assume that
switching between altitudes increases the energy consumption. The only aspect of the environment
considered in this case study is the water visibility: it reflects the maximum distance at which the
AUV can perceive objects; we assume that it changes probabilistically during runtime, e.g., due
to currents that swirl up the seabed. By assuming probabilistic behaviour of the environment, we
assume to have partial knowledge of the environment which is in line with the fact that it is in
general difficult to understand.

The AUV’s operation is influenced by thruster failures, the water visibility, and its tasks (searching
for the pipeline and following it). When a thruster fails, the AUV starts drifting off its intended
path and the thruster has to be restarted before the AUV can continue its mission. Thruster failures
are more likely at a lower altitude because seaweed might wrap around the thrusters. If a thruster
failure happens while following the pipeline and the AUV drifts too much off its path, the pipeline
can be lost and the AUV needs to search for it again. The water visibility determines the maximum
altitude at which the AUV can perceive the seabed, and thus the maximum altitude at which it can
operate. The higher the visibility, the higher the maximum possible operational altitude. The task
determines whether the AUV switches between altitudes or stays at one altitude. When following
the pipeline, the AUV does not benefit from a wider field of view and should thus operate at the
lowest possible altitude to keep the energy consumption low by not switching between altitudes.
However, when searching for the pipeline, the AUV can operate at every altitude.
As in SUAVE, the AUV is separated into a managed and a managing subsystem. The managed

subsystem is responsible for searching for and following the pipeline. It has different configurations
that consist of a task and an altitude where a configuration can be understood as a mode of
operation of the AUV. Thus, the managed subsystem can in fact be seen as a family of systems
where each family member corresponds to a system configuration. The managing subsystem
chooses a configuration of the managed subsystem depending on the current task and the water
visibility. When following the pipeline, the lowest possible altitude is chosen to decrease the energy
consumption. When searching for the pipeline, a higher altitude is preferred because it increases
the probability of finding the pipeline and it decreases the probability of a thruster failure. However,
the altitudes at which the AUV can operate are determined by the water visibility. The higher the
visibility, the higher the maximum operational altitude. Considering, e.g., three possible altitudes
at which the AUV can operate, the managed subsystem consists of four family members: one
family member for searching at each possible altitude and one for following the pipeline at the
lowest altitude. The managing subsystem switches between the first three during the search for
the pipeline depending on the current water visibility and activates the last one when the pipeline
should be followed. Note that, unlike in SUAVE, we assume that thruster failures are handled by
the managed subsystem and not the managing subsystem.
In this article, we present an extension of the first formal modelling of the AUV case study

by Päßler et al. [69]. While the original case study only considered three possible altitudes, we
additionally provide a setting with five altitudes to invest the impact of a more fine-grained
implementation of adaptation by the managing subsystem. These settings are hereafter referred to
as the three-altitudes case study and the five-altitudes case study, respectively; SUAVE corresponds
to the three-altitudes case study.
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3 SOFTWARE PRODUCT LINES AND FAMILY-BASED MODEL CHECKING
Software product line (SPL) engineering concerns the management of commonality and variability,
usually defined in terms of core and optional features, across families of software products [1, 29, 71].
There exist many different definitions of what constitutes a feature [27], ranging from “an increment
in product functionality” [6] to the approach adopted in this paper, namely “anything users or client
programs might want to control about a concept is a feature” [32, Chapter 4: Feature Modeling].
Selected features provide a feature configuration, from which those that give rise to an actual
software product are collected in a set of valid configurations. Such sets of valid configurations
are commonly modelled in a variability or feature model, most prominently using structures
such as feature diagrams [59] (see, e.g., [12, 82] for surveys). The actual behaviour of software
products to be deployed can be modelled choosing annotative [26], compositional [80], or hybrid
approaches [40, 60]. In annotative approaches, the behaviour of the whole SPL is modelled in one
behavioural model where parts of behaviour are annotated by features, specifying the behaviour of
the products containing this feature. Compositional approaches specify the behaviour of each single
feature in an isolated feature module, and the feature modules are then composed to determine the
behaviour of the software product. In this paper, we opt for a hybrid approach, where the behaviour
of (sets of) features is modelled in feature modules that may also contain feature guarded behaviour
to specify feature interactions or fine-grained variability [40].
Since the number of potential software products is exponential in the number of features, the

analysis of SPLs is a challenging task [83]. Many different analysis approaches for SPLs have been
proposed using model checking [28], static analysis [8], theorem proving [84], or testing [16]. A
one-by-one analysis, investigating every product in isolation, easily becomes infeasible. Hence,
when giving a behavioural model of the SPL, an all-in-one analysis is to be preferred, where the
behaviour of all products is modelled in a family model and analysed in a single analysis step [26].
As products of an SPL typically share a large amount of features and behaviour, this family model
can usually be compactly represented and analysed by exploiting symbolic representations and
analysis techniques [25]. In this paper, we consider the SPL model-checking problem, which was
first recognised in the seminal paper of [28]. It generalises the classical model-checking problem
as follows: given a logic formula 𝜑 , determine for every valid configuration whether 𝜑 is satisfied
(and provide a counterexample for each configuration not satisfying 𝜑). The straightforward one-
by-one approach to solve this problem is by product-based model checking, applying classical model
checking to each of the products in the SPL. Family-based model checking implements an all-in-one
approach where all products of a family model, modelling the combined behaviour of all products,
are simultaneously checked [83]. The answer to the SPL model-checking problem is obtained by
projecting the results gained from the family model to single configurations. This approach is also
well-suited for analysing reliability or other quantitative aspects of SPLs through family-based
probabilistic model checking [11, 42]. Another dimension where the use of family models for SPLs
excels is in modelling and analysing dynamic SPLs where feature configurations can be switched
during runtime [49, 51]. Such reconfigurations can be modelled in a similar way as modelling
actual behaviour in feature modules, leading to feature controllers where each feature corresponds
to a variable of the module (see, e.g., [40]). As a family model contains the behaviour of all valid
feature configurations, a feature controller can select the possible behaviour of the current feature
configuration within the family model during runtime, and change between the behaviours of the
products.
The tool ProFeat1 [23] implements this kind of analysis for dynamic SPLs through choosing a

hybrid modelling approach combined with family-based probabilistic model checking. Thereby, all

1https://pchrszon.github.io/profeat
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possible products and reconfigurations between products can be analysed in one run. In particular,
ProFeat provides a means to model probabilistic system families in an intuitive specification
language as well as perform family-based quantitative analysis on them. It extends the probabilistic
model checker PRISM2 [62] with functionalities such as family models, feature modules, and the
feature controller. Technically, ProFeat performs a translation of the feature-oriented model to
PRISM’s input language, which is then analysed with family-based probabilistic model checking.
Hence, all of the analysis capabilities of PRISM carry over to ProFeat as well. Further, note that
this translational approach also enables the use of other analysis tools supporting PRISM’s input
language, e.g., the state-of-the-art probabilistic model checker Storm [54]. The translation ensures
feature-specific properties such as reconfigurationwithin the valid configurations and respecting the
rules for reconfiguration. Analysis results from the model checkers are translated back automatically
in a feature-aware representation, including compact symbolic representations through decision
diagrams [23].

4 FEATURE-ORIENTED MODELLING OF THE AUV CASE STUDY
In this section, we show that feature-oriented modelling is well-suited to formally specify the
structure and behaviour of the AUV case study. First, we observe that the formal model to describe
the behaviour of the AUV has to support quantitative aspects such as failure probabilities, time,
and energy consumption. Hence, probabilistic feature-oriented modelling approaches [11, 42] have
to be preferred compared to non-probabilistic ones [10, 26]. Further, the managing subsystem
has to be able to switch between configurations of the managed subsystem such that dynamic
reconfigurations are supported as well [11, 23, 85]. Due to the clear separation of concerns between
behaviour of features and the reconfiguration component, we decided to model the case study with
the probabilistic feature-oriented engineering framework ProFeat.

Similar to an SAS, a ProFeat model can be seen as a two-layered model, as illustrated in Figure 1.
The behaviour of a family of systems that differ in their features, such as the managed subsystem of
an SAS, can be specified. Then a so-called feature controller can activate and deactivate the features
during runtime, and thus change the behaviour of the system, such as the managing subsystem of
an SAS that changes the configuration of the managed subsystem. Furthermore, the environment
can be specified as a separate module that interacts with the managed and managing subsystem.
Thus, ProFeat is well suited to model and analyse the case study described in Section 2.

Technically, a ProFeat model consists of three parts: an obligatory feature model that specifies
features and their relations and constraints, obligatory modules that specify the behaviour of the
features, and an optional feature controller that activates or deactivates features. This structure is
also reflected in our implementation of the two case study variants in ProFeat.3
Both pipeline inspection case studies ultimately specify a Markov decision process, i.e., a state-

based operational model that includes non-deterministic and probabilistic state transitions. The
probabilities and parameters used in our model are estimates and have not been validated by
experiments. This article aims to show the practical feasibility of using feature-oriented modelling
for quantitative SAS verification, not to model a realistic AUV. More realistic values can be obtained
by doing experiments with a real AUV and by consulting domain experts and are left for future
work.

In this section, we follow the modelling structure of the two case study variants in ProFeat. First,
we introduce the feature-oriented view of the case study along with its implementation as a feature
model in Section 4.1. Then we explain the behaviour of the managing subsystem, i.e., how the

2https://www.prismmodelchecker.org/manual
3The models are publicly available [67].
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navigation

high lowmed search

pipeline inspection

follow

robot
mandatory feature

exclusive or

requires

medhigh lowmed

Fig. 2. Feature model of the five-altitudes model; the three-altitudes model does not contain the features
with a grey background

managing subsystem switches between valid feature configurations of the feature model, and its
implementation as a feature controller in ProFeat in Section 4.2. Lastly, we describe the behaviour
of the managed subsystem and the environment as well as their implementation as modules in
ProFeat in Sections 4.3 and 4.4, respectively. For each of the modelling components, we describe
both case studies by focusing on the three-altitudes case study and explaining the additions for the
five-altitudes case study.

4.1 The Feature Model
Feature-Oriented View of the Case Study. The important characteristics of the managed subsystem

for self-adaptation are the tasks of the AUV and the possible altitudes. Thus, we consider them to
be the AUV’s features. The features corresponding to the tasks of the AUV are called search and
follow, and the features corresponding to the possible altitudes are called low, med (for medium),
and high in the three-altitudes case study with additional features lowmed and medhigh in the
five-altitudes case study. The basis for feature-oriented modelling is the so-called feature model
that abstractly relates how features can be combined, i.e., which activation of features yields a
valid configuration of the system. Feature diagrams [1, 59] constitute the standard feature model
formalism. They hierarchically structure features to specify the high-level dependencies between
the features. Specifically, an activation of a subfeature implies the activation of its parent feature. To
create a feature model for the AUV case study, the altitude features are considered to be subfeatures
of the feature navigation, the task features to be subfeatures of the feature pipeline inspection,
in both cases connected by an exclusive or relation, and navigation and pipeline inspection are
considered to be mandatory subfeatures of the root feature robot. Furthermore, since following the
pipeline requires a low altitude, the feature follow is connected to the feature low with a requires
relationship. The resulting feature model can be seen in Figure 2 where the feature model of the
three-altitudes case study does not contain the features with the grey background.

Each configuration of the AUV contains the features robot, navigation, and pipeline_inspection as
well as exactly one sub-feature for navigation and one for pipeline inspection, while moreover the
feature follow requires the feature low. This yields four different configurations of the managed
subsystem of the AUV in the three-altitudes case study (one including the leaf features search
and high, one including search and med, one including search and low, and the last one including
follow and low) and two additional configurations in the five-altitudes case study (one including
the leaf features search and medhigh and including one search and lowmed). Therefore, the valid
configurations of the three-altitudes case study are the following (where the leaf features are
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displayed in bold font):

{robot, navigation, pipeline_inspection, search, high}, {robot, navigation, pipeline_inspection, search,med},
{robot, navigation, pipeline_inspection, search, low}, {robot, navigation, pipeline_inspection, follow, low}.

The five-altitudes case study includes the following configurations in addition to those of the
three-altitudes case study:

{robot, navigation, pipeline_inspection, search,medhigh}, {robot, navigation, pipeline_inspection, search, lowmed}.

By differentiating between configurations depending on the selected features, distinct behaviour of
the AUV can be specified depending on the configuration as described in Section 4.3.

The ProFeat Implementation of the Feature Model. We show how the feature model of the case
study is expressed in ProFeat, including connections and constraints among features. Each feature
is specified within a feature . . . endfeature block, and the declaration of the root feature is done in
a root feature . . . endfeature block. An excerpt of the implementation of the root feature of the
pipeline inspection case study according to Figure 2 is displayed in Listing 1. The root feature
can be decomposed into subfeatures; in this case, in only one, the subfeature robot, see Line 2.
The all of keyword indicates that all subfeatures have to be included in the feature configuration
if the parent feature, in this case the root feature, is included. It is, e.g., also possible to use the
one of keyword if exactly one subfeature has to be included, see Line 2 of Listing 2. The modules
modelling the behaviour of the root feature are specified after the keyword modules. In our case
studies, the root feature is the only feature specifying modules, thus, the behaviour of all features
is modelled in the modules auv and environment described in Sections 4.3 and 4.4, respectively.

Contrary to an ordinary feature model, ProFeat allows to specify feature-specific rewards in the
declaration of a feature. Reward structures allow to annotate quantitative measures to behaviour and
can be interpreted in various ways. Reward structures whose aim is to be reduced are implementing
costs such as energy or time. Differently, reward structures with favourable properties usually
have an objective to be increased, such as utility, successfully transferred packages, points earned,
or alike. Each reward structure is encapsulated in a rewards . . . endrewards block. In the three-
altitudes case study, we consider the rewards time and energy_3alt, see Lines 4–18 of Listing 1.
Additionally to these rewards, the five-altitudes case study contains the reward energy_5alt, see
Lines 19–28. During each transition the AUV module takes, the reward time is increased by 1; it is
a transition-based reward, see Line 5. We assume that one time step corresponds to one minute,
allowing us to compute an estimate of a mission’s duration. The energy rewards are state-based
rewards, which are gained when entering a state. We distinguish between the one that takes all
states of the three-altitudes model into account (energy_3alt), and the one that additionally gives
rewards to the states of the five-altitudes model (energy_5alt).

Both energy rewards can be used to estimate the necessary battery level for mission completion.
Since the reward energy_3alt does not take all states of the five-altitudes model into account, using
it with the five-altitudes model is only done to compare the two models. In both reward structures,
a reward of two energy units is given if a thruster of the AUV failed and needs to be recovered,
see, e.g., Line 9. Furthermore, switching between the search altitudes requires significant energy.
Since the altitude is switched if the AUV is in a search state and a navigation subfeature that does
not correspond to the current search altitude is active, a higher energy reward is given in these
states. The given energy reward corresponds to the number of switched altitude levels. For example,
if the AUV needs to switch between high and low, lowmed, med, or medhigh altitude, a reward
of 4, 3, 2, or 1 energy units, respectively, is given (see Lines 13, 24, 14, or 23, respectively). The
reward energy_3alt only contains rewards for the switches between low, med, and high, whereas
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1 root feature
2 a l l o f r obo t ;
3 modules auv , env i ronment ;
4 rewards " t ime "
5 [ s t ep ] t r u e : 1 ;
6 endrewards
7 rewards " e n e r g y _ 3 a l t "
8 / / C o s t s f o r b e i n g i n a r e c o v e r y s t a t e o f t h e t h r e e − a l t i t u d e s model
9 ( s = r e c o v e r _h i gh ) : 2 ;
10 / / . . om i t t e d c od e . .
11

12 / / C o s t s f o r s w i t c h i n g a l t i t u d e s low −med− h igh
13 ( s = s ea r ch_h igh ) & a c t i v e ( low ) : 4 ;
14 ( s = s ea r ch_h igh ) & a c t i v e (med ) : 2 ;
15 ( s = found ) & a c t i v e ( h igh ) : 4 ;
16 ( s = found ) & a c t i v e (med ) : 2 ;
17 / / . . om i t t e d c od e . .
18 endrewards
19 rewards " e n e r g y _ 5 a l t "
20 / / . . om i t t e d c od e . .
21

22 / / C o s t s f o r s w i t c h i n g a l t i t u d e s low − lowmed −med−medhigh − h igh
23 ( s = s ea r ch_h igh ) & a c t i v e ( medhigh ) : 1 ;
24 ( s = s ea r ch_h igh ) & a c t i v e ( lowmed ) : 3 ;
25 ( s = found ) & a c t i v e ( medhigh ) : 3 ;
26 ( s = found ) & a c t i v e ( lowmed ) : 1 ;
27 / / . . om i t t e d c od e . .
28 endfeature

Listing 1. An excerpt of the declaration of the root feature of the five-altitudes model; the root feature of the
three-altitudes model does not contain the reward energy_5alt

1 feature na v i g a t i o n
2 one o f low , lowmed , med , medhigh , h igh ;
3 i n i t i a l c o n s t r a i n t a c t i v e ( low ) ;
4 endfeature
Listing 2. The declaration of the navigation feature of the five-altitudes model; the navigation feature in the
three-altitudes model does not contain the features lowmed and medhigh

the reward energy_5alt contains all possible switches. Since the altitude must be changed to low

once the pipeline has been found, these cases also receive an energy reward as explained above,
see Lines 15–16 and 25–26. All other states receive an energy reward of 1, where the reward
energy_3alt only assigns rewards to states of the three-altitudes model. We use the function active

to determine which feature is active, i.e., included in the current feature configuration; given a
feature, the function returns true if it is active and false otherwise.

The remainder of the feature model is implemented similarly to the root feature, but the features
do not contain feature-specific modules or rewards. The features are implemented and named
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Fig. 3. The behaviour of themanaging subsystem of the AUV in the three-altitudes case study ([69]); transition
guards are written in black, actions in grey following a vertical bar; actions reflect the activated features,
conflicting features are deactivated; by (de)activating features, transitions of the managed subsystem are
(de)activated

according to the feature model in Figure 2. To have only one initial state, we initialise the model with
the features search and low active, using the keyword initial constraint, see Line 3 of Listing 2.
As an example of the implementation of another feature, the declaration of the feature navigation

of the five-altitudes model can be seen in Listing 2.

4.2 The Managing Subsystem
The Behavioural Model of the Managing Subsystem. The managing subsystem implements the

AUV’s adaptation logic. Here, adaptation during runtime is achieved by switching between the
different configurations of the managed subsystem, activating and deactivating the subfeatures
of navigation and pipeline inspection. Note that adaptations have to adhere to the feature model
in Figure 2, i.e., the resulting feature configuration has to be valid. By switching between the
configurations of the managed subsystem, the managing subsystem enables different behaviour.

The behaviour of the managing subsystem in the three-altitudes model is displayed in Figure 3.
The grey area of the figure includes the transitions that can be taken during the search for the
pipeline, and the white area the transitions once the pipeline has been found. Each transition
contains a guard, written in black, and an action, written in grey after a vertical bar. The managing
subsystem of the five-altitudes model contains two more states, search altitude lowmed and search
altitude medhigh, as well as transitions from these states to each other and to all states in Figure 3.
The actions on these transitions follow the same pattern as in Figure 3 and the guards are assigned
as described below and shown in Table 1.
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Table 1. The possible altitudes for different water visibilities in the five-altitudes case study, where the water
visibility reflects the maximum distance at which the AUV can perceive objects

Possible Altitude
water visibility (wv) low lowmed med medhigh high
wv < lowmed_visib ✓ ✗ ✗ ✗ ✗
lowmed_visib ≤ wv < med_visib ✓ ✓ ✗ ✗ ✗
med_visib ≤ wv < medhigh_visib ✓ ✓ ✓ ✗ ✗
medhigh_visib ≤ wv < high_visib ✓ ✓ ✓ ✓ ✗
high_visib ≤ wv ✓ ✓ ✓ ✓ ✓

During the search for the pipeline, i.e., when the feature search is active, reflected in the grey area
of Figure 3 (plus the states search altitude lowmed and search altitude medhigh and their transitions
in the five-altitudes model), the managing subsystem activates and deactivates the subfeatures
of navigation according to the current water visibility (which reflects the maximum distance at
which the AUV can perceive objects). To do so, thresholds lowmed_visib, med_visib, medhigh_visib,
and high_visib that depend on the environment that the AUV operates in are introduced. In the
three-altitudes case study, only low can be activated if the water visibility is below med_visib, both
low and med can be activated if it is between med_visib and high_visib, and all of them can be
activated if it is above high_visib. In the five-altitudes case study, the possible altitudes for different
water visibilities can be found in Table 1. In Figure 3, the activated feature is displayed in grey on
the transition, implicitly the other subfeatures of navigation and pipeline_inspection are deactivated.
Note that the transitions in the grey area implicitly carry the guard s != found, i.e., the AUV is not
in the state found, because they represent the transitions during the search for the pipeline. This
guard was omitted for better readability.
Once the pipeline has been found, i.e., the managed subsystem is in the state found, one of

the transitions in the white area (plus the transitions from search altitude lowmed and search
altitude medhigh to following in the five-altitudes model), guarded by 𝑠 = found, is taken. These
transitions include the action of activating low and follow, and thus deactivating the other navigation
subfeatures and search. When the AUV loses the pipeline, i.e., it is in the state lost pipe, the managing
subsystem activates search and deactivates follow. Since the AUV is following the pipeline at a low
altitude, the AUV will start searching at a low altitude.

The Implementation of the Managing Subsystem in ProFeat. As usual in the PRISM input language
and thus in ProFeat as well, behaviour is specified in modules, containing a set of probabilistic
guarded commands of the following form:

[action] guard -> prob_1: update_1 + ... + prob_n: update_n;

A command may have an optional label action to annotate it or to synchronise with other modules.
In PRISM, the guard is a predicate over global and local variables of the model, which can also
come from other modules. ProFeat extends the capability of guards to also support a predicate
active that yields whether a given feature is active or not. If the guard is true, then the system state
is changed with probability prob_i using update_i for all 𝑖 . An update describes how the system
should perform a transition by giving new values for variables, either directly or as a function
using other variables. To model feature switches, ProFeat provides a specific module, called feature
controller, that specifies commands over features. Through keywords activate and deactivate, the
feature controller can activate and deactivate features in the update of a command. Several features
can be activated and deactivated simultaneously. If the resulting feature configuration does not
adhere to the feature model, then ProFeat blocks this transition.
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1 formula l owmed_v i s ib = ( 4 ∗ min_v i s i b +max_v i s i b ) / 5 ;
2 formula med_v i s i b = ( 3 ∗ min_v i s i b +2 ∗ max_v i s i b ) / 5 ;
3 formula medh igh_v i s i b = ( 2 ∗ min_v i s i b +3 ∗ max_v i s i b ) / 5 ;
4 formula h i g h _ v i s i b = ( m in_ v i s i b +4 ∗ max_v i s i b ) / 5 ;
5

6 cont ro l l e r
7 / / Change a l t i t u d e d ep end ing on wa t e r v i s i b i l i t y
8 [ s t ep ] ( s ! = found ) & a c t i v e ( s ea r ch ) & wa t e r _ v i s i b < med_v i s i b
9 −> a c t i v a t e ( low ) & d e a c t i v a t e ( h igh ) & d e a c t i v a t e (med ) ;
10 [ s t ep ] ( s ! = found ) & a c t i v e ( s ea r ch )
11 & med_v i s ib <= wa t e r _ v i s i b & wa t e r _ v i s i b < h i g h _ v i s i b
12 −> a c t i v a t e ( low ) & d e a c t i v a t e (med ) & d e a c t i v a t e ( h igh ) ;
13 [ s t ep ] ( s ! = found ) & a c t i v e ( s ea r ch )
14 & med_v i s ib <= wa t e r _ v i s i b & wa t e r _ v i s i b < h i g h _ v i s i b
15 −> a c t i v a t e (med ) & d e a c t i v a t e ( low ) & d e a c t i v a t e ( h igh ) ;
16 / / . . om i t t e d c od e . .
17

18 / / Sw i t c h t a s k from " s e a r c h " t o " f o l l o w "
19 [ s t ep ] ( s = found ) & a c t i v e ( s ea r ch )
20 −> d e a c t i v a t e ( s ea r ch ) & a c t i v a t e ( f o l l ow ) & a c t i v a t e ( low )
21 & d e a c t i v a t e (med ) & d e a c t i v a t e ( h igh ) ;
22

23 / / Sw i t c h t a s k from " f o l l o w " t o " s e a r c h "
24 [ s t ep ] ( s = l o s t _ p i p e ) & a c t i v e ( f o l l ow )
25 −> d e a c t i v a t e ( f o l l ow ) & a c t i v a t e ( s ea r ch ) ;
26

27 / / Enab l e t r a n s i t i o n s when f o l l o w i n g t h e p i p e l i n e
28 [ s t ep ] ( s ! = l o s t _ p i p e ) & a c t i v e ( f o l l ow ) −> t r u e ;
29 endcontrol ler

Listing 3. An excerpt of the ProFeat feature controller of the three-altitudes model

Due to its close correspondence, the managing subsystem of the AUV is implemented as a feature
controller in ProFeat. In the pipeline inspection case study, subfeatures of navigation (i.e., the
different altitudes at which the AUV can operate) and subfeatures of pipeline_inspection (i.e.,
the tasks the robot has to fulfil) can be switched by the feature controller during runtime, see
Listing 3 for an excerpt of the three-altitudes feature controller. The feature controller of the five-
altitudes model is implemented similarly, respecting the restrictions in Table 1. We will describe the
implementation of the three-altitudes model here, briefly highlighting additions in the five-altitudes
model in brackets.

When the feature search is active and the pipeline has not been found yet, the feature controller
activates and deactivates the altitudes non-deterministically, but according to the current water
visibility, as described before. Whether or not the pipeline has been found is reflected in the state s

of the managed subsystem (as described in Section 4.3) which the feature controller accesses. The
minimum and maximum water visibility can be set by the user during design time and influence the
altitudes associated with the features low, med and high (plus lowmed and medhigh in the five-altitudes
model); i.e., it influences when the feature controller is able to switch features. To reflect this, the
variables med_visib and high_visib are declared as in Lines 2 and 4 (plus the variables lowmed_visib
and medhigh_visib in Lines 1 and 3 in the five-altitudes model). A formula in PRISM and ProFeat
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can be used to assign an identifier to an expression. If the water visibility is less than med_visib, the
feature controller activates the feature low (see Lines 8–9) because the AUV cannot perceive the
seabed from a higher altitude. The variable water_visib reflects the current water visibility and is
declared in the environment module which also updates this variable, see Section 4.4. If the water
visibility is between med_visib and high_visib, the feature controller chooses non-deterministically
between low and med (see Lines 10–15), whereas it chooses non-deterministically between all three
altitudes if the water visibility is above high_visib. (In the five-altitudes model, it activates the
features non-deterministically according to Table 1.) Note that it is also possible to deactivate or
activate a feature if it is already inactive or active, respectively. The computation of med_visib and
high_visib is different from the one in our previous paper to align the three and five-altitudes
models.

When the pipeline is found, i.e., the managed subsystem is in state found, the feature controller
activates the feature follow and deactivates search, see Lines 19–21. Since the AUV should be at a
low altitude while following the pipeline, the feature controller also deactivates the features high
and med (plus lowmed and medhigh in the five-altitudes model) and activates low. If the AUV lost the
pipeline, i.e., the managed subsystem is in state lost_pipe, the feature controller deactivates follow
and activates search to start the search for the pipeline, see Lines 24–25.
The feature controller synchronises with the auv and environment modules via the action label

step. Since all transitions of the modules and feature controller have the same action label, they can
only execute a transition if there is a transition with a guard evaluating to true in both modules and
in the feature controller. Thus, the feature controller needs to include a transition doing nothing
if the feature follow is active and the AUV is not in state lost_pipe, see Line 28.

Let us reflect on technical details how ProFeat ensures a sound encoding of the SAS into PRISM
models. During the translation of the ProFeat model into the PRISM language, features are expressed
by standard PRISM variables in the feature controller module, where the value of the variable
reflects whether the feature is active or inactive. To ensure that the system adapts only within valid
configurations, ProFeat automatically includes several constraints into guards and updates of PRISM
commands. The constraints on valid feature configurations are added as guards to every command
in the feature controller and to the initial state expression of the model. Further, these constraints
are also incorporated into the potential updates of the feature controller (for details, see [23]). For
every feature module, guards of commands are extended by the corresponding feature to be active,
while an additional unblocking command is added that is only enabled if the corresponding feature
is inactive (for proofs of this translation to be sound, we refer to [40, 41]). These transformations
ensure that the SAS is always in a valid configuration during runtime, even when adapting to
changing environments.

4.3 The Managed Subsystem
The Behavioural Model of the Managed Subsystem. The behaviour of the managed subsystem of

the AUV is described as a featured Markov decision process (fMDP) [41, 42]. Here, each transition
results from a guarded command comprising a feature guard and a state guard on the state variables
of the system. A transition can be taken if and only if both the feature guard is fulfilled in the
current configuration of the managed subsystem and the state guard is fulfilled by the current
values of the state variables. The possible configuration switches done by the managing subsystem
can resolve the feature guards, leading to an MDP where features are encoded into the state-space
of the system [42]. Figure 4 depicts such an MDP for the AUV in the three-altitudes setting, where
some details have been omitted to avoid cluttering (in particular, all probabilities). The details
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Fig. 4. The behaviour of the configurations of the managed subsystem and the switches between config-
urations in the three-altitudes case study ([69]); transitions with a feature annotation are guarded by the
respective feature; transitions without annotation are not guarded by features; blue transitions are enabled
by a feature (de)activation of the managing subsystem; black transitions are taken if the managing subsystem
did not (de)activate features; probabilities are omitted for better readability

can be obtained from the publicly available model.4 The five-altitudes model contains four more
states, search_lowmed, and search_medhigh together with their respective recovery states and the
transitions following the same pattern as in the three-altitudes model, which is further explained
below. The probabilistic model allows to easily model the possibilities of, e.g., finding and losing
the pipeline depending on the system configuration.
The MDP consists of the behaviour of the configurations of the manged subsystem together

with the switches between the configurations induced by the managing subsystem. Therefore,
we distinguish between two kinds of transitions in Figure 4: black transitions that model the
behaviour of a certain configuration of the managed subsystem and blue transitions that switch
between configurations, enabled by the managing subsystem during runtime. The labels search,
follow, low, med, and high on the transitions represent the features that have to be active to execute
the respective transition, i.e., they represent the feature guard. The blue transitions between
configurations implicitly carry the action to start the task or go to the altitude specified by the
feature associated with the transition.

The behaviour of one configuration, i.e., the behaviour associated to a set of features 𝐹 compliant
with the feature model, is modelled by the projection of the MDP on the sub-MDP containing only
features in 𝐹 . More concretely, it is modelled by the MDP consisting of all black transitions with
feature guards satisfied by 𝐹 and the states that these transitions connect. Consider for example

4The models are publicly available [67].
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the configuration with the features robot, navigation, pipeline_inspection, low, and search. Then the
behaviour of this configuration is represented by the states start_task, search_low with its associated
recovery state, and found as well as the transitions between them and the self-loops of search_low
and its recovery state. Hence, the behaviour of the MDP corresponding to this configuration consists
of the AUV starting its task search and going to the state search_low where it remains until either a
failure occurs and it goes to the associated failure state, or until it finds the pipeline and transitions
to the state found and then again to start_task.
The managing subsystem can switch between configurations (and thus change behaviour) by

activating another subfeature of navigation during the search for the pipeline, or by activating
another subfeature of pipeline_inspection if the pipeline was found or lost, reflected by the states
found and lost pipe of the managed subsystem. These switches between configurations are reflected
by the blue transitions in Figure 4. Consider for example the same configuration as before which
consists of the features robot, navigation, pipeline_inspection, low, and search. Then the managing
subsystem can activate another subfeature of navigation during the search of the pipeline, i.e., in the
state search_low which implies deactivating the feature low. If this happens, the black transitions
within the current configuration cannot be taken anymore because the feature low is inactive. Only
the blue transition with the newly activated navigation subfeature to a new configuration can be
taken. If, for example, the feature med has been activated, the blue transition from search_low to
search_med will be taken which implicitly carries the action to go to a medium altitude.
The behaviour of the AUV can then be described as follows. At deployment time, i.e., in state

start task, the AUV can either immediately start following the pipeline if it was deployed above it,
indicated by the feature follow in the initial configuration, or start searching for it, indicated by the
feature search in the initial configuration. During the search for the pipeline, i.e., when the AUV is
in the grey area labelled search, the managing subsystem might switch between the subfeatures of
navigation during a transition as described in Section 4.2 which causes a configuration change of
the managed subsystem, reflected by taking a blue transition. If the managing subsystem does not
switch between configurations, then the AUV keeps searching for the pipeline, it transitions to a
thruster failure state to repair its broken thrusters, or it finds the pipeline and transitions to the
state found. Once the pipeline has been found, the AUV transitions to the state start_task again.
As described in Section 4.2, the managing subsystem deactivates the feature search during this
transition and activates the feature follow. When the AUV is following the pipeline, i.e., in the
grey area labelled follow, it can also lose the pipeline again, transitioning to the state lost_pipe,
e.g., because of sand covering the pipeline or because the AUV drifted off its path due to thruster
failures. In this case, the managing subsystem activates the feature search during the transition
from lost_pipe to start_task (see Section 4.2) such that the AUV will start its search again.

Additionally to the states and transitions displayed in Figure 4, the five-altitudes model contains
the states search lowmed and search medhigh with their respective recovery states. The states follow
the same pattern as the ones of the three-altitudes model: the search states are connected with
configuration changing (blue) transitions to the other search states, guarded by the corresponding
feature, and they contain a self-loop and a transition to their respective recovery state, guarded
by their respective feature (black transitions). The recovery states each contain a self-loop and a
(black) transition back to the corresponding search state.

The ProFeat Implementation of the Managed Subsystem. In ProFeat, each feature can be imple-
mented by several feature modules, each comprising a set of guarded probabilistic commands (see
Section 4.2). We encapsulate the behaviour of the managed subsystem of the AUV in a module
auv. Feature modules in ProFeat can exhibit guards in commands that include the function active,
evaluating to true if the corresponding feature is active. To this end, configuration-dependent
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1 module auv
2 s : [ 0 . . 1 2 ] i n i t s t a r t _ t a s k ;
3 d_ insp : [ 0 . . i n s p e c t ] i n i t 0 ;
4 t _ f a i l e d : [ 0 . . i n f l _ t f ] i n i t 0 ;
5

6 / / To t h e c o r r e c t t a s k
7 [ s t ep ] ( s = s t a r t _ t a s k & a c t i v e ( s ea r ch ) ) −> 1 : ( s ' = s t a r t _ s e a r c h ) ;
8 [ s t ep ] ( s = s t a r t _ t a s k & a c t i v e ( f o l l ow ) ) −> 1 : ( s ' = f o l l ow i n g ) ;
9

10 / / . . om i t t e d c od e . .
11 / / From s e a r c h s t a t e t o a n o t h e r s t a t e
12 [ s t ep ] ( s = s ea r ch_h igh & a c t i v e ( h igh ) )
13 −> 0 . 5 9 : ( s ' = found )
14 + 0 . 4 : ( s ' = sea r ch_h igh )
15 + 0 . 0 1 : ( s ' = r e c o v e r _h i gh ) ;
16 [ s t ep ] ( s = s ea r ch_h igh & a c t i v e (med ) ) −> 1 : ( s ' = search_med ) ;
17 [ s t ep ] ( s = s ea r ch_h igh & a c t i v e ( low ) ) −> 1 : ( s ' = sea rch_ low ) ;
18 / / . . om i t t e d c od e . .
19

20 / / Go t o o t h e r t a s k i f p i p e l i n e i s f ound
21 [ s t ep ] ( s = found ) −> 1 : ( s ' = s t a r t _ t a s k ) ;
22

23 / / F o l l ow i n g t h e p i p e l i n e
24 [ s t ep ] ( s = f o l l ow i n g ) & ( d_insp < i n s p e c t ) & ( t _ f a i l e d =0 )
25 −> 0 . 9 2 : ( s ' = f o l l ow i n g ) & ( d_insp ' = d_ insp +1 )
26 + 0 . 0 5 : ( s ' = l o s t _ p i p e )
27 + 0 . 0 3 : ( s ' = r e c o v e r _ f o l l ow i n g )
28 & ( t _ f a i l e d ' = ( t _ f a i l e d < i n f l _ t f ? t _ f a i l e d +1 : t _ f a i l e d ) ) ;
29 [ s t ep ] ( s = f o l l ow i n g ) & ( d_insp < i n s p e c t ) & ( t _ f a i l e d >0 )
30 −> 0 . 9 2 ∗ ( 1 − t _ f a i l e d / i n f l _ t f ) : ( s ' = f o l l ow i n g )
31 & ( d_insp ' = d_ insp +1 ) & ( t _ f a i l e d ' = t _ f a i l e d −1 )
32 + 0 . 0 5 ∗ ( 1 + ( ( 0 . 9 2 ∗ t _ f a i l e d ) / ( 0 . 0 5 ∗ i n f l _ t f ) ) ) : ( s ' = l o s t _ p i p e )
33 + 0 . 0 3 : ( s ' = r e c o v e r _ f o l l ow i n g )
34 & ( t _ f a i l e d ' = ( t _ f a i l e d < i n f l _ t f ? t _ f a i l e d +1 : t _ f a i l e d ) ) ;
35 [ s t ep ] ( s = f o l l ow i n g ) & ( d_ insp = i n s p e c t ) −> ( s ' = done ) ;
36

37 / / L o s t t h e p i p e l i n e
38 [ s t ep ] ( s = l o s t _ p i p e ) −> 1 : ( s ' = s t a r t _ t a s k ) & ( t _ f a i l e d ' = 0 ) ;
39

40 / / R e c o v e r y s t a t e s
41 [ s t ep ] ( s = r e c o v e r _h i gh ) −> 0 . 5 : ( s ' = r e c o v e r _h i gh ) + 0 . 5 : ( s ' = sea r ch_h igh )

;
42 / / . . om i t t e d c od e . .
43 endmodule

Listing 4. An excerpt of the ProFeat AUV module of the case study

behaviour can easily be specified in feature modules. Figure 4 shows the behavior of the module
together with feature switches through the feature controller for the three-altitudes model and with
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the additional states in the five-altitudes model as described before. In this section, we will describe
the implementation of the three-altitudes model (see Listing 4 for an excerpt). As in Section 4.2, the
additions for the five-altitudes model as described above are briefly introduced in brackets.
As in Figure 4, there are thirteen enumerated states (seventeen in the five-altitudes model) in

the ProFeat module with names that correspond to the state labels in the figure. The recovery
states are named according to the state they are connected to (e.g., the recovery state connected
to search_high is called recover_high). The variable s in Line 2 in Listing 4 represents the current
state of the AUV and is initialised using the keyword init with the state start_task. To record how
many meters of the pipeline have already been inspected, the variable d_insp in Line 3 represents
the distance of the pipeline that the AUV has already inspected, it is initialised with 0. The variable
inspect represents the desired inspection length and it can be set by the user during design time.
Since the number of times a thruster failed impacts how much the AUV deviates from its path,
the variable t_failed can be increased if a thruster fails while the AUV follows the pipeline. It is
bounded by the influence a thruster failure can have on the system (infl_tf) that can be set by the
user during design time.

As an example for the use of the active keyword, consider the command in Lines 12–15, which
can be read as follows. If the system is in state search_high and the feature high is active, then with
a probability of 0.59, the system changes its state to found, with a probability of 0.4 it changes to
search_high and with a probability of 0.01 it changes to recover_high. These are exactly the black
transitions shown in Figure 4 exiting from state search high. This command also has an action
label, step. Using this action label, it synchronises with the environment module and the feature
controller. The blue transitions exiting state search high in Figure 4 are modelled in Lines 16–17
(in the five-altitudes model, additional transitions to the states search_lowmed and search_medhigh

with the respective guards are added). If the model is in state search_high, but the feature low or
med is active, indicating that the AUV should go to the respective altitude, then the state is changed
to the respective search state. The transitions exiting the states search_med and search_low are
modelled similarly (as well as the transitions existing the states search_lowmed and search_medhigh

in the five-altitudes model). However, the probability of going to the state found is highest from
state search_high and lowest from search_low because the AUV has a wider field of view when
performing the search at a higher altitude. Furthermore, the probability of a thruster failure, i.e., of
going to the respective recover state, is highest in state search_low and lowest in state search_high
because the probability of seaweed getting stuck in the thrusters is higher at a lower altitude. If the
AUV found the pipeline, then a transition to start_task is taken, see Line 21.

From the state start_task, a transition to either start_search or following can be taken, de-
pending on which subfeature of pipeline_inspection is currently active, see Lines 7–8.
From the following state, the transitions that can be taken depend on the variables d_insp and

t_failed. Lines 24–28 consider the case where the distance of the pipeline that has already been
inspected (d_insp) is less than the distance the pipeline should be inspected (inspect) and the
variable t_failed is 0, indicating that there were no recent thruster failures. Then the AUV stays
in the following state and inspects the pipeline one more meter, it loses the pipeline, or a thruster
fails and it transitions to the failure state and increases t_failed if t_failed is not at its maximum.
Lines 29–34 consider the case where d_insp is less than inspect and t_failed is greater than 0. In
this case, the probabilities of following and of losing the pipeline depend on the value of t_failed.
The bigger the value, the more likely it is to lose the pipeline because it indicates that the AUV’s
thrusters did not work for some time, causing it to drift off its path. If the already inspected distance
is equal to the required inspection distance, the AUV transitions to the done state (see Line 35)
and finishes the pipeline inspection. If the AUV lost the pipeline (see Line 38), then a transition to
start_task is taken and the variable t_failed is set to 0 again.
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Fig. 5. The behaviour of the environment (modified from [69]); the probabilities of increasing and decreasing
water visibility (inc_prob and dec_prob, respectively) can be used to model different behaviour of the
environment; the minimum and maximum visibility depend on where (in which kind of water conditions) the
AUV is deployed

When the AUV is in a recovery state, it can either stay there for another time step or exit it again
to the state from where the recovery was triggered (see Line 41).
All commands in the module auv are labelled with step. Thus, every transition receives a time

reward of 1, i.e., the time advances with every transition the AUV takes, see Lines 4–6 of Listing 1.

4.4 The Environment
The Behavioural Model of the Environment. The only parameter of the environment we consider

in our model is the water visibility. We model it with a value that we assume to be bounded by a
minimum and a maximum visibility that depend on where the AUV is deployed and can be set by
the user during design time. We assume that changes in the water visibilty occur probabilistically
with a probability of currents which also depends on the place of deployment of the AUV and can be
set by the user during design time. Thereby, we reflect the uncertainty about how the environment
will behave. We used two different behavioural models for the environment, a symmetric and an
asymmetric one. Their behaviour is depicted in Figure 5, where inc_prob denotes the probability of
an increasing water visibility and dec_prob the probability of a decreasing water visibility. With the
asymmetric behaviour of the environment, the water visibility decreases by 1 with the probability
of currents cp, i.e., dec_prob=cp, while it stays the same or increases by 1 with probability (1-cp)/2,
i.e., inc_prob=(1-cp)/2. If the water visibility is already at the minimum visibility, the water visibility
stays the same with probability (1+cp)/2 = 1-inc_prob and, at maximum visibility, it stays the same
with probability 1-cp = 1-dec_prob. With the symmetric behaviour, we set inc_prob=dec_prob=cp and
calculate the cases for minimum and maximum visibility as shown in Figure 5. . The focus of this
paper is on modelling and verifying an abstract variant of the AUV, not prioritising a realistic model.
Therefore, we chose two simple environment behaviours to analyse if and how the environment
can influence the behaviour of the AUV. The environment model can easily be enhanced with
more realistic specifications. Instantiating the values of minimal and maximal visibility as well as
probability of currents of the environment together with selecting a desired length of pipeline that
should be inspected provides scenarios which we will use for analysis, see Section 5.1.

The Implementation of the Environment in ProFeat. The environment is modelled in a separate
environment module, see Listing 5. The variable water_visib in Line 2 reflects the current water
visibility and is initialised parametrically, depending on the minimum and maximum visibility. The
function round() is pre-implemented in the PRISM language and rounds to the nearest integer. The
environment module synchronises with the AUV module via the label of its action, step. Since the
guard of the only action in the environment module is true, the environment executes a transition
every time the AUV module does. By decoupling the environment module from the AUV module,
we obtain a separation of concerns which makes it easier to change the model of the environment
if needed.
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1 module env i ronment
2 wa t e r _ v i s i b : [ m in_ v i s i b . . max_v i s i b ] i n i t round ( ( max_v i s ib −min_v i s i b )

/ 2 ) ;
3 [ s t ep ] t r u e −> dec_prob : ( wa t e r _ v i s i b ' =
4 ( w a t e r _ v i s i b =m in_ v i s i b ? m in_v i s i b : wa t e r _ v i s i b −1 ) )
5 + inc_p rob : ( wa t e r _ v i s i b ' =
6 ( w a t e r _ v i s i b =max_v i s i b ? max_v i s i b : w a t e r _ v i s i b +1 ) )
7 + ( 1 − ( dec_prob+ in c_p rob ) ) : t r u e ;
8 endmodule
Listing 5. The ProFeat environment module of the case study, where the variables dec_prob and inc_prob
have to be instantiated to model different behaviours of the enviornment

For the asymmetric environment, the variables for increasing and decreasing the water visi-
bility are instantiated as inc_prob=(1-current_prob)/2 and dec_prob=current_prob whereas for
the symmetric environment these variables are instantiated as inc_prob=dec_prob=current_prob/2
where current_prob is the variable reflecting the probability of currents.

5 ANALYSIS
ProFeat automatically converts models to the PRISM input language for quantitative analysis, e.g.,
by statistical or probabilistic model checking. To analyse a PRISMmodel, properties can be specified
in the PRISM property specification language, which includes several probabilistic temporal logics
like PCTL [53], CSL [3], or probabilistic LTL [4]. For family-based analysis, ProFeat extends this
specification language to include properties depending on feature selection through the keyword
active.5

Themodel translated into the PRISM input and property specification language can be interpreted
by various (probabilistic) model checking tools. In our experiments, we report on analyses with
PRISM and Storm 6 [54], depending on the properties to be investigated. Since PRISM works well
together with ProFeat, we used it whenever possible. However, for parametric model checking and
multi-objective reasoning, Storm is considered as the state-of-the-art [35, 58], providing in general
better functionality and performance. We thus opted to use Storm for parameter synthesis and
multi-objective reasoning experiments (see reporting in Sections 5.5 and 5.6).
In our analysis, we used the standard settings for both PRISM and Storm. For the parametric

analysis with Storm, the chosen parameters are reported in the respective section. All experiments
were conducted on a MacBook Pro with an Apple M1 chip and 16GB memory.

The analysis of the model considered five different aspects: (1) the rewards time, energy_3alt
and energy_5alt were used to compute safety guarantees that can be used for the deployment of
the AUV using PRISM, see Section 5.2; (2) reachability of safe/unsafe states was analysed using
PRISM, see Section 5.3; (3) we analysed how the different environments introduced in Section 4.4
influence the analysis results using PRISM, see Section 5.4; (4) minimal and maximal rewards with
unspecified probability of currents were computed to determine the possible range of the rewards
using Storm, see Section 5.5; (5) finally, we analysed trade-off properties between the time and
energy rewards using Storm in Section 5.6. Note that it is not necessary to analyse whether the
model satisfies the constraints of the feature model because ProFeat automatically ensures this. Of

5ProFeat constructs within PRISM properties are specified using bracketing ${...} to ensure a well-formed translation to
the PRISM property specification language.
6https://www.stormchecker.org/index.html
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course, a more complex analysis can be done in addition to the analyses presented in this paper.
Our intention in this section is to give a taste of possible analyses that demonstrate the feasibility
and applicability of our approach.

5.1 Parameter Setup for the Scenarios
The operators used for analysis in this paper are P and R, which reason about probabilities of events
and about expected rewards, respectively. Since we use Markov decision processes (which involve
non-determinism), these operators must be further specified to ask for the minimum or maximum
probability and minimum or maximum expected cost, respectively, for all possible resolutions of
non-determinism.
In our analyses, we used four different scenarios, two of them with an undefined value for the

probability of currents. The values used in these scenarios are reported in Table 2. Scenario 1 is in
the North Sea, where the minimum and maximum water visibility (in 0.5 meter units) is relatively
low and the probability of currents is relatively high. In this case, only 10 meters of the pipeline
have to be inspected. Scenario 2 is in the Caribbean Sea with a higher minimum and maximum
visibility and a lower probability of currents compared to the North Sea, as well as 30 meters of
pipeline that have to be inspected. Scenarios 3 and 4, are parametric versions of Scenarios 1 and 2,
respectively. That is, they are the North Sea and the Caribbean Sea scenarios, where the value of
the variable current_prob is left unspecified. We use Scenarios 3 and 4 for the parametric analyses
in Sections 5.4 and 5.5 and Scenarios 1 and 2 for the other analyses.
The probability of currents of the scenario influences how the water visibility changes. The

probabilities for an increasing, decreasing or stagnant water visibility in Scenarios 1 and 2 with
symmetric and asymmetric environments are listed in Table 3. It can be seen that with the symmetric
environment, staying at the same water visibility has by far the highest probability in Scenario 2
while the difference between increasing/decreasing and staying at the same water visibility is
much smaller in Scenario 1. With the asymmetric environment, however, the situation is reversed.
Here, decreasing the water visibility has a much higher probability than increasing or stagnating
in Scenario 1, while the difference between the probabilities is very small in Scenario 2, with the
probability of an increasing or stagnant water visibility being a bit higher than the probability of
decreasing.
Furthermore, the minimum and maximum visibilities of the scenarios influence the thresholds

at which the managing subsystem can choose specific altitudes, they are listed in Table 4 for
both scenarios. The altitude difference between the thresholds for Scenarios 1 and 3 is 1.8, while
the difference is 3.4 for Scenarios 2 and 4. Therefore, an increasing or decreasing water visibility
can cause an increasing or decreasing number of possible altitudes of the AUV much faster in
Scenarios 1 and 3 than in Scenarios 2 and 4. Consider for example a situation in the five-altitudes
case study where the water visibility is 6.4 which allows all altitudes apart from high in Scenarios 1
and 3 and the altitudes low and lowmed in Scenarios 2 and 4. Then it is possible that high can be
activated in two time steps in Scenarios 1 and 3 if the water visibility increases in both time steps,
but it is only possible to activate med after at least four time steps in Scenarios 2 and 4.
We first analysed for Scenarios 1 and 2 in both models whether it is always possible to finish

the pipeline inspection, i.e., to reach the state done. This could be confirmed since the minimum
probability for all resolutions of non-determinism of eventually reaching the state done is 1.0.
Note that the analysis results of the three-altitudes model with the asymmetric environment

reported in the following sections are different from those obtained in our previous paper [69] where
we also used the asymmetric environment. The difference between the model from our previous
paper (hereafter called the “old model”) and the three-altitudes model in this paper are the thresholds
at which adaptation can be triggered. In this paper, we divided the space in which the AUV can
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Table 2. Four different scenarios used for analysis; in Scenarios 3 and 4 the probability of currents
current_prob is left as a parameter

Scenario min_visib max_visib current_prob inspect
1 (North Sea) 1 10 0.6 10
2 (Caribbean Sea) 3 20 0.3 30
3 (Parametric North Sea) 1 10 x 10
4 (Parametric Caribbean Sea) 3 20 x 30

Table 3. The probabilities of a water visibility change in Scenar-
ios 1 and 2

Scenario 1 Scenario 2
Environment inc. dec. stag. inc. dec. stag.
symmetric 0.30 0.30 0.40 0.15 0.15 0.70
asymmetric 0.20 0.60 0.20 0.35 0.30 0.35

Table 4. The thresholds for
possible altitudes for all four
scenarios

Scenarios
Threshold 1&3 2&4
lowmed 2.8 6.4
med 4.6 9.8
medhigh 6.4 13.2
high 8.2 16.6

1 R { " e n e r g y _ 3 a l t " } min=? [ F $ { s =done } ] ;
2 R { " e n e r g y _ 3 a l t " } max=? [ F $ { s =done } ] ;

Listing 6. Analysis using the rewards

operate (between min_visib and max_visib) into five equally big parts to accommodate switches
between the five different altitudes in the five-altitudes model. To enable a comparison between the
analysis results of the three- and five-altitudes models, we used a subset of the thresholds defined
for the five-altitudes model also for the three-altitudes model instead of the thresholds defined in
the old model. Thus, the thresholds at which the managing subsystem can switch between altitudes
are different, allowing different configurations for the two versions of the model at certain water
visibilities. For example, using Scenario 2, the threshold med_visib is defined as approximately 5.7
in the old model but as 9.8 in this paper’s models. Similarly, the threshold high_visib is defined as
approximately 11.3 in the old model and as 16.6 in this paper’s models for Scenario 2. Therefore,
using the old model with Scenario 2, the managing subsystem can switch between the features
low and med if the water visibility is above 5.7, increasing the energy consumption. However, in
the three-altitudes model of this paper, the managing subsystem has to choose the feature low if
the water visibility is below 9.8. Similarly, the managing subsystem of the old model can switch
between the three altitudes with lower water visibilities than the managing subsystem of the
three-altitudes case study of this paper. This enables the managing subsystem of the old model to
choose a strategy that results in a higher maximum energy consumption than is possible for the
three-altitudes model in this paper because this strategy is not possible for the managing subsystem
of this paper. Therefore, the maximum energy consumption with the old model is much higher
than the energy consumption with the three-altitudes model of this paper.

5.2 Reward Properties
The rewards time, energy_3alt, and energy_5alt were used to analyse safety properties related

to the execution of the AUV in the model. Since the AUV has only a limited amount of battery,
an estimation of the energy needed to complete the mission is required. This ensures that the
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Table 5. Expected min-/maximum rewards for completing the mission for the two models concerning both
scenarios and environments

3-Altitudes 5-Altitudes
Scenario Environment Property Result Result

1

symmetric

min 24.7839 19.3133energy_3alt max 139.6440 263.5274
min N/A 24.5033energy_5alt max N/A 310.3349
min 23.7951 23.5909time max 66.2743 131.4976

asymmetric

min 24.7844 21.2382energy_3alt max 31.4667 32.3222
min N/A 24.7015energy_5alt max N/A 37.5475
min 23.8917 23.8389time max 27.1616 32.5339

2

symmetric

min 59.0823 49.8592energy_3alt max 382.1825 998.8417
min N/A 58.5831energy_5alt max N/A 1159.4918
min 56.4871 56.1615time max 173.2865 468.0138

asymmetric

min 59.0823 49.6258energy_3alt max 963.8585 2753.7185
min N/A 58.5826energy_5alt max N/A 3011.3884
min 56.3243 56.0297time max 341.9468 972.3262

AUV is only deployed for the mission if it has sufficient battery to complete it. The commands in
Listing 6 were used to compute the minimum and maximum expected energy_3alt reward (for all
resolutions of non-determinism) to complete the mission. Since the model includes three reward
structures, the name of the reward has to be specified in {"..."} after the R operator. Similarly,
the minimum and maximum expected energy_5alt and time rewards to complete the mission were
analysed, the latter to give the system operators an estimate of how much time the mission might
take. The execution time of the analysis in PRISM for the three-altitudes case study took at most
3.8 seconds while the analysis for the five-altitudes case study took at most 15.5 seconds. For both
case studies, the most time-consuming analysis was analysing the maximum time of Scenario 2
with the asymmetric environment.

The results for the two models in Scenarios 1 and 2 as well as with symmetric and asymmetric en-
vironments are reported in Table 5. For analysing the three-altitudes model, the reward energy_5alt

was not used and therefore marked as N/A (Not Applicable) because it refers to states that are
not present in the three-altitudes model. It can be seen that the variation of the parameters in the
two scenarios strongly influences the expected energy and time of the mission. The difference
between minimum and maximum expected energy and minimum and maximum expected time for
Scenario 2 are significantly bigger than for Scenario 1. In particular, the maximum expected energy
and time are much higher for Scenario 2 than for Scenario 1.

Furthermore, the behaviour of the environment has an interesting impact on the analysis results.
In Scenario 1, the minimum rewards are slightly higher in the asymmetric environment while the
maximum rewards are at least 2.4 times higher with the symmetric environment for all reward
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structures. However, in Scenario 2, the minimum rewards are slightly higher in the symmetric envi-
ronment while the maximum rewards are at least 2 times higher with the asymmetric environment.
Several factors influence these results and have to be consulted to explain this phenomenon:

(1) The probability of currents is higher in Scenario 1 than in Scenario 2 which leads to different
probabilities for increasing or decreasing the water visibility, see Table 3;

(2) The inspection length is longer in Scenario 2 than in Scenario 1;
(3) The difference between the minimum and maximum visibility is higher in Scenario 2 than in

Scenario 1, which means that the water visibility has to increase or decrease more to allow
for more or less possible altitudes, respectively, see Table 4;

(4) With the symmetric environment, increasing and decreasing the water visibility has the same
probability, whereas with the asymmetric environment, increasing and staying at the same
altitude has the same probability.

In Scenario 1, a decrease of the water visibility leads to a decrease in the number of possible
altitudes very fast because the thresholds at which different altitudes can be activated are relatively
close together compared to Scenario 2, see Table 4. Therefore, the asymmetric environment, where
the probability of decreasing the water visibility is very high for Scenario 1, see Table 3, does
possibly not allow as many altitude switches as the symmetric environment because the water
visibility might often be low. This might lead to a higher maximum energy consumption with
the symmetric environment since it allows more altitude switches. The higher maximum time for
the symmetric environment can be explained similarly. Time advances with every transition of
the combined transition system of the managed and managing subsystem and the environment.
Switching between altitudes of the managed subsystem is one such time step during which it is
impossible to find the pipeline. Therefore, increasing the switches between altitudes increases
the maximum time the AUV takes to finish the pipeline inspection. As described before, altitude
switches are more likely in the symmetric environment which thus leads to a higher maximum
time reward.

In Scenario 2, the water visibility has to increase much more than in Scenario 1 to allow a higher
altitude of the AUV, see Table 4. With the symmetric environment, the probability of the water
visibility staying the same is much higher than an increase or a decrease in the water visibility, see
Table 3. Therefore, it is less likely to increase the water visibility to a point where a higher altitude
is allowed, which leads to a higher maximum energy and time with the asymmetric environment
(the argumentation is similar to the one for Scenario 1).

It can also be seen that in all experiments, the five-altitudes model enables a mission to happen
in less time and with less energy compared to the three-altitudes model, independent of the chosen
energy reward. Thus, in these scenarios and with these environment behaviours, it is beneficial to
enable the AUV to operate at five instead of three altitudes.

It might seem counter-intuitive that the five-altitudes model with the reward energy_3alt does
not give the same results as the three-altitudes model with this reward; we give an explanation for
this here. Considering the minimum expected energy, searching at a lowmed or medhigh altitude or
switching to and from these altitudes does not cost energy with the energy_3alt reward because
these altitudes are not part of the three-altitudes model. Therefore, the five-altitudes model, which
allows these altitudes, enables a lower minimum energy_3alt reward than the three-altitudes model
since the managing subsystem can choose a strategy with lowmed and medhigh altitudes which do
not increase the energy_3alt reward. Concerning the maximum expected energy_3alt reward, we
investigated the strategy for obtaining this maximum reward in both models. Interestingly, the
strategy in the five-altitudes model includes going to lowmed altitude if the water visibility is below
med_visib. If the water visibility is below med_visib, the managing subsystem can hinder the AUV
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1 l a b e l " unsa fe " = s= r e c o v e r _h i gh | s = recover_medhigh | s = recover_med | s =
recover_ lowmed

2 | s = r e cove r _ l ow | s = r e c o v e r _ f o l l ow i n g ;
3 l a b e l " s a f e " = s= l o s t _ p i p e | s = s t a r t _ t a s k | s = s t a r t _ s e a r c h | s =

s ea r ch_h igh
4 | s = search_medhigh | s = search_med | s = search_lowmed | s =

sea rch_ low
5 | s = found | s = f o l l ow i n g | s =done ;
6

7 Pmin=? [G " s a f e " ] ;
8 f i l t e r ( avg , Pmax=? [ F<=k " unsa fe " ] , " s a f e " ) ;
9 f i l t e r ( min , Pmin=? [ F<=k " s a f e " ] , " unsa fe " ) ;

Listing 7. Analysis of unsafe states

from finding the pipeline by continually switching between low and lowmed. To understand this,
note that there is only a probability of finding the pipeline if the current search altitude matches the
active navigation subfeature as, e.g., in Lines 12-15 of Listing 4. If, on the other hand, the current
search altitude is different from the active navigation subfeature, then the AUV will change with
probability 1 to the search state corresponding to the active navigation subfeature, see, e.g., Line 16
of Listing 4, and there is no probability of finding the pipeline during this transition. Therefore,
unless the water visibility drops below lowmed_visib, the managing subsystem in the five-altitudes
model can choose a strategy that increases the energy_3alt reward without enabling it to find the
pipeline. It can be observed that here, again, the scenario and the behaviour of the environment
influence how much impact this strategy can have on the maximal energy_3alt reward. The highest
impact can be achieved in Scenario 2 with the asymmetric environment where the maximum
energy_3alt reward in the five-altitudes model is ≈2.86 times higher than in the three-altitudes
model.

Note that analysing the maximum rewards is a worst-case analysis. Any reasonable adaptation
strategy would not choose to, e.g., maximise the energy consumption by continually switch between
altitudes if the goal of the system is to do a pipeline inspection. Nonetheless, it can be interesting
to do this worst-case analysis.

In conclusion, the analysis revealed that the scenario and the environment behaviour can have a
big impact on the expected rewards. It can therefore be beneficial to evaluate a model with different
scenarios and environment behaviours. Furthermore, increasing the granularity of the model by
enabling more altitudes at which the AUV can operate provided lower expected minimum rewards
in our model, giving an indication that increasing the granularity of the model can be beneficial.

5.3 Unsafe States
Thruster failures, although we assume that they can be repaired, pose a threat to the AUV since

unforeseen events like strong currents might cause the AUV to be damaged, e.g., by causing it
to crash into a rock. Even though the possibility of, e.g., a crash is not modelled in our model,
we showcase how thruster failure states can be analysed. To analyse this, the state space was
partitioned into two parts, safe and unsafe states. This was achieved by using labels, see Lines 1–5
of Listing 7 for the labels of the five-altitudes model. The labels of the three-altitudes model only
contain the states present in this model. These labels were then used to calculate the probability of
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several properties regarding reachability of safe/unsafe states. Each of the analyses in PRISM took
less than half a second.

Safe States. The minimum probability of only taking safe states (see Line 7) was shown to be
≈ 0.65 for Scenario 1 and ≈ 0.32 for Scenario 2 in the two models and with both symmetric and
asymmetric environments. As expected, the probability of only taking safe states is higher for a
shorter pipeline inspection. It is interesting to see that the probability of only taking safe states is
influenced by neither the behaviour of the environment nor the number of possible altitudes of the
AUV even though the probability of going to an unsafe state depends on the altitude of the AUV,
i.e., it is higher the lower the altitude of the AUV, see Section 2. The altitude at which the AUV can
operate then depends on the environment. However, it seems that both of them do not influence
the probability of only taking safe states as the results are always exactly the same.

Safe to Unsafe. We analysed this phenomenon further by analysing the probability of going
from a safe state to an unsafe state in the two models with both scenarios and environments.
In this way, we hope to find a relation between probabilities concerning safe and unsafe states
and the two models and environments. This is analysed with the property in Line 8 of Listing 7.
First, the maximum probability (over all possible resolutions of non-determinism) for reaching an
unsafe state from a safe state is calculated, and then the average is taken. PRISM experiments allow
analysing this property automatically for a specified range of k, in our experiments, the time steps.
The plotted graphs for Scenarios 1 and 2 with the three- and five-altitudes models are displayed in
Figure 6. The values for the symmetric and asymmetric environments were the same so they are
not annotated separately.

The graphs show that the probability of reaching an unsafe state from a safe state increases with
the number of considered time steps. Furthermore, in Scenario 2, the probability stabilises much
later and at a higher value than in Scenario 1. While the average probability of reaching an unsafe
state from a safe state stabilises after about 42 time steps at ≈0.21 in Scenario 1, it stabilises after
about 70 time steps at ≈0.42 in Scenario 2. As can be seen from the graphs, the differences between
the three- and five-altitudes models are marginal. For example, for Scenario 2, after 50 time steps
the probabilities differ by only 0.0022. In conclusion, for these experiments concerning safe and
unsafe states, the environment did not influence the calculated probabilities, and the number of
possible altitudes only had a minor effect on them.

Unsafe to Safe. It is also important to ensure that a safe state will be reached from an unsafe state
after a short time, as, e.g., in Line 9, where k is an integer. For every unsafe state, the minimum
probability (for all possible resolutions of non-determinism) of reaching a safe state within k

time steps is calculated. Then the minimum over all these probabilities is taken. Thus, it gives
the minimum probability of reaching a safe state from an unsafe state in k time steps. PRISM
experiments showed that for the two models in both scenarios and environments, the probability
of reaching a safe state from an unsafe state is above 0.95 after 5 time steps and above 0.99 after
7 time steps. Thus, for this analysis about safe and unsafe states, the behaviour of the environment
and the number of altitudes again does not influence the result.

5.4 Different Environments
To analyse how distinct implementations of the environment, as described in Section 4.4, influence
the difference between the minimum and maximum rewards for the three- and five-altitudes models,
we conducted PRISM experiments with the models for Scenarios 3 and 4. That is, the probability
of currents, which is a parameter in Scenarios 3 and 4, was left unspecified, and we asked PRISM
to plot the graphs for minimum and maximum energy as in Listing 6. Each of the experiments in
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Fig. 6. Results for reaching an unsafe state from a safe state in k time steps for Scenarios 1 and 2 with the
three-altitudes and five-altitudes model; more concretely, for a fixed k, the maximum probability of reaching
an unsafe state from a safe state is calculated over all possible resolutions of non-determinism, after which
the average value is taken

(a) Symmetric environment (b) Asymmetric environment

Fig. 7. The graphs for minimum expected energy in Scenario 3 where the probability of currents current_prob
is left as a parameter; they show the dependency of the minimum expected energy on the parameter
current_prob

PRISM took less than 35 seconds when concerning a step size of 0.01 for the probability of currents.
Considering the same model and scenario, the experiments for minimal energy took less time than
the experiments for maximal time, and the experiments with the symmetric environment took less
time than the ones with the asymmetric environment.
Figures 7 and 8 show the plotted graphs for minimum and maximum energy in Scenario 3,

respectively, with the symmetric and asymmetric environments. The dotted lines show the values
for the five-altitudes model with energy_5alt which assigns rewards to all states, including the
intermediate ones. The solid lines show the values for the three- and five-altitudes models with
energy_3altwhich only assigns rewards to states present in both models. The graphs for Scenario 4
look similar and are therefore not displayed here.

It can be seen that the five-altitudes model can achieve a lower expected minimal energy reward
with both environments, especially with the energy_5alt reward. Therefore, considering the sce-
narios and environments described in this paper, it seems that enabling the AUV to operate at more
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(a) Symmetric environment (b) Asymmetric environment

Fig. 8. The graphs formaximum expected energy in Scenario 3where the probability of currents current_prob
is left as a parameter; they show the dependency of the maximum expected energy on the parameter
current_prob

1 storm − pa r s −−pr ism model . pr i sm −−prop "R { \ " e n e r g y _ 3 a l t \ " } min=? [ F _s =
done ] "

2 −−mode f e a s i b i l i t y −− f e a s i b i l i t y : method p l a −− d i r e c t i o n min
3 −− r e g i on " 0 . 3 <= cu r r en t_p rob < = 0 . 8 " −− guaran tee 0 . 0 0 0 1 abs

Listing 8. Analysis of rewards with parametric probability of currents using Storm

altitudes provides an advantage. However, the influence of the number of altitudes varies with the
chosen environment model. With the asymmetric environment, the difference between the three-
and five-altitudes model decreases much more with an increasing probability of currents compared
to the symmetric environment.

For themaximum expected energy reward, the results for the five-altitudes model are again higher
than the ones for the three-altitudes models. However, with increasing probability of currents, the
difference between the results of the three- and five-altitudes models decreases, with the asymmetric
environment they are almost the same with probabilities of currents above 0.4. Furthermore, for
probabilities of currents less than 0.1 with the symmetric environment and less than 0.3 with the
asymmetric environment, the maximum expected energy consumption is very high, independent
of the chosen model. Therefore, one should consider using a different model of the AUV when
employing it in scenarios with low probabilities of currents. If, however, the probability of currents
is above 0.3, the experiments suggest that a higher number of possible altitudes for the AUV could
provide an overall better performance: The minimum expected energy is lower and the maximum
expected energy consumption is not so much higher. In future work, it would be interesting to
investigate if these results can be replicated for even more possible altitudes.

5.5 Reward Properties with Varying Probability of Currents
The probability of currents as specified in our scenarios is only an estimate and can also vary

depending on the season. However, the AUV should be able to operate in all different environments
with all possible probabilities of currents. Further, it would be useful to have information on the
extreme probabilities of currents for the AUV, i.e., obtain worst- and best-case probabilities of
currents, to schedule pipeline inspection missions depending on the environmental settings. In this
case, it can be useful to leave the probability of currents underspecified, i.e., as a parameter, and
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analyse the range of minimum and maximum expected rewards depending on the instantiation
of the probability of currents. Parametric model checking [50] provides dedicated methods to
analyse Markovian models where transition probabilities may involve parameters. While PRISM
supports parametric model checking through a reimplementation of the seminal parametric model
checker PARAM [50], recent advancements in the field are mainly achieved within the Storm model
checker [58]. In fact, already predecessors of the parametric engine of Storm clearly outperformed
both, PRISM and PARAM in both functionality and speed [35]. This could also be witnessed in the
following experimental studies on parametrised AUV models, where PRISM was not able to provide
results within a reasonable time. With Storm, however, the analysis of all reported properties took
less than 11 seconds where the analysis for the three-altitudes model took less than 4 seconds.
In the models for parametric model checking, we left the probability of currents as a single

parameter. To analyse the minimum expected energy_3alt reward depending on the instantiation
of current_prob, the command in Listing 8 was used. The binary storm-pars invokes the parametric
model-checking engine of Storm that can be used with PRISM files by specifying the PRISM files to
be analysed after --prism. The property to be analysed can be specified after --prop. Here, the same
property as specified in Line 1 of Listing 6 is used. Since the property does not contain a bound for
the reward, we have to specify with --direction min that the reward should be minimised. That is,
for all possible instantiations of current_prob, Storm computes the minimal expected reward for
energy_3alt, providing an interval of values whose lower bound is given. The upper bound can be
found by using --direction max.
Storm supports several different engines for storm-pars which are called modes and have to be

specified after --mode. In the experiments, we use the feasibility mode to find parameter values
such that the specified property holds. In the feasibility mode, either parameter lifting (pla) [72]
or gradient decent (gd) can be used and specified after --feasibility:method. The --region option
can be used to specify the region of the parameter, and --guarantee to specify how close the result
should be to the optimal value.
We used Scenario 3 with the asymmetric environment and parametric probability of currents

for parametric analysis where we restricted the probability of currents to be between 0.3 and 0.8.
The used interval for the probability of currents is an estimate and can be made more realistic
by consulting domain experts. Similarly to the command in Listing 8, we analysed the minimum
and maximum rewards for energy_3alt, energy_5alt and time both in minimum and maximum
direction, providing an interval of possible values for each of them.

The results of the analysis are reported in Table 6 and are two-fold: they provide an interval of
possible values for each property and optimal values for the probability of currents to minimise or
maximise the property. Consider for example minimising the energy_3 reward for finishing the
pipeline inspection as in Line 1 of Listing 6. The results of the analysis can be found in the first two
lines of Table 6 where the “min direction” provides the lower bound of possible values, and the
“max direction” an upper bound. Therefore, in the three-altitudes model, the energy_3alt reward is
always 24.7844, whereas it is in the interval [19.1614, 22.0147] in the five-altitudes model with the
lower bound achieved with current_prob≈0.3 and the upper bound achieved with current_prob

≈0.8. Thus, the lower and upper bounds in the five-altitudes model are achieved with the minimal
and maximal possible value of current_prob.

Note that the results of Table 6 are also reflected in the graphs of Figures 7b and 8b. As an example,
consider the maximum energy_3alt reward in the three-altitudes model. Table 6 shows that the
minimum of all maximal rewards (with probability of currents between 0.3 and 0.8) is achieved
with a probability of currents of almost 0.8 at a value of approximately 24, and the maximum
of all maximal rewards is achieved with a probability of currents of ≈ 0.3 at a value of ≈ 239.
The red line in Figure 8b also shows these values. However, while PRISM experiments provide a
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Table 6. Parametric model checking in Scenario 3 with asymmetric environment for parametric probability
of currents with 0.3≤current_prob≤0.8

3-Altitudes 5-Altitudes
Property Direction Result current_prob Result current_prob

energy_3alt
min min 24.7844 0.55 19.1614 0.300015259

max 24.7844 0.55 22.0147 0.799992371

max min 27.9799 0.799999762 28.0336 0.799999523
max 239.8359 0.300003815 545.114 0.300007629

energy_5alt
min min N/A N/A 24.4879 0.30012207

max N/A N/A 24.7843 0.76875

max min N/A N/A 30.8068 0.799998093
max N/A N/A 621.3432 0.300007629

time
min min 23.7638 0.30012207 23.5507 0.300061035

max 23.8936 0.7375 23.8937 0.76875

max min 25.4847 0.799996185 28.3323 0.799996185
max 97.5207 0.300003815 226.3386 0.300007629

1 mul t i ( R { \ " t ime \ " } < = 2 3 . 8 9 1 8 [ F _s=done ] , R { \ " e n e r g y _ 3 a l t \ " } < = 2 4 . 7 8 4 5 [ F _s
= done ] )

2 mul t i ( R { \ " t ime \ " } min =? [ F _s=done ] , R { \ " e n e r g y _ 3 a l t \ " } < = 2 4 . 7 8 4 5 [ F _s =
done ] )

3 mul t i ( R { \ " t ime \ " } min =? [ F _s=done ] , R { \ " e n e r g y _ 3 a l t \ " } min=? [ F _s = done
] ) −−mu l t i o b j e c t i v e : e x p o r t p l o t p l o t /

Listing 9. Multi-objective queries

way to see how one or several parameters influence the model over the whole parameter space,
parametric model checking with Storm focuses on computing only the extreme values. With both
techniques, it is possible to specify how close one wants to be to the optimal solution. In the case of
parametric model checking with Storm, this can be done explicitly by defining a guarantee, while
it can only be done implicitly with PRISM experiments by setting the step size for the parameter.
When using PRISM experiments, the (close to) optimal result has to be determined by inspecting
the calculated values which can be tedious. Parametric model checking with Storm, on the other
hand, provides this information by default. Therefore, depending on the required results, one or
the other technique should be chosen.
We only display the results for Scenario 3 with the asymmetric environment here to give a

taste of the possible analysis. Analysing the same properties with Scenario 3 and the symmetric
environment or with Scenario 4 is possible but takes much more time. For example, the analysis in
Listing 8 for Scenario 3 with the asymmetric environment took less than two seconds, while it took
approximately 25 minutes for Scenario 4 with the same environment. Since Scenario 4 represents
a longer pipeline inspection than Scenario 3, the model is much bigger which could explain this
difference. However, further investigation is needed to explain why the analysis with the symmetric
environment is so much slower.
It would also be interesting to use parametric model checking with a completely parametric

scenario. However, the values of min_visib and max_visib are used to calculate the thresholds
for changing between the search altitudes. Therefore, they cannot be left unspecified, making
parametric model checking with a completely parametric scenario unfeasible for our case study.

5.6 Multi-ObjectiveQueries
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The queries considered until now only considered one property at a time. For example, in
Section 5.2, we asked for the minimum and maximum time and minimum and maximum energy
rewards for finishing a pipeline inspection. However, intuitively, there is a trade-off between
finishing the pipeline inspection in a short time (minimising the reward time) and consuming less
energy (minimising the rewards energy_3alt and energy_5alt). To minimise time, one wants to go
to a higher altitude if possible because the probability of finding the pipeline is higher. On the other
hand, switching between altitudes takes a lot of energy and should be avoided when minimising the
energy rewards. Therefore, it is interesting to analyse the time and energy rewards in combination,
which can be done using multi-objective queries.

PRISM and Storm allow three different types of multi-objective queries7 8: (1) achievability
queries, asking whether it is possible to achieve two properties at the same time, (2) numerical
queries, leaving the threshold of one property open and asking for the optimal value of the threshold,
and (3) Pareto queries, where both thresholds are open. To analyse the trade-off between time
and energy rewards we employed the probabilistic model checker Storm, as it provided superior
functionality and performance for multi-objective analysis compared to PRISM. For all analyses in
this section, we used the three-altitudes model with Scenario 1 and asymmetric environment to
exemplify the possible analyses. The multi-objective analysis in Storm took at most a bit more than
a millisecond.

Achievability Queries. First, we wanted to know if there really is a trade-off between minimising
time and energy. To analyse this, we used the property in Line 1 of Listing 9 for the achievability
query. This represents the question: “Does there exist a strategy for finishing the inspection such
that the expected time reward is less than or equal to 23.8918 and the expected energy_3alt reward
is less than or equal to 24.7845?”. The values used in this query are close to the optimal values as
reported in Table 5. The result of this query is false, so it is not possible to finish the inspection with
both minimal time and minimal energy. However, if we change the values to 23.9 for the reward
time and to 24.8 for the reward energy_3alt, then the result is true. Thus, even though it is not
possible to achieve minimal time and energy, it is almost possible.

Numerical Queries. Using numerical queries, we can determine how close to optimal the strategy
can be. More specifically, we ask the following question: “What is the minimal expected time

reward for finishing the inspection over all strategies for which the expected energy_3alt reward
for finishing the inspection is less than or equal to 24.7845?”, see Line 2 of Listing 9. The result is
≈ 23.8937 which differs from the optimal result by less than 0.002. It is also interesting to know the
maximum time reward given an almost optimal energy_3alt reward. This is achieved by replacing
R{"time"}min with R{"time"}max in Line 2. Interestingly, the result only differs from the minimal
time reward by ≈ 0.00007.

Similarly, we analysed the minimal and maximal expected energy_3alt reward over all strategies
for which the expected time reward is less than or equal to 23.8918, which both returned ≈ 24.7893
as a result. Thus, also in this case, the difference between the optimal and the expected value is
minimal and the minimal and maximal expected rewards are the same.

Pareto Queries. The previous paragraphs described how to determine whether two properties
can be achieved at the same time, and how well one property can be achieved given a threshold for
the second property. Another interesting problem is to leave the thresholds for both properties
open and ask for the achievable and Pareto-optimal points, we only consider them informally here
and refer the interested reader to [43, 73] for additional explanations.
7https://www.prismmodelchecker.org/manual/PropertySpecification/Multi-objectiveProperties
8https://www.stormchecker.org/documentation/background/properties.html#multi-objective-model-checking
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Fig. 9. Achievable points for minimising the rewards time and energy_3alt with the three-altitudes model,
Scenario 1 and asymmetric environment

Consider the case where we want to minimise two objectives as before in this section. Informally,
a point 𝑃 = (𝑥,𝑦) is achievable, if there exists a strategy such that the expected value for the first
objective is less or equal to 𝑥 and the expected value for the second objective is less or equal to 𝑦.
The point 𝑃 is Pareto-optimal if it is achievable and every point 𝑃 ′ = (𝑥 ′, 𝑦′) ≠ 𝑃 with 𝑥 ′ ≤ 𝑥 and
𝑦′ ≤ 𝑦 is not achievable. To analyse achievable and Pareto-optimal points, we used the property in
Line 3 of Listing 9 which also gives the files for plotting the achievable and Pareto-optimal points
as shown in Figure 9.

The five Pareto-optimal (time, energy_3alt) points computed by Storm are:
(23.89184492, 24.78901283), (23.89174364, 24.7958376), (23.89373384, 24.78443418),

(23.89280945, 24.78621552), (23.89338681, 24.78505311)
Comparing these pairs with the (non-achievable) optimal pair (23.89170189, 24.78439125), we
see that the time reward diverges by at most 0.00203195 and the energy_3alt reward by at most
0.01144635, and the sum of the pair has at most a difference of 0.0114881 to the optimal pair.
Therefore, contrary to our initial intuition, it is almost possible to achieve the optimal result for
both minimal time and minimal energy.

6 RELATEDWORK
The analysis of behavioural requirements is often crucial when developing an SAS that operates in
the uncertainty of a physical environment. These requirements often use quantitative metrics that
change during runtime. Both rule-based and goal-based adaptation logics can be used to enable the
SAS to meet its behavioural requirements. Many practitioners rely on formal methods to provide
evidence for the system’s compliance with such requirements [65, 88], also outside the context
of SASs [7], but a plethora of different methods are used [2, 56]. Recently, AUV behaviour was
modelled and analysed with timed automata and UPPAAL [75].

6.1 SPLs for Self-Adaptive and Robotic Systems
SPLs have previously been proposed to model variability for robotic systems, focusing on static
variability modelled during design time [46]. In [18], it is argued that most of the costs for robotic
systems come from non-reusable software. A robotic system mostly contains software tailored
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to the specific application and embodiment of the robot, and often even software libraries for
common robotic functionalities are not reusable, so they must be re-developed all the time. Thus,
they proposed a new approach for the development of robotic software using SPLs. For robotics, the
authors in [46] propose the toolchain HyperFlex to model robotic systems as SPLs; it supports the
design and reuse of reference architectures for robotic systems and was extended with the Robot
Perception Specification Language for robotic perception systems in [20]. It allows to represent
variability at different abstraction levels, and feature models from different parts of the system
can be composed in several different ways. However, contrary to the approach used in this paper,
HyperFlex only considers design time variability. Furthermore, it is only used for modelling robotic
systems, not for analysing them.

Dynamic SPLs (DSPLs) have been proposed to manage variability during runtime [33, 49, 51, 57].
Several approaches model SASs as DSPLs to account for runtime variability such as, e.g., [15, 30, 36,
47, 52, 63, 78]. These approaches focus on modelling SASs using DSPLs and not on formal analysis.
DSPLs have also been proposed to manage variability during runtime in the context of self-adaptive
robots [19].

6.2 Family-Based Model Checking
The benefits of family-based model checking using an annotative approach are outlined in the
aforementioned seminal work on FTSs by Classen et al. [25, 26, 28]. Properties of FTSs can be verified
by dedicated family-based model-checking tools such as SNIP [24], ProVeLines [31], fNuSMV [25],
and FTS4VMC [8]. Based on this work on FTSs, several other approaches with various modelling
languages and formalisms have been proposed [10, 16, 44, 86]. Furthermore, well-known model
checkers have been made amenable to family-based model checking by suitable abstractions
and encodings applied to the input languages of, e.g., PRISM [23, 42], Maude [64], SPIN [38, 39],
mCRL2 [9, 13], and NuSMV [37]. A clear advantage of relying on such well-established and highly
optimised model checkers is to avoid having to maintain dedicated SPL model checkers.

Also parametric model checking [34, 50] has been used for the family-based analysis of SPLs [48,
77]. While we use the techniques to synthesise optimal parameters for a SAS environment, the
existing techniques use probability parameters to encode variability.
In this paper, we used ProFeat [23], a software tool built on top of the de-facto standard input

language of PRISM for the analysis of feature-aware probabilistic models. ProFeat hence enables
all functionalities provided by the probabilistic model checkers PRISM [62] and Storm [54] also
for feature-oriented systems, including analyses by statistical, parametric, and probabilistic model
checking. Besides ProFeat, also QFLan [11, 85] offers a powerful modelling language and tool to
analyse quantitative SPLs, focusing on probabilistic simulations to yield statistical approximations,
trading 100% precision for scalability.

6.3 Feature-Oriented Analysis of SASs
Dubslaff et al. [42] modelled and analysed a self-adaptive energy-aware server system using feature-
oriented formalisms. There, the feature controller for dynamically switching features only sets
constraints on self-adaptation and does not actively perform the adaptation actions as the managing
subsystem does in our paper. Chrszon et al. [21] have modelled and analysed SASs using feature-
oriented approaches by means of multi-product lines. Specific for their approach is the concept of
roles that correspond to features but besides activating (“admitting a role”) also distinguish actively
performing role actions (“role playing”). While not explicitly separating managed and managing
subsystem, their role manager takes on the purpose of managing subsystem and allows for multiple
managed subsystems (e.g., multiple robots in a production pipeline). This approach has also been
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extended to the quantitative setting and family-based model checking was used to analyse the
reliability of a self-adaptive robotic cell [22].

7 DISCUSSION AND FUTUREWORK
In this paper, we have demonstrated how a self-adaptive AUV system can be modelled and analysed
using feature-oriented approaches. To this aim, we considered a two-layered SAS architecture
of a self-adaptive AUV used for pipeline inspection. The variability of the managed subsystem
was modelled as a feature model and the behaviour of the resulting (feature) configurations was
modelled as a probabilistic (featured) transition system that also encodes the transitions between
configurations. The managing subsystem was modelled as a feature controller switching between
features and thereby enabling different behaviour (i.e., operation modes) of the managed subsystem.

We modelled the case study in the tool ProFeat and used it for family-based probabilistic model
checking of both reward and safety properties via both PRISM and Storm. In particular, we analysed
safety guarantees concerning an AUV’s mission duration and energy usage as well as concerning
the reachability of (un)safe states, the impact that different environments have on these safety
guarantees, to what extent environmental conditions affect the AUV, and trade-offs betweenmission
duration and energy usage. For a more realistic analysis of a AUV, both the models of the AUV and
of the environment, and in particular the probabilities, will have to be adapted to the robot and the
environment with the help of real data and domain experts. The models will have to be extracted
from the real system at the correct level of abstraction for verifying the desired properties. We
plan to further investigate this together with an industrial partner of the MSCA network REMARO
(Reliable AI for Marine Robotics).

7.1 Using SPL Techniques for Modelling and Analysing SASs
In this paper, we have used a feature-oriented approach for modelling and analysing the two-layered
self-adaptive AUV. This allowed us to model the managed subsystem of the AUV as a family of sys-
tems (or products), where each family member corresponds to a valid configuration of the AUV. The
managing subsystem could then be considered as a control layer capable of dynamically switching
between these feature configurations depending on both environmental and internal conditions. Pro-
Feat was used for probabilistic family-based model checking, analysing reward and safety properties.

The ProFeat tool allowed us to directly model the two different layers of the SAS, the managed
and managing subsystem, which also makes it easier to understand the model as well as the
adaptation logic. Furthermore, it made analysing all configurations of the managed subsystem
more efficient by enabling family-based (SPL) model checking. However, it remains to be seen
how this scales with larger models than the ones considered in this paper. Alternatively, it would
also be possible to model the case study without a feature-oriented approach by encoding the
features as variables. Besides others, the transitions of the managed and managing subsystem, which
would then use these variables, would need to explicitly take care of staying within valid feature
configurations. ProFeat conducts this approach in an automated manner, internally transforming
the feature-oriented model into a PRISM model agnostic to features. The theoretical underpinning
of this transformation requires several technicalities, which are difficult to ensure when done
manually [41]. Even in our small case study, the number of transitions in the managed subsystem
increased from 44 to 351 when transforming the ProFeat model into a PRISM model. This increase
is mainly due to the required synchronisation between the managed and managing subsystems,
where a correct modelling is ensured by the transformations.

A particular aspect of our work is the use of a two-layered model to analyse self-adaptation in
the managing subsystem of the AUV. This allows us to not only model and analyse a family of
configurations of the managed subsystem by means of family-based model checking, but also model
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and analyse the self-adaptation strategy by means of a feature controller which switches between
these configurations depending on the so-called uncertainties of the uncontrolled environment in
which the AUV operates. This feature controller, which dynamically changes between products
in the configuration space of the managed subsystem, has similarities to variability management
in dynamic SPLs; in our work, we explore this approach to not only model but also analyse self-
adaptive behaviour in AUVs. Our case study suggests that family-based modelling and analysis of
SASs using ProFeat and (probabilistic) model checking is both a very natural and feasible approach.

The case study in this paper is of course an abstract model of an AUV and its mission. However,
we showed through an extensive set of analyses that it is feasible to model and analyse a two-
layered self-adaptive cyber-physical system as a family of configurations with a controller switching
between them.

7.2 Future Work
In the future, we plan to investigate which kinds of SASs can be modelled and analysed following the
overall approach applied to this case study, aiming to propose a general methodology for modelling
and analysing SASs as family-based systems. Furthermore, we plan to find optimal strategies for
the managing subsystem, i.e., the controller switching between features to, e.g., minimise energy
consumption. We would also like to find patterns between choosing a certain feature configuration
and the effect of this choice on quality criteria for the system. Finding such control patterns could
help to improve the adaptation logic of the managing subsystem to be more resilient towards
faults. Another interesting research direction would be to include the model into a real system and
update, e.g., the probabilities using real-time information. Then the model could be run regularly
to re-verify system properties upon model updates. Finally, we would like to investigate how our
approach scales with larger system models than the ones considered in this paper.
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