
Declarative Dynamic Object Reclassification
Riccardo Sieve #

University of Oslo, Norway

Eduard Kamburjan #

IT University of Copenhagen, Denmark

Ferruccio Damiani #

University of Turin, Italy

Einar Broch Johnsen #

University of Oslo, Norway

Abstract
In object-oriented languages, dynamic object reclassification is a technique to change the class
binding of an object at runtime. Current approaches express when and how to reclassify inside the
program’s business code, while maintaining internal consistency. These approaches are less suited
for programs that need to be consistent with an external context, such as autonomous systems
interacting with a knowledge base. This paper proposes declarative dynamic object reclassification,
a novel technique that provides a separation of concerns between a program’s business code and
its adaptation logic for reclassification, expressed via a knowledge base. We present Featherweight
Semantically Reflected Java, a minimal calculus for declarative dynamic object reclassification that
enables the programmer to define consistency both internally (using a type system) and externally
(using declarative classification queries). We use this calculus to study how internal and external
consistency interact for declarative dynamic object reclassification. We further implement the
technique by extending SMOL, a language for reflective programming via external knowledge bases.

2012 ACM Subject Classification Software and its engineering → Abstraction, modeling and
modularity; Software and its engineering → Object oriented languages

Keywords and phrases Dynamic Object Reclassification, Dynamic Software Updates, Featherweight
Java, Knowledge Bases, Semantic Reflection, Type Soundness

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2025.2

Supplementary Material Software (Artifact): https://doi.org/10.5281/zenodo.15275245

1 Introduction

In traditional object-oriented programming [54,56], the behaviour of an object instantiated
from a class is defined by the methods and properties of that class. However, in many real-
world applications, both the object’s state and the context in which it operates can change over
time. Dynamic object reclassification [15, 16] and typestate-oriented programming [2, 20] are
techniques within class-based object-oriented programming that enable dynamic class binding
of objects at runtime, allowing objects to change their class while retaining their identity.
These powerful programming abstractions are particularly useful when an object’s context
changes over time, and the object needs to adapt to the new context. When the class-binding of
objects is dynamic, affected objects need to remain consistent with their expected capabilities.
For example, consistency becomes critical for dynamic software updates in asynchronous,
IoT-driven ecosystems where the local processing of class re-binding may get delayed [34].

Previous approaches to such programming abstractions (e.g., [2, 8, 13–16,20,26]) handle
the requirements for the reclassification process internally: programs describe classes and
reclassification within the same language. This results in (1) a notion of consistency that does
not capture the program’s context, (2) an operational and low-level view of the conditions for

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:1–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:riccasi@ifi.uio.no
https://orcid.org/0009-0000-8683-1902
mailto:eduard.kamburjan@itu.dk
https://orcid.org/0000-0002-0996-2543
mailto:damiani@unito.it
https://orcid.org/0000-0001-8109-1706
mailto:einarj@ifi.uio.no
https://orcid.org/0000-0001-5382-3949
https://doi.org/10.4230/LIPIcs.ECOOP.2025.2
https://doi.org/10.5281/zenodo.15275245
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

reclassification, and (3) a lack of separation of concerns between describing object behaviour
and object reclassification. In contrast, autonomous and self-adaptive systems in, e.g., robot-
ics and digital twins, typically need to adapt to a context represented by external knowledge
bases containing information about both the environment and the system itself [7, 42].

This paper proposes a novel approach to dynamic object reclassification, which shifts the
reclassification process from ensuring internal consistency, with an operational view of the
adaptation logic, to ensuring external consistency, with a declarative view of the adaptation
logic. The approach combines three main elements:
Knowledge Base: The context of the program is modelled as an external knowledge base,

i.e., a logical representation of facts. This knowledge base evolves independently of the
program and can be queried for Boolean results (“is a certain formula implied by the
knowledge base?”) or retrieval (“which values satisfy a given formula?”).

Semantic Reflection expresses that a program can query its own state in context of the
knowledge base; this is enabled by a process of lifting the runtime state of a program
into the knowledge base [38].

Declarative Object Reclassification is defined via reclassification queries to the knowledge
base. The first query defines when an object is consistent with a particular class; i.e., it
is a membership or classification query. The second query that defines how to instantiate
an object’s fields when reclassifying an object into a particular class; i.e., it is a state
retrieval query. These queries make use of semantic reflection, as they uniformly access
both the lifted program state and the context in the knowledge base.

In combination, restrictions on queries and on class inheritance ensure that reclassification
preserves type safety. In short, the main contributions of this paper are as follows:

We propose a declarative dynamic object reclassification technique that uses (1) reflection
of the program state into a knowledge base, and (2) the additional context of an external
knowledge base, to provide an interface for reclassification queries that encapsulates the
adaptation logic from the programmer.
We formalise our technique in Featherweight Semantically Reflected Java (FSRJ), a novel
minimal core calculus in the spirit of Featherweight Java [31], which supports semantic
reflection into knowledge bases.
We prove type soundness for FSRJ and give a precise characterisation of program coherence,
describing the conditions under which reclassification queries ensure type safety.
We provide a prototype implementation of declarative dynamic object reclassification
as an extension of SMOL [38], a language for self-adaptive digital twins [40] based on
Knowledge Graphs [29], including a static check for program coherence.
We evaluate our prototype implementation by application to GreenhouseDT, an open-
source digital twin of a mini-greenhouse [41].

The remainder of this paper is structured as follows: Section 2 illustrates declarative
dynamic object reclassification with an example before Section 3 describes Featherweight
Semantic Reflected Java, the minimal calculus for reflection into a knowledge base and
subsequent object reclassification, as well as the type system. Section 4 describes the
implementation in the SMOL language and Section 5 the evaluation on a self-adaptative digital
twin. Finally, Section 6 discusses related work and Section 7 concludes with a discussion.

2 Overview

This section introduces the programming challenges that we address with declarative dynamic
object reclassification, and motivates different technical aspects of our solution. To ease

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:2–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Java

1 class Plant { int id; String species; }
2 abstract class Pump {
3 int id; int gpioPin; Plant plant;
4 void pump(){ ... }; /∗ uses gpioPin and waters the plant ∗/
5 }
6 class NormalPump extends Pump { ... /∗ methods ∗/ }
7 class OverheatingPump extends Pump { int maximal; ... /∗ methods ∗/ }
8 class Main() {
9 Plant pl = new Plant(1, "Ocimum basilicum");

10 Pump pu = new NormalPump(2, 7, pl);
11 void loop() { while (true) { pu.pump(); System.wait(1); } }
12 public static void main(String[] args) { new Main().loop(); }
13 }

Figure 1 Greenhouse digital twin, without domain knowledge and dynamic object reclassification.

readability in the examples in this section and in the formalisation of Section 3, programs
are given with a Java-like syntax and knowledge bases in first-order logic (FOL).

2.1 Programming Challenges

Motivating Scenario. Let us consider as a running example a digital twin of a greenhouse
which contains plants and water pumps. These are monitored through sensors measuring
their physical properties: the height, oxygen level and soil moisture for each plant and the
temperature for each pump. Each plant has an associated pump that waters the plant
according to a watering profile. The concrete watering profile depends on the stage of the
plant (e.g., seedling or mature plant) and the level of functionality of the pump. We first
consider a simple configuration of the example in Sections 2 and 3, with one pump, two
plants and a temperature monitor for the pump (see Figure 1); we later consider a larger
configuration in Section 5, with three pumps, three plants and monitoring more properties.

In the digital twin, each plant is modelled by a Plant object and each pump by a Pump

object. The Plant class contains the plant’s identifier and scientific species name, so further
information about the plant can be retrieved from a domain knowledge base. The Pump class
contains the pump’s identifier, a reference pl to the plant it is watering and a reference gpioPin

to the output pin needed to operate the physical pump. The pump method implements the
watering profile for the pump, which depends on the stage of the plant and whether the pump
is fully operational or not: A pump is either operating normally (NormalPump) or overheated
and in need of maintenance (OverheatingPump). To avoid overheating, an OverheatingPump

should run at reduced power. Let us further assume that sensors (not specified here) update
a synchronisation knowledge base containing the current state of the greenhouse. Thus, our
program can retrieve information about the greenhouse from the knowledge base as needed.

The physical entities in the greenhouse evolve over time (e.g., a pump may threaten to
overheat). The objects in the digital twin need to adapt their behaviour in accordance with
the evolution of the physical entities they are twinning. To address this kind of problem, we
propose a dynamic object reclassification technique that is declarative; i.e., the adaptation
logic for reclassification is derived in the knowledge base. We now introduce a knowledge base
for our example, and extend our program with constructs to interact with this knowledge base.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:3–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Knowledge Bases and Consistency. A knowledge base is used to organise and make
contextual information accessible via an API. To keep the presentation abstract, we here
represent knowledge in terms of first-order logic formulas and structure the knowledge base
for our digital twin as follows: (1) domain knowledge about plants and pumps, see Figure 2a,
including the description of the physical pumps and plants in the greenhouse (the so-called
domain objects); and (2) synchronisation knowledge about the current value of the properties
of these domain objects, see Figure 2b. Observe how consistency here comes into play: a Pump

object in the digital twin should be classified in the subclass of Pump implementing the watering
policy that is appropriate for the current stage of the pump domain object it twins and controls.

We use patterns from ontologies and knowledge representation to model domain knowledge,
represent domain objects and domain classes as constants (nullary predicates), and prefix all
predicates concerning the domain by ctx . The membership of a domain object (e.g., ctx o)
in a domain class (e.g., ctx C) is expressed by a binary predicate ctx in(ctx o, ctx C). the
value x of a property ctx prop for a domain object y by the predicate ctx prop(y, x). For
instance, the temperature x of a pump y is expressed by the predicate ctx temp(y, x).

The formulas E1–E4 in Figure 2a express general knowledge about pumps; the remaining
formulas specific knowledge about domain objects (here, one plant and one pump). Formula
E1 states that a pump (ctx Pump) is operating normally (ctx NormalPump) if its temperature
is ≤ 50°C, and E2 that a pump is in danger of overheating (ctx OverheatingPump) if its tem-
perature is > 50°C. Formulas E3 and E4 express that the property ctx id uniquely identifies
a domain object and that each pump can have only one temperature. The remaining formulas
describe the plant and pump in our greenhouse, represented by constants ctx plant and
ctx pump; ctx Plant is the domain class of all plants. The last formula states that the pump
ctx pump has some temperature. The synchronisation knowledge base, in Figure 2b, contains,
for each non-constant property ctx prop of the system, an axiom that states the current
value of ctx prop. It contains a formula that states the actual temperature of ctx pump.

To express consistency, we need to relate the Pump program objects to the current state
of the actual pumps in the greenhouse, as represented by the ctx Pump domain objects. To
this aim, we represent the program code and its runtime configuration as knowledge bases.
Figure 2c illustrates how the code in Figure 1 can be represented by a code knowledge base:
predicate isCls(x) express whether x is a program program class; and subclass(x, y) express
whether x is a subclass of y.

The representation of a program configuration in a knowledge base is known as semantic
lifting [38], and uses a function defined in terms of the language to serialise runtime config-
urations into a lifted-heap knowledge base, where: isObj(x) express whether x is a program
object (reference); instOf(x, y) whether x is an object instance of class y; in(x, y) whether
x is an object instance of a subclass of y; and C f(x, y) express whether x is an object in
class a C and its field f has value y. Figure 2d shows the lifted runtime configuration of
the program in Figure 1 after execution of the expression new Main() in Line 14 and field
initialisation in Lines 11 and 12: here, the program object ι1, which is stored in pl, is an
instance of program class Plant and ι2 is an instance of program class NormalPump; and
Pump plant(ι2,ι1) states that the field plant in ι2 of program class Plant has value ι1.

Observe that the fact D1 ctx in(ctx pump, ctx OverheatingPump) can be derived in the
knowledge base in Figure 2 (by instantiating the universal quantifier in the axioms E2
and E3 with ctx plant), which shows that the lifted runtime configuration in Figure 2d
(stating that ι2 is an instance of NormalPump) is not consistent with the context. To enable
declarative dynamic object reclassification, we need to connect program objects (e.g., ι1 and
ι2) and classes (e.g., Pump, NormalPump and OverheatingPump) to corresponding domain

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:4–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

(E1) ∀x. ctx in(x, ctx NormalPump) ⇔
(
ctx in(x, ctx Pump) ∧ ∃y. ctx temp(x, y) ∧ y ≤ 50

)
,

(E2) ∀x. ctx in(x, ctx OverheatingPump)⇔
(
ctx in(x, ctx Pump) ∧ ∃y. ctx temp(x, y) ∧ y>50

)
,

(E3) ∀x, y, z. (ctx id(x, z) ∧ ctx id(y, z)) ⇒ x
.= y,

(E4) ∀x, y, z. (ctx temp(x, y) ∧ ctx temp(x, z)) ⇒ y
.= z,

ctx in(ctx plant, ctx Plant), ctx in(ctx pump, ctx Pump),
ctx id(ctx plant, 1), ctx id(ctx pump, 2), ∃x.ctx temp(ctx pump, x)

(a) The domain knowledge base for the greenhouse.

ctx temp(ctx pump, 52)

(b) A synchronisation knowledge base describing the temperature of the pump.

isCls(Plant), isCls(Pump), isCls(NormalPump), isCls(OverheatingPump), isCls(Main),
subclass(NormalPump, Pump), subclass(OveheatingPump, Pump)

(c) A snippet of the code knowledge base describing the code in Figure 1.

isObj(ι1), isObj(ι2), isObj(ι3), instOf(ι1, Plant), instOf(ι2, NormalPump),
instOf(ι3, Main), Plant id(ι1, 1), Plant name(ι1, "Ocimum basilicum"),
Pump plant(ι2, ι1), Pump id(ι2, 2), Pump gpioPin(ι2, 7)

(d) The lifted-heap knowledge base, for the program’s heap after the Main object has been initialised.

Figure 2 Knowledge bases for the digital twin: domain, synchronisation, code and lifted heap.

objects (e.g., ctx plant and ctx pump) and classes (e.g., ctx Pump, ctx NormalPump and
ctx OverheatingPump) in the knowledge base. In particular, we face the following challenges:

Ch1: How can we relate program objects with the external knowledge base, and define
external consistency, i.e., consistency between program and external knowledge base?

Ch2: How can we program reactions to changes in the consistency of the relation between
program and knowledge base?

Ch3: How can we ensure that establishing external consistency does not break internal
consistency, i.e., the typing of the program?

Knowledge Bases as Interoperability Layers. While our approach is general to dynamic re-
classification, it is worth commenting on the role of the knowledge base, which is motivated by
digital twins. In digital twins, the focus is not on highly complex low-level control, but on mod-
ularity, composition, and semantic interoperability of different components, where knowledge
bases are widely used [42,60]. Often, all communication between the program and the physical
component is handled via the knowledge base. The program is acting as a controller and a
coordinating component that acts on data that has been already ingested into the knowledge
base. This approach, which lends to blackboard architectures [25], also motivates our termin-
ology of external consistency: The program is consistent with an external component (namely
the physical twin), as described by the synchronization knowledge base. From a model-based
perspective, this corresponds to intermodel consistency (see, e.g., Feichtinger et al. [19]), in
contrast to internal, or intramodel, consistency, which corresponds to type soundness.

2.2 Declarative Dynamic Object Reclassification
Based on the knowledge base and scenario above, we now illustrate the mechanisms in the
programming language to connect the program with its context at runtime, shown in Figure 3.
The formalisation and properties for these mechanisms will be explored in Section 3.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:5–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Extended Java code

1 class Plant { int id; String species; }
2 abstract class Pump classifies λself . ctx in(self , ctx Pump) {
3 int id; int gpioPin; Plant plant;
4 void pump(){ ... }; /∗ uses gpioPin and waters the plant ∗/
5 }
6 class NormalPump extends Pump
7 links λself . ctx in(self , ctx Pump) ∧ ∀x. Pump id(self , x) ⇒ ctx id(self , x)
8 classifies λself . ctx in(self , ctx NormalPump) { ... /∗ methods ∗/ }
9 class OverheatingPump extends Pump

10 links λself . ctx in(self , ctx Pump) ∧ ∀x. Pump id(self , x) ⇒ ctx id(self , x)
11 classifies λself . ctx in(self , ctx OverheatingPump)
12 retrieves λself ,maximal. ∃x. ctx profile(self , x) ∧ ctx maximalPower(x,maximal)
13 { int maximal; ... /∗ methods ∗/ }
14 class Main {
15 Plant pl = new Plant(1, "Ocimum basilicum");
16 Pump pu = new NormalPump(2, 7, pl);
17 void loop() { while (true) { adapt(pu); pu.pump(); System.wait(1); } }
18 public static void main(String[] args) { new Main().loop(); }
19 }

(a) The greenhouse digital twin programmatic part with links, classifies, retrieves and adapt.

∀y. instOf(y,NormalPump) ⇒
(
ctx in(y, ctx Pump) ∧ ∀x. Pump id(y, x) ⇒ ctx id(y, x)

)
,

∀y. instOf(y,OverheatingPump) ⇒
(
ctx in(y, ctx Pump) ∧ ∀x. Pump id(y, x) ⇒ ctx id(y, x)

)
(b) Linkage knowledge base. Tautologies from the default links clauses of Plant and Main are omitted.

Figure 3 The greenhouse digital twin programmatic part and the linkage knowledge base.

Linkage. To address the first part of challenge Ch1, we propose to dynamically add
knowledge about the dynamically created objects of the program’s runtime state to the
knowledge base. Technically, we add to each non-abstract class C a links clause with a single-
parameter λ-predicate λself .ϕ to express that ∀x.instOf(x, C) ⇒ ϕ[self := x] is added to the
knowledge base (the λ-predicate λself .true here acts as default). At runtime, dynamically
created objects are lifted into the lifted-heap knowledge base by adding a fact about their class
membership, e.g., instOf(ι, C) for some object ι (cf. Section 2.1). In Figure 3 (Section 2.1), the
program class NormalPump declares its objects to be members of domain class ctx NormalPump
and the domain id (ctx id) and program id (Pump id) to be the same. Similarly for
OverheatingPump (Section 2.1). Linkage connects the objects of C to the context, using
domain terminology (i.e., predicate symbols). Figure 3b shows the linkage knowledge base
containing the added axioms. The first states that every program object that is an instance of
NormalPump, is also a pump (i.e., a ctx Pump in the domain context), and that the ids are the
same. The same states the same for OverheatingPump. This links the program object to the
domain knowledge, as one can use domain axioms (such as E1 and E2) to reason about the
program objects. This is done as follows. From the lifted heap in Figure 2d, we derive that ι2 is
member of ctx OverheatingPump as follows: By lifting, we have instOf(ι2, NormalPump) and
by linkage, ctx id(ι2, 2). Since ctx id uniquely identifies an object (cf. E3), ctx pump .= ι2.
Applying this equality in the formula ctx in(ctx pump, ctx OverheatingPump) (D1, see
above), we obtain ctx in(ι2, ctx OverheatingPump).

Consistency Declaration. To address the second part of challenge Ch1, we propose to
characterise in the knowledge base when an object should belong to a particular class. To
this aim, we let objects change between reclassifiable subtypes of an adaptable (abstract)
class. Technically, we add a classifies clause with a single-parameter λ-predicate to these

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:6–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Reclassifiable_Class_1

 classification_query_1

 retrieval_query_1

Reclassifiable_Class_n

 classification_query_n

 retrieval_query_n

«abstract»
Adaptable_Class

 classification_query_0

Reclassifiable_Class_2

 classification_query_2

 retrieval_query_2

...

Figure 4 The structure of a class hierarchy for declarative dynamic object classification.

classes. If this λ-predicate holds when instantiated for a program object of the given program
class, the program object is considered consistent with its context. In our example (see
Figure 2), ι2 is not consistent. The only classes with a classifies clause are
1. adaptable classes, i.e, abstract classes that extend classes with no classifies clause; and
2. reclassifiable classes, i.e., all the subclasses of the adaptable classes (introduced in point 1),

that must be non-abstract and have no subclasses.
Remark that, as illustrated in Figure 4, each reclassifiable class must (1) directly inherit from
an adaptable class; (2) not be inherited from; and (3) have only reclassifiable sibling classes.

Reclassification Queries. Reclassification is the process of changing the program class of an
inconsistent program object to a program class that makes the program object consistent. To
address challenge Ch2, we provide language support for programming such reclassification.
The expression adapt(e) (Section 2.1) takes a program object that must be an instance of a
reclassifiable class as argument, and checks whether this program object is consistent with the
context; if this is not the case, it is reclassified. This is done by searching the knowledge base
for a sibling to its current program class in the class hierarchy, that would make the object
consistent. For the running example (see Figure 2), this would be the OverheatingPump class.
Remark that the adapt expression is an explicit mechanism to ensure external consistency,
but far from the only one. External consistency can also be established implicitly, either lazily,
whenever an object is accessed, or periodically in the background, akin to a garbage collector.

To support state transfer for the reclassified object to the fields of its new program class,
the programmer adds a retrieves clause to each reclassifiable class. This clause provides a
λ-predicate with one parameter for the object in question and one for each field declared in the
class. We can then infer values from the knowledge base that make the λ-predicate hold. Con-
sider the OverheatingPump in Figure 3a: the reclassification query (Section 2.1) first retrieves
the profile of the given pump, and then the maximal power it can use when in this stage.

Ensuring Consistency and Type Soundness. To address challenge Ch3, let us observe that
it is crucial that the dynamic operations on the knowledge base maintain satisfiability of
the knowledge base — otherwise, the program’s interactions with the knowledge base would
allow incorrect information to be inferred, potentially violating type soundness. Technically,
we first ensure that reclassifiable classes are not used as types; e.g., a variable of type
OperationalPump is not allowed, as it may cause an error when accessed after reclassification.
Both this restriction and the structure illustrated in Figure 4 are enforced by the type system;
they guarantee that no unsafe access is possible.

To ensure that the interaction between the program and the knowledge base does not
introduce errors, we introduce a notion of program coherence roughly expressing that
1. every lifted object of a reclassifiable class can be classified as member of the adaptable

superclass;
© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:7–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Prg ::= K CD e Program
K ::= {ϕ} Knowledge base
CD ::= class C [extends C] [Links] [Adapt] {FD MD} Class
FD ::= T f; Field
T ::= C | int Type
MD ::= MH {return e; } Method
MH ::= T m(T x) Method header
e ::= x | n | e.f | e.m(e) | new C(e) | e.f = e | null | adapt(e) Expression
Links ::= links λz.ϕ Linkage
Adapt ::= classifies λz.ϕ [retrieves λzz.ϕ]; Adaptation

Figure 5 FSRJ syntax, where ϕ ranges over first-order logic (FOL) formulas, C over class names,
f over field names, T over types (i.e., class names and the basic type int), m over method names,
x over local variables (i.e., formal parameters to methods) and z over term variables (so λz.ϕ is a
unary λ-predicate and λzz.ϕ a λ-predicate of arity ≥ 1).

2. every lifted object that is member of an adaptable class can also be classified as member
of one of the reclassifiable subclasses; and

3. the retrieves λ-predicate associates a value of the correct type to each field.

We say that an object is hot to mean that a method invoked on the object has an activation
record on the stack, and cold otherwise. In the next section we will see that program
coherence ensures that reclassification of cold objects is always successful.

3 FSRJ: Featherweight Semantically Reflected Java

This section provides a formal account of programming with semantic reflection in terms of
Featherweight Semantically Reflected Java (FSRJ), a minimal core calculus for class-based
object-oriented languages with semantic reflection. Our purpose with FSRJ is to formalise
the interplay between program execution, semantic reflection and the querying of knowledge
bases for dynamic object reclassification. FRSJ is a variant of Featherweight Java (FJ) [31].1

3.1 FSRJ Syntax
The syntax of FSRJ is given in Figure 5. We let · represent (possibly empty) sequences and
[·] represent optional elements. Operations on sequences of pairs are abbreviated in a similar
way; e.g., C f is shorthand for C1 f1, . . . , Cn fn. The empty sequence is denoted by • and the
length of a sequence e is denoted by #(e). The set of program variables includes the reserved
name this, which cannot be used as a name of a field or a method’s formal parameter.

In FSRJ, a program Prg consists of a knowledge base K, a list of class definitions CD and
a main expression e. The knowledge base K, called the domain knowledge base of Prg, is set
of FOL formulas. A class definition class C [extends D] [Links] [Adapt] {FD MD} consists of
a class name C, an optional clause extends D to express inheritance (so D is the immediate
superclass of C), an optional linkage clause Links = links λz.ϕ, an optional adaptation clause
Adapt = classifies λz.ϕ [retrieves λzz.ψ] (where, in turn, the retrieves part is optional),

1 FSRJ does not technically extend FJ because cast-expressions are excluded; these are orthogonal to
semantic reflection and object reclassification. Further, FSRJ is imperative (it features a field assignment
expression), has no implicit root class (Object), and classes in FSRJ need not have a superclass and
have an implicit constructor which initialises all the fields.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:8–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

a list of field definitions FD and a list of method definitions MD. The knowledge base, formalising
the context in which the program executes, is detailed in Section 3.2. The linkage clause
expresses that every instance o of C is logically linked by λz.ϕ; i.e., given the address ι of o,
the formula ϕ[z := ι] holds in the context of the program. The adaptation clause expresses
that if C has the immediate superclass D, then every instance o of an immediate subclass
of D is reclassifiable to C by λz.ϕ and λzz.ψ; i.e., given the address ι of o, if the formula
ϕ[z := ι] holds in the context of the program then there exist values v for the fields of C such
that the formula ψ[zz := ιv] holds in the context of the program. Types T include names of
declared classes and the basic type int. Field and method declarations are standard; the
fields declared in a class are added to the ones declared in its superclasses, and are assumed
to have distinct names (i.e., no field shadowing is allowed). Method names are assumed to
be unique in the class; i.e., no method overloading is allowed. It is, however, possible to
override methods from the superclass. All fields and methods are public, and each class has
an implicit constructor that takes a parameter for each field (inherited or defined) in the
class and initialises all the fields.

We assume that the elements of lists of named entities (i.e., class definitions, field defin-
itions, method definitions, method formal parameter declarations) have different names. To
simplify the presentation, we use a program Prg as a mapping from class names C to the
corresponding class definitions CD; and use a class definition CD as a mapping that maps field
and method names to field and method definitions, may map the keyword extends to the
name of its superclass D, may map each of the keywords links and classifies to a unary
λ-predicate of arity one and the keyword retrieves to a λ-predicate of arity n+ 1, where
n is the number of fields (defined or inherited) in the class. We assume that programs Prg
satisfy the following well-formedness conditions:

1. For a class name C appearing anywhere in Prg, we have C ∈ dom(Prg).
2. There are no cycles in the transitive closure of the immediate extends relation.

The subclassing relation <: is the reflexive and transitive closure of the immediate extends rela-
tion. The subtyping relation ≤ extends <: by adding reflexivity on basic types, i.e., int ≤ int.

In the sequel, we let the metavariable a range over names and the metavariable AD over
definitions. The lookup of the definition of a field or method a in a class C is denoted by
aDef(C)(a). For each class in dom(Prg), the function aDef(C) is defined as follows:

aDef(C)(a) =
{

Prg(C)(a) if a ∈ dom(Prg(C))
aDef(D)(a) if a /∈ dom(Prg(C)) and Prg(C)(extends) = D

Given a field definition FD = T f and a method definition MD = T m (T x) {· · · }, let signature

(FD) denote the type T of field f and signature(MD) the type T → T of method m.

▶ Example 1 (Greenhouse digital twin in FSRJ). Let us consider the encoding of the Greenhouse
example (Figure 3a) in FSRJ. Sequential composition, which is not part of the syntax of FSRJ,
can be encoded. For e1; · · · ; en of n ≥ 1 expressions, define an auxiliary class Encode with
a method Tn sqT1_T2_...Tn (T1 x1, ..., Tn xn) { return en; }, where Ti is the type of ei
(1 ≤ i ≤ n). Namely, e1; · · · ; en can be expressed as new Encode().sqT1...Tn(e1, ..., en).

Then, if we ignore the keyword abstract, consider void as syntactic sugar for int,
consider the string literal "Ocinum basilicum" as syntactic sugar for an integer literal, and
consider System.wait(1) as syntactic sugar for new System().wait(1) where System is a
class providing a method int wait(int x) {...}, we have that the Java-like code fragment
in Figure 3a can be turned into an FSRJ code fragment by replacing the code of the class
Main (in lines 16-21) by the following FSRJ code:

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:9–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

FSRJ

class Main { Plant pl; Pump pu;
int loop(){ return new Encode().scPump_Plant_int_int_int(pu.plant=this.pl,

adapt(pu), pu.pump(), System.wait(1), this.loop(); }
} // Main expression:
new Main(new Plant(1,"Ocinum basilicum"), new NormalPump(2,7,null)).loop()

3.2 A FOL Representation of Knowledge Bases
To avoid the technicalities of knowledge representation languages in FSRJ, the knowledge
base K of an FSRJ program is given as a set of closed FOL formulas over a given signature.
Formally, signatures and formulas over signatures are defined as follows.

▶ Definition 2 (Signatures). A signature is a set of predicate symbols Σ = Σ0 ∪Σ1 ∪Σ2, where
Σ0 is a set of 0-ary predicate symbols (constants), Σ1 a set of unary predicate symbols, and Σ2
a set of binary predicate symbols (relations). Let c range over Σ0, P over Σ1 and R over Σ2.

▶ Definition 3 (FOL formulas and terms over a signature). Let term variables z range over
constants in a signature Σ. The formulas ϕ and terms t over Σ are defined as follows:

ϕ ::= ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ⊕ ϕ | ϕ ⇒ ϕ | ϕ ⇔ ϕ | ∃z. ϕ | ∀z. ϕ | P (t) | R(t, t) | t .= t

t ::= z | c

Thus, in a λ-predicate λzz.ψ, zz is a (non-empty) list of term variables and ϕ a FOL formula.
We denote by FV(t) the free variables in a term t and by FV(ϕ) the free variables in a formula
ϕ. The substitution ϕ[z := t] replaces all free occurrences of the term variable z by the term
t in the formula ϕ (we omit its inductive definition here). Given a knowledge base K and a
formula ψ, we let K ⇒ ψ abbreviate

(
∧ϕ∈K ϕ) ⇒ ψ.

Recall that the semantics of FOL with equality defines the values of terms to be individuals
of a domain with an identity-relation, and the values of (well-formed) formulas to be truth
values [4]. Thus, the semantics of a formula over a signature Σ is defined relative to an
equality-model M = ⟨D, I,≈⟩ and a variable assignment β that maps term variables to
elements in the domain D, such that: (1) the interpretation I : Σ → Dn maps symbols in Σ2
to binary relations over D × D, symbols in Σ1 to unary predicates over D, and symbols in Σ0
to distinct elements in D; and (2) the interpretation I(.=) is the equality-relation ≈ on D. In
the following definition of satisfiability, we omit the operators ∀, ∧, ⊕ (which denotes exclusive
or), ⇒ and ⇔, since their semantics can be derived by the semantics of the other operators.

▶ Definition 4 (Satisfiability). Let Σ be signature, M = ⟨D, I,≈⟩ an equality-model such
that I : Σ → D, and β a variable assignment. The values of terms t with respect to β in M,
denoted JtKM,β, are defined by JzKM,β = β(z) and JcKM,β = I(c). The relation M, β |= ϕ,
expressing that a formula ϕ is satisfied by M and β, is defined inductively as follows:

M, β |= ¬ϕ iff M, β ̸|= ϕ

M, β |= ϕ1 ∨ ϕ2 iff M, β |= ϕ1 or M, β |= ϕ2
M, β |= ∃x. ϕ iff M, β[x 7→ d] |= ϕ for some d ∈ D

M, β |= P (t) iff JtKM,β ∈ M(P)
M, β |= R(t1, t2) iff

(
Jt1KM,β , Jt2KM,β

)
∈ M(R)

A formula ϕ over Σ is (1) satisfiable if M, β |= ϕ holds for some M and β, and (2) valid,
denoted |= ϕ, when ϕ is satisfiable for every M and variable assignment.
A knowledge base K is satisfiable/valid if ∧ϕ∈K ϕ is satisfiable/valid.
Given a knowledge base K and a formula ψ, we write K |= ψ as shorthand for |= K ⇒ ψ.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:10–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

▶ Example 5 (Domain knowledge base for the Greenhouse digital twin in FSRJ). The domain
knowledge base for the FSRJ Greenhouse digital twin is given in Figure 2a.

3.3 Program Typing
In this section we present the type system for FSRJ, detailing especially on the language
aspects related to knowledge bases, semantic reflection and dynamic object reclassification.

The function type, that extracts the type from a field or method definition, is defined
by: type(T f) = T and type(T m(T x){· · · }) = T → T. The lookup of the type of a field or
method a in the program is defined b:y aType(C)(a) = type(aDef(C)(a)). With respect to
reclassification, we say that a class C ∈ dom(Prg) is:

standard, written Std(C), if (1) links ∈ dom(Prg(C)); (2) classifies ̸∈ dom(Prg(C)); (3)
retrieves ̸∈ dom(Prg(C)); and (4) if C has a superclass, then this superclass is standard
(i.e., if Prg(C)(extends) = B for some B, then Std(B)).
adaptable, written Adp(C), if (1) links ̸∈ dom(Prg(C)); (2) classifies ∈ dom(Prg(C)); (3)
retrieves ̸∈ dom(Prg(C)); and (4) if C has a superclass, then this superclass is standard
(i.e., if Prg(C)(extends) = B for some B, then Std(B)).
reclassifiable, written Rcl(C), if (1) links ∈ dom(Prg(C)); (2) classifies ∈ dom(Prg(C));
(3) retrieves ∈ dom(Prg(C)); and (4) C has a superclass which is adaptable (that is,
Prg(C)(extends) = B and Adp(B), for some B).

By inspecting the program, it is possible to check that there are no cycles in the transitive
closure of the extends relation; that, for each class C in dom(Prg), the names of the fields
in C are distinct from the names of inherited fields; that each class is either standard, or
adaptable, or reclassifiable; and that each adaptable class has at least a subclass (which is
necessarily reclassifiable). We write sane(Prg) to express that the program Prg satisfies the
well-formedness conditions in Section 3.1 and that the following sanity conditions:

1. C1 <: C2 implies that, for all method names m, if aType(C2)(m) is defined, then aType(C1)(m)

= aType(C2)(m).
2. C1 <: C2 and C1 ≠ C2 imply that, for all field names f, if f ∈ dom(Prg(C1)) then f ̸∈

dom(Prg(C2)).
3. For every C ∈ dom(Prg), exactly one of Std(C), Adp(C) or Rcl(C) holds.
4. For every C∈dom(Prg), if Adp(C) then there exists D∈dom(Prg) s. t. Prg(D)(extends)=C.
5. Reclassifiable class names are not used as field types, as method parameters or return types.

The typing rules and field lookup rule for FSRJ are given in Figure 6. Rule T-knowledge
enforces that the domain knowledge base consists of closed formulas. The typing of expressions
is standard, except for rule T-new, which enforces new objects to be typed either by an
adaptable or a standard class, and rule T-adapt, which enforces the adapt-expression and the
argument of adapt to be typed by an adaptable class C. This allows the argument of adapt
to be dynamically reclassified to any subclass of C.

The typing of links clauses ensures that the linkage formula only contains one free variable
z, which ensures that the formula can be closed by instantiating z. Similarly, the typing of
the adapts clause ensures that the free variables of the classifies- and retrieves-formulas
are known. The typing rules for method and class definitions and for programs are standard
recursively checking the different syntactic elements; the latter rule additionally checks that
the program is sane. In the type system, the auxiliary function fields(C) retrieves all field
definitions of a given class C in the program Prg, including the inherited ones. To type the
null value, we use the special type ⊥, which is not a class name, not part of the program
and a subtype of any class name. In the sequel, we use the following convention:

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:11–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Knowledge base typing ⊢ K OK

FV(ϕ) = ∅ for all ϕ ∈ K
(T-knowledge)

⊢ K OK

Expression Typing Γ ⊢ e : T

(T-var) Γ ⊢ x : Γ(x) (T-int) Γ ⊢ n : Int

(T-null) Γ ⊢null: ⊥

Γ ⊢ e : C aType(C)(f) = T
(e = this) ∨ ¬Rcl(C)

(T-field)
Γ ⊢ e.f : T

Γ ⊢ e0 : C0
(e0 = this) ∨ ¬Rcl(C0) Γ ⊢ e : S

aType(m, C0) = T→ T S ≤ T
(T-invoke)

Γ ⊢ e0.m(e) : T

¬Adp(C) T f = fields(C)
Γ ⊢ e : S S ≤ T

D =
{

Prg(C)(extends) if Rcl(C)
C otherwise

(T-new)
Γ ⊢new C(e) : D

Γ ⊢ e0.f : T Γ ⊢ e1 : S S ≤ T
(T-assign)

Γ ⊢ e0.f = e1 : T

Γ ⊢ e : C Adp(C)
(T-adapt)

Γ ⊢adapt(e) : C

Links typing ⊢ links OK

FV(ϕ) = {z}
(T-links)

⊢ links λz.ϕ OK

Adapts typing this : C ⊢ adapts OK

[fields(C) = T1 f1, . . . , Tn fn]
FV(ϕ) = {z} [FV(ψ) = {z, z1, . . . , zn}]

(T-adapts)
this : C ⊢ classifies λz.ϕ

[retrieves λzz.ψ] OK

Method definition typing this : C ⊢ MD OK

this : C, x : T ⊢ e : S S ≤ T
(T-method)

this : C ⊢ T m(T x){return e; } OK

Class definition typing ⊢ CD OK

this:C ⊢ MD OK
[⊢ links OK] [this:C ⊢ adapts OK]

(T-class)
⊢ class C [extends D] [links] [adapts] {FD MD}OK

Program typing ⊢ Prg OK

Prg = K CD e sane(Prg)
⊢ K OK ⊢ CD OK • ⊢ e : S

(T-program)
⊢ Prg OK

Field lookup

[fields(D) = T′ f′]
Prg(C) = class C [extends D] · · · {T f; MD}

fields(C) = [T′ f′
,] T f

Figure 6 FSRJ: typing rules and field lookup rule.

the metavariable T denotes either a non-reclassifiable class name or int; and
the metavariable S denotes either a non-reclassifiable class name, int or ⊥.

We say that a program Prg is well-typed to mean that ⊢ Prg OK holds.

▶ Lemma 6 (Syntactic guarantees for well-typed programs). Let ⊢ Prg OK. Then sane(Prg)
and if new C(...) appears in Prg then C is not adaptable.

3.4 Code, Linkage and Program Knowledge Bases
The purpose of this section is to explain how to formalise program-specific knowledge bases
in FOL. Given a well-typed program Prg = K CD e with domain knowledge base K, we first
define a knowledge base Kcode that reflects part of the code of Prg in FOL. The knowledge
base Kcode includes general axioms and symbols common to all FSRJ programs, as well as
knowledge specifically derived from Prg, such as knowledge about declared classes and fields.

▶ Definition 7 (Code knowledge bases). Given a well-typed FSRJ program Prg with domain
knowledge base K over the signature Σ, let Cls = dom(Prg) be the set of class names in
Prg, Fls(C) the set of qualified field names C.f declared (not inherited) in class C, type(C.f)

the type of the field C.f, and Zk = {z | −k ≤ z ≤ k} (where k is natural number) a set of
integers. We denote by Σcode the following signature (where subscripts denote the arity of
non-constant symbols):

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:12–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

A1. ∀x. (x .= int) ⊕ (x .= null) ⊕ isInt(x) ⊕ isObj(x) ⊕ isCls(x),
A2. ∀x. isCls(x) ⇔ (isStd(x) ⊕ isAdp(x) ⊕ isRcl(x))
A3. isInt(n) for all n ∈ Zk
A4. isCls(C) for all C ∈ Cls
A5. isStd(C) for all C ∈ Cls such that Std(C)
A6. isAdp(C) for all C ∈ Cls such that Adp(C)
A7. isRcl(C) for all C ∈ Cls such that Rcl(C)
A8. ∀x.

(
∧n∈Zk

¬(x .= n)
)

⇒ ¬isInt(x)
A9. ∀x.

(
∧C∈Cls ¬(x .= C)

)
⇒ ¬isCls(x)

A10. ∀x, y. subclass(x, y) ⇒ (isCls(x) ∧ isCls(y))
A11. subclass(C, C′) for all C, C′ ∈ Cls such that C <: C′

A12. ¬subclass(C, C′) for all C, C′ ∈ Cls such that C ̸<: C′

A13. ∀x, y. compatible(x, y) ⇔ ∃z. subclass(x, z) ∧ subclass(y, z) ∧ isAdp(z)
A14. ∀x, y. (instOf(x, y) ∨ in(x, y)) ⇒ (isObj(x) ∧ isCls(y))
A15. ∀x. isObj(x) ⇒ ∃y. isCls(y) ∧ instOf(x, y) ∧ ¬isAdp(y)
A16. ∀x, y, z. (instOf(x, y) ∧ instOf(x, z)) ⇒ (y .= z)
A17. ∀x, y. in(x, y) ⇔ ∃z.instOf(x, z) ∧ subclass(z, y)
A18. ∀x, y. hasType(x, y) ⇔ (in(x, y) ∨ (isInt(x) ∧ (y .= int)) ∨ ((x .= null) ∧ isCls(y)))
A19. ∀x. in(x, C) ⇔ ∃y. C_f(x, y) for all C ∈ Cls and C_f ∈ Fls(C)
A20. ∀x, y, z. (C_f(x, y) ∧ C_f(x, z)) ⇒ (y .= z) for all C ∈ Cls and C.f ∈ Fls(C)
A21. ∀x, y. C_f(x, y) ⇒ in(x, C) ∧ hasType(y, type(C_f)) for all C ∈ Cls and C.f ∈ Fls(C)

Figure 7 The code knowledge base.

Zk ∪ {int, null} ∪ Cls ∪ {C_f2 | C.f ∈ Fls(C)}
∪{isInt1, isObj1, isCls1, isStd1, isAdp1, isRcl1, subclass2, in2, compatible2, instOf2, hasType2}

and (without loss of generality) assume that Σ ∩ Σcode = Zk ∪ { .=}. The code knowledge base
Kcode of Prg is the set consisting of the formulas over Σcode in Figure 7.

We briefly discuss the formulas of Kcode. Axiom A1 expresses that each element in the
domain must be either the type name int, the value null, an integer value, an object or a
class; and A2 that each class is either standard, adaptable or reclassifiable. Axioms A3 declare
that each constant n ∈ Zk is an integer and A4 declare that each constant C ∈ Cls is a class.
Axioms A5 –A7 declare the kind (standard, adaptable, reclassifiable) of each constant C ∈ Cls.
Axioms A8 express that each integer in the domain is mapped to a constant n ∈ Zk and A9
that each class in the domain is mapped to a constant C ∈ Cls. Axioms A10 –A12 express that
the subclass relation relates classes to classes and capture the <: relation of Prg. Axiom A13
expresses that two (reclassifiable) classes are compatible if and only if they are both subclasses
of the same adaptable class. Axiom A14 expresses that both the instOf and the in relations
relate objects with classes. Axioms A15 and A16 declare that each object is an instOf of
exactly one non-adaptable class. Axiom A17 declares that an object is in a class if and only
if it is an instOf of a subclass of that class. Axiom A18 declares that only null, integers and
objects have types, and which are their types. Axioms A19 –A21 express that the predicate
C_f models the field f of objects of any subclass of C, each object has exactly the fields (declared
or inherited) in its class, and each field contains exactly one value of the declared type.

▶ Example 8 (Code knowledge base for the Greenhouse digital twin in FSRJ). A subset of the
© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:13–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

code knowledge base for the FSRJ program in Example 1 (namely, the subset containing
axioms A4 and A11) is given in Figure 2c.

We define the linkage knowledge base to express that each object satisfies the predicate
specified by the links clause of its class.

▶ Definition 9 (Linkage knowledge bases). Let Prg be a well-typed FSRJ program with domain
knowledge base K over Σ. Let Cls = dom(Prg). The linkage knowledge base Klink of Prg
is the set of formulas over the signature Σ ∪ Σcode defined by ∀x. instOf(x, C) ⇒ ϕ[z :=
x] for all C ∈ Cls and Prg(C)(links) = λz.ϕ.

▶ Example 10 (Linkage knowledge base for the Greenhouse digital twin in FSRJ). The linkage
knowledge base for the FSRJ program of Example 1 is given in Figure 3b.

Observe that by combining Σ and Σcode, predicates in Klink may express connections between
an FSRJ program’s runtime values (e.g., instances of a class C) and the domain knowledge
base. We define a knowledge base that comprises the three knowledge bases defined above:

▶ Definition 11 (Program knowledge bases). Let Prg be a well-typed FSRJ program with
domain knowledge base K over the signature Σ. The program knowledge base of Prg is the
knowledge base KPrg = K ∪ Kcode ∪ Klink over the signature Σ ∪ Σcode.

▶ Lemma 12 (Satisfiability of the program knowledge base). For every well-typed program Prg
with domain knowledge base K over the signature Σ. If K is satisfiable, then the knowledge
base KPrg = K ∪ Kcode ∪ Klink over the signature Σ ∪ Σcode is satisfiable.

3.5 Program Coherence
This section considers requirements on FSRJ programs Prg to ensure that reasoning with
the program knowledge base KPrg is in fact meaningful for declarative object reclassification.
These requirements are needed to ensure type soundness; even with a satisfiable domain
knowledge base, linking axioms can make the knowledge base incoherent (e.g., define a linkage
predicate to introduce false into the knowledge base). Below, let λz.ϕC = Prg(C)(classifies)
and Children(C) = {D ∈ dom(Prg) | Prg(D)(extends) = C} for classes C. We say that a
well-typed program Prg with domain knowledge base K over a signature Σ is coherent if:
Coh1: K is satisfiable. This requirement ensures that models exist for the domain knowledge

base.
Coh2: K ∪ Kcode |= Klinks. This requirement ensures that the user-defined linkage axioms

exclude no interpretation that satisfies the union of the domain and code knowledge bases
K ∪ Kcode; thus ensuring that each object satisfies the linkage predicate of its class.

Coh3: In every model satisfying KPrg, for every object x instance of a reclassifiable subclass
of an adaptable class C, the classification predicate ϕC of C must hold for x:

KPrg |= ∀x. in(x, C) ⇒ ϕC[z := x], for all C ∈ Cls such that isAdp(C).

This requirement ensures that the classification-predicates in the knowledge base respect
the subclass hierarchy in the program.

Coh4: In every model satisfying KPrg, for every object x in an adaptable class C, classification
predicate ϕD of one of its subclasses D must hold for x:

KPrg |= ∀x. in(x, C)⇒
∨

D∈Children(C)

ϕD[z :=x], for all C ∈ Cls s.t. isAdp(C).

This requirement ensures that for every instance of a subclass of C, the classification query
of at least one of the subclasses of C always holds.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:14–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Coh5: In every model satisfying KPrg, for every object x in an adaptable class C and subclass
D of C, the retrieves predicate of D must hold for x when its classifies predicate holds:

KPrg |=∀x.
(
in(x, C)∧ϕD[z :=x]

)
⇒

((
∃y.ψD[zz :=xy]

)
∧

(
∀y.ψD[zz :=xy]⇒hasType(y, T)

))
,

for all C, D ∈ Cls such that isAdp(C) and subclass(D, C)

where λz, z.ψD = Prg(D)(retrieves), fields(D) = T f (for some f), and hasType(y, T) is
shorthand for hasType(y1, T1) ∧ · · · ∧ hasType(yn, Tn). This requirement ensures that a
reclassified object can be instantiated correctly.

Conditions Coh1 and Coh2 are basic requirements on the domain knowledge base K
and the linkage axioms. They ensure that reasoning over the combined knowledge base is
possible. In contrast, Coh3–Coh5 are required for type soundness (cf. Theorem 22): first
Coh3 ensures that subclassing in the program and the knowledge base are aligned; then
Coh4 ensures that reclassification always succeeds in finding a target class D; and finally
Coh5 ensures that values for the fields in the target class D can always be retrieved in the
knowledge base and respect the declared types of the fields of class D in the program.

3.6 Heap Lifting, Synchronisation and Operational Semantics
To model the operational semantics of FSRJ, we introduce the concepts of address (of
an object in a heap), stack, values, object, heap, lifted-heap knowledge base, environment,
synchronisation knowledge base, overall knowledge base, runtime expressions and runtime
configurations. Addresses, ranged over by the metavariable ι, are elements of the denumerable
set I. Stacks are sequences ι, recording the addresses of objects on which methods under
execution have been invoked (the address of the object of the most recent invocation is
rightmost). Values, ranged over by the metavariable v, are either addresses, integers, or the
special value null. Objects are tuples ⟨C, f = v⟩, where C is the class of the object, f the names
and v the values of the fields. A heap H maps addresses to objects; the empty heap is denoted
by ∅. A value v occurs in H if v ∈ {ι, v} for some H(ι) = ⟨C, f = v⟩, where ι ∈ dom(H).

▶ Definition 13 (Heaps for well-typed programs). A heap H for a well-typed FSRJ program
Prg is a mapping from addresses to objects such that

{ι | ι occurs in H} = dom(H), and
H only contains instances of non-adaptable classes defined in Prg.

The following definition formalises the concept of lifting a heap into a knowledge base.

▶ Definition 14 (Lifted-heap knowledge base). Given a heap H for a well-typed FSRJ program
Prg, the lifted-heap knowledge base Kheap(H), which lifts H to FOL, is the set consisting of
the following formulas over the signature Σheap(H) = Σcode ∪ dom(H):

L1. instOf(ι, C) for all ι ∈ dom(H) such that H(ι) = ⟨C, f1 = v1, . . . , fn = vn⟩
L2. Cj fj(ι, vj) for all ι ∈ dom(H) and for all Cj fj such that

H(ι) = ⟨C, f1 = v1, . . . , fn = vn⟩, C <: Cj , Cj .fj ∈ Fls(Cj) and 1 ≤ j ≤ n

L3. ∀x.
(∧

ι∈dom(H)(x ̸= ι)
)

⇒ ¬isObj(x)

The following definition formalises the concept of stating the values of the current
properties of the physical assets into a knowledge base.

▶ Definition 15 (Environment and synchronisation knowledge base). An environment E
for a well-typed FSRJ program Prg is a reference to a mapping that provides suitable

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:15–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

current values for the properties of the assets described in the domain knowledge base of Prg.
The synchronisation knowledge base Ksync(E) of Prg provides a witness for each formula
∃x.ctx prop(ctx asset, x) in K which states that the property ctx prop of the asset ctx asset
has some value x.

We now define a knowledge base that combines the two knowledge bases defined above,
which model the dynamic part of the system (the program heap and the current values
of the properties physical assets, respectively) with the domain and code knowledge base,
which model the static part of the system (domain knowledge and the structure of the code,
respectively). The combined knowledge base is operationalised in the operational semantics
of FSRJ (see rules R-adapt-y and R-adapt-n in Figure 8).

▶ Definition 16 (Overall knowledge base). Given a heap H and an environment E for a well-
typed FSRJ program Prg, the overall knowledge base Koverall(H, E) = KPrg∪Kheap(H)∪Ksync(E)
of Prg, over the signature ΣPrg ∪ Σheap(H), represents domain knowledge, code, heap and
value of the asset properties for the program Prg with heap H and environment E.

We briefly discuss the formulas of Kheap(H). The axiom L1 introduces individuals ι as
instances of classes C (Axiom A14 of Definition 7 then allows us to infer isObj(ι)). Axiom
L2 populates the relation C_f for all fields f of the classes C. Axiom L3 states that only
addresses from the heap can be considered as objects in the knowledge base Koverall(H, E)
(thus, L3 is similar to the closure axioms A8 and A9 for integers and classes in Figure 7).

▶ Example 17 (Lifted-heap and synchronisation knowledge bases for the Greenhouse digital twin
in FSRJ). The lifted-heap and synchronisation knowledge bases for the FSRJ program in
Figure 3a and Example 1 after the first execution of the pu.plant=this.pl expression in
the body of the loop method, are given in Figures 2b and 2d, respectively.

Recall that (by Lemma 12) the program knowledge base KPrg of a well-typed program Prg
is satisfiable. The following theorem shows that, if KPrg satisfies conditions Coh1 and Coh2
for program coherence (see Section 3.5), then its extension Koverall(H, E) with a lifted-heap
knowledge base Kheap(H) and synchronization knowledge base Ksync(E) for Prg remains
satisfiable (thus, reasoning over Koverall(H, E) is possible).

▶ Theorem 18 (Satisfiability of the overall knowledge base). Let H be a heap and E an
environment for the well-typed program Prg with domain knowledge base K is over the
signature Σ, and let KPrg = K ∪ Kcode ∪ Klink be the program knowledge base of Prg. If K is
satisfiable and K ∪ Kcode |= Klinks, then the overall knowledge base Koverall(H, E) is satisfiable.

Runtime expressions are ranged over by e. Their syntax is obtained from the syntax of
expressions (cf. Figure 5) by removing variables x (recall that this is a variable) and adding
addresses ι and ret-expressions (of the form ret(e), that represent the execution of a method).
A runtime configuration (configuration, for short) is a triple consisting of a heap, a stack and
a runtime expression, i.e., H | ι | e. The reduction relation has the form H | ι | e → H′ | ι′ | e′,
where the configuration H | ι | e gets reduced to H′ | ι′ | e′ in one step. A configuration H | ι | e
that cannot be reduced is called a normal form. The initial configuration of a program is
∅ | • | e, where e is the main expression of the program. Remark that configurations only include
stacks to ensure that the operational semantics can model that execution gets stuck when the
reclassification of an object on which a method under execution has been invoked is attempted
(i.e., that a configuration that is going to perform such a reclassification is a normal form).

The reduction system for FSRJ is given in Figure 8. The reduction rules use the auxiliary
function mBody(m,C) (for method body lookup) and the congruence rule (which uses evaluation

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:16–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Computation rules

f = v ∈ f = v
H(ι) = ⟨C, f = v⟩

(R-field)
H| ι | ι.f→ H| ι | v

H(ι) = ⟨C, . . .⟩ mBody(m,C) = (x, e0)
(R-invoke)

H| ι | ι.m(v)
→ H| ιι | ret([x← v, this← ι] e0)

(R-ret) H| ιι | ret(v)→ H| ι | v

ι /∈ dom(H) fields(C) = T f
(R-new)

H| ι | new C(v)
→ H∪

{
ι 7→ ⟨C, f = v⟩

}
| ι | ι

H(ι) = ⟨C, . . . , fi = vi, . . .⟩(R-assign)
H| ι | ι.fi = v
→ H [ι 7→ ⟨C, . . . , fi = v, . . .⟩] | ι | v

H(ι) = ⟨D, f = v⟩
ι ̸∈ ι D ̸= D′ Kcode |= compatible(D, D′)

classifies(D) = λz.ϕ Koverall(H, E) ̸|= ϕ[x := ι]
classifies(D′) = λz.ϕ′ Koverall(H, E) |= ϕ′[x := ι]
retrieves(D′) = λzz.ψ′ Koverall(H, E) |= ψ′[zz := ιv′]

(R-adapt-y)
H| ι | adapt(ι)→ H[ι 7→ ⟨D′, f′ = v′⟩] | ι | ι

ι ̸∈ ι
H(ι) = ⟨D, f = v⟩

classifies(D) = λz.ϕ

Koverall(H, E) |= ϕ[x := ι]
(R-adapt-n)

H| ι | adapt(ι)→ H| ι | ι

Method body lookup

aDef(C)(m) = T m(T x) {return e; }
mBody(m,C) = (x, e)

Evaluation context

E ::= [] | E.f | E.m(e) | v.m(v, E.e)
| new C(v, E, e) | v.f = E
| ret(E) | adapt(E)

Congruence rule

H| ι | e→ H′ | ι′ | e′

H| ι |E[e]→ H′ | ι′ |E[e′]

Figure 8 FSRJ operational semantics: computation rules, method body lookup, evaluation
context, and congruence rule.

contexts) are also given in Figure 8. The rules R-field, R-new and R-assign for field access,
object creation and assignment are standard. Rule R-invoke pushes the address of the called
object to the stack and a ret-expression that stems from method lookup for the called method
in the class of the called object, as the new runtime expression. Here, actual parameters and
the self-reference are inlined by substitution on the runtime expression. Rule R-ret then pops
the object address from the stack, returning the computed value as the new runtime expression.

In FSRJ an object is hot (see Section 2) if and only if its address occurs on the stack. Both
rules for dynamic object reclassification, R-adapt-y and R-adapt-n, check whether an object
needs to be reclassified and cause the execution to get stuck if an attempt to reclassify a hot
object is made. Rule R-adapt-y applies if the object needs to be reclassified (i.e., it cannot be
classified as a member of its current class); rule R-adapt-n applies otherwise. We now explain
the interaction between execution and the knowledge base in these rules. Both rules check
whether the object ι of class D is cold and, if so, lift the heap H to construct the knowledge base
Koverall(H, E). If the classification predicate ϕ of D holds when instantiated with ι, then rule
R-adapt-n is applied and the object is not reclassified. Otherwise rule R-adapt-y is applied.
Recall from Axiom A13 of Definition 7 that two classes are compatible if they have the same
superclass. Thus, the premises of rule R-adapt-y identify a class D′ that is compatible with
D, for which the classification predicate ϕ′ holds when instantiated with ι. The last premise
ensures that the retrieves-predicate ψ′ of D′ holds for values ι, v′, and the resulting heap
on the right-hand side binds ι to an object of class D′ in which the fields f are bound to v′.

3.7 Type Soundness for Coherent Programs
In order to prove type soundness for coherent FSRJ programs by a subject reduction theorem
and a progress theorem for the small-step operational semantics, we need to formulate a
type system for runtime expressions. Expressions containing either a stupid selection, i.e., a
field selection null.f or a method invocation null.m(...), or a stupid reclassification, i.e.,

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:17–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Runtime expression typing Θ ⊩ e : S

(RT-addr) Θ ⊩ ι : Θ (ι) (RT-int) Θ ⊩ n : Int (RT-null) Θ ⊩ null : S (with S∈ {⊥} ∪ Cls)

Θ ⊩ e : C aType(C)(f) = T
(RT-field)

Θ ⊩ e.f : T

Θ ⊩ e0.f : T
Θ ⊩ e1 : S S ≤ T

(RT-assign)
Θ ⊩ e0.f = e1 : T

Θ ⊩ e : D
D ≤ C Adp(C)

(RT-adapt)
Θ ⊩ adapt(e) : C

Θ ⊩ e : T(RT-ret)
Θ ⊩ ret(e) : T

Θ ⊩ e : C S ≤ T
Θ ⊩ e : S aType(C)(m) = T→ T

(RT-invoke)
Θ ⊩ e.m(e) : T

¬Adp(C) S ≤ T
Θ ⊩ e : S T f = fields(C)

D =
{

Prg(C)(extends) if Rcl(C)
C otherwise

(RT-new)
Θ ⊩ new C(e) : D

Well-formed heap Θ ⊩ H

dom(Θ) = dom(H) = {ι | ι occurs in H}
∀ι ∈ dom(H). H(ι) = ⟨C, f1 = v1, . . . , fn = vn⟩ implies(

Θ(ι) = C
fields(C) = T1f1, . . . , Tnfn

∀i ∈ 1..n, Θ ⊩ vi : Si and Si <: Ti

)
(WF-heap)

Θ ⊩ H

Well-formed configuration Θ ⊩ H| ι | e : S

Θ ⊩ e : S Θ ⊩ H ι = ι1, . . . , ιn ∈ dom(Θ) n ≥ 0
e = E1[ret(· · ·En[ret(e0)] · · ·)] for some E1,...,En and e0 that do not contain ret-expressions

(WF-conf)
Θ ⊩ H| ι | e : S

Figure 9 FSRJ run-time typing: runtime expressions, well-formed heaps and configurations.

an object reclassification adapt(null), are not well-typed according to the FSRJ (source
level) type system. However, a runtime expression without stupid selections and stupid
reclassifications may reduce to a runtime expression containing stupid selections or stupid
reclassifications. Therefore, the type system for runtime expressions contains a rule for
assigning to the value null either the type ⊥ (like in the source level typing) or any class name.

The type rules for runtime expressions are shown in Figure 9 (left); these rules are of
the form Θ ⊩ e : S, where the environment Θ is a finite (possibly empty) mapping from
addresses to class names. Figure 9 (bottom) also presents the notions of well-formed-heaps
and well-formed configurations. The notion of well-formed heap ensures that the environment
Θ maps all the addresses in the heap into the class of the corresponding object and that,
for every object stored in the heap, the fields of the object contain appropriate values. The
notion of well-formed configuration ensures that the heap is well-formed, that the addresses
in the stack are defined in the heap, that the runtime expression is well-typed and has a
structure that is compatible with the stack — this last check is performed by exploiting
evaluation contexts for FSRJ runtime expressions (see Figure 8).

Then, type soundness can be proved by using the standard technique of subject reduction
and progress theorems [50]; however, we need to account for declarative object reclassification.

▶ Lemma 19 (From expression typing to runtime expression typing). If • ⊢ e : T, then • ⊩ e : T.

We now consider subject reduction for the execution of semantically reflected programs.
Here, program coherence (Section 3.5) and Theorem 18 (which assumes Coh1 and Coh2
and is independent from Coh3–Coh5) are crucial for the case of R-adapt-y:

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:18–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

an inconsistent (i.e., not satisfiable) knowledge base, or
a consistent knowledge base that satisfies Coh1–Coh4 and does not satisfy Coh5
because the retrieved values for the fields have a wrong type

would allow us to, e.g., infer erroneous values for retrieves λ-predicates (see the premise
Koverall(H, E) |= ψ′[zz := ιv′] of rule R-adapt-y), potentially leading to typing errors for
runtime configurations after reclassification. Lifting a heap that is not well-typed, could
make the knowledge base inconsistent (see Condition L2 in Definition 14 and Axiom A21
in Figure 7). Thus, well-typed runtime configurations ensure consistent overall knowledge
bases, which in turn (together with Coh5) ensure that (whenever rule R-adapt-y does not
get stuck) dynamic object reclassification produces well-typed runtime configurations.

▶ Theorem 20 (Subject reduction). If Θ ⊩ H | ι | e : S and H | ι | e → H′ | ι′ | e′ then there
exists Θ′ ⊇ Θ such that Θ′ ⊩ H′ | ι′ | e′ : S ′ for some S ′ such that S ′ ≤ S.

Progress relies on program coherence, but not on consistency of the knowledge base.
Concretely, Coh3–Coh5 guarantee that there exists a class D′ such that the following three
premises of rule R-adapt-y hold:

Kcode |= compatible(D, D′) Koverall(H, E) |= ϕ′[x := ι] KoverallH, E) |= ψ′[zz := ιv′]

The last case in the statement of the theorem states that the adaptation of hot objects gets
stuck (cf. DC3 in Section 4).

▶ Theorem 21 (Progress). Let H | ι | e be a well-typed normal form. Then
1. either e is a value and ι = •; or
2. for some evaluation context E we can express e as

a. either E [null.f] for some f, or
b. E [null.m(v)] for some m and v, or
c. E [null.f = v] for some f and v, or
d. E [adapt(null)], or
e. E [adapt(ι)] for some ι ∈ ι.

Type soundness follows from Lemma 19 and Theorems 20 and 21. After Theorem 20,
this theorem is a second place where consistency (needed only for Theorem 20) and program
coherence (needed for Theorem 21) interact: We need the overall knowledge base Koverall(H, E)
to be consistent so that Coh3–Coh5 indeed select the correct class D′ to reclassify.

▶ Theorem 22 (Type soundness). Let Prg = K CD e0 be well-typed and coherent FSRJ program
such that • ⊢ e0 : T0, and ∅ | • | e0 →∗ H | ι | e with H | ι | e being a normal form. Then e is
1. either an integer n and T0 is int and ι = •; or
2. null and T0 is either ⊥ or a class name and ι = •; or
3. an address ι such that H(ι) = ⟨C, · · · ⟩ with C ≤ T0 and ι = •; or
4. an expression containing either null.f or null.m(v) or or null.f = v or adapt(null) or

adapt(ι) for some f, m, v, v and ι such that ι ∈ ι.

4 Discussion: Design Choices, Implementation and Performance

This section discusses design choices for declarative dynamic object reclassification. We first
consider overall design choices for the declarative reclassification mechanism (as reflected in
FSRJ), then design choices related to the implementation of declarative dynamic object reclas-
sification (as reflected in our prototype implementation), and finally the implementation itself.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:19–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4.1 Overall Design Choices
Our main goal with declarative dynamic object reclassification is to realise a separation of
concerns and decoupling between the application logic, which describes program behaviour
within a given context, and the adaptation logic, which describes how the behaviour of the
program changes according to context changes. To focus on the basic interaction between
adaptation and application logic, we aimed for a simple programming construct for dynamic
object reclassification and considered the following design choices:

DC1: The adaptation logic is expressed in a declarative way, leveraging domain knowledge.
DC2: The application logic is expressed by standard class-based object-oriented code.
DC3: Adaptation works on (cold) objects in isolation and hot object adaptation gets stuck.

Concerning DC1, to focus on the general mechanisms of semantic reflection and declarative
dynamic object reclassification, FSRJ formalises the knowledge base as a set of FOL formulas.
Observe that FSRJ does not impose any restrictions on queries to the knowledge base.
For example, classifies-predicates may depend on the class of other objects; thus, the
reclassification of one object may lead to another object becoming inconsistent. We believe
that this flexibility is convenient in a digital twin setting; e.g., a change of requirement
monitor for a plant may trigger a change in the controller for the water pump. An alternative
design choice would be to restrict queries to, e.g., only depend on the external context
(i.e., the domain and synchronisation knowledge). In this case, we avoid the reclassification
of one object triggering the reclassification of another, but we could potentially reclassify
one object too early, violating the program logic (e.g., changing the watering policy before
changing the humidity monitor in the greenhouse). Furthermore, self-adaptation in FSRJ is
not deterministic: an object may be reclassifiable to more than one class. If determinism is
desired, one can add the additional constraint that the classification queries of its reclassifiable
subclasses of all adaptable classes are pairwise disjoint.

Concerning DC2, it can be worth observing that (1) the links, classifies and retrieves
clauses could be expressed as, e.g., program annotations or even in a separate file; (2) typing
just enforces a programming pattern that treats an adaptable class as an abstract class and
its reclassifiable subclasses as final classes that cannot be used as types; and (3) the adapt
expression could be implemented as a library function.

Concerning DC3, there are several ways to relax this restriction. First, the reclassification
of a hot object could be delayed until the object becomes cold (this raises the issue of whether
the ordering between delayed adaptations of different objects should be preserved). Second,
the adapt expression could be replaced or complemented by a class-level adaptation expression
to trigger the adaptation of all objects of a class. Third, the adapt expression could be
externalised; e.g., replaced or complemented by an adaptation triggered by the runtime
system, which performs adaptation on all objects of adaptable classes, and delays adaptation
for hot objects until they become cold. Relaxing DC3 suggests several interesting directions
for further work, including

a type and effect system [3,57] to ensure that hot object adaptation cannot occur;
coordinated adaptation of object aggregates (i.e., groups of interconnected objects);
reclassifiable classes extended by other reclassifiable classes (cf. [15, 20]); and
adaption of hot objects, e.g., the expression adapt(this) (cf. [15,20]) or a method defined
in a class C with an expression adapt(e) where e has type C (cf. [16]).

For the last point, the adaptation logic could depend on the values of fields in the target
object; when the object is cold, reclassification might rely on these values satisfying some

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:20–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

class invariant (following a program verification methodology, e.g., [1, 48]). So, hot object
adaptation should require to devise a suitable invariant that the object must satisfy when,
e.g., a specific occurrence of the expression adapt(this) is executed. For this reason, we
decided that even rule R-adapt-n gets stuck on hot objects.

4.2 Implementation and Performance
Implementation. To interact with context in an implementation, we need to be able to
check entailment and satisfiability of first-order formulas, and to retrieve witnesses when eval-
uating the satisfiability of λ-predicates (for retrieves-queries). Whereas such functionality is
available in, e.g., satisfiability modulo theory solvers, the querying mechanism for declarative
dynamic object reclassification would additionally benefit from decidability and availability of
formalised domain knowledge. Hence, we consider two possibilities: ontology-based knowledge
graphs and logic programming for DC2.

Knowledge Graphs are widely used triple-based data formalisms with numerous variants,
of which the RDF/OWL stack is well-suited for reclassification. First, these knowledge
graphs are used in numerous industrial ontologies and is an established, core technology for
autonomous systems, e.g., in digital twins or robotics [7,42]. Thus, they enable reuse and
provide general knowledge across industries, especially in engineering. Second, these know-
ledge graphs have a foundation in Description Logics [5], which are decidable fragments of
FOL with efficient reasoners and advanced tool-supported pragmatics for non-experts [28].

Logic Programming is widely used and perhaps more rooted in programming and artificial
intelligence than knowledge graphs, and also used for autonomous systems [7,32]; numerous
implementations are available for knowledge representation and reasoning, e.g., Golog [45].
Logic programming has several variants, such as Prolog-style languages or Answer Set
Programming [10,46], which easily produce the witnesses we need for our queries. Logic
programming is based on rules that encode domain knowledge, and powerful reasoning en-
gines to achieve high efficiency. However, they are less prevalent for ontologies (i.e., general
knowledge with few or no individuals), and seem better suited for concrete planning tasks.

We aim to leverage domain knowledge for self-adaptation in autonomous systems, e.g., digital
twins. Observe that FSRJ’s knowledge base and queries fit into Description Logic (specifically,
the logic SROIQ underlying OWL 2 [30]). In particular, program coherence (Section 3.5) here
maps to decidable reasoning operations: Coh1 expresses satisfiability of a SROIQ knowledge
base, Coh2 the entailment of two sets of SROIQ axioms, and Coh3–Coh5 the entailment of
a subconcept relation from a set of axioms. In Description Logic syntax, we have ∃in.{C} ⊑ clC
(Coh3) and ∃in.{C} ⊓ clC ⊑

⊔
D clD (Coh4), where clC is the classification concept of class C.

Coh5 is a special case of type checking knowledge graph access under semantic reflection [39].
Hence, our implementation uses knowledge graphs that connect to existing ontologies.

Further, an implementation of declarative dynamic object reclassification needs to realise
semantic lifting to integrate program and knowledge base, and dynamic reclassification
via adapt-expressions. For these reasons, our implementation is based on SMOL [38], an
interpreted research language used to explore connections between programming languages
and knowledge graphs, that natively supports heap lifting into a knowledge base. The
language is restricted to Description Logics and OWL-based knowledge graphs. The backend
uses HermiT [24] for reasoning and Apache Jena (https://jena.apache.org/) for graph
data management. SMOL was designed to support semantic reflection for the implementation
of digital twins [40], but has not yet offered direct programmatic support for reclassification
as proposed in this paper.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:21–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://jena.apache.org/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

OWL

ctx:NormalOps EquivalentTo: ctx:Pump and (ctx:temp some xsd:double[<= 50.0])
ctx:Overheating EquivalentTo: ctx:Pump and (ctx:temp some xsd:double[> 50.0])
FunctionalDataProperty(ctx:id)

(a) General knowledge as OWL ontology
SMOL

1 abstract class Pump (domain String id, Int GpioPin, Plant plant)
2 links "a ctx:Pump";
3 Unit pump() /∗ ... ∗/ end end
4 class Normal extends Pump () classifies "<ctx:NormalOps>";
5 /∗ methods ∗/ end
6 class Overheating extends Pump (Int maximal) classifies "<ctx:Overheating>";
7 retrieves "?this ctx:hasMaintananceProfile [ctx:hasMaximalPower ?maximal]";
8 /∗ methods ∗/ end

(b) SMOL code
RDF

1 ctx:pump1 a ctx:Pump; ctx:id "2"; ctx:temp 52.5. run:ob1 a prog:Seedling.
2 run:ob2 a prog:NormalPump; prog:id "2"; prog:GpioPin "7", prog:plant run:ob1.
3 run:ob2 smol:links [a ctx:Pump; ctx:id "1"].

(c) Lifting in RDF

Figure 10 Instantiation of the pump in the Greenhouse digital twin in the SMOL implementation.

Our implementation, extending SMOL, goes slightly beyond the design decisions of FSRJ
concerning minimality. The main differences are: (1) an explicit constructor that is called
after reclassification to establish the classification predicate of the new class; (2) links,
classifies and retrieves clauses are inherited; and (3) a more elaborate lifting mechanism,
which can be encoded in the one of FSRJ. The constructor ensures a form of reclassifica-
tion stability, while inheritance of classification predicates ensures a form of behavioural
subtyping corresponding to Coh3 (see Section 3.5). Our implementation supports both the
adapt-expression of FSRJ and an option for reclassification to be triggered periodically by
the runtime system. For static program analysis, we exploit the decidability of description
logics underlying knowledge graphs to ensure program coherence. Figure 10 gives the SMOL
version of our running example, as well as the knowledge graph used as the knowledge base.

Performance. The most expensive operations of FSRJ are on the lifted heap. Experimental
results [35] that compare querying a description logic knowledge base with lifted heaps to
querying a representation of the same knowledge expressed in program code, show that
reasoning in the description logic knowledge base scales significantly better than reasoning
with the knowledge represented in the program, both for more complex knowledge bases (i.e.,
more possible classification targets) and for more elements (i.e., more constants or individuals
in the knowledge graph). The direct representation in the program only performs better for
simple (<10 classification targets) and small (<2000 individuals) knowledge graphs. Further,
remark that heap lifting in SMOL does not generate a full knowledge base every time the
lifted heap is accessed. Instead it uses virtualisation [59]: the implementation determines
which parts of the knowledge base are relevant for a query, and only generates this part.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:22–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5 Evaluation of the Prototype Implementation

To evaluate the prototype implementation of declarative dynamic object reclassification, we
aim to demonstrate that the reclassification works in practice as expected from the calculus.
Concretely, we consider the following research questions:

RQ1: Does derivation in the knowledge base identify the correct class for reclassification?
RQ2: Does derivation in the knowledge base instantiate state correctly during reclassification?

These RQs address essential aspects of the declarative reclassification process, namely that the
classifies-and retrieves-predicates are resolved correctly in the knowledge base at runtime.

Experimental Design and Setup. This evaluation is based on GreenhouseDT [41], an open-
source digital twin exemplar of a mini greenhouse developed in SMOL as a sensor-driven
system that controls the temperature and humidity on different shelves of a greenhouse, as well
as the soil moisture level of the plants on these shelves. The digital twin uses these sensor read-
ings to determine the control policy of pumps (the actuators of the digital twin) for watering
purposes. In our experiments, we focus on the behaviour of the actuators, i.e., the pumps used
to water the plants, and use declarative object reclassification to dynamically determine which
controller implementation to use for the pumps and to adopt the controller objects accordingly.

We extend GreenhouseDT to capture the following condition-based maintenance scenario:
to ensure that pumps work properly:

1. the pumps need to operate within a given temperature range, and
2. the pumps should not exceed their expected life time in hours of operation.

If the temperature in an old pump exceeds the temperature thresholds, the pumps could get
damaged. For that reason, we implement an extension of the motivating example discussed in
Section 2, in which pumps can have one of the following distinct modes of behaviour: normal
operating mode for pumps that work normally, overheating mode for pumps whose temperat-
ure is too high, underheating mode for pumps whose temperature is too low, and maintenance
mode for pumps whose temperature is outside the operating range and that have exceeded
the expected life span (and therefore need to be stopped). We model the different behavioural
modes as reclassifiable subclasses of an adaptable class Pump. The exact values for the temperat-
ure and age thresholds depend on the type of pump considered; thus, the exact reclassification
parameters differ, depending on the specifications of the different pumps. These extensions
to the example are realistic as different actuators typically come with different specifications.
The extensions also add complexity to the adaptation logic; it is easy to see that as this
complexity increases, then a clear separation of concerns between the adaptation logic and the
program logic also becomes increasingly attractive, as promoted in the approach of this paper.

Our evaluation is performed in terms of two sets of experiments: in the first set, we provide
different temperature measurements to evaluate how the system adapts pump controller
objects in response to changes in the temperature. We considered scenarios with three pumps
with different specifications, and three temperature measurements for each pump: one below
the specified temperature range, one above the range and one within the range. In the
second set, we additionally let the age of the pumps change to capture a more complex
reclassification scenario. In this set, we expanded the previous scenarios with additional
age update events that enable the reclassification. In the experiments, we opted to keep
the knowledge base invariant; i.e., the actual components that constitute the greenhouse
remain the same over time in the domain knowledge base, and only the behaviour of the
pump controllers in the virtual layer of the digital twin will change and will require dynamic

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:23–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Pump ID Model Time (H) Temperature Expected Class Actual Class

After Instantiation
Pump 1 R385 0 5 Operational Operational
Pump 2 WPS27 30 80 Overheating Overheating
Pump 3 R365 3000 94 Maintenance Maintenance

After First Reclassification
Pump 1 R385 0 -5 Underheating Underheating
Pump 2 WPS27 30 41 Overheating Overheating
Pump 3 R365 2000 50 Operational Operational

After Second Reclassification
Pump 1 R385 2500 -5 Maintenance Maintenance
Pump 2 WPS27 30000 41 Maintenance Maintenance
Pump 3 R365 300 1 Underheating Underheating
Table 1 Pump states based on input temperature and reclassification cycles.

object reclassification in the digital twin. For RQ1, we then inspected the class targeted by
the reclassification in each experiment and, for RQ2, the resulting object state.

Results. Table 1 illustrates the results from the experiments, comparing the expected class
of each pump with the actual class after running adapt-expressions on objects with different
pump specifications in the domain knowledge base in different scenarios. The actual class of
each pump in the experiments is retrieved via the API, whereas the expected class of the
pumps in the system is determined from the specifications of the different pumps, combined
from constraints for the adaptation logic as expressed in the domain knowledge base, and
the actual state of the objects in the system after the reclassification process.

To answer RQ1, our experiments used different inputs to adapt the Pump objects in
the model. When calling adapt on an object, the system changes the class of the object
depending on the input event, the object state and the domain knowledge base. We checked
that the reclassification process worked as formalised in FSRJ by comparing the returned
class to the expected ones after running the adapt on the Pump objects. We ran the two sets of
experiments described above on our prototype implementation, in all cases the dynamic object
reclassification determined by the classifies-predicate selected the correct reclassifiable
subclass of the Pump class.

To answer RQ2, we ran the same sets of experiments as for RQ1, and inspected the state
of the Pump objects after the reclassification process, comparing the values of the fields to the
expected ones. In all the conducted experiments, the actual state of the Pump objects was
consistent with the expected state, demonstrating that the system was able to derive correct
values for the retrieves-predicates from the domain knowledge base at runtime. The second
set of experiments showed that when considering more complex reclassification constraints,
our prototype implementation was able to find a correct state.

Threats to Validity. The evaluation of the prototype implementation of declarative dynamic
object reclassification has been done on a specific system, GreenhouseDT. Although the
adaptation logic involves multiple classes in the knowledge base, the solutions to knowledge
base queries have not been very complex. In particular, queries have deterministic solutions in
our evaluation setup. We do not foresee particular challenges with non-deterministic queries,

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:24–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

as any solution would then be correct (although not necessarily optimal). Furthermore,
although the queries in our evaluation involve multiple constraints, they do not involve
complex constraint solving (i.e., constraints with many variables). Although well-suited for
knowledge representation, knowledge graphs are not particularly strong at complex constraint
solving. As our prototype implementation relies completely on the decidable fragments of
FOL available in knowledge graphs to answer the queries, the prototype implementation could
potentially fail to address RQ2 in cases where solutions might exist. Remark that we do not
see this limitation of the prototype as a limitation of the proposed approach, as constraint
solvers such as SMT could be integrated in a more refined query-answering mechanism.

6 Related Work

We focus this discussion of related research on two complementary aspects of our work:
dynamic object reclassification techniques and programming with external domain knowledge.
To the best of our knowledge, the combination of these aspects is novel to our paper.

There is a body of work on dynamic reclassification and related programming mechanisms
(e.g., [2,8,13–16,20,26]), that addresses “self-extension” [13] and extensions of Java and use of
the JVM [8,14,16,26], to the design of novel programming languages [2,20]. This line of work
shares the following limitation: the requirements for the reclassification process are handled
internally, as part of the program. In contrast, our paper proposes a novel approach to dynamic
reclassification, in which we shift the reclassification process from ensuring internal consistency,
with an operational description, to external consistency with a declarative description. This
way, our work enables a separation of concerns between the adaptation logic and the
application logic of the program, that has not been considered in previous work. In contrast
to the works mentioned above, we have considered a very basic programming construct for
dynamic object reclassification that does not require an advanced type (and effect) system.

Dynamic Software Updating (DSU) [27, 49, 51, 55] addresses runtime changes to the
program code, such as software patching and task updates in real-time. DSU leverages
techniques such as aspect-oriented programming [52], or changes Java program behaviour [49,
51] at the JVM or Bytecode level by modifying the code base or the instantiated objects,
without halting execution. As code elements change, ensuring consistency becomes a major
concern: new objects must allow the system to remain consistent with the specification.
This can be solved by modifying old objects or by enforcing type renaming [27]. For DSU
on asynchronous systems, statically collected type constraints can be enforced at runtime,
delaying upgrades until they are type-safe [33]. Compared to reclassification mechanisms,
including our work, DSU addresses externally triggered runtime changes to the program code,
while dynamic reclassification programmatically changes the class of objects based on changes
in the heap or context, but does not modify the class table. Although software updates are
triggered externally, DSU does not consider external consistency as done in our work.

Programming with external domain knowledge is common for self-adaptive systems [11,
44,58] in, e.g., robotics [7, 9] and digital twins [17], but these systemic approaches generally
lack the guarantees that can be provided by language abstractions. Semantic reflection,
originally introduced in SMOL [38], has been used for many purposes in digital twins [40],
including to repair external consistency by means of self-adaptive techniques [35–37,40,41],
but so far the adaptation logic had to be programmed by hand. Semantic reflection has
also been applied in digital twin architectures [23] to detect internal inconsistencies that
trigger reconfigurations, and to drive domain-aware simulations [53]. Whereas this line of
work exploits the lifting of runtime states, the self-adaptation has been concerned with the

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:25–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

composition of components and not with changing their internal behaviour. In all cases, the
adaptation logic was implemented manually without language or type support. Our work
overcomes this limitation by means of linguistic support for declarative reclassification.

The adaptation and retrieval queries of our paper can be seen as a form of LINQ [47],
used for reflection with knowledge bases for the underlying serialisation. We are not aware of
previous applications of such techniques for reclassification. Golog [45] uses FOL to examine
and pick elements from its own state and allows decidable model checking when restricted
to description logics [6], but has no type or class system. The systems of Fagin et al. [18]
and Calvanese et al. [12] include knowledge bases that can be manipulated and updated by
the program through epistemic operators, but have no type or class system either. Here,
restrictions to description logics gives tractable knowledge base revision [21,22,43]. We are not
aware of other work on core calculi for semantically reflected programs, as studied in our paper.

7 Conclusion and Future Work

This paper presents declarative dynamic object reclassification and its formalisation in Feather-
weight Semantically Reflected Java, a minimal core calculus that formalises declarative reclassi-
fication in terms of interaction between a program’s runtime configurations, domain knowledge
and environment. We further show how to implement declarative dynamic object reclassifica-
tion, and how to use these features in practice for adaptable digital twins. A key advantage of
this approach is that developers can specify the reclassification process in a declarative way,
disentangled from the business code, using queries to determine when and how an object should
be reclassified. This makes it easier to reason about the reclassification process, and to ensure
that the system remains consistent with an external context. Unlike previous approaches,
declarative reclassification is based on external consistency; i.e., reclassification is driven by
external domain knowledge, rather than by the internal state of the system. This makes our ap-
proach better suited for applications that must adapt to changes in the environment; it further
provides a separation of concerns between the program’s business code and its adaptation logic.

Some limitations and possible lines for future work are mentioned in Section 4. This paper
does not address the issue of ensuring that the reclassification process is triggered at the right
time; instead, reclassification is explicitly invoked. An implicit trigger might extend the range
of applications for declarative reclassification; e.g., reclassification could be automatically
triggered when certain conditions are met, at fixed time intervals, or during the lifting process.
Such systems would be more dynamic and responsive to changes in the environment. When do-
ing so, it would be crucial to ensure that the system is “free” to act; e.g., the target objects are
cold or wait until reclassification is safe. Such constraints point towards DSU and asynchron-
ous update mechanisms; in fact, integrating such mechanisms with a declarative adaptation
logic would be an interesting extension of our work. Another interesting line of work is to
consider more flexible class hierarchies, e.g., by allowing adaptable subclasses or reclassifiable
subclasses of reclassifiable classes, as well as static restrictions to ensure progress, such as type
and effect systems to eliminate reclassification attempts on hot objects. Finally, this paper
focused on adaptation of cold objects in isolation. In future work we would like to generalise
declarative reclassification to reclassification of hot objects and to synchronised reclassification
of multiple objects (e.g., all instances of a class or object aggregates) tagged for reclassification,
while maintaining the separation of concerns and type soundness of the language.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:26–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

References
1 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,

and Mattias Ulbrich, editors. Deductive Software Verification - The KeY Book - From
Theory to Practice, volume 10001 of Lecture Notes in Computer Science. Springer, 2016.
doi:10.1007/978-3-319-49812-6.

2 Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. Typestate-oriented
programming. In Proc. 24th Conference Companion on Object Oriented Programming Systems
Languages and Applications (OOPSLA 2009), page 1015–1022. ACM, 2009. doi:10.1145/
1639950.1640073.

3 Torben Amtoft, Hanne Riis Nielson, and Flemming Nielson. Type and effect systems -
behaviours for concurrency. Imperial College Press, 1999.

4 Peter B. Andrews. An introduction to mathematical logic and type theory: to truth through
proof, volume 27 of Applied Logic Series. Kluwer Academic Publishers, 2 edition, 2002.
doi:10.1007/978-94-015-9934-4.

5 Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003. doi:10.1017/CBO9780511711787.

6 Franz Baader and Benjamin Zarrieß. Verification of Golog programs over description logic
actions. In Pascal Fontaine, Christophe Ringeissen, and Renate A. Schmidt, editors, Proc.
9th International Symposium on Frontiers of Combining Systems (FroCoS 2013), volume
8152 of Lecture Notes in Computer Science, pages 181–196. Springer, 2013. doi:10.1007/
978-3-642-40885-4_12.

7 Michael Beetz, Daniel Beßler, Andrei Haidu, Mihai Pomarlan, Asil Kaan Bozcuoglu, and Georg
Bartels. Know Rob 2.0 - A 2nd generation knowledge processing framework for cognition-
enabled robotic agents. In Proc. International Conference on Robotics and Automation (ICRA
2018), pages 512–519. IEEE, 2018. doi:10.1109/ICRA.2018.8460964.

8 Lorenzo Bettini, Sara Capecchi, and Betti Venneri. Extending Java to dynamic object
behaviors. In Viviana Bono and Michele Bugliesi, editors, Proc. Workshop on Object Oriented
Developments (WOOD 2003), volume 82 (8) of Electronic Notes in Theoretical Computer
Science, pages 33–52. Elsevier, 2003. doi:10.1016/S1571-0661(04)80801-6.

9 Darko Bozhinoski, Mario Garzon Oviedo, Nadia Hammoudeh Garcia, Harshavardhan Desh-
pande, Gijs van der Hoorn, Jon Tjerngren, Andrzej Wąsowski, and Carlos Hernández Corbato.
MROS: runtime adaptation for robot control architectures. Advanced Robotics, 36(11):502–518,
2022. doi:10.1080/01691864.2022.2039761.

10 Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011. doi:10.1145/2043174.2043195.

11 Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger M. Kienle,
Marin Litoiu, Hausi A. Müller, Mauro Pezzè, and Mary Shaw. Engineering self-adaptive
systems through feedback loops. In Betty H. C. Cheng, Rogério de Lemos, Holger Giese,
Paola Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive Systems,
volume 5525 of Lecture Notes in Computer Science, pages 48–70. Springer, 2009. doi:
10.1007/978-3-642-02161-9_3.

12 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Actions
and programs over description logic knowledge bases: A functional approach. In Gerhard
Lakemeyer and Sheila A. McIlraith, editors, Knowing, Reasoning, and Acting: Essays in
Honour of Hector J. Levesque. College Press, 2011.

13 Alberto Ciaffaglione, Pietro Di Gianantonio, Furio Honsell, and Luigi Liquori. A protoype-
based approach to object evolution. J. Object Technol., 20(2):4:1–24, 2021. doi:10.5381/JOT.
2021.20.2.A4.

14 Tal Cohen and Joseph Gil. Three approaches to object evolution. In Ben Stephenson and
Christian W. Probst, editors, Proc. 7th International Conference on Principles and Practice of
Programming in Java (PPPJ 2009), pages 57–66. ACM, 2009. doi:10.1145/1596655.1596665.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:27–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1007/978-3-642-40885-4_12
https://doi.org/10.1007/978-3-642-40885-4_12
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.1016/S1571-0661(04)80801-6
https://doi.org/10.1080/01691864.2022.2039761
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.5381/JOT.2021.20.2.A4
https://doi.org/10.5381/JOT.2021.20.2.A4
https://doi.org/10.1145/1596655.1596665
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15 Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola Giannini.
Fickle : Dynamic object re-classification. In Proc. 15th European Conference, on Object-
Oriented Programming (ECOOP 2001), volume 2072 of Lecture Notes in Computer Science,
pages 130–149. Springer, 2001. doi:10.1007/3-540-45337-7_8.

16 Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola Giannini.
More dynamic object reclassification: Fickle||. ACM Trans. Program. Lang. Syst., 24(2):153–
191, 2002. doi:10.1145/514952.514955.

17 Romina Eramo, Francis Bordeleau, Benoit Combemale, Mark van Den Brand, Manuel Wimmer,
and Andreas Wortmann. Conceptualizing digital twins. IEEE Software, 39(2):39–46, 2021.
doi:10.1109/MS.2021.3130755.

18 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Knowledge-based
programs. Distributed Comput., 10(4):199–225, 1997. doi:10.1007/S004460050038.

19 Kevin Feichtinger, Karl Kegel, Romain Pascual, Uwe Aßmann, Bernhard Beckert, and Ralf H.
Reussner. Towards formalizing and relating different notions of consistency in cyber-physical
systems engineering. In Proc. 27th International Conference on Model Driven Engineering
Languages and Systems, MODELS Companion 2024. ACM, 2024. doi:10.1145/3652620.
3688565.

20 Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of typestate-
oriented programming. ACM Trans. Program. Lang. Syst., 36(4):12:1–12:44, 2014. doi:
10.1145/2629609.

21 Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati. On
the update of description logic ontologies at the instance level. In Proc. 21st Conference
on Artificial Intelligence (AAAI 2006), pages 1271–1276. AAAI Press, 2006. URL: http:
//www.aaai.org/Library/AAAI/2006/aaai06-199.php.

22 Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati. On the
approximation of instance level update and erasure in description logics. In Proc. 22nd
Conference on Artificial Intelligence (AAAI 2007), pages 403–408. AAAI Press, 2007. URL:
http://www.aaai.org/Library/AAAI/2007/aaai07-063.php.

23 Santiago Gil, Eduard Kamburjan, Prasad Talasila, and Peter Gorm Larsen. An architecture
for coupled digital twins with semantic lifting. Software and Systems Modeling, Nov 2024.
doi:10.1007/s10270-024-01221-w.

24 Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. Hermit: An OWL 2
reasoner. J. Autom. Reason., 53(3):245–269, 2014. doi:10.1007/S10817-014-9305-1.

25 Barbara Hayes-Roth. A blackboard architecture for control. Artificial intelligence, 26(3):251–
321, 1985. doi:10.1016/0004-3702(85)90063-3.

26 Chengwan He, Zhijie Nie, Bifeng Li, Lianlian Cao, and Keqing He. Rava: Designing a Java
extension with dynamic object roles. In Proc. International Symposium and Workshop on
Engineering of Computer Based Systems (ECBS 2006), pages 453–459. IEEE Computer Society,
2006. doi:10.1109/ECBS.2006.57.

27 Michael W. Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic software updating. In
Michael Burke and Mary Lou Soffa, editors, Proc. Conference on Programming Language Design
and Implementation (PLDI 2001), pages 13–23. ACM, 2001. doi:10.1145/378795.378798.

28 Pascal Hitzler. A review of the semantic web field. Commun. ACM, 64(2):76–83, 2021.
doi:10.1145/3397512.

29 Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio
Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier,
Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen,
Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge graphs. ACM Comput.
Surv., 54(4):71:1–71:37, 2022. doi:10.1145/3447772.

30 Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In Patrick
Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proc. 10th International

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:28–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.1007/3-540-45337-7_8
https://doi.org/10.1145/514952.514955
https://doi.org/10.1109/MS.2021.3130755
https://doi.org/10.1007/S004460050038
https://doi.org/10.1145/3652620.3688565
https://doi.org/10.1145/3652620.3688565
https://doi.org/10.1145/2629609
https://doi.org/10.1145/2629609
http://www.aaai.org/Library/AAAI/2006/aaai06-199.php
http://www.aaai.org/Library/AAAI/2006/aaai06-199.php
http://www.aaai.org/Library/AAAI/2007/aaai07-063.php
https://doi.org/10.1007/s10270-024-01221-w
https://doi.org/10.1007/S10817-014-9305-1
https://doi.org/10.1016/0004-3702(85)90063-3
https://doi.org/10.1109/ECBS.2006.57
https://doi.org/10.1145/378795.378798
https://doi.org/10.1145/3397512
https://doi.org/10.1145/3447772
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Conference on Principles of Knowledge Representation and Reasoning (KR 2006). AAAI Press,
2006. URL: http://www.aaai.org/Library/KR/2006/kr06-009.php.

31 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
doi:10.1145/503502.503505.

32 Félix Ingrand and Malik Ghallab. Deliberation for autonomous robots: A survey. Artif. Intell.,
247:10–44, 2017. doi:10.1016/j.artint.2014.11.003.

33 Einar Broch Johnsen, Marcel Kyas, and Ingrid Chieh Yu. Dynamic classes: Modular asynchron-
ous evolution of distributed concurrent objects. In Ana Cavalcanti and Dennis Dams, editors,
Proc. Second World Congress on Formal Methods (FM 2009), volume 5850 of Lecture Notes in
Computer Science, pages 596–611. Springer, 2009. doi:10.1007/978-3-642-05089-3_38.

34 Einar Broch Johnsen and Ingrid Chieh Yu. Dynamic software updates and context adaptation
for distributed active objects. In Principled Software Development, pages 147–164. Springer,
2018. doi:10.1007/978-3-319-98047-8_10.

35 Eduard Kamburjan, Nelly Bencomo, Silvia Lizeth Tapia Tarifa, and Einar Broch Johnsen.
Declarative lifecycle management in digital twins. In Proc. 1st International Conference on
Engineering Digital Twins (EDTconf 2024), MODELS Companion’24, pages 353—-363. ACM,
2024. doi:10.1145/3652620.3688248.

36 Eduard Kamburjan and Einar Broch Johnsen. Knowledge structures over simulation units.
In Annual Modeling and Simulation Conference (ANNSIM 2022), pages 78–89. IEEE, 2022.
doi:10.23919/ANNSIM55834.2022.9859490.

37 Eduard Kamburjan, Vidar Norstein Klungre, Rudolf Schlatte, David Cameron, S. Lizeth
Tapia Tarifa, and Einar Broch Johnsen. Digital twin reconfiguration using asset models. In Proc.
11th International Symposium On Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2022), volume 13704 of Lecture Notes in Computer Science, pages
71–88. Springer, 2022. doi:10.1007/978-3-031-19762-8_6.

38 Eduard Kamburjan, Vidar Norstein Klungre, Rudolf Schlatte, Einar Broch Johnsen, and
Martin Giese. Programming and debugging with semantically lifted states. In Proc. Extended
Semantic Web Conference (ESWC 2021), volume 12731 of Lecture Notes in Computer Science,
pages 126–142. Springer, 2021. doi:10.1007/978-3-030-77385-4_8.

39 Eduard Kamburjan and Egor V. Kostylev. Type checking semantically lifted programs via query
containment under entailment regimes. In Description Logics, volume 2954 of CEUR Workshop
Proceedings. CEUR-WS.org, 2021. URL: https://ceur-ws.org/Vol-2954/paper-19.pdf.

40 Eduard Kamburjan, Andrea Pferscher, Rudolf Schlatte, Riccardo Sieve, Silvia Lizeth
Tapia Tarifa, and Einar Broch Johnsen. Semantic reflection and digital twins: A com-
prehensive overview. In Mike Hinchey and Bernhard Steffen, editors, The Combined Power
of Research, Education, and Dissemination: Essays Dedicated to Tiziana Margaria on the
Occasion of Her 60th Birthday, volume 15240 of Lecture Notes in Computer Science, pages
129–145. Springer, 2025. doi:10.1007/978-3-031-73887-6_11.

41 Eduard Kamburjan, Riccardo Sieve, Chinmayi Prabhu Baramashetru, Marco Amato, Gianluca
Barmina, Eduard Occhipinti, and Einar Broch Johnsen. GreenhouseDT: An exemplar for
digital twins. In Proc. 19th Intl. Symp. on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS’24), page 175–181. ACM, 2024. doi:10.1145/3643915.3644108.

42 Erkan Karabulut, Salvatore F. Pileggi, Paul Groth, and Victoria Degeler. Ontologies in
digital twins: A systematic literature review. Future Gener. Comput. Syst., 153:442–456, 2024.
doi:10.1016/j.future.2023.12.013.

43 Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between updating a knowledge
base and revising it. In James F. Allen, Richard Fikes, and Erik Sandewall, editors, Proc.
2nd International Conference on Principles of Knowledge Representation and Reasoning (KR
1991), pages 387–394. Morgan Kaufmann, 1991.

44 Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003. doi:10.1109/MC.2003.1160055.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:29–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.aaai.org/Library/KR/2006/kr06-009.php
https://doi.org/10.1145/503502.503505
https://doi.org/10.1016/j.artint.2014.11.003
https://doi.org/10.1007/978-3-642-05089-3_38
https://doi.org/10.1007/978-3-319-98047-8_10
https://doi.org/10.1145/3652620.3688248
https://doi.org/10.23919/ANNSIM55834.2022.9859490
https://doi.org/10.1007/978-3-031-19762-8_6
https://doi.org/10.1007/978-3-030-77385-4_8
https://ceur-ws.org/Vol-2954/paper-19.pdf
https://doi.org/10.1007/978-3-031-73887-6_11
https://doi.org/10.1145/3643915.3644108
https://doi.org/10.1016/j.future.2023.12.013
https://doi.org/10.1109/MC.2003.1160055
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45 Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic domains. J. Log. Program., 31(1-3):59–83,
1997. doi:10.1016/S0743-1066(96)00121-5.

46 Vladimir Lifschitz. What is answer set programming? In Dieter Fox and Carla P. Gomes,
editors, Proc. 23rd Conference on Artificial Intelligence (AAAI 2008), pages 1594–1597. AAAI
Press, 2008. URL: http://www.aaai.org/Library/AAAI/2008/aaai08-270.php.

47 Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ: reconciling object, relations
and XML in the .NET framework. In Surajit Chaudhuri, Vagelis Hristidis, and Neoklis
Polyzotis, editors, Proc. International Conference on Management of Data, page 706. ACM,
2006. doi:10.1145/1142473.1142552.

48 Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 2 edition, 1997. URL:
http://www.eiffel.com/doc/oosc/page.html.

49 Alessandro Orso, Anup Rao, and Mary Jean Harrold. A technique for dynamic updating of
Java software. In Proc. 18th International Conference on Software Maintenance (ICSM 2002),
pages 649–658. IEEE Computer Society, 2002. doi:10.1109/ICSM.2002.1167829.

50 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
51 Luís Pina, Luís Veiga, and Michael W. Hicks. Rubah: DSU for Java on a stock JVM. In

Andrew P. Black and Todd D. Millstein, editors, Proc. International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA 2014), pages 103–119.
ACM, 2014. doi:10.1145/2660193.2660220.

52 Susanne Cech Previtali and Thomas R. Gross. Dynamic updating of software systems based
on aspects. In Proc. 22nd International Conference on Software Maintenance (ICSM 2006),
pages 83–92. IEEE Computer Society, 2006. doi:10.1109/ICSM.2006.23.

53 Yuanwei Qu, Eduard Kamburjan, Anita Torabi, and Martin Giese. Semantically triggered
qualitative simulation of a geological process. Applied Computing and Geosciences, 21:100152,
2024. doi:10.1016/j.acags.2023.100152.

54 Tim Rentsch. Object oriented programming. ACM SIGPLAN Notices, 17(9):51–57, 1982.
doi:10.1145/947955.947961.

55 Habib Seifzadeh, Hassan Abolhassani, and Mohsen Sadighi Moshkenani. A survey of dynamic
software updating. J. Softw. Evol. Process., 25(5):535–568, 2013. doi:10.1002/smr.1556.

56 Bjarne Stroustrup. What is object-oriented programming? IEEE Softw., 5(3):10–20, 1988.
doi:10.1109/52.2020.

57 Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In Proc. 7th Symposium
on Logic in Computer Science (LICS ’92), pages 162–173. IEEE Computer Society, 1992.
doi:10.1109/LICS.1992.185530.

58 Danny Weyns. An Introduction to Self-Adaptive Systems: A Contemporary Software Engin-
eering Perspective. John Wiley & Sons, UK, 2020. doi:10.1002/9781119574910.

59 Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella Poggi,
Riccardo Rosati, and Michael Zakharyaschev. Ontology-based data access: A survey. In Proc.
Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018), pages
5511–5519. ijcai.org, 2018. doi:10.24963/IJCAI.2018/777.

60 Jinzhi Lu Xiaochen Zheng and Dimitris Kiritsis. The emergence of cognitive digital twin: vision,
challenges and opportunities. International Journal of Production Research, 60(24):7610–7632,
2022. doi:10.1080/00207543.2021.2014591.

© Riccardo Sieve and Eduard Kamburjan and Ferruccio Damiani and Einar Broch Johnsen;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 2; pp. 2:30–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.1016/S0743-1066(96)00121-5
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
https://doi.org/10.1145/1142473.1142552
http://www.eiffel.com/doc/oosc/page.html
https://doi.org/10.1109/ICSM.2002.1167829
https://doi.org/10.1145/2660193.2660220
https://doi.org/10.1109/ICSM.2006.23
https://doi.org/10.1016/j.acags.2023.100152
https://doi.org/10.1145/947955.947961
https://doi.org/10.1002/smr.1556
https://doi.org/10.1109/52.2020
https://doi.org/10.1109/LICS.1992.185530
https://doi.org/10.1002/9781119574910
https://doi.org/10.24963/IJCAI.2018/777
https://doi.org/10.1080/00207543.2021.2014591
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

	1 Introduction
	2 Overview
	2.1 Programming Challenges
	2.2 Declarative Dynamic Object Reclassification

	3 FSRJ: Featherweight Semantically Reflected Java
	3.1 FSRJ Syntax
	3.2 A FOL Representation of Knowledge Bases
	3.3 Program Typing
	3.4 Code, Linkage and Program Knowledge Bases
	3.5 Program Coherence
	3.6 Heap Lifting, Synchronisation and Operational Semantics
	3.7 Type Soundness for Coherent Programs

	4 Discussion: Design Choices, Implementation and Performance
	4.1 Overall Design Choices
	4.2 Implementation and Performance

	5 Evaluation of the Prototype Implementation
	6 Related Work
	7 Conclusion and Future Work

