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Abstract. Digital twin technology is emerging as a valuable tool for
both short-term decision-making and long-term strategic planning across
domains such as process industry, energy, space, transport, and health-
care. This paper reports on ongoing work in designing a digital twin to en-
hance resource planning in hospitals, e.g., for in-patient needs. Our focus
here is on a novel technique to express what-if scenarios in digital twins
to improve strategic planning processes, spanning, e.g., average-case and
worst-case resource needs, expected patient treatments, and ranging over
variations in available resources such as bed bays in the hospital ward.
Due to the modularity of our digital twin architecture, different what-if
scenarios can be explored simply by configuring the digital twin’s orches-
trator, which triggers a formal methods analysis pipeline that combines
executable formal models for simulation, optimization over constraints
and a knowledge base that formalizes domain knowledge. We illustrate
what-if scenario analysis in our digital twin architecture by considering
the problem of bed bay allocation in a hospital ward.

1 Introduction

Predicting the future is easy: most likely, tomorrow will be exactly like today.
However, sometimes we may wonder if events could have played out differently.
Although people tend to blame destiny when things go wrong, Casanova claims
that for the numerous bad turns in his life the blame was his alone (and that,
if he could live again, he would do exactly the same) [8]. Thus, he lived his life
according to a locally optimal strategy. In contrast to predictive analysis [22],
which is concerned with what we expect to happen in the near future, prescrip-
tive analysis [48] is concerned with so-called what-if scenarios, i.e., exploring and
comparing the outcomes of strategies that decide between alternative choices.
Humans have proven quite good at such prescriptive analysis; i.e., we routinely
reason about and compare possible scenarios to derive appropriate strategies.
However, many of us struggle with our strategies when the problems get suf-
ficiently complex. Here, computer-aided analyses can help to overcome human
limitations and help us find and evaluate strategies. This problem of finding and
exploring strategies touches on several aspects of Christel Baier’s inspirational
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work, from the analysis of Markov decision processes (e.g., [4, 5]) to learning
strategies (e.g., [3, 53]).3

Digital Twins (DTs) are virtual information constructs that capture the struc-
ture, context, and behavior of the “real” system they are twinning, are dynam-
ically updated with data from the twinned system, have predictive capability,
and inform decisions that realize value, according to a recent definition by the
National Academies of Science, Engineering and Medicine (NASEM) [41]. His-
torically, DTs have been developed in engineering disciplines, where increasingly
sophisticated “virtual replicas” have been used to simulate the behavior of a
cyber-physical system and a closed feedback loop feeds control decisions back
to the twinned system (e.g., [17]), however, the recent definition by NASEM is
broader. Today, DTs can be found in many domains outside of cyber-physical
systems, such as healthcare [51], manufacturing [6], and transportation [9].

In this paper, we are concerned with the use of DTs for the model-driven
exploration of so-called what-if scenarios, moving from the predictive analysis
of near-future events to the prescriptive analysis of hypothetical scenarios. We
believe that DTs have a strong potential for applications in both short-term
decision-making and long-term strategic planning in various domains. Seen from
a formal methods perspective, DTs go beyond standard model-driven techniques
by supporting the dynamic update of the model, leveraging a live data feed
from the twinned system (known as the “physical twin”). Thus, the DT becomes
an infrastructure for data-driven formal methods (e.g., [34]), in which the live
data from the twinned system is used to configure a formal model. Similarly,
the what-if scenario to be explored need not be fixed in advance, but may be
requested on-the-fly by the user of the DT. This dynamically requested scenario
may also determine aspects of the model’s configuration, as well as the properties
to be analyzed. In short, we may think of DT infrastructure as a self-adaptive
system [52] for advanced model management, generating the different models
and determining the analyses to be performed over these models.

Our focus here is on prescriptive analysis in BedreFlyt (/"be:dr@ fly:t/, Nor-
wegian for “Better Flow”) [47]. BedreFlyt is a DT for resource management in
healthcare. The proper handling of resources at a hospital is crucial to efficient
operations [40], e.g., to determine how trained staff, bed availability in the hos-
pital ward, and necessary rooms and equipment match the needs of different
activities at the hospital, such as the treatment of patients. The dynamic alloca-
tion of these resources is necessary to efficiently manage the workflow and adjust
it to avoid bottlenecks in operations, and to improve the prioritization and uti-
lization of available resources [56]. Simulations have been successfully used to
improve resource allocation in a hospital [46]. By connecting simulation models
to live data, the DT can ensure that the simulations more accurately reflect the
actual resource allocation problems of the hospital. This way, a DT becomes a
meeting point between static planning and dynamic optimization, allowing a bet-

3 In particular, the last author of this paper had the pleasure of collaborating with
Christel in the EU project CREDO (including an unforgettable incident in Bonn,
the further details of which shall not be unveiled).
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ter and more dynamic management of the workflow and its associated resources.
By configuring the models to explore different scenarios, the DT further supports
the comparison of resource management strategies under different assumptions
concerning the resources as well as the incoming patients to the hospital.

The main contributions of this paper are (1) a technique to express what-if
scenarios in DTs for prescriptive analysis that is parametric in risk tolerance, and
(2) a simulation interface for such predictive analyses for human-in-the-loop deci-
sion making. We explore worst-case scenarios for the bed bay allocation problem
at a hospital ward, as well as sample statistical information when assigning treat-
ments to incoming patients, by enriching the domain knowledge of the BedreFlyt
DT [47] with statistical distributions for patient treatments. We further seam-
lessly combine such sampling with worst-case scenarios to capture risk tolerance
in long-term planning. The result is a wide variety of strategies for the long-term
planning of bed allocation for patients, that minimizes the number of realloca-
tions. We evaluate the design on a realistic patient diagnosis stream, based on a
historical dataset for a hospital ward at the Norwegian hospital Rikshospitalet.4

2 The BedreFlyt Digital Twin

The BedreFlyt DT [47] aims to aid hospital staff with resource planning in a ward
by solving the problem of room allocations for an incoming stream of patients.
The complexity of this problem arises from the unknown, new patients arriving
at every time step, creating a dynamic scheduling problem. Patients arrive at
the hospital with a diagnosis and are assigned a treatment. Then, depending
on the needs of the treatment, they will have different requirements in terms of
monitoring and time over their stay. Additionally, the hospital wishes to separate
patients by gender and to keep contagious patients isolated.

The DT takes a stream of patients with their diagnoses, genders, and conta-
giousness status as input and then outputs bed bay allocations for all patients so
that all the requirements are met. The following describes the architecture and
components of the BedreFlyt DT and introduces a simple running example. We
start out with a high-level view and then discuss each component individually.

2.1 BedreFlyt DT Architecture

The BedreFlyt DT, depicted in Fig. 1, integrates several formal techniques into a
tool chain for prescriptive analysis. Our DT combines formalized domain knowl-
edge about patient treatments and hospital wards, an actor-based executable for-
mal model to explore strategies for streams of incoming patients with associated
treatments, and an optimizer to perform the actual bed bay allocation. Patient
flow is expressed in the abstract behavioral specification language ABS [28, 29],
which specifies object-oriented control flow and flexible communication between
actors with a timed semantics. The resulting model is compiled into Java and

4 https://www.oslo-universitetssykehus.no/steder/rikshospitalet/

https://www.oslo-universitetssykehus.no/steder/rikshospitalet/
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Fig. 1: BedreFlyt DT information flow.

used as a patient flow simulator. We define the optimization problem for bed bay
allocation as a constraint satisfaction problem. For this purpose, DT integrates
the theorem prover Z3 [12], which is an established SMT solver implementation.
The orchestration language SMOL [30, 31] is used to connect the knowledge
graph to the ABS and Z3 models. SMOL supports querying a knowledge base,
which includes the reflection of the runtime state of the SMOL program itself,
via SPARQL and SHACL queries (e.g., [24]). The ABS model transforms the
stream of patient data into a stream of constraint problems that capture the bed
bay allocation problem at different points in time. Together with a description of
the ward, these are turned into optimization problems. The four key components
of the architecture are: (1) a digital twin orchestrator, (2) a knowledge base and
its interface, (3) a patient flow simulator, and (4) an optimizer.

Static domain-specific information is kept in the knowledge base, while dy-
namic information arrives in two input types. The first type of dynamic infor-
mation is a stream of incoming patients on a daily basis. The second type of
information is allocation requests that are received via a simulation interface.
The user of the interface, presumed to be hospital staff, requests a bed bay allo-
cation given the current patients, in response to which the interface proposes a
possible allocation. Alternatively, the user may ask for a simulation of a stream
of patients under different strategy assumptions. In the following, we describe
the functionality of the individual components to output such an allocation. We
provide details on the different strategies in Sect. 3. We note that this architec-
ture is generally applicable when considering similar problems.

Communication between the orchestrator, patient flow simulator and opti-
mizer components is via discrete timed streams. For a set X, a timed stream
over X is a sequence of elements of X tagged with monotonically increasing
timestamps in N. We write t0:x0, t0:x1, t1:x2 to denote a timed stream where
x0 and x1 occur at time t0 and x2 occurs at time t1.

2.2 The Digital Twin Orchestrator

The digital twin orchestrator is the interface to the twin and coordinates informa-
tion flow to the twin’s other components. It receives a stream of patients and allo-
cation requests, and creates a timed stream of so-called packages detailing patient
and treatment information, that serves as input for the patient flow simulator.
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Table 1: Example of timed patient input stream.
Arrival Time Patient Diagnosis Gender Contagious

1 Alice D1 ♀ True
Bob D1 ♂ False

2 Charlie D2 ♀ False

Let P be the set of patients. A patient p ∈ P is a tuple ⟨id , g, q, d⟩, where id is
a unique identifier, g ∈ {♀,♂} their gender as distinguished by the hospital, q ∈ B
a Boolean value indicating if the patient is contagious, and d their diagnosis.

The digital twin orchestrator receives at a time t ∈ N a set of patients
{p1, . . . , pn}, which all arrive at t. It then constructs a timed stream of packages
for the patient flow simulator by selecting treatments for each patient’s diagnosis
based on a strategy. A package is a triple ⟨t, p, ϕ⟩ consisting of the time of arrival
t, patient tuple p ∈ P , and a sequence of tasks ϕ associated with a treatment
tr ∈ Tr . The strategy for selecting a treatment tr for a given diagnosis can
be based on cost functions or probabilities, we detail the strategies currently
supported in the BedreFlyt DT in Sect. 3. After providing the packages, the
twin orchestrator receives the stream of bed bay allocations from the optimizer,
formats the data and returns it to the user.

Example 1. Table 1 depicts a stream of three patients arriving over two time
steps. In the first step, two patients with diagnosis D1 arrive, and in the second
step a single patient with diagnosis D2. Note that the patient identified by Alice
is contagious and should therefore be isolated. From this patient stream, the
digital twin orchestrator may generate the package stream

⟨1, pAlice, ⟨1, 3⟩⟨2, 2⟩⟩ , ⟨1, pBob, ⟨1, 3⟩⟨2, 2⟩⟩ , ⟨2, pCharlie, ⟨1, 3⟩⟨1, 2⟩⟩ ,

by picking the tasks the most frequent treatment (see Table 2); here pAlice is the
patient tuple for Alice, etc.

2.3 The Knowledge Base and its Interface

The knowledge database contains static information about the rooms in the hos-
pital ward and about the considered diagnoses and their associated treatments.
For a well-structured representation of this knowledge, we use ontologies [45].
The BedreFlyt DT ontology was modeled based on existing available healthcare
ontologies and standards, e.g., [11, 42,54].

To interface the knowledge base, we use SMOL [30], a small imperative
object-oriented programming language that leverages ontologies to develop DTs
through semantic reflection. SMOL allows an easy integration of ontologies in
DT architectures and provides access to the knowledge modeled in the ontology
for DT orchestration [32]. Currently, SMOL is only used to query the knowledge
base. In the future, SMOL could orchestrate components of the DT represented
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Fig. 2: Example of a hospital ward in BedreFlyt DT.

in a knowledge base, where queries to the knowledge base consider the semantic
reflection of the runtime state [30].

One part of the ontology covers the modeling of assets, i.e. rooms, in the
hospital ward. Our example hospital ward of Rikshospitalet is depicted in Fig. 2.
We describe a room from the set of rooms R as a triplet ⟨r, b, c⟩, where r is a room
identifier, b ∈ N denotes the number of beds in the room, and c ∈ C defines the
monitoring category. In the following, we refer to a room in R also by its identifier
r. We distinguish between three levels of monitoring categories C = {1, 2, 3},
which describe the amount of monitoring capabilities a room provides. Categories
are arranged in ascending order, where category 1 maps to standard monitoring
efforts, 2 to intermediate, and 3 to high monitoring efforts.

The second part of the ontology models diagnoses and their subsequent treat-
ments, where each treatment consists of a sequence of tasks. Let Ta be the set
of task, where a task ta ∈ Ta is a pair ⟨d, c⟩ ∈ N× C, with d the task duration,
and c the minimal required monitoring category.

We describe a treatment as a pair tr = ⟨ϕ, ω⟩, where ϕ = ⟨d1, c1⟩, . . . , ⟨dn, cn⟩
is a sequence of n tasks and ω ∈ R≥0 is a real-valued weight. The weight allows
the assignment of a real-valued effort to a treatment, where the higher the weight
the higher the effort for the treatment. The assignment of the weight is domain-
specific, and relies on expert knowledge from the hospital staff. For our DT
setup, we used for a treatment ⟨ϕ, ω⟩ a simple approximation for ω based on the
sequence of tasks ϕ using

ω =

n∑
⟨di,ci⟩∈ϕ

di · ci. (1)

A distribution over a finite set X is a function µ : X → [0, 1], where
∑

x∈X µ(x) =
1. We write Dist(X) for the set of distributions over X. Let D be the set of identi-
fiers of possible diagnoses; in the data from Rikshospitalet they are alphanumeric
codes like “D320”, “I60” and “C713”. We define a probabilistic treatment function
R : D → Dist(Tr) that maps a diagnosis to a distribution of treatments.

Example 2. Table 2 depicts a treatment knowledge base consisting of two di-
agnoses, each with two treatments. The knowledge base includes the calculated
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Table 2: Example ontology of diagnoses.
Diagnosis Treatment Frequency Weight Tasks

D1 T1 0.8 7 ⟨1, 3⟩, ⟨2, 2⟩
T2 0.2 8 ⟨2, 3⟩, ⟨1, 2⟩

D2 T3 0.6 5 ⟨1, 3⟩, ⟨1, 2⟩
T4 0.4 3 ⟨1, 2⟩, ⟨1, 1⟩

weight and a distribution over the treatments for each diagnosis. For example,
the diagnosis D2 has two possible treatments (T3 and T4) and the treatment
T3 consists of two length 1 tasks with respective monitoring categories 3 and 2.
The probabilistic treatment function R maps diagnosis D2 to the distribution
defined by the frequencies of treatments T3 and T4, thus, R(D2)(T3) = 0.6 and
R(D2)(T4) = 0.4. Additionally, the knowledge base describes the hospital ward
depicted in Fig. 2, i.e., a hospital ward with 14 rooms, two of which have the
highest monitoring category.

2.4 The Patient Flow Simulator

We simulate the workflow by connecting the static structure in the knowledge
base, see Sect. 2.3, with the dynamic patient/treatment stream. The workflow
simulator takes a timed stream of packages, see Sect. 2.2, including patient in-
formation with associated treatments, as input and produces a timed stream of
bed bay requirements as output, each of which captures the bed bay allocation
problem to be solved at a particular point in time.

The simulator, implemented in ABS [28], receives5 an input stream of data
from the digital twin orchestrator. The simulator retrieves new data from the
digital twin orchestrator at different points in time and reuses the notion of
packages internally to capture the active patient treatments; a package consists
of patient information and the remaining tasks in the patient’s treatment at a
certain point of time.

We define a bed bay requirement as a tuple β = ⟨id , g, q, c⟩ where id is
a patient identifier, g ∈ {♀,♂} is a gender, q ∈ B indicates contagiousness,
and c ∈ C is the minimum monitoring category. The bed bay requirements are
calculated from the sequence of tasks ϕ in the treatment tr . The ABS model
keeps track of active packages and their remaining tasks. At time t, the simulator

1. checks for new packages (i.e., the incoming packages for time t);
2. for each active package ⟨t′, p, ⟨d1, c1⟩ . . . ⟨dn, cn⟩⟩, with t′ ≤ t:

(a) output the bed bay requirement ⟨id , g, q, c1⟩ for time t where id, g, q are
the identifier, gender and contagiousness status of patient p and c1 is the
minimum monitoring category of the current task, and

5 Technically, the digital twin orchestrator stores the data locally in an embedded
SQLite database (see https://sqlite.org), that is queried from the simulator.

https://sqlite.org
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(b) decrement d1 and remove the associated task if it reaches 0; and
3. remove any packages that have no more tasks.

The ABS simulator runs as long as there are active packages, generating a
stream of bed bay requirements for different points in time. This output is used
to generate a stream of optimization problems for the optimizer component. Re-
mark that the simulation model in ABS is more general than our current case
study, because the architecture of the simulator can handle tasks that occur at
the same time and have different resource needs; e.g., a laboratory test can oc-
cur while the patient occupies a bed bay during recovery. Furthermore, dynamic,
unforeseen variations in task duration can be simulated by exploiting the timed
semantics of ABS [29].

2.5 The Optimizer

We use the theorem prover Z3 [12] to compute a bed bay allocation for a given
stream of packages (patients with treatments); i.e., for each simulated step t ∈ T ,
we compute an assignment from patients to beds such that all constraints on
gender, monitoring categories, contagiousness status, and room capacities are
satisfied. We then introduce a target function to minimize the number of required
bed bay reallocations, i.e. the number of bed bay changes of single patients over
their stay, by minimizing the number of required bed bay reallocations, i.e. the
number of bed bay changes of single patients over their stay.

Recall that room ⟨r, b, c⟩ ∈ R is a tuple over the number of beds b and the
monitoring category c, and is referenced by r. Further, a bed bay requirement
for a patient p is a tuple β = ⟨id , g, q, c⟩. The input to the optimizer is a timed
stream of bed bay requirements S = t0:β

0
1 , . . . , t0:β

0
mt0

, . . . , tn:β
n
1 , . . . , tn:β

n
mtn

where mt denotes the number of patients arriving at time t. To shorten nota-
tion, let P t = {id | t : ⟨id , g, q, c⟩ ∈ S} be the set of patient ids for a time t, and
gtid , qtid , and ctid the gender, contagiousness, and minimum room requirement of
a patient with identifier id at time t. Note that gender and contagiousness are
constant over time. To compute a valid bed bay allocation, we reformulate the
entire problem into a quantifier-free linear real arithmetic formula.

To encode the constraint problem, we introduce two types of variables: (1)
variable atid,r ∈ {0, 1} encodes that at time t, a patient with identifier id is
assigned to room r, and (2) variable gtr specifies the gender of the room r at
that time step. For each time t, the assignment problem is decomposed into the
following sub-formulas:

– φt
patient assigns each patient to exactly one room,

– φt
room limits the number of patients in a room by the room’s capacity,

– φt
gender ensures that patients sharing a room have the same gender by en-

forcing that all patients in a room have the gender assigned to that room,
– φt

contagious ensures that contagious patients are alone in their room, and
– φt

category restricts the bed bay assignable to a patient based on the monitoring
category.



What-If Scenarios for the BedreFlyt Digital Twin 9

φt
patient :=

∧
id∈P t

∑
r∈R at

id,r = 1,
φt

room :=
∧

r∈R

∑
id∈P t a

t
id,r ≤ b,

φt
gender :=

∧
id∈P t,r∈R at

id,r=⇒gtid = gtr,

φt
contagious :=

∧
id∈P t,r∈R at

id,r ∧ qtid=⇒
∧

id′∈P t\{id}¬a
t
id′,r,

φt
category :=

∧
id∈P t,r∈R at

id,r=⇒ctid ≤ c

Fig. 3: The sub-formulas of the bed bay allocation constraint problem.

The formulas are detailed in Fig. 3. Then, the formula φt := φt
patient ∧ φt

room ∧
φt

gender∧φt
contagious∧φt

category ensures that there exists an assignment of patients
to bed bays at time t if and only if that assignment is sound.

We further constrain φt to respect the previous bed bay allocation by min-
imizing the number of required reallocations, avoiding patients being moved
around when they stay at the hospital. To this aim, we introduce variable δtid
indicating whether the patient with identifier id ∈ P t ∩ P t−1 had to move beds
between time t−1 and t. Minimizing

∑
t∈T

∑
id∈P t δtid under

∧
t∈T φt∧φt

changes
constructs bed bay allocations minimizing the aggregated patient moves for all
time steps, where

φt
changes :=

{∧
id∈P 0 a0id,rid , if t = 0,∧
id∈P t∩P t−1(a

t−1
id,r=⇒atid,r) ∨ δtid , otherwise.

Let a0id,rid denote the initial bed bay allocation for patients p ∈ P 0. If no such
allocation is given, the first case in φ0

changes defaults to ⊤.
Further, we note that by encoding all time steps, patients and rooms into

a single problem, a significant number of variables is introduced. However, our
experiments in Sect. 4 reveal that the problem remains computationally feasible
in the context of optimization modulo theories as implemented in Z3 [7]. If the
constructed optimization problem is satisfiable, an optimal allocation of rooms
is returned along with the patients that need to be moved to a different room.

3 What-If Scenarios

To reason about potential futures, the BedreFlyt DT employs what-if scenarios.
In particular, there might be several treatments for the same diagnosis, depend-
ing on the availability of equipment, the patient’s preference and underlying
health conditions; and a choice of treatment changes the scenario.

Adopting the terminology of Scenic [19], a scenario is a distribution over
configurations, while a scene is one such configuration. In our setting, scenes are
timed streams of patients with assigned treatments — the inputs to the patient
flow simulator. Scenarios are distributions over scenes, given by a patient stream
and a (potentially stochastic) strategy for selecting treatments — the inputs to
the DT orchestrator. Since a strategy determines a scenario if the patient stream
is fixed, we conflate the two if the patient stream is clear from the context or does
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not matter. For example, “worst-case scenario” means the worst-case strategy
applied to an understood patient stream.

The BedreFlyt DT implements one deterministic and one stochastic strategy,
where the stochastic strategy can be used in simulations to compute expected
outcomes. We first explain strategies considered for the hospital ward planning
problem in the BedreFlyt DT and how they are used to explore what-if scenarios,
before a brief discussion of implementation.

3.1 Different Strategies for the BedreFlyt DT

The existing BedreFlyt DT framework [47] for bed bay allocation is useful for
understanding the current state of the hospital ward in relation to the incom-
ing patients by solving the bed bay allocation of incoming patients with given
treatments. To analyze the hospital’s ability to accommodate patients under
different treatments, we now develop a what-if analysis by considering different
strategies for assigning treatments to patients. We implement (1) worst-case and
(2) sampled-case strategies for assigning treatments to patients. When perform-
ing simulations, a so-called risk tolerance parameter additionally determines the
probability of defaulting to the worst-case strategy. By sampling and varying this
risk tolerance, we can construct a wide range of what-if scenarios and simulate
their expected outcomes.

1. Worst-case strategy. The worst-case strategy always picks the treatment
with the highest weight. Since the choice of treatment may depend on many
factors outside our control (i.e., not-modeled resource requirements, patient
health, patient preferences, etc.) this strategy allows us to simulate a scenario
in which the hospital is maximally unlucky. This strategy is deterministic in
that the same diagnosis always results in the same treatment. In the case of
a tie we assume a total order on the treatments and pick the first.

2. Sampled-case strategy. The sampled-case strategy stochastically picks a
treatment for a given diagnosis D based on the frequencies provided by the
probabilistic treatment function R(D). Thus, a treatment with a frequency
of 0.2 is expected to be picked one in five times, for patients arriving with
that diagnosis.

The treatment strategy is used by the DT to map each patient to a treatment
in each run, where a run comprises the patient flow simulation and optimizer
allocation for a scene. Each run consists of three steps, (1) the DT orchestrator
receives a scenario and a strategy, and generates a scene using the given strategy,
(2) then the patient flow simulator turns the scene into a stream of optimization
problems, (3) finally the optimizer computes a stream of bed allocations.

The non-deterministic sampled-case strategy and the Monte Carlo method
allow us to calculate expected values by aggregating a number of runs into
a simulation. We compute the expected amount of time taken, the expected
proportion of time steps without a feasible bed allocation, and the expected
number of patients that need to be moved between bed bays in the hospital ward.
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We parameterize each simulation by a so-called risk tolerance τ ∈ [0, 1] that
indicates the degree to which we account for a worst-case assignment of treat-
ments. The sampled-case strategy is used with a probability of τ in each run,
otherwise the worst-case strategy is used. Thus, with a risk tolerance of 0, the
twin will use the worst-case strategy for all patients in all runs. Note that a
choice of risk tolerance and a patient stream constitute a scenario — it defines
a distribution of treatment assignments.

Example 3. Consider again the setting from Examples 1 and 2. Using what-if
scenarios, there are now multiple ways to assign the patients to their bed bays.

Under the worst-case strategy, Alice and Bob will both be assigned the treat-
ment T2, and Charlie will be assigned T3. At time 1, all is well as Alice and Bob
are assigned to the two high monitoring rooms. At time 2, there is a problem:
Charlie needs to be kept in high monitoring, but she cannot be assigned to Bob’s
room because of their different genders, nor can she be assigned to Alice’s room
because Alice is contagious. At time 3, Alice and Bob are moved to standard
rooms, and there is space for Charlie in an intermediate room (assuming she got
the first step of her treatment elsewhere).

Under the sampled-case strategy, there are multiple solutions. If Alice is as-
signed T1, there will be a free room for Charlie because the female high monitor-
ing room is no longer contagious, and if Bob is assigned T1 the similar situation
applies since Charlie can move into the now unoccupied male room and turn it
female. On the other hand, Charlie could be assigned T4, and not need a high
monitoring room at all.

Performing a simulation with the simulation tolerance set to 0.8 over 1000
runs, we find that the scenario always takes 4 time steps, the expected number
of unsatisfiable allocation problems is ≈ 0.24, and the expected number of room
changes per satisfied time step is ≈ 0.11.

If we take the step size to be days, this means the hospital should expect to
be unable to accommodate the patients on 24%

4 = 6% of days, and have to move
a patient on 11% of days in this scenario.

3.2 Implementation of Strategies in the BedreFlyt DT

Exploiting the modular nature of the BedreFlyt DT, strategies are implemented
entirely in the DT orchestrator — directly reusing the patient flow simulator
and optimizer components of the existing digital twin architecture [47].

Allocation requests may contain a strategy flag indicating the strategy to be
used, and the choice of strategy determines how the DT orchestrator constructs
scenes for the patient flow simulator.

Alternatively, a user may send a simulation request to estimate expectations
for a given stream of patients. This request is parameterized by a simulation
tolerance as described above, a number of runs to perform, and the stream of
patients. The DT orchestrator performs the requested number of runs and re-
ports the expected amount of time treatments for all patients will take, the
expected number of unsatisfiable time steps (that is, the number of steps where
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there are not enough bed bays of the right categories), and the expected number
of room changes. Since the worst-case strategy is deterministic, its results are
cached and reused.

Compared to the previous work [47], we have decoupled the patients diag-
nosis from their treatments in the BedreFlyt DT. By enriching the knowledge
base with multiple treatments for a diagnosis — as well as the additional infor-
mation concerning their respective weights and frequencies — we can use this
information to implement the strategies described above.

4 Evaluation

We evaluate the resulting extension of the BedreFlyt DT along two axes: (1) the
use of simulation to analyze what-if scenarios, and (2) the optimality of the
solution with respect to the number of bed bay changes to which patients are
subjected. Using the simulation requests described in Sect. 3, we investigate the
expected number of satisfiable time steps and number of bed changes for a fixed
stream of patients across different what-if scenarios. We note that the BedreFlyt
DT implements an online approach, i.e., one that considers only one step at
the time. Alternatively, if the full patient stream is known in advance, we may
compute an optimal offline solution as described in Sect. 2.5, we evaluate the
quality of the online solution in comparison to that optimal solution.

Comparing strategies. To investigate the impact of the strategy choice, we create
different simulation experiments — sets of simulations with different tolerance
levels and bed bay availability. We fix the diagnosis-treatment information in the
knowledge base and the stream of patients for each experiment, and vary the
tolerance and the number of available high-category bed bays. This answers the
question: “Given a tolerance for risk, how many bed bays do we need to upgrade
to a higher monitoring category for the incoming stream of patients?”. Note that
we do not add or remove rooms, but upgrade existing rooms by adjusting their
monitoring category. Furthermore, the number of steps it takes to treat all the
patients in a stream may vary in each run since the selection of treatments for
the same diagnosis is stochastic in general, and so, the DT outputs the average
proportion of unsatisfiable steps. For our experiments, we randomly generate
incoming patient streams, using the anonymized patient identifiers and diagnoses
from given historical hospital data. Stream A has 350 unique patients arriving
over the course of 35 time steps and stream B has 75 patients over 7 steps.

Having fixed a stream of patients, we execute simulations with n runs with
the sampled-case strategy and a tolerance τ ∈ [0, 1]. If there exists a time step
for which no feasible assignment was found, we find the room with the smallest
number of bed bays and a less than maximal category. We upgrade this room
to the maximal category, and run again n simulations. We continue this process
until there are no more rooms to upgrade or no steps are unsatisfiable.

Figure 4 depicts our obtained results. The expectation before the experi-
ments was to confirm that higher tolerance levels will decrease the number of
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Fig. 4: Unsatisfiable time steps by tolerance and available category-3 bed bays
for two different patient streams using simulations with n runs. Plots (a) and
(b) show different simulations of the what-if scenario for Patient Stream A.

unsatisfiable problems, since fewer patients receive the worst-case treatment.
Consequently, the number of unsatisfiable problems should be inversely propor-
tional to the number of available category-3 bed bays, as there are simply more
available slots. Remember that a category-3 room can host a patient of any
category, as discussed in Sect. 2.5. Our experiment results approximately align
with our expected result — the proportion of unsatisfiable problems generally
decreases going up and right, where high tolerance is captured. However, we
also observe some noise, which is caused by the complex interactions of patients’
requirements. For example, one patient being assigned a treatment with less
weight may result in moving them to a higher category room sooner, thus con-
flicting with other patients already there. Note that the results are relatively
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Fig. 5: Average number of bed bay changes per time step, for Patient Stream A;
the plots show different simulations of the same what-if scenario.

stable across simulations. The plots (a) and (b) depict two different simulations
of the same patient stream and are very similar — though not exactly the same.

If there exist multiple possible allocations of patients to bed bays such that
all constraints are satisfied, the hospital would like to pick the one that requires
the fewest number of patients to be moved. To this end, we provide the optimizer
with the allocation for the previous time step and compute the number of room
changes as explained in Sect. 2.5. The optimizer then computes an allocation
that minimizes the number of changes. Figure 5 reports the number of changes
per satisfiable time step in two simulations of the same patient stream. As before,
we vary the tolerance and number of available category-3 bed bays. Note that
more bed bays and lower tolerance levels lead to a larger number of satisfiable
problems and, hence, a larger number of possible moves. For this reason, Fig. 5
shows the average number of bed bay changes per satisfiable time step.

Quality of the online solution. Due to the limited predictability of bed bay al-
locations in hospitals in real time, BedreFlyt DT assigns bed bays in an online
fashion. Specifically, BedreFlyt DT implements a greedy algorithm that mini-
mizes the number of bed bay changes for the current time step. Note that we
can easily construct a situation where moving one patient now will prevent two
forced moves in the next step, thus the greedy solution cannot be optimal. In
fact, the greedy solution for the very similar k-server problem can be arbitrarily
bad, but competitive algorithms exist [35].

To investigate the gap between online and optimal allocation solutions, we
implemented a t-indexed version of the optimization problem, computing a opti-
mal offline solution and comparing it with the greedy approach in the BedreFlyt
DT. We employ a meta-heuristic search for synthetic package streams that max-
imize the number of bed bay changes of the optimal solution, and bypass the
simulation component to directly generate problem instances for the optimizer.
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(a) 40 Patients (b) 50 Patients (c) 60 Patients

Fig. 6: Comparison of optimal and BedreFlyt DT solutions.

Specifically, we search for length 5 streams for the same hospital ward as be-
fore. This hospital ward has a total of 37 beds — 13, 11, and 13 of respectively
category 1, 2, and 3 — distributed across 17 rooms. We vary the total number
of patients and then compare the optimal solution, i.e., the minimum possible
number of bed changes when all arrivals are known, to the online solution (with
partial information) employed by BedreFlyt DT. For each choice of patent num-
ber, we generate in total 30 000 instances, and report the number of changes
for the optimal (left) and the online solution (right). The results are displayed
in Fig. 6. For 40 and 50 patients, both approaches produce similar distributions
of results — the median BedreFlyt DT solution makes one more move than op-
timal. For 60 patients, BedreFlyt DT skews further than the optimal solution,
requiring up to 14 moves where optimal does not reach above 11 moves.

These results indicate that while theoretically, the greedy solution can be
arbitrarily bad, it performs similar to the optimal solution on realistic scenes
with a moderate number of patient moves required. The gap grows slightly larger
with larger numbers of patients, but stays within reasonable bounds.

5 Related Work

Digital Twins in healthcare is an emerging topic [1,57], especially with the impact
that COVID-19 had on our lives [23], where emergent DT technologies, e.g. [37],
can be integrated with different devices to provide a more comprehensive view
of the patients’ health. Many solutions explore the application of AI to improve
DTs for healthcare, as done in [33], which combined with context-sensitive ap-
plications, can lead to a comprehensive and scalable health system, e.g. [13].
Furthermore, existing work reports on the use of DTs in conjunction with AI to
monitor the health of patients in real time [39], management of computational
resources [26], etc. In contrast, our work explores digital twins for operational
resource analysis in healthcare. Although the use of AI for resource allocation in
hospitals has also been explored, e.g. [36], our work focuses on the use of formal
methods for resource analysis.

Digital twins have proven to be effective in resource management and resource
allocation, e.g. [43, 49], but they have not been extensively explored in the con-
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text of healthcare [14, 25, 51]. Resource analysis in hospitals is a critical issue
that has been extensively addressed, especially in the Emergency Department
(ED) [18], where crucial and trustworthy decisions must be made effectively un-
der uncertainties; in this domain, having a tool to make informed decisions can
help drastically. Simulation tools for resource management and decision making
are a well-established technique in healthcare [2,44], where they can be used for
e.g., resource allocation [16], demographic trends forecasting [21], etc. However,
such simulation models have not been integrated into digital twins, as done in this
paper. As explored in this paper, the notion of a digital twin goes beyond sim-
ulation to include tighter integration between models, data, and decisions [55].

In the context of healthcare and resource management, a data driven perfor-
mance measurement technique has been used to evaluate the efficiency of hospi-
tals [10] to align the resource allocation needs, while meta-heuristic methods [50]
have been assessed for patient allocation. Toward data-driven applications, the
integration of different models for resource and capacity allocation in hospitals
have been explored [58,59], in both cases, strategies were used to leverage the big
volume of data incoming from the hospitals to create a more efficient system to
improve operational performance. Closer to the analysis of live incoming streams,
as done in digital twins, existing work reports on the use of an adaptive method
from near real-time data to predict future bed occupancy levels during a pan-
demic wave [20], but not for concrete allocation of bed bays at the hospital ward.

In contrast to all the work reported in this section, our work explores digi-
tal twin architectures that take advantage of domain knowledge, captured in a
knowledge base, for the online and offline analysis of incoming streams of data for
decision making support. Furthermore, our work also explores the orchestration
of formal models for digital twins, with analysis strategies that are parametric
in risk tolerance and consider a human in the loop, touching on various open
challenges for digital twins [55].

6 Conclusion

We report on the development of the BedreFlyt digital twin (DT), a tool for
resource allocation planning in healthcare. The BedreFlyt DT combines a pa-
tient flow simulator and an optimizer to allocate bed bays in a hospital ward
according to a stream of incoming patients and their treatments. The proposed
DT architecture orchestrates a knowledge base, a patient flow simulator, and
an optimizer. In this paper, we consider how the capabilities of the BedreFlyt
DT can be extended to analyze hypothetical scenarios over patient streams and
strategies for selecting treatments, so called what-if scenarios. We showed how
the Monte Carlo method allows the DT to explore expected outcomes for a given
knowledge base and patient stream, parameterized by a tolerance factor deter-
mining how many of the patient treatments we should expect to be worst case.

Finally, we evaluate the DT’s proposed bed bay allocations along two axes: a
qualitative look at what-if simulations of the same patient stream under differ-
ent tolerance levels and bed bay availabilities, and a comparison of online (day
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to day) bed bay allocation results with the optimal allocation. The simulation
results confirm our assumption that a lower number of bed bays and a lower risk
tolerance lead to more unsatisfactory time steps. However, results can vary and
be non-monotone due to complex interacting factors. In terms of optimizing the
necessary bed bay moves during a patient’s stay, we find that the online solu-
tion can be arbitrarily sub-optimal, but that for realistic problems the deficit is
relatively small.

There are several interesting directions for future work. First, our analysis of
what-if scenarios currently work over fixed patient streams, and we would like to
sample traffic patterns in a similar way as we now sample treatments. Further,
the greedy online bed bay allocation has proven reasonably effective, but does
not utilize all the available data. By integrating more knowledge about future
steps in treatment sequences, we may further reduce the number of necessary
bed bay changes. In addition, the assumption of static information in the knowl-
edge base could be too restrictive in practice. By using techniques to self-adapt
the knowledge base, we may ensure that DT better reflects the hospital’s reality.
Furthermore, online learning could be used to make what-if scenarios more re-
alistic by reinforcing observed behavior in the selected strategies. We note that
our assumptions on treatment frequencies and weights are artificial; Using real
data from the hospital instead would allow for more realistic modeling and pre-
diction, where it will be interesting to explore advanced stochastic techniques
for resource allocation to address, e.g., uncertainties, as explored in [15,38]. Such
techniques may also include probabilistic sampling over distributions of patient
streams to enable even greater variation in scenario modeling. Finally, we would
like to explore the use of Markov decision processes (MDPs) in the healthcare
setting. As a modeling and analysis tool for systems with both probabilistic and
non-deterministic elements, MDPs are well suited to the world of hospitals where
the flow of patients is unknown and staff makes non-deterministic decisions.
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