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Digital twins are emerging as a valuable tool for short-term decision-making as well as for long-term
strategic planning across numerous domains, including process industry, energy, space, transport, and
healthcare. This paper reports on our ongoing work on designing a digital twin to enhance resource
planning, e.g., for the in-patient ward needs in hospitals. By leveraging executable formal models for
system exploration, ontologies for knowledge representation and an SMT solver for constraint satis-
fiability, our approach aims to explore hypothetical “what-if” scenarios to improve strategic planning
processes, as well as to solve concrete, short-term decision-making tasks. Our proposed solution
uses the executable formal model to turn a stream of arriving patients, that need to be hospitalized,
into a stream of optimization problems, e.g., capturing daily inpatient ward needs, that can be solved
by SMT techniques. The knowledge base, which formalizes domain knowledge, is used to model
the needed configuration in the digital twin, allowing the twin to support both short-term decision-
making and long-term strategic planning by generating scenarios spanning average-case as well as
worst-case resource needs, depending on the expected treatment of patients, as well as ranging over
variations in available resources, e.g., bed distribution in different rooms. We illustrate our digital
twin architecture by considering the problem of bed bay allocation in a hospital ward.

1 Introduction

Digital Twins (DTs) are virtual information constructs that capture the structure, context, and behavior of
the system they are twinning, are dynamically updated with data from the twinned system, have predic-
tive capability, and inform decisions that realize value, according to a recent definition by the National
Academy for Science, Engineering and Medicine (NASEM) [33]. While many applications of DTs so
far can be found in engineering disciplines, based on the idea of creating an increasingly accurate “virtual
replica” of a physical system to predict behavior by means of sophisticated simulation techniques and
a closed feedback loop to a twinned cyber-physical system (e.g., [11]), this recent definition is broader.
In fact, DTs are today used in a variety of domains outside of cyber-physical systems, including health-
care [41], manufacturing [5], and transportation [7]. We believe DTs have significant potential as a tool
for the model-driven exploration of so-called “what if” scenarios, moving from the predictive analysis of
near-future events to the prescriptive analysis of hypothetical scenarios. Thus, DT technology appears to
be useful both for short-term decision-making and long-term strategic planning in various domains.

If we consider DTs from a formal methods perspective, DTs differ from standard model-driven tech-
niques by supporting the dynamic update of the model, leveraging live data from the modeled system
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(often referred to as the physical twin). We may think of the DT as an infrastructure for data-driven
formal methods (e.g., [25]), in which the stream of data from the twinned system is used to configure
a formal model. Similarly, the what-if scenario requested by the user of the DT may determine other
aspects of the model as well as the properties to be analyzed. This way, the DT infrastructure may be
thought of as a self-adaptive system [42] for advanced model management, generating the models and
determining the analyses to be performed over these models.

Our focus here is on DTs for resource management in healthcare, a domain in which resource man-
agement is crucial to efficient operations [32]. The proper handling of resources at a hospital is concerned
with how, e.g., trained staff, bed availability in the ward, and necessary rooms and equipment match the
needs of the different activities of the hospital, such as the treatment of patients. Efficient resource
allocation provides a structured way to better manage workflow and adjust it dynamically, avoiding bot-
tlenecks in operations, thereby allowing for better prioritization and utilization of staff [44]. Simulations
have been successfully used to improve resource allocation in a hospital [39]; a DT can connect such
simulation models to live data to ensure that the simulation models do not deviate from the resource
allocation problem of the hospital. This way, a DT can become the point of contact between static plan-
ning and dynamic optimization, allowing a better management of the workflow and making it possible to
adjust it dynamically. By configuring the models to explore different scenarios, it is possible to compare
different strategies under different assumptions with respect to resources as well as incoming patients.

This paper discusses the initial design of BedreFlyt (/"be:dr@ fly:t/), a DT for resource planning
in a hospital ward, with a particular focus on bed bay allocation. The DT combines a knowledge base
formalizing knowledge about patient treatments and the ward, an actor-based executable formal model to
explore scenarios for streams of incoming patients with associated treatments, and a constraint solver to
perform the actual bed allocation. Technically, we combine the executable modeling language ABS [17,
18] with the SMT solver Z3 [9] and knowledge graphs [16]. The orchestration language SMOL [21,
22] is used to combine knowledge graphs with the ABS and Z3 models. SMOL supports querying a
knowledge base, which includes the reflection of the runtime state of the SMOL program itself, via
SPARQL and SHACL queries. The ABS model transforms the stream of patient data into a stream
of constraint problems that capture the bed allocation problem at different points in time. Combined
with a description of the ward, these are turned into SMT problems, which we give to Z3. The result
is the multi-day planning of bed allocation for patients, that minimizes bed reallocation. We evaluate
the design on a realistic patient treatment scenario, based on a historical dataset for a hospital ward at
Rikshospitalet,1 and further consider how the design scales to larger scenarios up to 2000 patients.

Main contributions: a DT design combining formalized knowledge, executable formal models and
SMT to explore “what if” scenarios, its implementation, and its application to a hospital ward scenario.

Paper overview: Section 2 motivates our work by a hospital ward planning problem, Sect. 3 re-
views background and Sect. 4 gives an overview of our DT design. Then Sect. 5 discusses our prototype
implementation, Sect. 6 experimental results, and Sect. 7 perspectives on the DT design and future work.

2 Motivating Scenario

Resource planning in hospitals is surprisingly complex. Already the problem of allocating beds to pa-
tients who are admitted for multi-day stays at a hospital ward is a dynamic scheduling problem concerned
with how the patients’ beds are placed in so-called bed bays, i.e. designated slots inside the different
rooms of the hospital ward where rolling beds are placed. Additionally, the patients’ bed needs may vary

1https://www.oslo-universitetssykehus.no/steder/rikshospitalet/
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Figure 1: Example of a hospital ward.

over time, and are subject to numerous constraints; for example, to allocate a bed to a bed bay in the
hospital ward one needs to consider whether the patient requires continuous monitoring from staff and
the extent to which the patient can share a room with other patients.

Today, when patients are admitted for a multi-day stay at a hospital ward, their admission is often
handled manually. This manual process is still the default procedure in many major hospitals. Not only
does this drastically increase the workload, as various requirements have to be taken into account, it is
also time- and resource-consuming. While the nurse tries to find a good bay for the patient’s bed, other
patients still require care and sometimes immediate attention. The admitting nurse searches for a suitable
placement for the different patients, while accounting for patients’ diagnosis, gender, and infection status,
as contagious patients are to be isolated. The nurse also ensures that the patients’ room is appropriate
given their needs; for example, more acute patients stay closer to the watch room to facilitate monitoring.
Furthermore, a patient’s needs may vary over a multi-day stay. In fact, optimal resource usage suggests a
near-continuous reallocation of bed bays to patients as the overall needs of the currently admitted patients
change over time. On the other hand, patients should not be moved unnecessarily!

Figure 1 illustrates this bed allocation problem for a hospital ward. A stream of patients arrive on
a day-by-day basis and get assigned a bed bay in one of the rooms of the hospital ward. The ward is
designed with rooms that satisfy different constraints and have different capacities in terms of bed bays;
in particular, some rooms near the watch room have bed bay category High Monitoring and can host
patients who need continuous monitoring from staff, other rooms host patients that need intermediate
levels of attention from staff, etc. Thus, there are various constraints associated with the bed bays of
the hospital ward, and various needs associated with the treatments of the admitted patients; both the
constraints on the bed bays of the hospital ward and the needs of the admitted patients can vary over time.

A DT of the hospital wards can support real-time insights into the ward workload and support
decision-making. The DT can alleviate the continuous process of allocating bed bays to patients, thereby
reducing the workload of staff at the hospital ward. In particular, the twin could produce a list of patients
with their room (re-)allocations at different points in time by tracking the patients, their treatments, and
the associated bed allocation constraints. The number of incoming patients to the hospital ward can vary
depending on the time of day, the day of the week, and the season. Similarly, the twin could easily adapt
to changes in the hospital ward itself, such as the change of status of a given room from intermediate to
monitoring, rooms being temporarily out of service, etc.

Finally, the DT could not only help with day-to-day bed bay allocation planning but also with longer-
term prediction and strategic planning based on “what-if” scenarios. Specifically, the hospital deals with
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a combination of planned and acute patients. The treatments for acute patients can change over time,
depending on the time of day, the day of the week, and (in Norway) the amount of ice on the streets,
etc. By exploiting domain knowledge in the creation of scenarios for exploration, the DT can assist in
longer-term planning by comparing allocation procedures depending on seasonality. These scenarios
could also be parameterized in risk, allowing the DT to use either average-case or worst-case scenarios
for resource needs (or even a distribution between the two). This way, the DT can assist in maintaining
good capacity usage in the hospital ward at acceptable risk. Our solution is realized in a DT architecture
that combines executable formal models with knowledge representation and constraint solving.

3 Background and Related Work

We focus the discussion on analysis techniques for resource planning and DTs in healthcare delivery.
The traditional technique used for decision-making in healthcare is simulation [35], used to provide
insights into the system and help identify potential issues before they occur [28]. Simulation studies
such as [14] are conducted to understand future load on hospital operations, in this case, demonstrating
bed availability under forecasted demographic trends (aging population) conditions. Garcia-Vicuña et
al. [12] introduced a flexible adaptive method for efficiently estimating the distribution for lengths of
stay and estimating bed needs from near real-time data. They conducted simulation studies, reproducing
the patient pathway for admitting a patient to a hospital ward or the ICU. The simulations were used to
predict future bed occupancy level during a pandemic wave.

DTs are gaining considerable traction in healthcare [2], especially considering how AI can be used
to develop and enhance DTs for healthcare [24]; for instance, a study by [31] used DTs with machine
learning models to monitor the health of patients with lung disease in real-time, with an accuracy of 92%.
Stenseth et al. [40] used a DT-based framework to compare the effect of different intervention strategies
on the global spread of a pandemic, by combining hypothetical “what-if” scenarios with co-simulation.
DTs have also proved to be helpful for testing healthcare IoT applications such as medicine dispensers,
while maintaining fidelity and reliability on the system [36].

The potential transformative impact of DTs on healthcare delivery has been reviewed by Vallée [41],
who argues for the use of DTs for resource allocation to improve operational efficiency, including the
streamlining of workflows, pinpointing bottlenecks, and ensuring optimal utilization of resources to re-
duce waiting times. Concrete examples of DTs in this domain include Mater Private Hospital in Dublin,
Ireland, which partnered with Siemens Healthineers to create a DT of the workflow for the hospital’s
Radiology Department. Their DT’s workflow simulation demonstrated shorter patient waiting times,
faster patient turnaround, increased equipment utilization and capacity, and lower staffing costs [13]. As
another example, Oregon Health Authority (OHA) used real-time data in their Mission Control com-
mand center to create a reliable tool to track critical hospital resources during the COVID pandemic. GE
Healthcare provided DT tools for bed allocation and inpatient capacity monitoring across four hospitals
in Portland. Through this project, the health authority has increased collaboration between the hospi-
tals, and they are now able to rapidly react to increases in hospital bed demand, with a large impact on
crisis response [30]. Integrating AI with DTs has also been used to improve the efficiency in resource
management, allowing for task offloading [15].

In contrast to the work discussed above, our work explores DTs as a self-adaptive infrastructure for
model management and configuration. Our DT design combines SMOL [21], a custom language for DT
orchestration, knowledge bases to formalize domain knowledge, ABS [17,18] for model simulation and
exploration, and Z3 [9] for constraint solving. We briefly introduce these components below.
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Figure 2: Architecture of the DT, where the arrows indicate the flow of data.

SMOL is an imperative domain-specific language that leverages ontologies [38] to develop DTs that
realize semantic reflection [21]: the runtime state of a SMOL program can be automatically represented as
a knowledge graph, and queried from within the program itself. This technique allows the runtime state of
the DT orchestrator to be combined with domain knowledge to, e.g., configure simulation scenarios. The
domain knowledge needed for model management is formalized in a knowledge base expressed in the
Resource Description Framework2 (RDF) and RDF Schema (RDFS) for graph representation of the data,
and the Web Ontology Language3 (OWL) for its expressiveness alongside Description Logic [4]. SMOL
leverages domain expertise formalized in the knowledge base to configure (and re-configure) models for
different analyses [22], effectively turning the DT into a self-adaptive system [42]. In previous work, self-
adaptation in SMOL has been used to, e.g., autonomously tackle lifecycle management in DTs [19, 23].

ABS is used to add simulation capabilities to our DT. ABS [17] is a timed, resource-aware, actor-
based modeling language with a formal semantics [18], that combines a functional layer for computation
with an imperative layer for communication and synchronization between cooperatively scheduled pro-
cesses. ABS has been used to model, e.g., resource-aware computational workflows on virtualized cloud
infrastructure [3, 29], railroad infrastructure [20] and user journeys [26]. In ABS, we can model simula-
tions through an actor-based approach with explicit suspension points for scheduling [37].

Satisfiability Modulo Theories (SMT) is used to add optimization capabilities to our DT. SMT solving
provides decision procedures for deciding the satisfiability of a formula over a theory, e.g. linear real
arithmetic [1, 27]. If the formula is satisfiable, the SMT solver returns a satisfying assignment for all
variables, if the formula is unsatisfiable, an unsatisfiable core can be computed. In our work, we use the
state-of-the-art SMT solver Z3 [9] for deciding satisfiability of formulas over quantifier-free linear real
arithmetic, i.e. formulas of the form ∃x,y ∈R : (x+y ≤ 2)∧ (2 ·x+y ≥ 3)∧ (y = 0∨y = 1). In this case,
Z3 could return the satisfying assignment x = 2, y = 0.

4 Approach

We now describe the approach we have taken to develop the DT and its underlying components. The
approach is based on the architecture shown in Figure 2, and is driven by the following principles:

Modularity: The architecture is designed to be modular, and to allow for the addition of new compo-
nents and the removal of existing ones. This allows for a more flexible and adaptable system over time,
and allows us to enforce the separation of duties.

Interoperability: The architecture is designed for interoperability, for integrating new components,
and for communication between existing ones. This also allows us to enforce a separation of concerns.

2https://www.w3.org/RDF
3https://www.w3.org/OWL/

https://www.w3.org/RDF
https://www.w3.org/OWL/
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Scalability: We designed the architecture with scalability in mind, using a microservice approach.
While the performance might be lower than a monolithic approach on a single machine, the containerized
approach allows for the deployment of the components on multiple machines. Moreover, the use of or-
chestration tools to manage the deployment makes it easier to scale the system across different machines.

4.1 Knowledge Modeling with Ontologies

We use an ontology to model the assets in the twinned system, as well as the various procedural tasks and
their dependencies. An ontology is a formal machine-readable representation of knowledge organized
as a set of concepts and the relationships between them. We build on previous work on developing
ontologies for the modeling processes and workflows involving hospital operations [8, 34, 43].

Our ontology models bed bay capacity and the category of care-level for each room in the ward.
The ontology is used by the other components of the system providing the standardized set of terms
that facilitates interoperability, and to feed up-to-date information about the assets and procedural tasks
to the other components. Our ontology captures only the needed concepts and relationships for our
demonstration of the bed allocation simulator.

The ontology further models the basic structure of patient trajectories associated with treatment flow
from pre-surgery, surgery, to post-surgery recovery. The room/bed needs through different phases of a
patient’s hospital stay are related to these treatment trajectories. The ontology design follows modeling
principles to support expansion with further knowledge about ward processes, when this becomes needed
to extend the twin’s capabilities. For example, the ontology can easily be modified to increase the range of
tasks beyond bed-related resource allocation, such as equipment needs, imaging and diagnostics, and per-
sonnel scheduling with complex formation of interdisciplinary teams of healthcare personnel (see [43]).

We use the ontology to capture the structure of the hospital, specifically the ward. The ward, in
the domain we used as baseline, consists of a set of rooms R, each with a number of bed bays, room
r ∈ R has Br bed bays. Each room r is associated with a bed bay category Cr, used to determine the bed
allocation in each room, according to the patients’ needs. The complete set of the rooms is associated
with a specific distribution and capacity, required to determine the availability of beds in the ward.

Moreover, the ward has a set of specific tasks that are to be performed for a given treatment. The
ontology also captures the patients’ available treatments, which are given after a patient diagnosis. Treat-
ments are associated with a set of tasks that need to be performed in a predefined ordering. Each task
is associated with an average duration and a required bed bay category. For each diagnosis, there is a
corresponding patient trajectory, a deployment of a treatment, identified by a set of tasks with their cor-
responding task dependencies (that capture the ordering constraints), that need to be performed as part of
the treatment of a patient, e.g., post-surgery can happen only after surgery. The proper dependencies
for the tasks are checked to ensure that the tasks are performed in the correct order.

The ontology is then integrated into SMOL to provide the runtime knowledge base for the DT: Each
component of the asset model is mapped to a corresponding class in the knowledge base, and the rela-
tionships between the components are mapped to the relationships between the classes. The knowledge
base is used to provide the data required for the simulation model, and to provide the constraints that
need to be solved by the SMT solver. This way, no information about the ward’s resources or processes
are hard-coded into the DT’s simulator or constraint-solver components; rather, these are configured on
the fly by the DT, thereby giving the DT self-adaptive capabilities [42].
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4.2 Scenario Simulation with ABS

We use simulation techniques to connect the static structure of the system (i.e., the knowledge base, see
Section 4.1), with dynamic scenarios of patient flow. The workflow simulator takes a timed stream of
patients with associated treatments as input and produces a timed stream of bed bay allocation problems
as output, each of which captures the bed bay allocation problem to be solved at a particular point in time.

The simulator, implemented in ABS, fetches from the local data store4 data produced by the Simula-
tion Driver by combining static information from the ontology and a desired scenario of patient inflow.
The simulator reads from the local store at different points in time and provides a sequence of allocation
problems, one for each point in time. (So far, we inhabit the database using an anonymized, historical
dataset from a hospital ward; in the future we will investigate how to integrate live data from such wards.)

The simulator uses the functional layer of ABS to fetch data from the local store, including the pa-
tients and their corresponding treatment. The simulator uses the concept of a Package to capture ongoing
treatments. Packages consists of patient information and the remaining tasks in the patient’s treatment.
The simulation keeps track of active and pending treatment tasks in a package (one per patient). The de-
pendencies between tasks (for example, post-surgery depends on surgery) are also retrieved from the
knowledge base. A task in a package becomes active once all tasks it depends on have been performed.
While there are active packages, the simulator performs the following steps for each point in time:

1. Check for new patient arrivals, and add their associated packages to the list of ongoing packages.

2. For each ongoing package, record information about active tasks (e.g., bed needs for patients, etc.).

3. For each active task in an ongoing package, decrease its duration or remove it from the package if
its duration reaches zero (i.e., capturing that the task has been completed).

4. Collect the bed needs for each patient.
The simulation component runs as long as there are ongoing packages and it generates a stream of bed
needs per patient, for each point in time. This output is later used to generate a stream of optimization
problems for the bed bay allocation planner.

Remark that the workflow simulator is slightly more general than our current case study, as the archi-
tecture of the simulator can handle tasks that occur at the same time and have different resource needs;
e.g., a laboratory test can occur while the patient occupies a bed during recovery. Furthermore, dynamic,
unforeseen variations in task duration can be simulated by exploiting the timed semantics of ABS [18].

4.3 SMT Solver

We use Z3 to decide the satisfiability of the constraints at the concrete ward at each point in time; i.e. for
a given point in time, in which bed bays should the beds of patients be placed such that all constraints on
gender, bed bay categories, infectious condition, and capacity of rooms are satisfied. For constraint solv-
ing, we reformulate the entire problem into one quantifier-free linear real arithmetic formula, as follows:
let R be the set of rooms and P be the set of patients. For room r ∈ R, we denote with Br the number of
bed bays in the room, and with Cr the category of its bed bays. For patient p ∈ P, we denote with Gp

their gender, with Ip whether or not the patient has an infectious condition that is contagious, and with
Cp the patient’s bed need category. Note that patients can only be placed in rooms with smaller or equal
category, i.e. patient p ∈ P can only be placed in rooms r ∈ R with Cp ≥ Cr, assuming an existing total
ordering of bed bay categories. We let the standard category be larger than the intermediate category (see
Figure 1), such that a patient with a standard bed need can be placed in a room with intermediate bed bays.

4Technically, the local data store is realized as an embedded SQLite database, see https://sqlite.org.

https://sqlite.org
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To encode the constraint problem as an SMT formula, we introduce two types of variables. With
variable apr ∈ {0,1} we encode that patient p is assigned to room r, and with variable gr we assign a
gender to room r. The assignment problem is decomposed into several sub-formulas:

• ϕpatient assigns each patient to exactly one room,

• ϕroom limits the number of patients in a room by the room’s capacity,

• ϕgender ensures that patients sharing a room have the same gender by enforcing that all patients in
a room have the same gender as assigned to that room,

• ϕcontagious isolates contagious patients, i.e. they are alone in their room, and

• ϕcategory restricts beds suitable for a patient by limiting the bed bay category.

Concluding, the formula ϕ := ϕpatient ∧ϕroom ∧ϕgender ∧ϕcontagious ∧ϕcategory ensures that iff there
exists an assignment from patients to bed bays, that assignment is sound.

ϕpatient :=
∧
p∈P

∑
r∈R

apr = 1, ϕroom :=
∧
r∈R

∑
p∈P

apr ≤ Br, ϕgender :=
∧

p∈P,r∈R

apr=⇒Gp = gr

ϕcontagious :=
∧

p∈P,r∈R

apr ∧ Ip=⇒
∧

p′∈P\{p}
¬ap′r, ϕcategory :=

∧
p∈P,r∈R

apr=⇒Cp ≥Cr

We further constrain ϕ to respect the previous bed allocation by minimizing the number of required
reallocations, to avoid patients being moved around when they have a multi-day stay at the hospital.

Let P′ be a new set of patients and let v be a previously valid assignment of patients to beds; i.e.,
v is a function from P∩P′ → R satisfying ϕ . Additionally, we introduce fresh variables cp indicating
whether patient p ∈ P∩P′ has to be moved from room v(p). Solving ϕ ′ := ϕ ∧ϕchanges while minimizing
the sum of cps returns a valid assignment with the least changes, enabled in Z3 through the optimization
modulo theories extension [6], where

ϕchanges :=
∧

p∈P∩P′

apv(p)∨ cp .

Note that the complexity of the resulting constraint problem seems quite high; our constraints encode a
problem similar to the NP-hard general assignment problem [10]. However, our experiments in Sect. 6
suggest that the problem is solvable in practice.

5 Implementation

We now discuss the implementation of the BedreFlyt DT, which follows the architecture depicted in
Figure 2. The incoming stream of patient data includes the patients’ arrival times at the ward, their
identifier and associated treatment. The simulation scenario handled by the SimulationDriver involves
a multiple steps, including data retrieval, data processing, simulation and constraint solving, resulting in
a resource allocation planner. Each component is developed as a separate module, with an API exposing
CRUD (Create, Read, Update, Delete) operations, and allowing interaction with the other components.
The procedure for a single stream of resource allocation solutions is shown in Figure 3.

The resource allocation planner is divided into three phases: (1) data processing to retrieve the re-
quired data; (2) resource requirement processing to generate the constraints; and (3) the constraint solver
process to properly define the allocation of resources to patient trajectories.
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Figure 3: Sequence diagram of the bed allocation process in the digital twin.

Data processing phase. This phase consists of retrieving patient information from the patient stream
and ward information from the knowledge base created through the ontology and processed by SMOL.
Specifically, we need the asset model detailing the available resources of the ward, the specification of
treatments in terms of tasks with associated resource needs, the stream of patients with their associated
treatments, and (ultimately) patient data to generate the constraint solving problems for the SMT solver.

For the resources, we focus on the rooms and their bed bays, distinguishing the different bed bay
categories, the availability of rooms with their respective identifiers, and the bed bay capacity of each
room that is used by the constraint solver to allocate patients to rooms.

For the tasks in a treatment and their corresponding task dependencies, we query the knowledge base
for the treatment associated with a the patient’s diagnosis, as the tasks that need to be performed may
vary. The tasks have a duration (for simplicity, we currently consider average durations), and the resource
required to perform the task, specified by a needed bed bay category. The ABS model is configured with
this information to collect the bed bay category needs per patient per time interval.

The flow of patients is written to the local data store, a relational database that can be queried through
Java Persistence API, while information from the knowledge base is retrieved by SMOL through
SPARQL queries encapsulated into service components in the API.

The set of constraints is used as input for the constraint solver to properly allocate the required
resources to patient trajectories. In our case, the constraints are related to the different patients that need
to be allocated to the rooms. For each patient, we take into consideration the severity of the diagnosis,
care level requirements (directly related to the bed bay category), and the tasks that must be performed
during each treatment, including the bed bay category needed. Moreover, we need to check whether or
not a patient may be contagious, as this affects the patient’s allocation to the different rooms.

Resource requirement phase. The resource requirement phase is handled by the ABS model, which
is responsible for collecting the accumulated resource needs per time interval by simulating the patient
trajectories. The Simulator component is designed to simulate the stream of patients through various
treatment stages. The simulation starts with time interval 1, and an empty timeline is initialized to store
the bed bay needs for each time interval. The simulation processes each package, and for each of them,
the first enabled task is executed, and the bed bay needs are registered. If there are remaining tasks, a
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new package is created and added to the remaining packages. The simulation continues until there are
no more packages to process, and the timeline for bed bay needs is returned. The process is executed
for each time interval until all the packages have been processed. Furthermore, an additional step is in
charge of generating the stream of constraints per time interval.

Constraint solver phase. The constraints are passed to the SMT solver as a list of requirements, spec-
ified by the batch, i.e. the current time interval, the patient, and the constraints for the bed bay that the
patient needs, alongside information on the rooms and their capacity. The simulation driver feeds in-
formation on gender, potential contagiousness, and room numbers for the patients; the simulation driver
also provides the bed bay category of the room and the room capacities from the knowledge base.

The constraints, expressed as a formula ϕchanges (see Section 4.3), are then solved by Z3, which
returns the allocation of patients to rooms if there exists a feasible allocation solution. The allocation is
then returned to the simulation scenario driver that forwards the output to the user of the DT.

Output. The final output consists of a stream of patient allocations to rooms per time interval, alongside
the gender of the patient. For our use case, co-gendering in the hospital ward is against the hospital’s pol-
icy and therefore the gender requirement has been used as an additional constraint for the room allocation.

6 Evaluation

We present the first proof-of-concept DT with a simulation scenario framework that is intended to be
used to plan the day-by-day bed allocation needs for a major Norwegian hospital. To evaluate this first
proof-of-concept, we use a stream of patient information, and account for a sufficient ward capacity
buffer for emergency patients to produce robust plans and minimize manual labor for the allocation of
patients to rooms in a hospital ward. Working with anonymized historical data allows us to focus the
proof-of-concept on DT functionality with a realistic flow of patient data from the hospital ward, and
defer the integration and legal challenges of actually going online. The presented plans minimize the
moving of patients while ensuring that the needs of every patient are satisfied, if a solution exists. The
simulation scenario driver can be used for various time-frames, which can span up to one full year. Our
DT solution showcases extensive long-term resource planning, even computing the bed allocation for a
whole year on a day-by-day basis, under known workloads, is computationally feasible.

In the following reported evaluation results, all scenarios are computed on an M2 Pro MacBook Pro
with 32 GB of RAM and Docker for the composition of the various components of the DT.

6.1 A Realistic Hospital Scenario

For the first experiment, we use an anonymized real-world dataset from a hospital ward, provided by a
major Norwegian healthcare provider. In the dataset, patients are identified by their unique PATIENT ID,
their gender, and whether they are contagious or not. The diagnoses for treatments are created based
on the actual information from the real-world dataset, accounting for day-level granularity. Rooms are
identified by their ROOM ID, a synthetic identifier indicating an actual room in the hospital ward. In the
following, we call a stream of incoming patients with their diagnosis a scenario.

Based on the dataset, a DT of the ward is created, as described in Section 5. Note that the granularity
of the current simulation is in the day-by-day needs, i.e. allocation plans are computed per day; however,
the granularity could be further reduced, given more detailed information on the flow of patients, e.g. in
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Figure 4: Left: Room allocation in the ward, illustrating a solution from the DT for a given day (males
blue, females red). Right: execution times for varying scenarios (z-axis, in minutes), ranging over pa-
tients (x-axis, from 100 to 2000 patients) and days (y-axis, from 30 to 365 days).

which time of the day a new patient is admitted. All simulation scenarios are computed based on average
approximations for the task duration perspective. A typical scenario for the hospital ward of our use
case, with 100 patients arriving over 30 days, was computed by the DT in approximately 30 seconds.

6.2 Synthetic Scalability of the Hospital Scenario

To evaluate the scalability of our DT framework, we define multiple scenarios by increasing the number
of patients from 100 to 2000 and varying the number of days of the planning problem from 30 to 365.
Apart from the scenario with 2000 patients with a time frame of 30 days, that took 80 minutes, the bed
allocation results were computed by the DT for all scenarios in less than 20 minutes, as shown by the
right hand side of Figure 4. The reported times are the total time in minutes to compute the whole range
of scenarios, i.e., including both the simulating phase and computing a day-by-day room allocation plan
for the whole range of scenarios within the time frame. The figure also shows a peak in execution time
for the experiments that were conducted with only a few days but many patients. While the scenario
is designed in a way that would make it easy for the constraint solver to establish that the problem is
unsatisfiable, the high number of patients per day increased the time needed to construct the constraint
model. In this regard, we plan to fine-tune the model to decrease the processing time.

In our scaling experiments, when dealing with too many patients in high-stress test scenarios, there
might not exist a feasible bed allocation solution. When no such allocation can be provided, the day is
skipped in our experiments, and the bed allocation already in place was left unchanged, and the simula-
tion proceeds with the following day. We provide allocations for all days that are still feasible, leaving
the unsatisfied ones empty. Clearly, in a real hospital, a more refined approach would be required here,
and mitigation actions that lie outside the scope of our DT would be needed.

7 Discussion and Future Work

We have presented a proof-of-concept actor-based, simulation-oriented digital twin framework, that
leverages ontologies to create the baseline for a knowledge base, simulation-based generation of resource
allocation problems and an SMT solver for constraints satisfaction. The advantage of this architecture
is that it is easily configurable and its modularity easily supports further extensions. We believe our
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proposed architecture combines different formal methods in a nice way, this combination also suggests
clear paths towards interesting extensions to the work presented in this paper.

In our current work, the model of the ward is fixed, i.e. it is not evolving over time, and models only
patient trajectories within one ward in a hospital. We used only a small set of constraints that could affect
the resource allocation in a hospital. We here reflect on some interesting directions for future work, based
on the proof-of-concept digital twin presented here:

Model Evolution: Our goal is for an online twin to learn new realistic patient trajectories over time
from live data and adjust to changes in the ward configuration. This could also mean recommending a
new ward layout that includes, for example, the addition of new bed bays.

Constraints: The model can easily be extended to include more elements. For example, we might
include information such as patient age or co-morbidity. We could also consider other parameters like
equipment costs, or ease of access to resources from the hospital that could affect particular treatments.

Granularity: In a more realistic digital twin scenario, room allocations will need to be made at
variable rates, specified in minutes, to obtain a more accurate representation of the hospital’s continuous
operations. We plan for the next version of the resource allocation planner to account for real-time
updates and leverage the time semantics of ABS to support the generation of bed allocation problems at
parameterized time intervals over workflows that could be specified with dense time.

Historic data and statistical models: We developed the twin and computed the simulations using
a historical dataset. We have not yet integrated statistical models into the twin architecture. The twin
model could be extended to include probabilities and distributions that will allow more a more realistic
generation of scenarios for simulations.

An interesting extension of our work from a practical perspective, is the actual integration of BedreFlyt
in the workflow of a hospital ward. We expect that connecting the twin’s output to bed allocation practice
at the ward can be managed through, e.g., a visual dashboard that allows the admitting nurse to monitor
and adjust the bed allocations suggested by the twin. While our DT architecture has been designed to
receive a timed stream of patients with associated treatments as input, there may be practical and legal
barriers to feeding the twin with patient data from the ward’s data system that remain to be addressed for
a full online deployment of BedreFlyt.

Another interesting direction of future work, is to integrate other resources associated with medical
procedures and patient treatment. Allocation plans would then need to not only consider the capacity of
the hospital wards but also the capacity of other resources that the hospital needs to manage, in relation
to the patient trajectories that require hospitalization. The next phase of our research will consider
real-time constraints, and refined granularity of the simulation to a level of precision that also does
not inflate the complexity of the generated plans. We plan to extend the model of the ward to include
dependencies spanning over multiple wards that influence the movement of patients. This will lead to
work on ecosystems of twins.

As discussed, these future directions raise interesting research questions that could be tackled in a
digital twin context. How do we add complexity to the landscape of the digital twin to include other
types of user interactions with the digital twin? We envision that considering more complex resource al-
location problems, including, e.g., healthcare personnel rostering and task scheduling, concerning patient
trajectories through the ward, will result in a digital twin that can greatly increase efficiency in the ward.
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