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Abstract. With the emergence of service orientation as a major busi-
ness driver, companies crucially depend on understanding the flow of
their services from the user’s perspective. Models of these user journeys
help to create a common understanding, but in practice their availability
is limited. Process mining addresses the challenge of creating models that
enable processes to be analyzed. Our goal is to mine user journey models.
In this paper, we use automata learning algorithms to create behavioral
models of stochastic user behavior from a given data set. The initially
learned automaton is annotated with time and cost variables to capture
aspects of the user experience. In a game scenario, we can model check
properties of these enriched automata regarding the user behavior. Using
Uppaal, we can synthesize strategies for nudging users into a different
behavior. The approach is illustrated in a case study with a large dataset
describing user behavior for a well-known music streaming application.
Can we synthesize a strategy that nudges a computer science professor
to take a path on the wild side of the usual listening habits?

Keywords: User journeys · Nudging · Process discovery · Passive automata
learning · Uppaal

1 Introduction

The servitization of business [46] results in business models shaped by user de-
mand: user satisfaction is critical to the success of a business, and directly im-
pacts financial rewards [21]. Consequently, businesses invest in improving the
user experience they offer to their users. User journeys describe the actual com-
munication and interaction between service provider and user, when engaging in
a service, from the user’s point of view. Traditionally, user journeys are modeled
and analyzed manually, based on, e.g., questionnaires addressing selected users
to identify the experienced user journey and the associated user satisfaction
(e.g. [23, 42]). Although successful, this approach to the modeling and analysis

⋆ This work is part of the Smart Journey Mining project, funded by the Research
Council of Norway (grant no. 312198).

http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0002-0635-1915
http://orcid.org/0000-0002-9446-9541
http://orcid.org/0000-0001-9948-2748


2 E.B. Johnsen et al.

of user journeys comes with inherent restrictions [24]: it lacks tool support for
automated analysis and does not scale beyond a very limited number of users.

The analysis of user journeys can also be achieved by data-driven formal
methods. In a series of papers [29–33], we have explored how formal models can
be generated from the event logs of digital services and automatically analyzed
using existing tool-supported analysis methods. In this line of work, we have
used process mining techniques [1] to generate automata from event logs. The
extracted automata can be extended into weighted automata [11]; the weights can
reflect a notion of user experience as aggregated values computed from numerous
actual user journeys recorded in the event logs. The generated automata can be
analyzed using model-checking tools such as Uppaal [35]. The automata can be
further transformed into weighted games, modeling the interactions between the
users and the service provider. To capture the underlying stochasticity of these
interactions, the weighted games can be further extended into stochastic weighted
games [30]. Using tools such as Uppaal Stratego [19] and PRISM-games [16],
these user journey games can be analyzed, e.g., to derive optimal strategies, thus
providing strategic recommendations for service providers to guide their users
through the service. These strategies can again form the basis for actor-based
simulations in tools such as ABS [10,27,28].

In this paper, we review the ideas underlying data-driven formal methods for
user journey analysis, starting from a large data set: the event logs of the mu-
sic streaming service Spotify [12]. We are interested in whether model-checking
techniques can be used to derive nudging strategies [45] for selected user groups;
for example, can we identify a strategy for the music streaming service that
optimizes for changing the musical taste of a computer science professor? The
crucial events to analyze are the skip actions of a user when streaming music,
which suggests dissatisfaction or impatience with the track proposed by the al-
gorithm (e.g., [37]). In this paper, we explore techniques for passive automata
learning [22] to generate probabilistic, timed games from event logs. To this aim,
we extend our previous work on stochastic user journey games [30] to account for
timing properties. We further extend the resulting user journey games with user
profiles that identify the initial states of the games we consider. Our objective is
to use the resulting probabilistic and timed games to find the optimal strategy
for the music streaming service, that nudges the professor to be adventurous and
take a path on the wild side through the user journey game.

2 Preliminaries

Let X∗ denote the finite, ordered sequences (or traces) x0 · x1 . . . xn−1 over a set
X, with xi ∈ X for 0 ≤ i < n and n ∈ N is the length of the sequence. Let ϵ
denote the empty sequence, s · s′ the concatenation of sequences s, s′, and x the
singleton sequence for any x∈X. We write B(X) for the set of multisets over X.
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2.1 Event Logs

An event log [1] records the behavior of a system as sequences of observed events.
The set of observable events A of an event log is called its alphabet.

Definition 1 (Event log [1]). An event log T over an alphabet A is a multiset
of traces over A, T ∈ B(A∗).

2.2 Automata Learning

Automata learning is a technique to automatically generate behavioral models
from a sample, which is a set of system traces. The goal of automata learning
algorithms is to generate an automaton that models the unknown language of the
system under learning (SUL). Depending on the way the sample is generated, we
distinguish between two learning paradigms: active and passive learning. Active
learning algorithms interact with the SUL to generate the sample, instead passive
learning algorithms use a given sample.

We here focus on passive learning from a given event log. Many passive
learning algorithms assume that the sample contains positive traces that are
part of the language of the SUL, as well as negative traces that are not part
of the language. Angluin [7] showed that by considering specific attributes of
the sample, e.g., the distribution of the actions, positive samples are sufficient
to learn an accurate model. Alergia [13] has shown that considering certain
properties of the sample, e.g. the distribution of events, makes it possible to
learn an accurate model only from positive samples. To learn Markov chains,
we consider a variant of Alergia that is available in the state-of-the-art machine
learning library AALpy [38]. This variant of Alergia starts with the creation of
a frequency prefix tree acceptor from an event log T :

Definition 2 (Frequency prefix tree acceptor (FPTA)). An FPTA is a
tuple P = ⟨Q, q0, A,E, F, L⟩, where

– Q is the finite set of states,
– q0 ∈ Q is the initial state (or root),
– A is the observable universe of events,
– E ⊆ Q×Q is the set of directed transitions between states,
– F : E → N is a labeling function assigning frequencies to transitions, and
– L : Q → A is a labeling function for states with events from the alphabet A.

A path is a sequence q0 · q1 . . . qm of states such that there are transitions
qi−1 → qi for all 0 < i ≤ m. Traces t ∈ A∗ can be obtained by applying
the event-labeling function L to each element of a path q0 · q1 . . . qm; i.e., t =
L(q0) · L(q1) . . . L(qm).

The FPTA created by Alergia is a concise representation of the underlying
event log T , where each path in the FPTA represents a prefix of a trace t ∈ T
in the event log. To ensure that there is a single initial state, we let all traces
start with an identical event. If two traces have equal prefixes, they share the
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same path for the prefix. A frequency assigned to the transition indicates the
cumulative number of traces that share this transition in their path. After the
tree construction, Alergia merges the states of the tree to create a Markov chain.
The state merging is done from the root (the initial state) to the leaves, coloring
the states to indicate possible merge candidates, with suitable merge candidates
having the same event labels. Let q → q′ be a transition from state q to state q′,
with (q, q′) ∈ E. The auxiliary function out(q) defines the number of outgoing
transitions from a state q ∈ Q, i.e., the number of elements of the set {q′|q →
q′ ∈ E}. The compatibility check between two states q, q′ ∈ Q is based on the
Hoeffding bound [26], which defines that the two states are equal if∣∣∣∣F (q → qx)

out(q)
− F (q′ → qy)

out(q′)

∣∣∣∣ ≤
√

1

2
log

2

α
(

1√
out(q)

+
1√

out(q′)
), (1)

where L(qx) = L(qy). The parameter α ∈ (0, 1] represents a confidence parameter
that allows the probability of the merging state to be adjusted based on the
assumptions of the underlying event log. Thus, if we assume that the event log
adequately represents the underlying distribution of the SUL, we should set α
low, otherwise, α should be set higher to account for likely larger differences
between the compared states due to missing observations. If two states can be
merged, we accumulate the frequencies at outgoing transitions to the same states.
If no further states can be merged, the Alergia variant for learning Markov chains
updates the accumulated frequencies for the transitions to probabilities such
that they fulfill the requirements of the probabilistic state transition function
(see Def. 3). Alergia then returns the Markov chain that was finally generated.

2.3 Markov Chains

A Markov chain [40] defines the observable random behavior of a system by a
finite state machine. On a semantic level, the behavior defined by the Markov
chain implements a Markov process, i.e., the future behavior only depends on
the current state independent from the history of events. Let Dist(X) be a set
of probability distributions over a finite set X, where for each µ ∈ Dist(X),
µ : X → [0, 1] and

∑
x∈X µ(x) = 1 holds.

Definition 3 (Markov chain). A Markov chain is a tuple M=⟨Q, q0, A, δ, L⟩,
where

– Q is a finite set of states,
– q0 ∈ Q is an initial state,
– A is an observable universe of events,
– δ : Q → Dist(Q) is a partial stochastic state transition function, and
– L : Q → A is a state labeling function.

Note that δ is a partial function, hence we do not require for all q ∈ Q to be
defined in δ. Let Q′ ⊆ Q be the set for which δ is defined. M is deterministic iff
∀q ∈ Q′,∀q′, q′′ ∈ Q : δ(q)(q′) > 0 ∧ δ(q)(q′′) > 0 =⇒ q′ = q′′ ∨ L(q′) ̸= L(q′′).
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2.4 Priced Timed Systems under Stochastic Behavior

Markov chains can be extended by (1) considering the passage of time, (2) ex-
tending the state transition function for dedicated actions to determine the dis-
tribution of successor states, (3) accounting for journey experience features as
costs/weights, and (4) separating controllable from uncontrollable actions.

Stochastic timed automata (STAs) [39] extend Markov chains with timed behav-
ior. STAs account for timed behavior via real-valued clock variables that define
invariants inv on states and constraints enab that enable transitions, and allow
for multiple actions each leading to a distribution of successor states (thereby
implementing the Markov chain extensions (1) and (2)). Clocks are non-negative,
real-valued variables. Let C denote a (finite) set of clocks. The set G(C) of clock
constraints consists of Boolean constraints c ∼ x over clock variables c ∈ C, a
comparison parameter ∼∈ {≤, <,>,≥} and a constant x ∈ N. The clock valu-
ation function ν : C → R≥0 maps clocks to their current value. We write ν |= g
if the clock valuation ν fulfills the clock constraint g Let ν + x express that the
value of every clock c ∈ C is increased by a constant x ∈ R≥0 and let ν[r] express
that all clocks c ∈ r are reset to zero, where r ⊆ C.

Definition 4 (Stochastic timed automata (STAs)[39]). A stochastic timed
automaton (STA) is a tuple A = (Q, q0, A, C, Σ, inv , enab, prob, L), where

– Q, q0, A, L are defined as for Markov chains,
– C is a finite set of clocks,
– Σ is a finite set of actions,
– inv : Q → G(C) maps states to their invariants,
– enab : Q×Σ → G(C) is a transition-enabling condition function, and
– prob : Q×Σ → Dist(2C ×Q) is a (partial) stochastic transition function.

We briefly outline the semantics of STAs (for further details, see Norman et
al. [39]): States of STAs are pairs (q, ν) ∈ Q × RC

≥0 such that all invariants are
satisfied, ν |= inv(q). In each state (q, ν), a time elapse t ∈ R≥0 is possible if
the invariants inv(q) are continuously satisfied, resulting in state (q, ν + t), or
an enabled action a ∈ Σ is taken to decide on a stochastic transition from the
current state. An action a ∈ Σ is enabled in state (q, ν) if ν |= enab(q, a). A
state (q, ν) is urgent if no time can elapse in q.

Stochastic priced timed automata (SPTAs). An SPTA is an STA extended with
price variables. We consider functions P : Q → R≥0 that assign a rate for the
accumulation of prices while time passes in a state. Price variables are monotonic,
real-valued variables that account for resources spent while halting in states.
States may utilize an exponential rate of increase for price variables, incurred
constantly within a state. For formal definitions of priced timed automata on a
semantic level, we refer to Behrman et al. [9]. Figure 3 depicts an SPTA including
the price variables: acousticness c and duration c.
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Stochastic priced timed games (SPTGs). An SPTG divides the set Σ of actions
of an SPTA into controllable actions Σc and uncontrollable actions Σu. In, e.g.,
the synthesis of a strategy, the controller can only select actions in Σc and the
analysis is conducted under a worst-case assumption about the actions Σu, i.e.,
without insights into which actions would be chosen by the environment.

Model checking of games. Uppaal [35] is a tool that allows the modeling, sim-
ulation, and verification of timed systems. The tool can be used to synthesize
controllers [8] for systems considering timed and stochastic behavior [19]. Up-
paal can also synthesize cost-optimal strategies by considering real-valued cost
variables and cost rates [34]. The Uppaal Stratego extension allows game
settings, which are by now integrated into the latest Uppaal version. Strategies
assign a set of actions to each state that guarantee or optimize a certain outcome.
Further details on the computation of strategies can be found in [14,18].

User journey games (UJGs) [33] can be modeled as SPTGs by assigning the
controllable actions to the service provider and the uncontrollable actions to the
user. Analysis for a UJG is user-centric since it does not constrain the user in its
possible actions and it requires the service provider to guide the user through the
system. In our previous work, we explored the use of strategies for user journey
games [29,31–33], for among others, highlighting changes in the UJG over time,
and game theoretic reductions to discover outcome determining interactions. In
this paper, we are going to use strategies to nudge users toward exploring other
alternative behaviors in the UJG.

3 Method

We now explain our method to generate a UJG for nudging users in terms of
a concrete case study. The method allows us to automatically create behavioral
models from event logs by learning Markov chains and enriching them to an STA
with meta-data in the dataset from which the event log is generated. First, we
explain the process of converting the dataset into an event log and extracting
features from the dataset to create an STA. We then lift the created STA to
an SPTG by separating actions into controllable and uncontrollable, where the
controller takes deterministic actions, and the environment performs stochastic
actions. All resources and code are published online in the project’s repository.1

3.1 Case Study: The Music-Streaming User Journey

We consider a case study in which users interact with a music streaming service
provider to listen to music. Users listen to tracks in listening sessions. Depending
on the context, the service provider suggests or selects tracks for the user. The
user responds by deciding whether to listen to or skip each particular track. Thus,

1 https://github.com/smartjourneymining/spotify journey/releases/tag/wang2024

https://github.com/smartjourneymining/spotify_journey/releases/tag/wang2024
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the user journey consists of back-and-forth interaction between user and service
provider. This scenario can be understood as a user journey in which both the
service provider and user are interested in maximizing the listening time while
minimizing the number of skips. The goal of the case study is to synthesize
nudging strategies, concretely, to use the inferred user journey game to nudge
users toward a different musical taste. Our case study uses the Music-Streaming
Sessions Dataset (MSSD), provided by Brost et al. [12].

Brost et al. [12] present six challenges targeting techniques to predict the
skipping of tracks given a session prefix. Due to a lack of datasets recording
rich user interactions within a system, the accompanying MSSD that records
user interactions with the listened tracks, has been made available online.2 The
proposed challenges are mainly aimed at research on recommender systems, e.g.,
recommendations for long-term user satisfaction or proactive recommendations
and interventions. However, Challenge 4 targets the evaluation of “user jour-
neys” under the consideration of “user moods”, i.e. the analysis of profiles for
musical taste. The method described in our paper is concerned with using the
MSSD to nudge users towards a different musical taste profile.

The full dataset contains 160 million listening sessions with 3.7 million unique
tracks recorded by the music streaming platform Spotify. Each session contains
10–20 different tracks; shorter sessions are excluded and longer sessions are trun-
cated to 20 tracks to protect user’s privacy. Sessions record the listened tracks
and additional user interactions, the listening context (e.g., a pre-generated
playlist or a personal playlist), whether the track was skipped, and whether the
user took a short or long pause before playing the track. Sessions are recorded
individually and are not linked to other sessions by the same user. The track
dataset is accompanied by metadata about the tracks containing characteristics
such as acoustics, danceability, energy, and many more. MSSD further includes
a “sample” version, recording 10 000 listening sessions, which we use in the re-
mainder of the paper to demonstrate our method. An excerpt of the dataset is
shown in Table 1, the session information is displayed in Table 1a, and the track
information in Table 1b.

3.2 Disentangling the Music-Streaming User Journey

To model the user journey, we utilize several aspects of the information recorded
in the MSSD. As a first step, we parse the tabular records of the MSSD by
grouping tracks by their sessions in the order they were played. Each recorded
session is then processed to include a designated start state (start session) and
a start profile state (startprofile) that is computed by averaging track metadata
of the first five listened tracks. From there on, the service provider and user
engage in a loop of entering a listening context, proposing tracks and reacting to
tracks. If the current listening context is controllable, i.e., the context state (select
contexti) corresponds to “radio”, “editorial playlists”, “charts”, or “personalized
playlists”, the service provider chooses the next track by selecting a song state

2 https://www.aicrowd.com/challenges/spotify-sequential-skip-prediction-challenge

https://www.aicrowd.com/challenges/spotify-sequential-skip-prediction-challenge
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Table 1: Excerpt from the Music-Streaming Sessions Dataset (MSSD) [12]. The
dataset can split into two tables, where Table 1a provides streaming session
information and Table 1b includes metadata about the individual tracks.

SessionID
Session
Position

TrackID · · · Not
skipped

2d8ead1e 1 a19d63a · · · True
2d8ead1e 2 s8d42lo · · · False
a9082maw 1 ao8r7n4 · · · True
633e57da 1 a19d63a · · · True

.

.

.
.
.
.

.

.

. · · ·
.
.
.

(a) Excerpt of music session data.

TrackID
Dura-
tion

Acous-
ticness

Dance-
ability

· · · Energy

a19d63a 103.74 0.37 0.39 · · · 0.82
s8d42lo 185.28 0.82 0.48 · · · 0.17
ao8r7n4 159.59 0.93 0.48 · · · 0.36
l92bz48 362.63 0.47 0.57 · · · 0.49

.

.

.
.
.
.

.

.

.
.
.
. · · ·

.

.

.

(b) Excerpt of track metadata.

(songi); otherwise the context state corresponds to “catalog” or “user collection”,
and some track is played by randomly selecting a played state (playedi). (We use
track when we do not want to differentiate user selection from service selec-
tion; in the sequel, a track state is either a song state or a played state.) The
user responds to the track by either skipping it or listening to it completely.
MSSD contains different binary skipping information, called Skip 1, Skip 2,
and Skip 3. The different flags indicate when the track has been skipped. For
example, Skip 1 is true if a track is skipped shortly after the start, whereas
Skip 3 would also include very late skips. As suggested in the MSSD challenge,
we use the field Skip 2 from the dataset as ground truth for skipping tracks,
thereby ignoring short skips towards the end of a track. Further, the user may
take a break from a listening session and return afterward to a context in which
a new track is chosen. The end state (end) marks the end of a recorded listening
session. We constrain sessions to include exactly 20 tracks, the maximum length

short pause long pause

select context0

played0

skip not skipped

end

start session

startprofile

playednsong0 songm
. . . . . .

select contextl
. . .

select context0 select contextl. . .

Fig. 1: The basic layout of a
music-streaming user journey.

of sessions in the MSSD, though any other
number of tracks could have been chosen.
Sessions that are shorter than 20 tracks are
not part of the event log. Figure 1 summa-
rizes the overall structure of the considered
music-streaming user journey. Solid transi-
tions represent controllable and dashed tran-
sitions uncontrollable actions. Circles (◦) rep-
resent stochastic branching points.

3.3 User Profiles for Musical Taste

A user profile for musical taste can be repre-
sented by a vector in which the components
reflect the musical user preferences in terms
of the features described in the metadata of
the tracks, e.g., danceability, energy, etc.
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(a) Acousticness histogram (b) Danceability histogram (c) Energy histogram

Fig. 2: Histograms over track features in the MSSD. We also indicate the user
profiles of the professor and student in the histograms.

For our case study, we collected two real user profiles: one representing the
musical preferences of a professor3 and the other representing those of a Ph.D.
student, both in computer science. The profiles were constructed by querying
the Spotify API for the long-term favorite tracks of the subjects in question by
a Python script using the spotipy4 library, and averaging quantitative track
features. For simplicity, we concentrated on a subset of the available meta-
data features, including the three features that maximized the difference be-
tween the two profiles: acousticness, danceability, and energy. Each track gets
an associated a feature vector f ∈ N3

≥0, constructed by the following structure:
f := ⟨acousticness, danceability, energy⟩. Figure 2 shows the two profiles over the
histograms of track features in the MSSD. Observe that the user profile of the
student tends towards the “wild side” with respect to acousticness, danceability
and energy (i.e., a musical preference in the direction of heavy metal). Conse-
quently, we use the professor profile as the start profile s to be nudged, targeting
the student’s profile t. To unify the representation of all track features, we mul-
tiply the track features that are originally in the range [0, 1], by 10 and round
down, to lift them to the range [0, 10] ∩ N≥0. The start profile then becomes
s := ⟨5, 6, 4⟩, and the target profile t := ⟨0, 3, 9⟩.

3.4 Learning the Structure of the Music-Streaming User Journeys

We now describe how session and track information are parsed into sequences
of observed events to create an event log. We then explain how this event log is
used to learn the stochastic structure of the process, following Sect. 2.2.

From Dataset to Event Log. We preprocess the MSSD according to the structure
depicted in Fig. 1 for the creation of an event log. After identifying the individual
sessions, we generate the user profile for each session. The user profile is the
averaged track metadata of the first five listened tracks.

3 The particular individual is not an author of this paper.
4 https://github.com/spotipy-dev/spotipy

https://github.com/spotipy-dev/spotipy
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Applying Abstractions to the Event Log. To reduce the number of included ses-
sions and thereby reduce the learning time, we filtered the sessions in the event
log by the start and target user profiles s and t. Only sessions with a profile p
with a distance ≤ k from s and t in each profile dimension are retained. Thus,
remaining user journeys have a start profile p satisfying:

∀i∈[0,...,|p|−1] pi ≥ min(si, ti)− k ∧ pi ≤ max(si, ti) + k. (2)

In our experiments, we set k := 1, resulting in a total of 8 600 included sessions.
We encode tracks according to the year the track was released, e.g. 1990

or 2010, its key (related to scale, either “major” or “minor”), and the three
discretized track features. With this encoding, similar tracks are grouped into
the same event. Additionally, different states are introduced for tracks proposed
by the service provider, to model the later controllable actions in the UJG, and
tracks selected by the user, the later uncontrollable actions, resulting in multiple
states for the same track. An example of an event sequence with two tracks is:

start · startprofile⟨5, 6, 4⟩ · select context(radio) · song 2010 minor ⟨2, 7, 8⟩
· not skipped · select context(user playlist) · played 1990 major⟨4, 7, 3⟩ . . .

Discovering the Underlying Behavioral Model. We use the Alergia automata
learning algorithm for Markov chains (see Sect. 2.2) to learn the stochastic struc-
ture of the underlying user journey. Automata learning allows us to automatically
generate stochastic models from large datasets in a reasonable amount of time.
In the following, we extend the learned Markov chain to a UJG used to nudge
users from their start profile to a target profile.

3.5 Generating Music-Streaming User Journeys

The learned Markov chain describes the stochastic structure of the user journey.
We now extend the Markov chain with timed behavior, costs, and controllable
and uncontrollable actions to create a UJG, following Sect. 2.4.

When streaming music from a platform, the passage of time is an important
characteristic. In our work, we model a user getting used to different track profiles
by aggregating the track features over the actual listening times; i.e., the longer a
user listens to an energetic track, the more energy is accumulated. Therefore, we
extend the learned Markov chain with real-valued clock variables that capture
the time spent while listening to tracks, resulting in an STA (see Def. 4). Here,
we use the track durations as logged in the MSSD.

Figure 3 depicts a simplified UJG, including two user profiles and three
tracks. The UJG defines one clock variable c that is used to model listening
and pausing times. The clock progresses only in states where the user actively
spends time by either listening to a track or taking a pause; all other states are
marked as urgent, meaning that they progress to the next state immediately.
For simplicity, we define constants for short and long pauses that determine the
duration during which a user can dwell in the paused states. The states where a
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track is selected are also urgent and lead immediately to the skip or not skipped
states while setting a minimum and maximum listening time. The maximum lis-
tening time is set to be the maximum track duration in minutes over all tracks
aggregated in the targeted track state. The minimum listening time is set to
be the minimum track duration over all aggregated tracks in the targeted track
state, if the track is not skipped. Otherwise, when the track is skipped, it is set to
be the aggregated minimum minus one, capped to be at least one. For example,
the state not skipped 1 of the UJG in Fig. 3, defines an invariant limiting the
dwell time to the maximum listening time, where the earliest possible time to
leave is regulated by the minimum listening time.

We extend the STA to an SPTA (Sect. 2.4) by adding price variables for du-
ration, acousticness, danceability, and energy. Transitions from song and played
states update variables storing update ratios for each price variable, which are
set as invariant in the skipped and not skipped states. We use discretized values
for the continuous features as ratios; e.g., listening to a long track with high en-
ergy accumulates more energy than listening to a short track with high energy
or a long track with low energy. Skipping sets each ratio to a constant of one; a
basic increase is accumulated but insignificant. Duration is accumulated at the
same rate as time passes. For readability, the music-streaming UJG shown in
Fig. 3 only considers one feature, acousticness. In the example, the played track
played X has high acousticness, which is considered if the track is not skipped.

In the final step of our transformation, we build a UJG by partitioning the
set of actions into controllable and uncontrollable actions, see Fig. 1. We resolve
the stochastic observations in the learned Markov chain that are controlled by
the service provider by neglecting the learned probabilities and defining these
actions to be deterministic. For these actions, the service provider can determin-
istically propose a track songi from the controllable contexts. In Fig. 3 uncon-
trollable actions are dashed, whereas controllable ones are solid. For example,
the state editorial playlist defines a listening context that is controlled by the
service provider, therefore song Y and song Z can be selected by the controller.
However, skipping a track is, e.g., controlled by the user. To account for the user
behavior in the event log, we annotate the uncontrollable transitions with the
probabilities in the learned Markov chain. For example, if the controller chooses
song Y, then the environment skips the track with a probability of 0.1.

By controlling the confidence bound in Alergia, we control the sensitivity by
which states are considered to be equal and thus merged. Therefore, the confi-
dence parameter α, see Sect. 2.2, allows to influence the structure of resulting
music-streaming user journeys. We illustrate the effect of α by a simplified UJG
shown in Fig. 4, which includes two tracks song X and song Y. In these user jour-
neys, the probabilities of skipping song X change, if the user previously listened
to song X. Choosing a higher α results in journeys as depicted in Fig. 4, where
we can see two states representing song X.

In the future, we plan to extend the model generation to Markov decision
processes, which will allow us to have a precise differentiation between actions
that are controllable by the service provider and by the user.
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Fig. 3: User journey game modeling music-streaming user journeys that contain
some elements of the basic structure shown in Fig. 1. The model considers two
user profiles (profile high acousticness, profile low acousticness) and
three different track categories (played X, song Y, song Z).

3.6 Synthesizing Nudging Strategies

We use Uppaal to generate service provider strategies to nudge a user from her
user profile towards a target profile by synthesizing a strategy that optimizes
track features towards the target profile. According to the differences between
the concrete start (the professor) and target (the student) profiles (Sect. 3.3),
we minimize acousticness and danceability, and maximize energy and duration;
visiting the start profile is encoded as a boolean flag. To evaluate the achieved
nudging, we compare it to a random strategy, which selects tracks randomly.

Uppaal synthesizes strategies by optimizing values, including clocks, repre-
sented by variables that can be used to define verification queries. For exam-
ple, to maximize acousticness in the UJG shown in Fig. 4, we could propose
song X from the start, risking many skips. However, by first proposing song Y
and then—unless this track is skipped—proposing song X, the chances of the user
not skipping this track increase, thereby increasing the accumulated acoustic-
ness. The strategy synthesized by Uppaal should comply with this observation.
The strategy for nudging a user towards a different user profile is computed by:

strategy nudge = maxE(-danceability_c - 3*acousticness_c + energy
+duration_c) [<= 1000]{MusicJourney.location, visited_start}
->{danceability_c, acousticness_c, duration_c, energy_c}:
<> MusicJourney.end && visited.
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Fig. 4: Concatenated UJG.

We introduce the flag visited, which is set to true when the state startpro-
file for the given start profile s was visited, and a weight of 3 for the acous-
ticness as its expected maximum under a random strategy is only a third of
danceability and energy. To facilitate more efficient learning, we consider only
MusicJourney.location, visited_start, and the four price clocks to be observ-
able. After generating the nudging strategy, we evaluate the expected achieved
maximum for feature

f ∈ {duration_c, danceability_c, acousticness_c, energy_c}

under strategy nudge for 10 000 runs:

E[<=1000; 10000] (max: f) under nudge

and compare it to the achieved maximum by a random strategy:

E[<=1000; 10000] (max: f).

The exported strategy stores a mapping from states to actions and the reward
for each action in each state. We parse the file to gain insights into which actions
are recommended and how the nudging traverses the UJG.

4 Evaluation

We generate a UJG from the event log based on the MSSD. We then synthesize
a strategy to nudge a person from a given start user profile towards a target
user profile. The quantified achieved nudging is measured and collected when
analyzing the different UJGs resulting from the different learned automata, when
using Alergia with different confidence bounds. As described in Sect. 3.6, we
then compare the expected feature values of our synthesized strategy with the
expected feature values of a random strategy. Additionally, we investigate the



14 E.B. Johnsen et al.

Table 2: Comparison of generated nudging strategies and random track selection.
The aim is to decrease acousticness and danceability, and increase duration and
energy. The presented numbers show improvement of nudging in percentage,
averaged over 10 synthesized strategies, for different confidence values α.

α Feature random nudge
0.1 Acousticness 90.35 -42.83%
0.1 Danceability 232.15 -2.77%
0.1 Duration 50.09 +14.82%
0.1 Energy 235.13 +37.34%
0.6 Acousticness 90.54 -37.29%
0.6 Danceability 232.28 -3.63%
0.6 Duration 50.10 +13.84%
0.6 Energy 235.49 +39.62%
0.9 Acousticness 90.12 -36.46%
0.9 Danceability 232.31 +1.92%
0.9 Duration 50.09 +17.35%
0.9 Energy 235.33 +45.43%

α Feature random nudge
0.999 Acousticness 89.70 -40.49%
0.999 Danceability 232.03 -6.98%
0.999 Duration 50.15 +9.84%
0.999 Energy 235.11 +33.56%
0.9999 Acousticness 90.09 -40.0%
0.9999 Danceability 232.00 -2.4%
0.9999 Duration 50.07 +9.5%
0.9999 Energy 235.52 +29.73%
0.9999999999999 Acousticness 90.26 -39.5%
0.9999999999999 Danceability 232.38 -4.33%
0.9999999999999 Duration 50.08 +13.33%
0.9999999999999 Energy 234.93 +39.26%

path traversed by executing the nudging strategy and highlight the best tracks
for nudging a professor to “take a path on the wild side” of musical taste.

All experiments were performed on a laptop with 32GB memory and an
i7-1165G7 Intel processor, and were implemented in Jupyter Notebooks using
Python 3.10.6. The resources are published in an online repository.5 For au-
tomata learning, we used AALpy [38], version 1.3.3, and for the synthesis of the
strategies, we used Uppaal 5.0.0.6

In Table 2, we collect estimates for all four features under the nudging strat-
egy against the random strategy, entries for nudging are given in percentage of
the measured change in comparison to random. Note that our nudging strategy
aims to minimize acousticness and danceability while maximizing duration and
energy. An experiment (one entry in the table) consists of synthesizing 10 strate-
gies with the default parameters for Uppaal’s Q-learning implementation [47],
we then average the calculated estimates. The synthesis of multiple strategies
aims to compensate for imprecisions due to the limited exploration budget of
the Q-learning setup for the given state space of the underlying UJG. We repeat
these experiments for the different confidence values α that were used for learn-
ing the behavioral model in Alergia. As explained in Sect. 2.2, the confidence
parameter α influences the state merging when learning the behavioral model.
For the MSSD and its separation into different user profiles, we assume due to
the variety of different listening behaviors that the dataset lacks multiple samples
for equal user profiles. Therefore, we aim for higher α values considering that we
have less confidence that the MSSD represents each user profile adequately. The
number of states of the learned Markov chains varies between 6 734 and 6 851
states. In future work, it would be interesting to evaluate the influence of α by
comparing the different learned user journeys from the same event log.

5 https://github.com/smartjourneymining/spotify journey/releases/tag/wang2024
6 https://uppaal.org/

https://github.com/smartjourneymining/spotify_journey/releases/tag/wang2024
https://uppaal.org/
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Fig. 5: Partial illustration showing the path in a user journey from the start
profile of a professor towards a profile with a wilder taste in music.

The results presented in Table 2 show that the nudging strategy has a major
influence on the user profile, often outperforming the random strategy, however
danceability cannot always be reduced. The nudging strategy effectively influ-
ences the user towards the target profile by significantly changing all features
except danceability; e.g., energy is increased by up to 45.43%. The results also
show that the confidence parameter α has less influence on the synthesis of
the nudging strategy, which suggests that we can develop a successful nudging
strategy independently of the learned Markov chain.

Figure 5 shows parts of a learned UJG generated with the maximal confi-
dence value used in the experiments (0.9999999999999). The depicted part of the
UJG only shows the states explored by the synthesized strategy. For visibility,
we removed any transition or state labels and applied a color-encoding for state
types. Therefore, Fig. 5 abstracts from the time constraints of the original gen-
erated UJG. We color song states in a range of red tones, context states in blue,
and other states in white. To calculate the red tones of states, we first encode
the distance between track features f of a track and the target profile t using the
sum of the element-wise distances, i.e.

∑
i |ti−fi|, we then map these results into

a range of red tones, where the larger the distance to the target, the darker the
color with red tonalities. We highlight the best selection of controllable actions
from explored contexts with blue transitions and their corresponding song states
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are enlarged. Figure 5 also shows transitions to darker red states that could be
traversed earlier in the nudging strategy to reach context states with blue tran-
sitions. The depicted UJG merges other song states into abstracted song states,
aggregating song states with the same track feature distance. The aggregated
states are labeled with the number of clustered song states. For example, the
uppermost red state aggregates 14 concrete song states, all of which have the
same distance to the target profile. The figure shows that most of the explored
tracks are closer to the target profile (states with lighter red tonalities), and only
a few states with darker red tonalities have a high count number.

Finally, we investigate the best actions in each state by parsing the path
generated by the nudging strategy and selecting the actions leading to states
with a maximal associated value. When guiding the user from the start profile,
the nudging strategy selects, e.g., a track with the feature vector ⟨1, 3, 5⟩, that lies
in between the starting profile s := ⟨5, 6, 4⟩ and the target profile t := ⟨0, 3, 9⟩.
The average feature vector of the five selected songs with the smallest distance
to the target is ⟨1.2, 4.6, 7⟩. One of the five tracks has an aggregated distance of
1 to the target, three tracks have an acousticness of one or smaller, two tracks
have a danceability of seven, and four tracks have an energy of seven or above.

5 Related Work

The Music Streaming Sessions Dataset used was proposed by Brost et al. [12] in
the context of skip prediction, to spur progress for counterfactual analysis. The
dataset triggered a wide range of work on skip prediction using, e.g., recurrent
neural networks [15,25,49] as well as on recommender systems [41,43]. Brost et
al. consider several research directions that could be enabled by the published
dataset, among others, research challenges related to user journeys. Going in
this direction, our work uses the dataset to automatically build a user-centric
model of listening behavior to nudge users towards different musical taste.

Spotify. Zhang et al. [48] investigate user behavior from Sweden, the United
Kingdom, and Spain on a Spotify dataset from 2010–2011. They found statisti-
cal patterns in several aspects of the user journey: (1) daily patterns in starting
a session, playback arrival, and session length, (2) switching behavior between
different devices, (3) the favorite time for using Spotify, and (4) correlations be-
tween successive sessions and downtimes. Compared to our work, the authors
had access to non-disclosed user information, allowing them to identify consec-
utive user sessions, and to provide statistical insights also on a global level. In
contrast, we learned a model formalizing a music-streaming user journey based
only on publicly available data describing finite streaming sessions, which were
non-relatable to concrete users. Furthermore, we use model-checking tools to
generate strategies optimizing specific aspects of the user journey, e.g., nudging
a user towards a different music genre. Anderson et al. [6] use a non-public, mas-
sive Spotify dataset recorded over a year of sessions, with more than 100 million
distinct users and 70 billion listened tracks, to investigate the diversity of lis-
tening behavior and churn, and to advocate diversity in recommender systems.
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Similar to our work, they distinguish between tracks that are selected by the user
and by an algorithm. Meggetto et al. investigate skip behavior in music recom-
mendations [36], using clustering to propose four different categories of skipping
behavior, and propose a deep reinforcement learning model using explainable AI
techniques to discover the most relevant features for skip prediction [37].

Automata learning and model checking. Automata learning has previously been
used to extract finite state machines (FSM) from event logs. Cook and Wolf [17]
propose a tool to learn FSMs of software processes. Similar to our work, they also
consider the Markov property to construct FSMs from event logs. However, in
contrast to our technique, they neglect the learned probabilities in their created
models and require manual post-processing of the learned model. Agostinelli et
al. [2] studied different automata learning algorithms for learning FSMs from
event logs, assuming the availability of traces that are not part of SUL. Esparza et
al. [20] present an algorithm for learning Petri nets that actively interacts with
the SUL to complete the sample. Aichernig et al. [3,5] extend existing models by
timed values to create STAs. They create the time variables by actively sampling
the system using property-based testing techniques. Similar to our work, they
then use the generated STAs for statistical model checking. Automata learning
has also been used to learn timed behavior directly from a set of timed traces by
applying a meta-heuristic search [4,44]. Most closely related to this work is our
previous work on learning stochastic multi-player games from event logs [30]. In
contrast to [30], we here use automata learning to create Markov chains instead
of Markov decision processes, as we assume users to be fully stochastic in their
actions and the streaming service to be deterministic.

6 Conclusion

Summary. In this paper, we show how automata learning and statistical model
checking can be used to generate nudging strategies for user behavior. The pro-
posed method is demonstrated on a case study of user behavior for a music-
streaming service. We show that the method can be used to answer questions
such as whether the service can nudge a professor to be adventurous and take
a path on the “wild side” through the user journey game. In the case study,
We learned Markov chains from the Spotify Music-Streaming Sessions Dataset
(MSSD) [12] and mined user profiles from a professor in computer science and a
PhD student. Afterward, we enriched the Markov chain to a user journey game
by adding timed behavior, cost variables and (un)controllable actions. The gen-
erated nudging strategies noticeably influence the listening behavior when com-
pared to a random strategy on a set of musical features.

Discussion. The automatic generation of user journey games in this paper is
based on Markov chains. We justify this approach by assuming that, for the
considered case study, user behavior follows a stochastic process that can be
described by a finite state structure fulfilling the Markov property. For the gen-
eration of the user journey game, we define some actions as controllable, ignoring
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their probabilities, and make them deterministic. Uncontrollable actions reflect
learned stochastic behavior from the underlying dataset. Therefore, the gener-
ated user journey games do not have any uncontrollable deterministic actions.
Other case studies might require an adaption regarding this modeling technique.
The construction of user journey games in this paper approximated time bound-
aries and constants using averaged values. Other techniques might capture these
values more precisely, but would require more in-depth expertise on the given
data. Furthermore, we did not study differences between Markov chains learned
with different parameters that reflect the confidence in the underlying distri-
bution of the dataset. Our results show that a successful nudging strategy can
be synthesized regardless of the parameters. For other analysis techniques, the
influence of the confidence parameter might be more critical.

Our work derives user profiles from the MSSD and, based on these profiles,
creates a user journey model that defines the listening behavior of users. By con-
structing UJGs, we also synthesize strategies to nudge a user towards a different
musical taste. However, we have not explored how the synthesized strategy ac-
tually works when applied to the user. There could be a risk that actual user
behavior might not align as planned when a user is actively nudged by the un-
derlying service or application. Indeed, validating the synthesized strategy would
be very interesting, but would require advanced access to the music-streaming
service to steer the music recommendations based on the features we derived as
well as the logging mechanism for the experienced user journey.

Future Work. This paper opens a range of possibilities for future work. In our
experiments, the strategies generated with the default Q-learning parameters
in Uppaal explore only a small fraction of the state space leading to possible
fluctuations in quality. We plan to investigate techniques to improve the synthesis
of strategies by adapting the Q-learning technique. This work only considered
the small version of the MSSD. In the future, we will examine the feasibility of
automata learning for massive datasets as presented in the challenge.

Another interesting extension of our work would be lifting the synthesized
strategies to more easily understandable actions. or our nudging strategy, we
could, e.g., suggest specific genres that should be suggested to the users with a
certain profile for adapting their taste. In previous work [30], we already worked
towards making UJGs easier to understand by illustrating model-checking results
using Sankey diagrams that enable the service bottleneck analysis.
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3. Aichernig, B.K., Bauerstätter, P., Jöbstl, E., Kann, S., Korosec, R., Krenn, W.,
Mateis, C., Schlick, R., Schumi, R.: Learning and statistical model checking of
system response times. Softw. Qual. J. 27(2), 757–795 (2019), https://doi.org/10.
1007/s11219-018-9432-8

4. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: Learning
timed automata efficiently. In: Lee, R., Jha, S., Mavridou, A. (eds.) Proc. 12th
International NASA Formal Methods Symposium (NFM 2020). Lecture Notes in
Computer Science, vol. 12229, pp. 1–19. Springer (2020), https://doi.org/10.1007/
978-3-030-55754-6 1

5. Aichernig, B.K., Schumi, R.: How fast is MQTT? - Statistical model checking and
testing of IoT protocols. In: McIver, A., Horváth, A. (eds.) Proc. 15th International
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38. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. Innov. Syst. Softw. Eng. 18(3), 417–426 (2022),
https://doi.org/10.1007/S11334-022-00449-3

39. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed au-
tomata. Formal Methods Syst. Des. 43(2), 164–190 (2013), https://doi.org/10.
1007/S10703-012-0177-X

https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1016/J.JLAMP.2014.07.001
https://doi.org/10.1016/J.JLAMP.2014.07.001
https://doi.org/10.1007/978-3-031-27815-0_6
https://doi.org/10.1007/978-3-031-51060-1_8
https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.1007/s10270-024-01148-2
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/3-540-44585-4_47
https://doi.org/10.1007/S100090050010
https://doi.org/10.1145/3459637.3482123
https://doi.org/10.1145/3459637.3482123
https://doi.org/10.1145/3576840.3578312
https://doi.org/10.1007/S11334-022-00449-3
https://doi.org/10.1007/S10703-012-0177-X
https://doi.org/10.1007/S10703-012-0177-X


22 E.B. Johnsen et al.

40. Norris, J.R.: Markov chains. Cambridge series in statistical and probabilistic math-
ematics, Cambridge University Press (1998)

41. Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook.
Springer (2015), https://doi.org/10.1007/978-1-4899-7637-6

42. Rosenbaum, M.S., Otalora, M.L., Ramı́rez, G.C.: How to create a realistic customer
journey map. Business Horizons 60(1), 143–150 (2017), https://doi.org/10.1016/j.
bushor.2016.09.010

43. Schedl, M., Knees, P., McFee, B., Bogdanov, D.: Music recommendation systems:
Techniques, use cases, and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.)
Recommender Systems Handbook, pp. 927–971. Springer (2022), https://doi.org/
10.1007/978-1-0716-2197-4 24

44. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn - learning
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