
Semantic Reflection and Digital Twins:
A Comprehensive Overview

Eduard Kamburjan , Andrea Pferscher , Rudolf Schlatte ,
Riccardo Sieve , Silvia Lizeth Tapia Tarifa , and Einar Broch Johnsen

Department of Informatics, University of Oslo, Oslo, Norway
{eduard,andreapf,rudi,riccasi,sltarifa,einarj}@ifi.uio.no

Abstract. Semantic reflection combines reflection in programming lan-
guages with semantic technologies for knowledge representation. It en-
ables a program to represent and query its own runtime state as a knowl-
edge graph. The knowledge graphs reflecting program states can be com-
bined with domain knowledge which allows queries about a program to
be made in terms of a given domain vocabulary, as well as with external
graph data. Both extensions of the knowledge graph reflecting the run-
time state are useful for digital twins. In this paper, we discuss the basic
concepts of semantic reflection, its applications for digital twins, and its
connections to formal methods.

1 Introduction

Digital twins propose a model-based approach to cyber-physical systems, in
which a physical system (the “physical twin”) is connected with a digital system
(the “digital twin”). The digital twin contains models of the physical twin and
connects these models with the physical twin to (a) update the models with
live data and (b) enable control over the physical twin using different kinds
of model-based analyses. While the exact definition of a digital twin is elusive
(e.g., [11, 12, 44]) one important perspective in engineering is that the life-time
of the digital twin goes beyond the operational phase to reflect the lifecycle of
the physical twin, already starting with the requirement elicitation phase. Thus,
documents and models that are collected through the different phases of the
lifecycle become part of the digital twin, which, together with tools to support
design, construction, and operation, are often referred to as a digital thread [50].

Developing such digital twins, with their inherent multidisciplinarity and
their multitude of tools and data formats, is a major challenge for both software
developers and system architects. One way to deal with interdisciplinarity, is
through the formal representation of domain knowledge in knowledge graphs.
While ontologies, knowledge graphs [25] and related semantic technologies [24]
have been identified as a key technology for digital twins [41, 61], their use in
turn poses additional challenges to the software developer [23].

In this paper, we discuss our work on semantic lifting [34] in the context of
digital twins. Semantic lifting is the process of (1) serializing a digital entity as

http://orcid.org/0000-0002-0996-2543
http://orcid.org/0000-0002-9446-9541
http://orcid.org/0000-0001-5601-5517
http://orcid.org/0009-0000-8683-1902
http://orcid.org/0000-0001-9948-2748
http://orcid.org/0000-0001-5382-3949


2 E. Kamburjan et al.

a knowledge graph, (2) connecting this knowledge graph to domain knowledge
necessary to operate or interpret the digital entity, and (3) accessing this com-
bined knowledge graph from the original digital entity. The last step is referred
to as semantic reflection. Specifically, we consider the use of knowledge graphs to

1. model the architecture and configurations of digital twins during develop-
ment as well as operation, and

2. enable digital twins to access their own runtime configuration in order to
adapt their future behavior.

Together, these properties enable procedural reflection [43, 58] through seman-
tic technologies, such as ontologies and graph queries. Semantic reflection does
not only enhance digital twins, but can also be used to provide tool support
and integrate with formal methods. So far, semantic reflection has been used to
adapt to structural changes in the digital twin [35,40], check structural correct-
ness [30, 32, 35], interpretation of software architectures [16] and to enable new
techniques for programming [33] with semantic graph data. In this paper, we
show the connections and interactions between these applications.

Paper outline. We provide an overview of our work on semantic reflection (Sec-
tion 2), with a focus on digital twins (Section 3). We then discuss software
development and analysis for digital twins (Section 4), and some perspectives
on integrating formal methods into digital twins by extending our techniques
(Section 5). Examples and content in this paper builds on previous publications,
which also detail the corresponding related work; the contribution of this paper
is the comprehensive overview.

2 From Semantic Lifting to Semantic Reflection

Let us illustrate the basic idea of semantic lifting of programs [34] and how
semantic lifting can be used to integrate domain knowledge in programs through
reflection. Throughout the paper we use as a running example a simple program
of a smart house [35], written in the Semantic Micro Object Language (SMOL).1

This example will gradually become a digital twin.
Consider a smart house that consists of a sequence of rooms, each modeled

by an instance of a class Room with an identifier and a target temperature for
heating. The code in Figure 1 shows an excerpt of the corresponding SMOL
code. The main block instantiates a house with two rooms; we will detail its
control method later.

2.1 Semantic Lifting

Semantic lifting is a procedure that generates a knowledge graph from a pro-
gram state. The generated knowledge graph includes a representation of the full

1 https://www.smolang.org

https://www.smolang.org


Semantic Reflection and Digital Twins: A Comprehensive Overview 3

SMOL

1 class Wall(Room left, Room right) end
2 class Room(Wall left, Wall right, Int id, Int target)

3 Unit control() ... end
4 end
5

6 main
7 Wall w1 = new Wall(null, null); Wall w2 = new Wall(null, null);
8 Wall w3 = new Wall(null, null);
9 Room r1 = new Room(w1, w2, 1, 18);

10 Room r2 = new Room(w2, w3, 2, 19);

11 w1.right = r1; w2.right = r2; w2.left = r1; w3.left = r2;

12 end

Fig. 1. A SMOL model for a digital twin of a smart house.

RDF

1 run:obj1 a prog:Wall; prog:Wall_right run:obj4.

2 run:obj2 a prog:Wall; prog:Wall_right run:obj5;

3 prog:Wall_left run:obj4.

4 run:obj3 a prog:Wall; prog:Wall_left run:obj5.

5 run:obj4 a prog:Room; prog:Room_left run:obj1;

6 prog:Room_right run:obj2;

7 prog:Room_target 18;

8 prog:Room_id 1.

9 run:obj5 a prog:Room; prog:Room_left run:obj2;

10 prog:Room_right run:obj3;

11 prog:Room_target 19;

12 prog:Room_id 2.

Fig. 2. A lifted final state of the program in Figure 1 (excerpt).

runtime state — object, variables, heap memory, call stack — but also the static
information of the program, in particular the class table and the abstract syntax
tree of the program.

To illustrate, Figure 2 contains an excerpt of the lifting of the smart house
program shown in Figure 1, at the end of its execution, with a knowledge graph
generated from the objects and parts of the class table, represented in RDF.2

As we can see, the architectural structure of the digital twin is clearly expressed
in the lifted program state — in particular, the configuration of the smart house
which shows how the two rooms are connected, can be retrieved from the graph.
In anticipation of the digital twin this program will become, we can already see
that the lifted graph expresses the architectural structure of the house as it is
modeled at a given moment.

2 Resource Description Framework, https://www.w3.org/RDF/

https://www.w3.org/RDF/


4 E. Kamburjan et al.

OWL

1 Class: prog:Room SubClassOf: SMOLClass

2 Class: prog:Wall SubClassOf: SMOLClass

3 ObjectProperty: prog:Room_left Domain: prog:Room

4 Range: prog:Wall or {smol:null}

5 ObjectProperty: prog:Room_right Domain: prog:Room

6 Range: prog:Wall or {smol:null}

7 ObjectProperty: prog:Wall_left Domain: prog:Wall

8 Range: prog:Room or {smol:null}

9 ObjectProperty: prog:Wall_Right Domain: prog:Wall

10 Range: prog:Room or {smol:null}

11 DataProperty: prog:Room_id Domain: prog:Room

12 Range: xsd:int

13 Characteristics: functional
14 DataProperty: prog:Room_target Domain: prog:Room

15 Range: xsd:int

16 Characteristics: functional
17

18 ObjectProperty: leftOf

19 EquivalentTo: inverse(prog:Wall:right) o prog:Wall_left

20 Domain: prog:Room

21 Range: prog:Room

Fig. 3. Axioms for the lifted state in Figure 2. Observe that only the last axiom is part
of the external knowledge graph.

Merely generating the knowledge graph, which is essentially serialization, is
not using the potential of knowledge graphs — but by connecting the generated
knowledge graph with ontologies, we can add domain knowledge to the program
state to investigate it and reason over it. We say that the lifted stated is enriched
with information from an external knowledge graph.

For example, consider the OWL3 axioms in Figure 3. They express the do-
main and range of different relations in the knowledge graph, and declare some
concepts to be OWL classes. The final axiom captures the spatial relation be-
tween two rooms. Some axioms are already part of the generated knowledge
graph (the axioms concerned with range and domain, as well as the OWL classes
related to the lifting of the runtime state). Remark that the knowledge graph
that the lifted runtime state connects to need not necessarily be an ontology, but
can also contain concrete data; we shall return to this point in later sections.

Using the generated knowledge graph and the domain ontology, we can
now query the semantically lifted runtime state in terms of the domain. The
SPARQL4 query in Figure 4, for example, asks for all rooms that are left of an-
other (known) room. This information must be derived using the above axioms.

3 Web Ontology Language, https://www.w3.org/OWL/
4 SPARQL RDF Query Language, https://www.w3.org/TR/sparql11-overview/

https://www.w3.org/OWL/
https://www.w3.org/TR/sparql11-overview/


Semantic Reflection and Digital Twins: A Comprehensive Overview 5

SPARQL

SELECT ?obj WHERE { ?obj leftOf ?obj2.}

Fig. 4. A query on the lifted state from Figure 2, using the axioms from Figure 3. The
result of the query is the node run:obj4.

SMOL

1 ... // Classes as in Figure 1
2 main
3 ... // Initialization as in Figure 1
4 List<Room> rooms =

5 access("SELECT ?r WHERE {?r leftOf ?r2. ?r prog:Room_id ?id1.

6 ?r2 prog:Room_id ?id2.

7 FILTER(?id1 = ?id2) }");

8

9 //every result is a room that has the same id as its neighbor
10 //the following should print ’false’
11 print(rooms != nil);

12 end

Fig. 5. Semantic reflection for checks in terms of the domain.

Observe that this query abstracts from internal data structures used to organize
rooms in the program.

2.2 Semantic Reflection

Building on semantic lifting, semantic reflection is the process of accessing the
generated and enriched knowledge graph of a program state from inside the very
same program (introspection) to influence its future behavior (intercession).

For this purpose, we need to execute graph queries from within the program.
The queries can either return a Boolean value (denoting whether there is a result
for the query) or are restricted to return representable results (for example,
through a static type system [33]). A result, for the purposes of our example
here, is representable if it is an RDF node corresponding to a SMOL object. The
result of a reflective query then becomes a list of SMOL objects. Consider the
variant of our smart house in Figure 5, which queries itself to check whether the
identifiers differ for all rooms such that one room is left of the other. The access

statement executes a query on the knowledge graph with the lifted state. The
result is assigned to the list rooms, which should be the empty list (denoted nil).

Semantic reflection in practice. A typical use case for semantic reflection is the
development of domain-specific simulators. For example, the geological simu-
lator of Qu et al. [55] directly integrates the GeoFault [56] and GeoCore [15]



6 E. Kamburjan et al.

ontologies into the simulation of geological processes, thus removing most re-
dundancy between the two modeling formalisms. By combining these ontologies
into a simulator, geological deliberations that take days, can be supported with
simulations that return qualitative results within minutes.

3 Foundations of Semantically Reflective Digital Twins

The previous section showed how programs can use domain knowledge expressed
in a knowledge graph either through reflection or through access to external
knowledge. We now consider how these techniques can be used to program digital
twins. The main insight here is that the knowledge graph that enriches the lifted
state can contain information about the physical twin, such as its architectural
structure, requirements and other asset information.

3.1 Using Asset Models for Architectural Self-Adaptation

An asset information model is a digital description of a physical or planned
asset to facilitate its design, development and operation.5 We consider the asset
information model to be a part of the digital thread related to an asset. The
digital thread additionally contains information that describes the context of
the asset as well as, e.g., operational logs.

An asset information model describes the architectural structure of a phys-
ical twin, including its components and their connections. We are specifically
interested in this structure of the physical twin: it changes throughout the life-
time of the physical twin, and the digital twin must adapt its own architectural
structure to reflect these changes.

The digital twin and the physical twin have different architectural structures,
as they have different components and represent different abstraction levels, but
there is still a relation between these structures. For example, in our running
example, the digital twin will have one object that represents each room of the
smart house. This Room object in the digital twin should evolve in sync with the
corresponding room in the physical twin, which it can realize by monitoring the
room in the physical twin. This monitoring is typically related to requirements
connected to the physical twin (e.g., the targeted temperature for the room).
If the physical twin changes, it may be necessary to adapt the digital twin,
but not all changes require an adaptation. For example, adding a room to the
smart house or adding additional requirements from operations would make an
adaptation of the digital twin necessary, but turning on the light in a room would
not.

The relationship between the physical twin and the digital twin can be seen
as a structural consistency relation, expressing that the architectural structure
of the digital twin is consistent with that of the physical twin. Semantic lifting

5 Asset information models generalize the building information model (BIM) [26] to
systems engineering (e.g., [14]).



Semantic Reflection and Digital Twins: A Comprehensive Overview 7

can be used to formalize consistency between the architectural structures in a
uniform way, despite the potentially different nature of the two architectures: As
both the asset information model and the digital twin (via the semantic lifting)
are part of the same knowledge graph, we can define structural consistency using
queries. This has several advantages:

– The formalization of consistency is decoupled from the exact nature of the
digital twin implementation. Changing from, for example, one programming
language to another for the digital twin, does not require to reformulate
structural consistency.

– Structural consistency can be expressed using standard semantic web tech-
nologies (concretely, SPARQL in our case), for which advanced pragmatics
are developed to ease their use. In particular, structural consistency can be
expressed in a formalism specifically design for structural modeling.

– By querying the knowledge graph, we can easily integrate consistency and
self-adaptation.

Technically, we define consistency between architectural structures using de-
fect queries [16]. A defect query defines an inconsistency and returns all instances
of the inconsistency in the graph. For example, given a program, an asset infor-
mation model and a set of defect queries, we consider the program and the asset
information model to be structurally consistent if all the defect queries return an
empty result set. Note that logical reasoning using the ontology may be needed
to derive the answers (i.e., a so-called entailment regime from the query engine).

Strategies for architectural self-adaptation [6] can be easily expressed by
means of defect queries [35], using, e.g., the MAPE-K self-adaptation loop (see,
e.g., [9]). In the MAPE-K framework, a managing subsystem monitors a man-
aged subsystem, analyzes found inconsistencies, plans their repair and executes
that plan.

For architectural self-adaptation of a digital twin, the managing subsystem
is an additional component in the digital twin, while the managed subsystem
contains the other, original, digital twin components. As every query returns
an inconsistency, the set of defect queries act as the monitoring components
at the meta-level, monitoring the architectural structure of the digital twin.
The analysis component than analyses query results to detect the source of the
inconsistency. This can be either a more detailed query, or just some computation
without referring to the knowledge graph. Planning and execution can be tailored
to the defect queries and the inconsistencies that they model.

Let us now reconsider the running example of the smart house. The code in
Figure 6 illustrates how semantic reflection can be used by the digital twin to
self-adapt to changes in the architectural structure of the physical twin. First,
we retrieve all room identifiers in the asset model that do not have a digital
twin object modeling them (Lines 6–9). This means that these rooms have been
added to the physical twin recently. The construct creates a new object instance
from retrieved data values. This general form of a defect query generalizes for
this kind of constraints [35]. The next query analyses the defect and retrieves
the wall neighboring the new room (Lines 11–16). One of these walls must be



8 E. Kamburjan et al.

1 ... //Classes as in Figure 1
2 class RoomAsrt(Int roomID) end
3 class RoomNeigh(Int leftWallId, Int rightWallId) end
4 class MAPE()

5 Unit selfAdapt()

6 List<RoomAsrt> newRooms = // (1) Monitoring with defect query
7 construct("SELECT ?roomID

8 { ?x asset:Room_id ?roomID.

9 FILTER NOT EXISTS {?y prog:Room_id ?roomID}}");

10 foreach roomAsrt in newRooms do
11 List<RoomNeigh> neighbors = // (2) Analysis
12 construct("SELECT ?leftWallId ?rightWallId

13 { ?x asset:Room_id %1;

14 ?x asset:left [asset:Wall_od ?leftWallId];

15 ?x asset:right [asset:Wall_od ?rightWallId].",

16 roomAsrt.roomId);

17 // determine whether one of the walls is known, plan and
18 // execute the creation of a new room in the digital twin
19 end

Fig. 6. Architectural self-adaptation in SMOL.

known if we assume that rooms are added one by one. SMOL allows values to
be injected in the queries using % and these queries are specific to one found
defect.

3.2 Beyond the Monolith

Digital twins are not in general monolithic programs, but consist of multiple
models and data sources, some of which are typically (black-box) simulators. It
is unrealistic to assume that all components of a digital twin are expressed in the
same programming language, and numerous architectures and platforms for dig-
ital twins have been proposed [46], including one by Margaria et al. [7]. We now
discuss how semantic lifting and reflection can be applied in such architectures,
with a focus on the following approaches:

– Semantically reflected orchestrators. Orchestrators are central compo-
nents of the digital twins and integrate the connection to other components.
In semantically reflected orchestrators, only the orchestrator, connections
and interfaces of other components are lifted into the knowledge graph.

– Semantically reflected architectures define their lifting not in terms of
the programming language, but in terms of the components of the archi-
tecture. The system is semantically lifted (and can semantically reflected)
based on a lifting of all components with respect to the architecture.

We now provide more detail for these two approaches.



Semantic Reflection and Digital Twins: A Comprehensive Overview 9

Semantically reflected orchestrators. We have investigated the semantically re-
flected orchestrators approach in SMOL by integrating simulation units into the
language and considering them as special objects in the language [32]. These
objects can realize either a simulator or a connection to the physical twin, as
their interface consists of only three methods: reading an object port, writing an
object port and advancing the local (simulation) time of the object.

More concretely, we integrate functional mock-up units (FMUs) [5] into
SMOL. An FMU is a wrapper defined by the functional mock-up interface that
offers the above operations. Each FMU comes with a model description, which
is part of the semantic lifting, that describes its ports, name of the model and
internal details that must be exposed for co-simulation. However, it does not
expose the implementation of the simulation — indeed it must not implement a
simulation at all, but can connect to other temporal data sources.6 Continuing
with our running example, the code in Figure 7 places two FMUs in each room:
one FMU to simulate the behavior of the room, the other to connect to the sen-
sors of the physical twin. The shown code uses semantic lifting to check that the
correct FMUs are used; this is done by a query comparing the model name of
the simulation FMU with information in the asset model. SMOL also supports
a similar connection for InfluxDB.7 A semantically reflected orchestrator, em-
bedded into architecture that is not lifted, has been successfully demonstrated
on an extensible digital twin architecture for a greenhouse [40].

Semantically reflected architectures. We have investigated semantically reflected
architectures in a service-oriented setting for a digital twin of robotic arms [16].
The digital twin is defined by a software architecture, expressed in UML, with
more than 10 different software components: databases, services, simulators and
physical twin endpoints. In this architecture, there is a lifting service that gen-
erates a knowledge graph for the current instance of the software implementing
the architecture. This means that each component implements an interface to
lift itself. Instead of relying on a generic lifting function provided by the lan-
guage (which is the case for SMOL), the semantic lifting must here be imple-
mented by hand, in terms of the vocabulary defined by the architecture (such
as the components and attribute names). Currently, there is on-going effort to
implement semantic lifting as a service on a Digital-Twin-as-a-Service (DTaaS)
platform [59]. Additional information and specification can be annotated to the
architecture and then be used in the semantic lifting.

There are numerous digital twin platforms and architectures [46], and several
proposals that combine digital twins with ontologies and knowledge graphs [41,
57,61]. However, no general methodology has been developed so far to determine
whether a lifted architecture or a lifted orchestrator is best suited for a given
system; we consider this challenge the next step in research on semantically
reflected digital twins.

6 See, e.g., the RabbitMQ FMU https://into-cps-rabbitmq-fmu.readthedocs.io/en/
latest/overview.html.

7 https://www.influxdata.com/products/influxdb-overview/

https://into-cps-rabbitmq-fmu.readthedocs.io/en/latest/overview.html
https://into-cps-rabbitmq-fmu.readthedocs.io/en/latest/overview.html
https://www.influxdata.com/products/influxdb-overview/


10 E. Kamburjan et al.

SMOL

1 class Room(Wall left, Wall right, Int id, Int target,

2 FMU[in Boolean switch, out Double value] room,

3 FMU[in Boolean switch, out Double value] model)

4 Unit control()

5 if /∗ check on room.value and model.value ∗/ then //start heating
6 room.switch = True; model.switch = True;

7 end
8 room.tick(1.0); model.tick(1.0); //advance time
9 end

10 end
11 class ConsistencyManager()

12 List<Room> getMisconfigured() //should return nil
13 return
14 access("SELECT ?obj {?obj prog:Room_room ?fmu.

15 ?fmu fmu:name ?fName.

16 FILTER(?fName != ’connectionFMU’)}")

17 ++ //syntactic sugar for list concatenation
18 access("SELECT ?obj {?obj prog:Room_model ?fmu.

19 ?fmu fmu:name ?fName.

20 FILTER(?fName != ’simulationFMU’)}");

21 end
22 end

Fig. 7. SMOL code with integrated FMUs.

4 Analysis of Semantically Reflected Programs

At the core of semantic reflection is the ability to program with semantic graph
data, a challenging task sometimes referred to as the next big topic in the seman-
tic web [23]. It requires not only to coordinate different tools (reasoners, query
endpoints, databases) and formalisms (graph shapes, ontologies, queries), but
also to integrate their conceptual class models with object-oriented class mod-
els. While these two class models seem similar, they are in fact fundamentally
different. Not only technical terms, but also in their very purpose: an object-
oriented model is concerned with structuring data and behavior, a conceptual
class model (i.e., an ontology) is concerned with the modeling of domain knowl-
edge.8

The semantic gap [2] between object-oriented models and knowledge repre-
sentation can be addressed using semantic lifting. As semantic lifting expresses
the program using an ontology, the semantic lifting process can be used to ana-
lyze the query that loads data into the program; the answer to the query must

8 Remark that the Scandinavian school of object-oriented design, stemming from
Simula [10], places as much weight on modeling and simulation as on code reuse
in object-oriented systems [48,49].



Semantic Reflection and Digital Twins: A Comprehensive Overview 11

be contained in the part of the knowledge graph defined by the lifting. In fact,
we have exploited this feature in the above examples.

Consider the following statement:

SMOL

List<Room> r = access("SELECT ?obj {?obj leftOf ?obj2}"); //query Q

To check whether this query is type-safe, one must reason about the ontology
O (from Figure 3) used with the program: Is the query Q always returning a
collection of Room objects on any knowledge graph that adheres to O? This can
be answered using query containment [8,54]. We have shown that SMOL is type-
safe for queries that can be be reduced to concept subsumption [37]. Namely, if
the query Q is contained in the query

SPARQL

SELECT ?obj WHERE { ?obj a prog:Room. }

using O, then no runtime error can be triggered by a query result that cannot be
represented as a Room object. It is easy to see that this is indeed the case, from
the axioms defining the leftOf relation. This idea can be further generalized to
define SMOL classes not in terms of a ontology concept, but in terms of the
queries that retrieve them [33], which introduces behavioral subtyping [47] for
program classes interacting with ontological knowledge bases.

Formal methods with semantic lifting. Semantic reflection opens for interesting
questions in formal methods. We briefly describe two directions that we have
started to explore. new ways of doing formal met First, semantic reflection can
be used for runtime enforcement [29]. Using hypothetical execution, one can use
the lifted state of a program after a potential step, to check for consistency
with the domain knowledge. If a step would result in a inconsistent knowledge
graph, then the runtime forces another step to be taken, thus ensuring that
domain knowledge is adhered to during execution, even without an explicit,
reflective access. Second, semantic lifting can be used for software verification,
foe example by integration in Hoare logics [31] for deductive verification. While
semantic reflection is so far out of reach, it enables the use of ontologies as a
specification language (together with program expressions), thus opening a new
line of attack to the old problem of the specification bottleneck [3].

5 Discussion: Formal Methods in Digital Twins

We now consider connections between formal methods and digital twins (a
broader discussion may be found in the paper from the FMDT workshop [36]).
First, observe that the semantic lifting mechanism discussed in this paper has
connections to formal methods, analysis and verification for digital twins. The
defect queries, discussed in Section 3.1, can be exploited as a mechanism for
self-adaptation, in particular for structural changes. Alternatively, they can also
be seen as correctness conditions that need to be monitored at runtime [30].



12 E. Kamburjan et al.

The orchestration and coupling of simulation units, discussed in Section 3.2,
can be subjected to runtime monitoring to ensure the correct use of co-simulation
master algorithms [18] and in changing scenarios [21]. While processes, traces and
temporal properties may be challenging to model generically using ontologies,
due to their dependence on a concrete application [22], this shows that temporal
properties can still be used to specify correctness properties for digital twins
using semantic technologies.

In addition to the use of semantic lifting and semantic reflection for verifica-
tion, we briefly mention some other topics in formal methods that are relevant
for digital twins.

Hybrid systems verification. So far in this paper, we have discussed a largely
language-based approach to connect and analyze code and simulators as discrete
structures. However, this impedes the formal analysis of continuous behavior and
sensor streams. There are numerous languages for hybrid systems modeling, and
we envision that an integration with a structured, object-oriented formalism to
hybrid systems, such as hybrid active objects [28, 38, 39] or hybrid actors [27]
can result in a holistic formal method for verification of digital twins.

Automata learning. Automata learning [17] is a technique to automatically gen-
erate behavioral models of black-box systems. Learning algorithms have been de-
veloped to learn models describing behavioral aspects such as timed or stochastic
behavior. Margaria and Schieweck [51] propose automata learning as a technique
to automatically create a digital twin of cyber-physical systems. Similarly, Pfer-
scher et al. [53] showed that this can be done for security-critical communication
protocols. The learned models that enable further analyses, e.g., model-checking
or model-based testing. Similar to our proposed technique, the learned model
enables insights into the physical twin. Wallner [60] has shown that automata
learning can also be used to analyze the digital twin. By applying automata
learning also to the digital twin, the behavioral difference between the digital
twin and the physical twin can be analyzed.

Runtime enforcement and extra-functional properties. The value proposition of
digital twins is largely based on its ability to incorporate live data with model-
based analysis to aid in decision-making. In many of these cases, this data may be
sensitive. Data lakes [13,20] can be used to collect and organize this data space
in a decentralized manner. The access to data from different sources needs to
be carefully managed through fine-grained access control policies; for example,
Margaria et al. proposed an algorithm for role-based access control in digital
twins [7]. Furthermore, these data access policies can be connected with data
privacy, expressing, e.g., GDPR compliance, and connected with language-based
methods to enforce data privacy consent (e.g., [1, 42]). It would be interesting
to explore whether semantic reflection could be used for runtime enforcement of
dynamic privacy policies that changes at runtime, such as data privacy consent as
required by GDPR, for digital twins that need to access personal personal data.
Going beyond the use of personal data for analysis in the digital twin, such



Semantic Reflection and Digital Twins: A Comprehensive Overview 13

runtime enforcement could potentially be directly related to the digital thread,
thereby regulating data access throughout the digital twin lifecycle [7, 45].

Concerns on responsible decision making. Responsible decision support using
digital twins to explore and compare hypothetical scenarios, will increasingly re-
quire solutions that take into consideration transparency, explainability, human-
centric values, and the law [52]. It would be interesting to investigate whether
semantic reflection, as outlined in this paper, could be used to address respon-
sible decision-making and decision support, e.g., using knowledge graphs and
runtime analyses as a means for argumentation in the decision-making process
and to capture human-centric values and legal regulations; in this direction, Gru-
ber discusses how collective intelligence can be captured via collective knowledge
systems [19], while Becu et al. [4] explores how simulation approaches can be
used for participatory decision-making, where all stakeholders’ views are taken
into consideration.

6 Conclusion

Semantic reflection is a language-based approach to programming with graph
data and ontologies, that has proven useful in the context of digital twins. In
particular, semantic reflection can be used to connect software to the digital
thread and to asset models, thereby supporting a lifecycle perspective on the
digital twin. In this paper, we have provided an overview of our work in this
area. We further suggest how semantic reflection can be used to draw interest-
ing connections between three different areas of computer science: programming
languages, formal methods and knowledge representations. So far, the work on
formal methods has been investigated less than the connection with digital twins,
and we hope that the comprehensive overview and perspective given here can
help foster further research on this topic.

Acknowledgments The authors would like to thank Tiziana Margaria for
many interesting discussions on digital twins. We are further grateful to all
contributors to SMOL and its development. This work was partly funded by the
EU project SM4RTENANCE (grant no. 101123423) and the Research Council of
Norway via PeTWIN (grant no. 294600) and SIRIUS (grant no. 237898).

References

1. Baramashetru, C.P., Tapia Tarifa, S.L., Owe, O., Gruschka, N.: A policy language
to capture compliance of data protection requirements. In: ter Beek, M.H., Mona-
han, R. (eds.) Proc. 17th International Conference on Integrated Formal Methods
(IFM 2022). Lecture Notes in Computer Science, vol. 13274, pp. 289–309. Springer
(2022), https://doi.org/10.1007/978-3-031-07727-2 16

2. Baset, S., Stoffel, K.: Object-oriented modeling with ontologies around: A survey of
existing approaches. Int. J. Softw. Eng. Knowl. Eng. 28(11-12), 1775–1794 (2018),
https://doi.org/10.1142/S0218194018400284

https://doi.org/10.1007/978-3-031-07727-2_16
https://doi.org/10.1142/S0218194018400284


14 E. Kamburjan et al.

3. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from micro-
kernel verification – specification is the new bottleneck. In: Cassez, F., Huuck, R.,
Klein, G., Schlich, B. (eds.) Proc. 7th Conf. on Systems Software Verification (SSV
2012). EPTCS, vol. 102, pp. 18–32 (2012), https://doi.org/10.4204/EPTCS.102.4

4. Becu, N., Neef, A., Schreinemachers, P., Sangkapitux, C.: Participatory computer
simulation to support collective decision-making: Potential and limits of stake-
holder involvement. Land Use Policy 25(4), 498–509 (2008), https://linkinghub.
elsevier.com/retrieve/pii/S0264837707000877

5. Blockwitz, T., Otter, M., Åkesson, J., Arnold, M., Clauss, C., Elmqvist, H.,
Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., Viel, A.:
Functional Mockup Interface 2.0: The Standard for Tool independent Exchange
of Simulation Models. In: Proc. 9th International Modelica Conference. vol. 76,
pp. 173–184. Linköping University Electronic Press (2012), http://dx.doi.org/10.
3384/ecp12076173

6. Braberman, V.A., D’Ippolito, N., Kramer, J., Sykes, D., Uchitel, S.: MORPH: a
reference architecture for configuration and behaviour self-adaptation. In: Filieri,
A., Maggio, M. (eds.) Proc. 1st Intl. Workshop on Control Theory for Software
Engineering (CTSE@FSE 2015). pp. 9–16. ACM (2015), https://doi.org/10.1145/
2804337.2804339

7. Chaudhary, H.A.A., Guevara, I., John, J., Singh, A., Ghosal, A., Pesch, D., Mar-
garia, T.: Model-driven engineering in digital thread platforms: A practical use
case and future challenges. In: Margaria, T., Steffen, B. (eds.) Proc. 11th Intl.
Symp. on Leveraging Applications of Formal Methods, Verification and Valida-
tion (ISoLA 2022). Lecture Notes in Computer Science, vol. 13704, pp. 195–207.
Springer (2022), https://doi.org/10.1007/978-3-031-19762-8 14

8. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: SPARQL query contain-
ment under SHI axioms. In: Proc. 26th AAAI Conference on Artificial Intelligence
(AAAI’12). pp. 10—-16. AAAI Press (2012), https://doi.org/10.1609/aaai.v26i1.
8108

9. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson,
J., Becker, B., Bencomo, N., Brun, Y., Cukic, B., Serugendo, G.D.M., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software engineering for self-
adaptive systems: A research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Sys-
tems. Lecture Notes in Computer Science, vol. 5525, pp. 1–26. Springer (2009),
https://doi.org/10.1007/978-3-642-02161-9 1

10. Dahl, O.J., Nygaard, K.: SIMULA - an algol-based simulation language. Commun.
ACM 9(9), 671–678 (1966), https://doi.org/10.1145/365813.365819

11. Dalibor, M., Jansen, N., Rumpe, B., Schmalzing, D., Wachtmeister, L., Wim-
mer, M., Wortmann, A.: A cross-domain systematic mapping study on soft-
ware engineering for digital twins. J. Syst. Softw. 193, 111361 (2022), https:
//doi.org/10.1016/J.JSS.2022.111361

12. Eramo, R., Bordeleau, F., Combemale, B., van Den Brand, M., Wimmer, M.,
Wortmann, A.: Conceptualizing digital twins. IEEE Software 39(2), 39–46 (2021),
https://doi.org/10.1109/MS.2021.3130755

13. Fang, H.: Managing data lakes in big data era: What’s a data lake and why has it
became popular in data management ecosystem. In: Proc. International Conference

https://doi.org/10.4204/EPTCS.102.4
https://linkinghub.elsevier.com/retrieve/pii/S0264837707000877
https://linkinghub.elsevier.com/retrieve/pii/S0264837707000877
http://dx.doi.org/10.3384/ecp12076173
http://dx.doi.org/10.3384/ecp12076173
https://doi.org/10.1145/2804337.2804339
https://doi.org/10.1145/2804337.2804339
https://doi.org/10.1007/978-3-031-19762-8_14
https://doi.org/10.1609/aaai.v26i1.8108
https://doi.org/10.1609/aaai.v26i1.8108
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1145/365813.365819
https://doi.org/10.1016/J.JSS.2022.111361
https://doi.org/10.1016/J.JSS.2022.111361
https://doi.org/10.1109/MS.2021.3130755


Semantic Reflection and Digital Twins: A Comprehensive Overview 15

on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER
2015). pp. 820–824. IEEE (2015), https://doi.org/10.1109/CYBER.2015.7288049

14. Fjøsna, E., Waaler, A.: READI Information modelling framework (IMF). Asset
Information Modelling Framework. Tech. rep., READI Project (2021), https://
readi-jip.org/wp-content/uploads/2021/03/Information-modelling-framework-V1.pdf

15. Garcia, L.F., Abel, M., Perrin, M., dos Santos Alvarenga, R.: The GeoCore ontol-
ogy: A core ontology for general use in geology. Computers & Geosciences 135,
104387 (2020), https://doi.org/10.1016/j.cageo.2019.104387

16. Gil, S., Kamburjan, E., Talasila, P., Larsen, P.G.: An architecture for coupled dig-
ital twins with semantic lifting (2024), submitted for publication

17. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967), https://doi.org/10.1016/S0019-9958(67)91165-5

18. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
A survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018), https://doi.org/10.1145/
3179993

19. Gruber, T.: Collective knowledge systems: Where the social web meets the semantic
web. J. Web Semant. 6(1), 4–13 (2008), https://doi.org/10.1016/j.websem.2007.11.
011

20. Hai, R., Koutras, C., Quix, C., Jarke, M.: Data lakes: A survey of functions
and systems. IEEE Transactions on Knowledge and Data Engineering 35(12),
12571–12590 (Dec 2023), http://dx.doi.org/10.1109/TKDE.2023.3270101

21. Hansen, S.T., Kamburjan, E., Kazemi, Z.: Monitoring reconfigurable simulation
scenarios in co-simulated digital twins. In: Proc. 12th Intl. Symp. on Leverag-
ing Applications of Formal Methods, Verification and Validation. Practice (ISoLA
2024). Lecture Notes in Computer Science, Springer (2024), in production

22. Harth, A., Käfer, T., Rula, A., Calbimonte, J.P., Kamburjan, E., Giese, M.:
Towards Representing Processes and Reasoning with Process Descriptions on
the Web. Transactions on Graph Data and Knowledge 2(1), 1:1–1:32 (2024),
https://doi.org/10.4230/TGDK.2.1.1

23. Hitzler, P.: A review of the semantic web field. Commun. ACM 64(2), 76–83 (2021),
https://doi.org/10.1145/3397512

24. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman and Hall/CRC Press (2010), http://www.semantic-web-book.org/

25. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutierrez, C.,
Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., Ngomo, A.N., Polleres, A.,
Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J.F., Staab, S., Zimmermann,
A.: Knowledge graphs. ACM Comput. Surv. 54(4), 71:1–71:37 (2022), https://doi.
org/10.1145/3447772

26. ISO: Organization and digitization of information about buildings and civil en-
gineering works, including building information modelling (BIM). Standard, Intl.
Organization for Standardization, Geneva, CH (Mar 2018), https://www.iso.org/
standard/68078.html, ISO 19650-1:2018

27. Jahandideh, I., Ghassemi, F., Sirjani, M.: An actor-based framework for asyn-
chronous event-based cyber-physical systems. Softw. Syst. Model. 20(3), 641–665
(2021), https://doi.org/10.1007/s10270-021-00877-y

28. Kamburjan, E.: From post-conditions to post-region invariants: deductive verifica-
tion of hybrid objects. In: Bogomolov, S., Jungers, R.M. (eds.) Proc. 24th ACM
Intl. Conf. on Hybrid Systems: Computation and Control (HSCC’21). pp. 9:1–9:11.
ACM (2021), https://doi.org/10.1145/3447928.3456633

https://doi.org/10.1109/CYBER.2015.7288049
https://readi-jip.org/wp-content/uploads/2021/03/Information-modelling-framework-V1.pdf
https://readi-jip.org/wp-content/uploads/2021/03/Information-modelling-framework-V1.pdf
https://doi.org/10.1016/j.cageo.2019.104387
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1145/3179993
https://doi.org/10.1145/3179993
https://doi.org/10.1016/j.websem.2007.11.011
https://doi.org/10.1016/j.websem.2007.11.011
http://dx.doi.org/10.1109/TKDE.2023.3270101
https://doi.org/10.4230/TGDK.2.1.1
https://doi.org/10.1145/3397512
http://www.semantic-web-book.org/
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://www.iso.org/standard/68078.html
https://www.iso.org/standard/68078.html
https://doi.org/10.1007/s10270-021-00877-y
https://doi.org/10.1145/3447928.3456633


16 E. Kamburjan et al.

29. Kamburjan, E., Din, C.C.: Runtime enforcement using knowledge bases. In: Lam-
bers, L., Uchitel, S. (eds.) Proc. 26th Intl. Conf. on Fundamental Approaches to
Software Engineering (FASE 2023). Lecture Notes in Computer Science, vol. 13991,
pp. 220–240. Springer (2023), https://doi.org/10.1007/978-3-031-30826-0 12

30. Kamburjan, E., Din, C.C., Schlatte, R., Tapia Tarifa, S.L., Johnsen, E.B.:
Twinning-by-construction: Ensuring correctness for self-adaptive digital twins. In:
Margaria, T., Steffen, B. (eds.) Proc. 11th Intl. Symp. on Leveraging Applica-
tions of Formal Methods, Verification and Validation. Verification Principles ISoLA
2022). Lecture Notes in Computer Science, vol. 13701, pp. 188–204. Springer
(2022), https://doi.org/10.1007/978-3-031-19849-6 12

31. Kamburjan, E., Gurov, D.: A Hoare logic for domain specification (full version).
CoRR abs/2402.00452 (2024), https://doi.org/10.48550/arXiv.2402.00452

32. Kamburjan, E., Johnsen, E.B.: Knowledge structures over simulation units. In:
Martin, C.R., Emami, N., Blas, M.J., Rezaee, R. (eds.) Proc. Annual Modeling
and Simulation Conf. (ANNSIM 2022). pp. 78–89. IEEE (2022), https://doi.org/
10.23919/ANNSIM55834.2022.9859490

33. Kamburjan, E., Klungre, V.N., Giese, M.: Never mind the semantic gap: Modu-
lar, lazy and safe loading of RDF data. In: Groth, P., Vidal, M., Suchanek, F.M.,
Szekely, P.A., Kapanipathi, P., Pesquita, C., Skaf-Molli, H., Tamper, M. (eds.)
Proc. 19th Intl. Conf. on the Semantic Web (ESWC 2022). Lecture Notes in Com-
puter Science, vol. 13261, pp. 200–216. Springer (2022), https://doi.org/10.1007/
978-3-031-06981-9 12

34. Kamburjan, E., Klungre, V.N., Schlatte, R., Johnsen, E.B., Giese, M.: Program-
ming and debugging with semantically lifted states. In: Verborgh, R., Hose, K.,
Paulheim, H., Champin, P., Maleshkova, M., Corcho, Ó., Ristoski, P., Alam,
M. (eds.) Proc. 18th Intl. Conf. on the Semantic Web (ESWC 2021). Lecture
Notes in Computer Science, vol. 12731, pp. 126–142. Springer (2021), https:
//doi.org/10.1007/978-3-030-77385-4 8

35. Kamburjan, E., Klungre, V.N., Schlatte, R., Tapia Tarifa, S.L., Cameron, D.,
Johnsen, E.B.: Digital twin reconfiguration using asset models. In: Margaria, T.,
Steffen, B. (eds.) Proc. 11th Intl. Symp. on Leveraging Applications of Formal
Methods, Verification and Validation. Practice (ISoLA 2022). Lecture Notes in
Computer Science, vol. 13704, pp. 71–88. Springer (2022), https://doi.org/10.1007/
978-3-031-19762-8 6

36. Kamburjan, E., Klungre, V.N., Tapia Tarifa, S.L., Schlatte, R., Giese, M.,
Cameron, D., Johnsen, E.B.: Emerging challenges in compositionality and correct-
ness for digital twins. In: FMDT@FM. CEUR Workshop Proceedings, vol. 3507.
CEUR-WS.org (2023), https://ceur-ws.org/Vol-3507/paper2.pdf

37. Kamburjan, E., Kostylev, E.V.: Type checking semantically lifted programs via
query containment under entailment regimes. In: Homola, M., Ryzhikov, V.,
Schmidt, R.A. (eds.) Proc. 34th Intl. Workshop on Description Logics (DL 2021).
CEUR Workshop Proceedings, vol. 2954. CEUR-WS.org (2021), https://ceur-ws.
org/Vol-2954/paper-19.pdf

38. Kamburjan, E., Mitsch, S., Hähnle, R.: A hybrid programming language for formal
modeling and verification of hybrid systems. Leibniz Trans. Embed. Syst. 8(2),
04:1–04:34 (2022), https://doi.org/10.4230/LITES.8.2.4

39. Kamburjan, E., Schlatte, R., Johnsen, E.B., Tarifa, S.L.T.: Designing distributed
control with hybrid active objects. In: Margaria, T., Steffen, B. (eds.) Proc. 9th Intl.
Symp. on Leveraging Applications of Formal Methods, Verification and Validation

https://doi.org/10.1007/978-3-031-30826-0_12
https://doi.org/10.1007/978-3-031-19849-6_12
https://doi.org/10.48550/arXiv.2402.00452
https://doi.org/10.23919/ANNSIM55834.2022.9859490
https://doi.org/10.23919/ANNSIM55834.2022.9859490
https://doi.org/10.1007/978-3-031-06981-9_12
https://doi.org/10.1007/978-3-031-06981-9_12
https://doi.org/10.1007/978-3-030-77385-4_8
https://doi.org/10.1007/978-3-030-77385-4_8
https://doi.org/10.1007/978-3-031-19762-8_6
https://doi.org/10.1007/978-3-031-19762-8_6
https://ceur-ws.org/Vol-3507/paper2.pdf
https://ceur-ws.org/Vol-2954/paper-19.pdf
https://ceur-ws.org/Vol-2954/paper-19.pdf
https://doi.org/10.4230/LITES.8.2.4


Semantic Reflection and Digital Twins: A Comprehensive Overview 17

(ISoLA 2020). Lecture Notes in Computer Science, vol. 12479, pp. 88–108. Springer
(2020), https://doi.org/10.1007/978-3-030-83723-5 7

40. Kamburjan, E., Sieve, R., Baramashetru, C.P., Amato, M., Barmina, G., Occhip-
inti, E., Johnsen, E.B.: GreenhouseDT: An exemplar for digital twins. In: Proc.
19th Intl. Symp. on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’24). p. 175–181. ACM (2024), https://doi.org/10.1145/3643915.3644108

41. Karabulut, E., Pileggi, S.F., Groth, P., Degeler, V.: Ontologies in digital twins: A
systematic literature review. Future Gener. Comput. Syst. 153, 442–456 (2024),
https://doi.org/10.1016/j.future.2023.12.013

42. Karami, F., Basin, D.A., Johnsen, E.B.: DPL: A language for GDPR enforcement.
In: Proc. 35th IEEE Computer Security Foundations Symposium (CSF 2022). pp.
112–129. IEEE (2022), https://doi.org/10.1109/CSF54842.2022.9919687

43. Kiczales, G., Rivieres, J.D.: The Art of the Metaobject Protocol. MIT Press, Cam-
bridge, MA, USA (1991)

44. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in man-
ufacturing: A categorical literature review and classification. IFAC-PapersOnLine
51(11), 1016–1022 (2018), https://doi.org/10.1016/j.ifacol.2018.08.474, 16th IFAC
Symp. on Information Control Problems in Manufacturing (INCOM 2018)

45. Kuruppuarachchi, P., Rea, S., McGibney, A.: Trust and security analyzer for dig-
ital twins. In: Chbeir, R., Benslimane, D., Zervakis, M.E., Manolopoulos, Y.,
Nguyen, N.T., Tekli, J. (eds.) Proc. 15th International Conference on Manage-
ment of Digital EcoSystems (MEDES 2023). Communications in Computer and
Information Science, vol. 2022, pp. 278–290. Springer (2023), https://doi.org/10.
1007/978-3-031-51643-6 20

46. Lehner, D., Pfeiffer, J., Tinsel, E., Strljic, M.M., Sint, S., Vierhauser, M., Wort-
mann, A., Wimmer, M.: Digital twin platforms: Requirements, capabilities, and
future prospects. IEEE Softw. 39(2), 53–61 (2022), https://doi.org/10.1109/MS.
2021.3133795

47. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994), https://doi.org/10.1145/197320.197383

48. Madsen, O.L., Møller-Pedersen, B.: What object-oriented programming was sup-
posed to be: Two grumpy old guys’ take on object-oriented programming. In:
Scholliers, C., Singer, J. (eds.) Proceedings of the 2022 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward! 2022). pp. 220–239. ACM (2022), https://doi.org/10.1145/
3563835.3568735

49. Madsen, O.L., Møller-Pedersen, B.: What your mother forgot to tell you about
modeling - and programming. In: ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS 2023 Companion. pp. 200–
210. IEEE (2023), https://doi.org/10.1109/MODELS-C59198.2023.00049

50. Margaria, T., Schieweck, A.: The digital thread in industry 4.0. In: Ahrendt, W.,
Tapia Tarifa, S.L. (eds.) Proc. 15th Intl. Conf. on Integrated Formal Methods (iFM
2019). Lecture Notes in Computer Science, vol. 11918, pp. 3–24. Springer (2019),
https://doi.org/10.1007/978-3-030-34968-4 1

51. Margaria, T., Schieweck, A.: Active behavior mining for digital twins extraction.
IT Prof. 24(4), 74–80 (2022), https://doi.org/10.1109/MITP.2022.3193044

52. Milosevic, Z., van Schalkwyk, P.: Towards responsible digital twins. In: Enter-
prise Design, Operations, and Computing. Lecture Notes in Business Informa-
tion Processing, vol. 498, pp. 123–138. Springer (2023), https://doi.org/10.1007/
978-3-031-54712-6 8

https://doi.org/10.1007/978-3-030-83723-5_7
https://doi.org/10.1145/3643915.3644108
https://doi.org/10.1016/j.future.2023.12.013
https://doi.org/10.1109/CSF54842.2022.9919687
https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/10.1007/978-3-031-51643-6_20
https://doi.org/10.1007/978-3-031-51643-6_20
https://doi.org/10.1109/MS.2021.3133795
https://doi.org/10.1109/MS.2021.3133795
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/3563835.3568735
https://doi.org/10.1145/3563835.3568735
https://doi.org/10.1109/MODELS-C59198.2023.00049
https://doi.org/10.1007/978-3-030-34968-4_1
https://doi.org/10.1109/MITP.2022.3193044
https://doi.org/10.1007/978-3-031-54712-6_8
https://doi.org/10.1007/978-3-031-54712-6_8


18 E. Kamburjan et al.

53. Pferscher, A., Wunderling, B., Aichernig, B.K., Muskardin, E.: Mining digital twins
of a VPN server. In: Hallerstede, S., Kamburjan, E. (eds.) Proc. Workshop on
Applications of Formal Methods and Digital Twins. CEUR Workshop Proceedings,
vol. 3507. CEUR-WS.org (2023), https://ceur-ws.org/Vol-3507/paper6.pdf

54. Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL.
In: Proc. 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. pp. 39—-50. PODS ’14, Association for Computing Machin-
ery (2014), https://doi.org/10.1145/2594538.2594542

55. Qu, Y., Kamburjan, E., Torabi, A., Giese, M.: Semantically triggered qualitative
simulation of a geological process. Applied Computing and Geosciences 21, 100152
(2024), https://doi.org/10.1016/j.acags.2023.100152

56. Qu, Y., Perrin, M., Torabi, A., Abel, M., Giese, M.: GeoFault: A well-founded fault
ontology for interoperability in geological modeling. Computers & Geosciences 182,
105478 (2024), https://doi.org/10.1016/j.cageo.2023.105478

57. Singh, S., Shehab, E., Higgins, N., Fowler, K., Reynolds, D., Erkoyuncu,
J.A., Gadd, P.: Data management for developing digital twin ontology model.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture 235(14), 2323–2337 (2021), https://doi.org/10.1177/
0954405420978117

58. Smith, B.C.: Procedural Reflection in Programming Languages. Ph.D. thesis, MIT
(1982), http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-272.pdf

59. Talasila, P., Gomes, C., Mikkelsen, P.H., Arboleda, S.G., Kamburjan, E., Larsen,
P.G.: Digital twin as a service (DTaaS): A platform for digital twin developers
and users. In: 2023 IEEE Smart World Congress (SWC). pp. 1–8. IEEE (2023),
https://doi.org/10.1109/SWC57546.2023.10448890

60. Wallner, F.: Development of a Robust Active Automata Learning Algorithm for
Automotive Measurement Devices Avoiding Resets. Master’s thesis, Graz Univer-
sity of Technology, Graz, Austria (2022), https://repository.tugraz.at/publications/
9bn45-0d225

61. Zheng, X., Lu, J., Kiritsis, D.: The emergence of cognitive digital twin: vision,
challenges and opportunities. Intl. Journal of Production Research 60(24), 7610–
7632 (2022), https://doi.org/10.1080/00207543.2021.2014591

https://ceur-ws.org/Vol-3507/paper6.pdf
https://doi.org/10.1145/2594538.2594542
https://doi.org/10.1016/j.acags.2023.100152
https://doi.org/10.1016/j.cageo.2023.105478
https://doi.org/10.1177/0954405420978117
https://doi.org/10.1177/0954405420978117
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-272.pdf
https://doi.org/10.1109/SWC57546.2023.10448890
https://repository.tugraz.at/publications/9bn45-0d225
https://repository.tugraz.at/publications/9bn45-0d225
https://doi.org/10.1080/00207543.2021.2014591

	Semantic Reflection and Digital Twins: A Comprehensive Overview

