
Springer Nature 2021 LATEX template

User Journey Games: Automating User-Centric Analysis

Paul Kobialka1*, S. Lizeth Tapia Tarifa1, Gunnar R. Bergersen1,2

and Einar Broch Johnsen1

1Department of Informatics, University of Oslo, PO Box 1080, Oslo, NO-0316, Norway.
2 GrepS B.V., Utrecht, the Netherlands.

*Corresponding author(s). E-mail(s): paulkob@ifi.uio.no;
Contributing authors: sltarifa@ifi.uio.no; gunnab@ifi.uio.no; einarj@ifi.uio.no;

Abstract
The servitization of business is moving industry to business models driven by customer demand.
Customer satisfaction is connected with financial rewards, forcing companies to invest in their users’
experience. User journeys describe how users maneuver through a service. Today, user journeys are
typically modeled graphically, and lack formalization and analysis support. This paper proposes a
formalization of user journeys as weighted games between the user and the service provider and a sys-
tematic data-driven method to derive these user journey games from system logs, using process mining
techniques. As the derived games may contain cycles, we define an algorithm to transform user journeys
games with cycles into acyclic weighted games, which can be model checked using Uppaal Stratego
to uncover potential challenges in a company’s interactions with its users and derive company strate-
gies to guide users through their journeys. Finally, we propose a user-journey sliding-window analysis
to detect changes in the user journey over time by model checking a sequence of generated games.
Our analysis pipeline has been evaluated on an industrial case study; it revealed design challenges
within the studied service and could be used to derive actionable recommendations for improvement.

Keywords: User journeys, Data-driven model construction, Time-series analysis, Games, Model checking,
UPPAAL.

1 Introduction
Consider a company, Amend ltd., that offers
document reviewing services: Users submit doc-
uments and meta-data to receive a professional
review. To ensure user satisfaction, the company
commissions a report on the users’ experience
with the offered service. A team of analysts con-
ducts interviews with selected users to manually
create user journey maps that reveal unknown
pain points in the service, which could cost the
company users. When expanding and improving
its services, Amend wants to integrate continu-
ous user feedback, and wonders if the team could

use system logs to avoid the cumbersome man-
ual questionnaires and scale the feedback to all
users. However, their current performance dash-
boards [23] only display recent server statistics
without incorporating user-centric analysis. Meth-
ods and tools to analyze user experience based
on such large-scale collected logs are currently
lacking [28]. In this paper, we present a method
to automatically analyze logs from the users’
perspective, based on weighted automata [18].

The scenario described above stems from the
servitization of business [50], a concept of creat-
ing added value to products by offering services.

1

Springer Nature 2021 LATEX template

2 User Journey Games

Servitization of business is a major practice em-
braced by most (if not all) successful companies
today. Companies are interested in the analysis
of their services, which traditionally focus on the
managerial perspective, where the service is ana-
lyzed with respect to the companies’ view. Recent
trends shift the focus from the company’s to the
end-users’ view, where a positive experience and
impression that a user has while engaging in the
service, has shown to have a positive impact on
the financial reward of a company [25]. Thus, com-
panies aim to analyze and improve their services,
based on their users’ satisfaction.

User journeys (also called customer journeys)
analyze services from the user perspective [42]: A
user journey is inherently a goal-oriented process,
because humans engage in a service with a goal in
mind. The user moves through the journey by en-
gaging in so-called touchpoints, which are either
actions performed by the user or a communica-
tion event between the user and a service provider.
We here assume that users only engage in one
touchpoint of a service at a time.

Tools to analyze user journeys are currently
lacking [28], which hinders their operational use.
User-journey diagrams are usually generated by
hand, and the user perspective is derived from
interviews with experts and users, e.g. [27, 42].
This process has been highly successful, discover-
ing points of failure in the studied services and,
as a result, providing advice to companies on how
to improve their services. However, this manual
process is best suited for relatively small services
and a restricted number of users, and a particu-
lar point in time. For services with thousands of
users, journey diagrams need to be automatically
generated and analyzed. In particular, in business
processes that change often, the impact of these
changes needs to be evaluated as quickly as possi-
ble. Concept drift detection quantifies changes in
an underlying business process [16]. However, not
all observed changes are easy to detect, since they
might originate from events out of the company’s
reach, but are still perceived from the users’ point
of view. Thus, systematic analysis techniques are
needed to evaluate user journeys, and detect and
stop unwanted trends.

This paper formalizes user journeys as
weighted games [17, 18] between users and a ser-
vice provider, and proposed a method to derive
such games from system logs. Our aim is to use

these games to analyze services and suggest service
improvements such that service providers always
have a strategy to guide their users toward a de-
sired goal. The aim of our work is to reduce the gap
towards fulfilling the analysis needs of companies
such as Amend, the company of the motivating
scenario above. In short, our contributions are:

1. a formalization of user journeys as weighted
games;

2. an analysis pipeline to automatically discover
and model check weighted games from system
logs;

3. a sliding-window analysis for user journeys that
lifts the analysis of one weighted game per sys-
tem log to a series of weighted games over
windows of time in a system log.

4. an experimental investigation of the feasibil-
ity of our approach on two data sets from an
industrial case study.

User journey games systematically capture the
user perspective of services by means of so-called
gas. The term is inspired by blockchain technology
such as Ethereum, where gas refers to the cost nec-
essary to perform a transaction on the network.
In our work, the gas quantitatively reflects how
moves in the user journey contribute to the users
reaching their goal. Consequently, the moves in
the derived games are weighted and accumulated
into the gas of the journeys, which allows journeys
to be analyzed and compared using model check-
ers such as Uppaal Stratego [22] or PRISM-
games [19], and to give strategic recommendations
to service providers.

This is an extended version of a paper that ap-
peared at SEFM 2022 [35]. Compared to that pa-
per, we have here expanded the discussion of user
journey games, introduced a time-driven analy-
sis method for user journeys (henceforth called a
sliding-window analysis) which extends the anal-
ysis pipeline based on user journey games, and
expanded our experimental evaluation to a signif-
icantly bigger data set. A sliding-window analysis
uses a series of automatically generated user jour-
ney games, where each game is automatically
derived from a time window in the system log. We
lift the model checking analysis to the series of
games to uncover trends and changes over time.

Outline. Section 2 discusses related work.
Section 3 provides background on weighted games
and the model checking suite Uppaal that we

Springer Nature 2021 LATEX template

User Journey Games 3

State of the art Contribution

User journey modeling [8,
15, 20, 26, 36, 41, 42]:
Mostly manual, very lim-
ited tool support

Digital support through
automated model gener-
ation and improvement
recommendations

Data-driven process dis-
covery [3, 10–13, 30, 46,
47]: Lack support for user
perspective

Used to generate formal,
user-centric model with
multiple actors

Timed-arc Petri net analy-
sis [14, 21]: Verification of
medical processes

Building games from logs
to model actual user
behavior

Concept drift detection [5,
6, 16, 44]: Detect process
changes at the event level

Quantifying changes in
user journeys over time

Table 1: Contributions and related work.

use for analysis. The formal model for user jour-
neys is introduced in Sections 4–6, model checked
in Section 7, and extended to a sliding-window
analysis in Section 8. Section 9 discusses the imple-
mentation, Section 10 evaluates our approach ex-
perimentally in terms of an industrial case study,
Section 11 discusses our approach and Section 12
concludes the paper.

2 Related work
We discuss related work on the modeling of user
journeys and on using data-driven techniques to
discover user journeys, Table 1 summarizes re-
lated work and positions our contributions. We
are not aware of prior work that uses automatic
verification methods to analyze user journeys.

User journeys aim to improve service design by
describing how users interact with services [24, 49].
Modeling notations for user journeys aim to sup-
port the so-called blueprinting [15], i.e., to create
an anticipated model of a service. There are
various notations to create diagrams for user jour-
neys [8, 20, 26, 36, 41, 42]; these diagrams are
mostly handmade and only limited digital sup-
port exists; for example, a semantic lifting into
ontologies has been used to visualize fixed aspects
of a model [36]: the data sent, the communica-
tion channels and devices used, etc. Berendes et
al. propose in [8] the high street journey mod-
eling language (HSJML) tailored to journeys in
shopping streets. Razo-Zapata et al. propose the
VIVA modeling language with focus on inter-
actions [41]. In contrast, our work aims to use

data-driven techniques [3] to automatically dis-
cover user journey diagrams and formal methods
to automatically check properties of user jour-
neys and derive recommendations for improving
the service under analysis. The aim with our work
is to automate the labour-intensive manual map-
ping that captures the user’s interaction with a
service, thereby enabling scalability of user-centric
analysis of complex services with many users.

The Customer Journey Modeling Language
(CJML) [27, 29] captures the end-users’ point of
view. CJML distinguishes planned and actual user
journeys, which represent the journey as planned
as part of the service design and as perceived
by the user, respectively. Our work is part of
a project [28] on tool support for data-driven
user-journey modeling in CJML. Whereas pre-
vious work on CJML manually quantifies user
experience collected through user feedback ques-
tionnaires, our work aims to capture the journeys
as perceived by the user in a data-driven manner,
based on system logs.

Data-driven techniques for process discovery
allow us to discover user journeys. Harbich et
al. [30] use mixtures of Markov models to derive
user-journey maps. Bernard et al. [11, 13] study
process mining [3] for user journeys, such as hi-
erarchical clustering to explore large numbers of
journeys [10] and process discovery techniques to
generate user-journey maps at different levels of
granularity [12]. Terragni and Hassani [46] apply
process mining to user journey web logs to build
process models, and improve the results by cluster-
ing journeys. This work has been integrated with
a recommender system to suggest service actions
that maximize key performance indicators [47],
e.g., how often the product page is visited. David
et al. present TAPPAAL [21], a tool for analyzing
timed-arc Petri nets, realized through mappings
to UPPAAL. Bertolini et al. used TAPAAL for
the verification of medical processes [14]. They
focus on the graphical notation language Little-
JIL, leaving the human aspect for future work.
In contrast, our work focuses on the user-centric
perspective, using games to model actual user be-
havior [35]. In this paper, we propose and use
a data-driven method to automatically construct
formal models of user-centric journeys with mul-
tiple actors. Complementing the work presented

Springer Nature 2021 LATEX template

4 User Journey Games

here, we have studied the scalability of the ba-
sic mining technique for user journey games [33]
and the integration of the strategies derived from
user journey games in an actor-based simulation
framework for user journeys [34].

The above-mentioned work inherently assumes
that the analyzed collection of journeys is gener-
ated from an unchanged process. Bose et al. define
different types of process changes, so-called con-
cept drifts, and propose their detection based on
follows- and precedes-relations at the event level
with hypothesis testing [16], recent developments
on concept drift are surveyed by Sato et al. [44].
Banham et al. extend process models with peri-
odically recorded numerical values to gain closer
insights into exogenous influences on a process
[5, 6]. In contrast, our proposed sliding-window
analysis does not investigate changes at the event
level, but quantifies changes in the user journey
over time, abstracting from the business process,
thereby enabling the service provider to quan-
tify the impact of intented as well as unintended
changes on the user journey.

3 Preliminaries
We briefly summarise the formal notations and
tools that we build on for the proposed user
journey pipeline to analyze a service.

A transition system [40] is a tuple S =
⟨Γ, A,E, s0, T ⟩ with a set Γ of states, a set A
of actions (or labels), a transition relation E ⊆
Γ×A× Γ, an initial state s0 ∈ Γ and a set T ⊆ Γ
of final states. A weighted transition system [48]
S = ⟨S,w⟩ extends the transition system S with
a weight function w : E → R that assigns weights
to transitions.

Weighted games [17] are obtained from
weighted transition systems by partitioning the
actions A into controllable actions Ac, and un-
controllable actions Au, where only actions in Ac

can be controlled by the analyzer, while actions
in Au are nondeterministically decided by an ad-
versarial environment. When analyzing games, we
look for a strategy that guarantees a desired out-
come, i.e. winning the game by reaching a certain
state. The strategy is given by a partial function
Γ → Actc ∪ {λ} that decides on the action of the
controller in a given state (here, λ denotes the
“wait” action, letting the adversary move).

Uppaal Tiga [7] can be used to analyze
reachability and safety properties for games ex-
pressed using (timed) transition systems, extend-
ing the model checker Uppaal [37]. Uppaal Tiga
checks whether there is a strategy under which
the behavior satisfies a control objective, de-
noted control: P for a property P . Property P
is expressed in computational tree logic [4], an
extension of propositional logic that is used to
express properties along paths in a transition sys-
tem. Recall that computational tree logic state
properties ϕ can be decided in a single state; while
reachability properties E <>ϕ express that the for-
mula ϕ is satisfiable in some reachable state in
a transition system; safety properties E []ϕ ex-
press that the formula ϕ is always satisfied in all
the states of some path in a transition system
and A []ϕ expresses that ϕ is always satisfied in
all the states of all paths of a transition system.
Similarly, liveness properties A <>ϕ express that
the formula ϕ will eventually be satisfied in all
the paths in a transition system and the formula
ϕ -->ψ expresses that satisfying formula ϕ leads
to satisfying formula ψ.

Uppaal Stratego [22] can be used to an-
alyze and refine a strategy generated by Up-
paal Tiga with respect to a quantitative at-
tribute like weights. Uppaal Stratego is a sta-
tistical model checker [39]; it extends Uppaal for
stochastic priced timed games and combines sim-
ulations with hypothesis testing until statistical
evidence can be deduced.

4 From system logs to games
To capture the user perspective in games that
model user journeys, user actions (representing
communication initiated by the user) can be
seen as controllable, and the service provider’s
actions as uncontrollable. However, from an ana-
lytical perspective, it is more interesting to treat
user actions as uncontrollable and the service
provider’s actions as controllable. The service
provider should have suitable reactions to all pos-
sible user interactions. Ideally, the service provider
should not rely on the user to make the journey
pleasant. Treating user actions as uncontrollable
exposes the worst behavior of the service provider,
and thereby strengthens the user-centric perspec-
tive promoted by journey diagrams. Games for
user journeys are then defined as follows:

Springer Nature 2021 LATEX template

User Journey Games 5

Log Directly Follows Graph Game

Figure 1: Creation of the Journey Model.

Definition 1 (User journey games) A user
journey game is a weighted game G =
⟨Γ, Ac, Au, E, s0, T, Ts, w⟩, where

• Γ are states,
• Ac and Au are disjoint sets of actions,
• E ⊆ Γ×Ac ∪Au × Γ are the transitions,
• s0 ∈ Γ is an initial state,
• T ⊆ Γ are the final states,
• Ts ⊆ T are the successful final states, and
• w : E → R is the weight function.

In user journey games, the edges E model the
touchpoints, Ac the actions initiated by the service
provider, Au the actions initiated by the user, and
Ts the successful goal states.

The process of deriving such user journey
games from system logs is illustrated in Figure 1.
In a first step, we go from logs to a user-
journey model, expressed as a directly follows
graph (DFG), and in a second step, the DFG is
extended to a game. The derivation of weights for
the transitions is discussed in Section 5.

4.1 From system log to graph
We use a directly follows graph (DFG) as an un-
derlying process model to capture the order of
events in a system log; a DFG is well-suited as the
process model provided that users only engage in
one touchpoint at a time. DFGs are derived from
system logs by means of process discovery [3]. A
system log L is a multi-set of journeys. A journey
J = ⟨a0, . . . , an⟩ is a finite and ordered sequence
of events ai from a universe A.

We construct the DFG of a system log L as
a transition system SL = ⟨Γ, A,E, s0, T ⟩ where
the states Γ capture the event universe, Γ ⊆
A ∪ {s0} ∪ T. Every sequence of events is altered

to start in the start state s0 and to end in a fi-
nal state t ∈ T . Without loss of generality, we
can assume that T only contains the states finPos
and finNeg, marking the successful and unsuc-
cessful completion of a journey, respectively (i.e.,
Ts = {finPos} and T \ Ts = {finNeg}). The set
of actions A is the union of the event universe and
the final states, A = A ∪ T. The transition re-
lation E includes a triple (ai, ai+1, ai+1) if ai is
directly followed by ai+1 in some J ∈ L; we can
traverse from state ai to state ai+1 by performing
the action ai+1. Here reaching a state in SL is in-
terpreted as the corresponding event in L already
having been performed. Note that events in logs
represent user journey activities as states (e.g., as
depicted in Figure 1), while the DFG and game
represent activities as transitions, and completed
activities as states. By construction, the DFG SL

obtained from log L can replay every observed
journey in L. However, SL may capture more jour-
neys than those present in L; for example, SL may
contain transitions with loops.

There is a trade-off in the mining process be-
tween the precision and the generalization of the
transition system with respect to the log [2, 3]:
The precision can be increased by including a part
of the event history in every state. A h-sequence
refinement considers the last h events as one state.
The size of the sequence refinement is captured in
the superscript of the transition system; i.e., Sh

L

denotes the transition system obtained from log L
under an h-sequence refinement. We omit the su-
perscript for history 1, thus SL is a DFG. Assume
a log L0 = {J} with one user journey J = ⟨a, b, a⟩,
the 2-sequence states of J are {⟨a⟩, ⟨a, b⟩, ⟨b, a⟩}.

The construction of the h-sequence refinement
transition system Sh

L from refined states is similar
to the construction of SL above (which uses the
original states). The activity of a transition is the

Springer Nature 2021 LATEX template

6 User Journey Games

last event in the targeted state’s history (so transi-
tions keep their unique action). Observe how S2

L0

resolves the loop in SL0
by including the histories.

However, not all loops can be removed using the
h-sequence refinement.

4.2 From graph to game
The transition system Sh

L is now transformed into
a user journey game Gh

L. Observe that the tran-
sition system captures the temporal ordering of
events but it does not directly differentiate the
messages sent by the user to the service provider
from those sent by the service provider to the user.
For simplicity, let us assume that this information
is either part of the events in the logs or known
in advance from domain knowledge concerning the
event universe. The mined transition system can
then be extended into a game by annotating the
actions that are (un)controllable.

5 Capturing user feedback in
user journey games

We extend the games derived from system logs
into weighted games by defining a gas function
reflecting user feedback. The gas function will be
automatically calculated and applied to the transi-
tions of the game, depending on the traversal and
entropy present in the system log. Informally, the
gas function captures how much “steam” the con-
sumer has left to continue the journey. With less
steam, the user is more likely to abort the jour-
ney and with more steam, the user is more likely
to complete the journey successfully. If the ser-
vice provider attempts to provide the best possible
service, its goal is to maximize gas in a journey.
The adversarial user aims for the weaknesses in
the journey and therefore minimizes the gas. For-
mally, the weight function w : E → R maps the
transitions E of a game to weights, represented as
reals. Given a log L and its corresponding game,
we compute the weight for every transition e ∈ E.

Since user journeys are inherently goal-
oriented, we distinguish successful and unsuccess-
ful journeys; the journeys that reach the goal are
successful and the remaining journeys are unsuc-
cessful. This is captured by a function majority :
E×L→ {−1, 1} that maps every transition e ∈ E
to {−1, 1}, depending on whether the action in the
transition appears in the majority of journeys in L

that are unsuccessful or successful, respectively.
Ties arbitrarily return −1 or 1.

Many actions might be part of both successful
and unsuccessful journeys. For this reason, we use
Shannon’s notion of entropy [45]. Intuitively, if an
action is always present in unsuccessful journeys
and never in successful ones, there is certainty in
this transition. The entropy is low, since we under-
stand the context in which this transition occurs.
In contrast, actions involved in both successful
and unsuccessful journeys have high entropy. The
entropy is calculated using

1. the number of occurrences of an event in the
transitions of successful journeys within the
system log L, denoted #pos

L e, and the num-
ber of transitions in unsuccessful ones, denoted
#neg

L e; and
2. the total number of occurrences of the event in
L, denoted #Le.

The entropy H of transition e given the system
log L is now defined as

H(e, L) =

−#pos
L e

#Le · log2(
#pos

L e

#Le)− #neg
L e

#Le · log2(
#neg

L e

#Le) .

The weight function w that computes the
weights of the transitions can now be defined in
terms of the entropy function, inspired by deci-
sion tree learning [43]. Given a system log L, the
weight of a transition e is given by

w(e) = ((1−H(e, L)) ·majority(e, L)− C) ·M .

The constant C represents an aversion bias and is
learned from the training set. It is used to model
a basic aversion against continuous interactions.
The sign of a transition depends on its majority.
If the transition is mostly traversed on successful
journeys, it is positive. Otherwise, it is negative.
The inverse entropy factor quantifies the uncer-
tainty of transitions. The constant M scales the
energy weight to integer sizes (our implementation
currently requires integer values, see Section 9).

The gas quantitatively reflects the history of
a journey, allowing us to not only compare the
weights of transitions but also to compare (partial)
journeys. The gas G of a journey J = ⟨a0, . . . , an⟩
with transitions e0, . . . en−1 is defined as the sum

Springer Nature 2021 LATEX template

User Journey Games 7

of the weights along the traversed transitions:

G(J) :=

n−1∑
i=0

w(ei) .

6 Finite unrolling of games
The generated weighted games may contain loops,
which capture unrealistic journeys (since no user
endures indefinitely in a service) and hinder model
checking. Therefore, the weighted games with
loops are transformed into acyclic weighted games
using a breadth-first search loop unrolling strategy
bounded in the number of iterations per loop. The
transformation is implemented in an algorithm
that preserves the original decision structure and
adds no additional final states.

The algorithm for k-bounded loop unrolling
(shown in Algorithm 1) returns an acyclic
weighted game, where each loop is traversed at
most k times. The unrolling algorithm utilizes a
breadth-first search from the initial state s0 in
combination with loop counting to build an acyclic
weighted game. In the algorithm, the state s de-
notes the current state that is being traversed. To
traverse the paths in the weighted game, we use a
queue Q to store the states that need to be tra-
versed, a set C containing all the cycles in the
graph (where each cycle is a sequence of states),
and the function allSimplePaths(G, s, T) that
returns all paths in the weighted game G from s
to any final state t ∈ T . The extended graph is
stored in the acyclic game G′. A state in a cycle
can be traversed if it has been visited less than k
times (see Lines 9–10). The function repetitions
checks the number of traversals. If the counter for
one cycle is k, the algorithm checks whether the
cycle can be partially traversed (see Lines 11–16).

Partial traversals guarantee that we reach a fi-
nal state without closing another loop. The partial
traversal does not increase the count of another
cycle to k+1 (Lines 14–16). Every state stores its
history (a sequence of visited states), which can be
retrieved using the function history. Line 14 in-
creases the current history by including a (partial)
path through the loop. This check iterates through
all paths from the current state to any final state.
If state t can be traversed, it is added to the acyclic
game (Lines 17–20). A copy t′ of t is added to the
queue Q, the transition (s, t′), its weight and actor

1

2

3

4 5

(a) Cyclic Game

(b) Acyclic Game

Figure 2: Unrolling Example.

are added to G′ using the function addTransi-
tion. If a final state is copied, the new set of final
states is updated (i.e., T ′ ← T ′∪{t′}). The result-
ing weighted game can be reduced. All copies of
states outside a cycle can be merged into the same
state. This can either be done after unrolling the
whole game or on the fly while unrolling.

6.1 Example
Figure 2 illustrates the unrolling algorithm (for
simplicity, we ignore transition weights and do not
distinguish controllable and uncontrollable actions
in the example). Starting from the cyclic weighted
game in Figure 2a, the algorithm with k = 1 gen-
erates the acyclic weighted game in Figure 2b. The
input contains two loops: C = {⟨2, 3⟩, ⟨2, 4, 3⟩}.

Springer Nature 2021 LATEX template

8 User Journey Games

Algorithm 1 k-bounded loop unrolling
Input: Weighted Game G = ⟨Γ, Ac, Au, E, s0, T, Ts, w⟩, constant k ∈ N+

Output: Acyclic Weighted Game G′ = ⟨Γ′, Ac, Au, E
′, s0, T

′, Ts, w
′⟩

1: Initialize G′ = ⟨∅, Ac, Au, ∅, s0, ∅, Ts, w⟩ and queue Q = [s0]
2: C ← {c | c is simple cycle in G}
3: while not empty(Q) do
4: state s← first(Q)
5: for t ∈ {t | (s, t) ∈ E} do
6: hist ← push(history(s), t)
7: allSmaller ← True
8: canTraverse ← False
9: if repetitions(c, hist) ≥ k for all cycle c ∈ C then

10: allSmaller ← False
11: end if
12: if !allSmaller then
13: P ← allSimplePaths(G, t, T)
14: for path p ∈ P do ▷ check whether cycle might be partially traversed
15: hist′ ← merge(hist, p)
16: if repetitions(c, hist′) ≤ k for all cycle c ∈ C then
17: canTraverse ← True ▷ cycle can be partially traversed
18: end if
19: end for
20: end if
21: if allSmaller ∨ canTraverse then
22: state t′ copy of t with history hist
23: push(Q, t′)
24: addTransition((s, t′), G′) ▷ Copies weight to w′ and actor to A′

c, A
′
u

25: end if
26: end for
27: end while
28: return G′

Starting at state 1, we can traverse two neigh-
bor states which both are part of the cycles.
Thus, both transitions are inserted in G′, and Q
is updated to ⟨2, 3⟩. Continuing with state 2, all
reachable transitions are again inserted as the cor-
responding cycles have not been fully traversed.
Names of copies of the states that are already
present once in the graph are incremented (the
first occurrence of state 3 is called 3, the second
3.1, the third 3.2, etc.) The algorithm continues
until the first loop 2, 3, 2 is closed. In this case, it
is not possible to traverse again to state 3 without
closing the loop ⟨2, 3⟩. Only state 4 and its corre-
sponding loop can be traversed (see Figure 2b, left
branch). As result of the state reduction, all final
states are merged into one (removing the copies
originally introduced by the algorithm).

6.2 Properties
Algorithm 1 constructs an acyclic user journey
game that preserves the decision structure of the
initial weighted game. By construction, unrolled
weighted games do not traverse cycles in the initial
game more than k times. Loops can be traversed
partially to ensure that every final state in the
acyclic weighted game is also a final state in the
initial weighted game. Only unreachable states
are excluded in the acyclic game. No further final
states or “dead ends” are introduced.

The following lemma expresses that Algo-
rithm 1 constructs an acyclic user journey game
that preserves the properties described above.

Lemma 1 Let G = ⟨Γ, Ac, Au, E, s0, T, Ts, w⟩ be
a user journey game, k ∈ N+ the loop unrolling

Springer Nature 2021 LATEX template

User Journey Games 9

constant, and G′ the unrolled game returned by Algo-
rithm 1 for inputs G and k. Then

1. G′ as acyclic.
2. No path in G′ traverses a loop via original

nodes in G more than k times .
3. Final states in G′ are copies from states in T .

Proof (sketch). Point 1 is ensured in the algorithm by
only inserting edges to fresh copies of states and never
to existing ones (Line 24).

Points 2 and 3 follow from the algorithm’s criterion
for inserting new states (Line 21): to add a state to the
unrolled game, either no loop is traversed more than k
times or there exists a path leading to a final state in
T that does not close any loop for the k + 1-th time.

□

The algorithm also preserves the local de-
cisions between controllable and uncontrollable
actions, so the strategies found in the unrolled
weighted game carry over to the original weighted
game. Observe that a game and its corresponding
unrolled game share final states only if the un-
rolled game is reduced by merging states that do
not occur in loops. Otherwise, the unrolled game
might contain various copies of the final states T .

7 Model checking user
journeys

In this section we describe how to model check
properties for user journeys and generate strate-
gies to improve user journeys, using acyclic
weighted games. The analysis of a weighted game
gives formal insights into the performance of a
service. We introduce generic properties that cap-
ture the user’s point of view on a user journey.
The analysis in this paper uses the Stratego
extension for Uppaal [22], which supports non-
deterministic priced games and stochastic model
checking. Stratego allows to model check reach-
ability properties within a finite number of steps,
when following a strategy (therefore the need for
acyclic games). Stratego constructs a strategy
that satisfies a property P , so that the controller
cannot be defeated by the non-deterministic envi-
ronment. We detail some strategies and properties
of interest for games derived from user journeys.

7.1 Guiding users to a target state
A company needs a suitable plan of (controllable)
actions for all possible (uncontrollable) user ac-
tions when guiding users through a service. We
define the following Uppaal Stratego strategy:

strategy goPos
= control: A<> Journey.finPos .

Model checking this property returns true if and
only if there exists a company-strategy goPos such
that the positive target state finPos, indicat-
ing that the journey is successful, is eventually
reached in all paths. The corresponding strategy
(given as a pseudo-code) can be produced with
the Uppaal Tiga command-line tool verifytga.
If the verification fails, the company should be
advised to simplify their service and offer more
support to avoid unsuccessful user journeys.

7.2 Analyzing user feedback
We can use the gas function and a liveness prop-
erty to analyze the desired accumulated feedback
at the end of successful user journeys:

Journey.finPos --> gas > 0 under goPos .

This property checks that in general users have
balancing experiences within their journeys, when
the company follows the goPos strategy.

We can also check the feedback levels along the
journey. The following property checks that a user
never falls below a defined constant feedback C:

control: A[] gas > C under goPos .

Fluctuations in the feedback level of users can be
revealed using simulations. Uppaal uses an im-
plicit model for the passage of time to guarantee
termination of statistical queries and simulations,
using an upper time-bound T, as specified in [22].
The following query simulates X runs through the
system using the goPos strategy, where each run
has T as a time-bound:

simulate [t<=T; X]{Journey.finPos, gas}
under goPos .

The time-bound is set to a value that guarantees
all runs to reach a final state.

Springer Nature 2021 LATEX template

10 User Journey Games

7.3 Analyzing user journey
trajectories

Reaching a final state in a journey with a positive
feedback does not ensure a satisfying journey. The
user might still visit every pitfall along the way. To
provide a satisfying journey, a company is among
others interested in minimizing the expected num-
ber of steps. A strategy minimizing the number of
steps can be defined as follows:

strategy goPosFast = minE(steps) [t<=T] :
<> Journey.finPos under goPos .

This strategy can additionally be used to examine
the expected lower bound of gas within a journey
and the expected maximum value of accumulated
gas at the end of a journey (denoted by finalGas):

E[t<=T; X] (min: gas) under goPosFast ,
E[t<=T; X] (max: finalGas) under goPosFast .

These values are computed with a time-bound of
T and over X runs. We denote the results of the
previous queries for a specified model by minGas
and maxFinalGas.

User journey games, generated from logs, can
be very detailed and complex. Therefore, we con-
sider how we can reduce complexity and simplify
the understanding of results, for example, during a
validation process, the results may need to be put
into context by domain experts. We can reduce
complexity by grouping various states into phases;
e.g., a sign-up phase may consist of the states in
a user journey game that captures sign-up events
in a service. We lift the analysis described above
to phases, e.g., to find out in which phase we en-
counter minGas or maxFinalGas. This lifting from
states to phases can be encoded in the model such
that every state lies in exactly one phase. Under a
h-history refinement, the encoding should capture
that a state belongs to a phase if the last state
refined in the h-sequence belongs to that phase.
The encoding of phases in states allows us to check
if, e.g., the minimum gas Min occurs in a specific
phase P by means of the following query:

control: A<> gas <= Min && phase == P
under goPos .

The value Min used in this query can be calculated
in advance, e.g., by means of the minGas query.

8 Sliding-window analysis for
journeys

The analyses discussed in the previous sections
inherently assume that the system logs are gen-
erated from an unchanged process; i.e., the data
is recorded under equivalent system settings. In
a fast-paced business setting, changes and up-
dates are constantly developed, integrated, and
evaluated. Recorded data may no longer be rep-
resentative of the current state of the system.
Nevertheless, practitioners are interested in the
effectiveness and impact of their changes, motivat-
ing the need for time-driven user-journey analysis.
The recorded data cannot be interpreted as one,
coherent data set but must be analyzed in corre-
spondence with their temporal information. Jour-
ney records before and after system-level changes
are not recorded from the same process: issues
observed in earlier journeys might be resolved at
later stages and other issues only appear in later
journeys. When analyzing massive system logs col-
lected over a long time, the impact of architectural
changes might be buried. Mixing journeys from
different data-generation processes skews the eval-
uation of changes and newly introduced features
in a system.

We now introduce steps to leverage the pre-
vious analysis method into a time-driven analysis
and consider points in time over the time domain
R+. Hence, we define time points for every user
journey, e.g. the start of the journey, and split the
log into sub-logs containing only journeys in the
same interval, e.g. all journeys starting within 10
days. For every sub-log, an individual user jour-
ney game is generated and stored in a sequence
of games. Model checking the sequence of games
individually returns a time series over the single
model checking results, revealing the impact of
changes in the user journey over time. Given a log
L, let I ⊂ R+ be a finite sequence of time-points
I = ⟨tp1, . . . , tpn⟩ with tpi ∈ R+; e.g., Idays con-
tains time-points for every 24 hours between the
first and last day of the timestamps present in L
(mapped into the domain of R+). Given a constant
window size µ ∈ R+, we let Wi = [tpi, tpi +µ]
denote a window that represents a time interval
spanning from time-point tpi ∈ I to tpi +µ.

Given an event a in a journey J , the time
function δ(J, a) denotes the timestamp of a in J

Springer Nature 2021 LATEX template

User Journey Games 11

Timeµ

Journeys

Figure 3: First window in sliding-window log.

(mapped into the domain of R+); e.g., the time-
stamp of the first or last event in a journey. The
sliding-window analysis can be adapted to focus
on different events by selecting other events as the
second argument to δ; e.g., users finishing their
journeys in the same window or users experiencing
a particular event in the same window. We ignore
the second argument to the function δ if we use the
first event in a journey a0 to select the timestamp
of the initial event in a journey J = ⟨a0, . . . , an⟩.
In the sequel, we focus on sliding-window anal-
ysis based on the initial event of the journeys,
and therefore, we write δ(J) when the second
argument is a0.

The sub-log Li ⊂ L, defined over the window
Wi, includes all journeys in L that are contained
in Wi, formally Li = {J ∈ L | δ(J) ∈ Wi}. Thus,
a journey J ∈ L is in Li if δ(J) is in the win-
dow Wi. We define a sliding-window log LI

µ =
⟨L1, . . . , L|I|⟩ to be a sequence of sub-logs over L,
where journeys are grouped based on the windows
Wi ranging over time stamps I and window size
µ.1 Observe that sliding-window logs contain com-
plete journeys; i.e. , journeys are not split by the
window size if they are not completed within a
window. Figure 3 shows (in red) the first sub-log
L1 of the sliding-window log W1 grouped by jour-
ney start time (the timestamp of the first event),
the top-most journey (in white) is not in L1 as it
starts outside the window size µ.

We analyze sliding-window logs to uncover
changes over time from the user’s perspective. For
every log Li in a sliding-window log LI

µ, we con-
struct the corresponding user journey game; the
resulting sequence of user journey games is de-
noted Gh, where h denotes the chosen h-sequence
refinement. Each user journey game might con-
tain loops and require unrolling to ensure that the
analysis of queries terminates. Given an unrolling

1In the sequel, we assume that the time function selects the
time of the first event of a journey and omit the time function
δ in the sliding-window log notation LI

µ.

parameter k, we construct Gh
k, which contains the

sequence of k-bounded loop-unrolled user journey
games from Gh.

The games of the sequence Gh
k are individu-

ally model checked, resulting in a time-series of
strategies and statistics describing the user jour-
neys. Queries might depend on each other; e.g.,
properties using the goPos strategy depend on
its prior successful establishment. In case goPos
cannot be established, all depending queries are
mapped by default to a predefined constant. As
multiple queries from a sequence of queries Q can
be used on every user journey game Gh

Li
∈ Gh

k,
the result is a series of vectors QGh

k
describing

the analysis of the user journey games over time.
Every query qi ∈ Q has a well-defined solution
space Si; e.g., control queries return strategies
that map states to actions, expectation queries
minE(steps) [t<=T] return values in R+ (ex-
pectation values with confidence intervals). Thus,
each result vector ν ∈ QGh

k
has |Q| entries, one re-

sult for each query qi. The space of ν is defined
by the solution spaces Si of the corresponding
queries qi, therefore ν : S1 × · · · × S|Q|. By com-
paring the analysis results in QGh

k
, we can gain

insights into the temporal changes occurring in the
user journeys of a system.

9 Implementing the pipeline
to analyze user journeys

This section describes the implementation of the
analysis pipeline detailed in Sections 4–8. We fo-
cus on the implementation decisions made along
the pipeline to facilitate the analysis. A source
repository for our work on user journey games is
available online [1].

The pipeline is implemented in Python. The
input to the pipeline is a system log of a service
provided by a company, and optionally a win-
dow size and time-points. The output is either
a single Uppaal model or a sequence of Up-
paal models (if the window size and time-points
are given). Sequences of models are generated
by repeatedly calling the single window construc-
tion for all sub-logs. The returned models can be
model checked by either the proposed properties
in Section 7 or by other custom-made properties
using Uppaal Stratego.

Springer Nature 2021 LATEX template

12 User Journey Games

9.1 Pipeline implementation for
single window logs

Here, we describe the implementation of the analy-
sis pipeline for a single log. We mine the transition
system from logs and then remove transitions that
were rarely traversed, to simplify the graph and
make it robust. Leemans et al. describe two ways
to build a robust transition system [38]: One can
(1) remove either transitions from the graph or
(2) remove journeys from the log and rebuild the
graph. For single window analysis, we use the ap-
proach (1) above, since removing journeys requires
larger datasets. This modification ensures that the
model only contains relevant journeys. Our imple-
mentation supports h-sequence refinements with
transition removals.

We enrich the graph with knowledge indicating
which actions are controllable and uncontrollable.
Since companies want to understand why on-
boarded users reach their goal or quit in the
middle of a journey, we add to the model two final
states representing a positive endpoint, finPos,
and a negative one, finNeg, respectively.

We generate a weighted transition system by
computing a weight for each transition, as dis-
cussed in Section 5. The factor M scales the
weights to integer sizes, required by Uppaal’s
model checker. However, given that we can sim-
plify the transition system, the logs might contain
journeys that are not re-playable in the graph.
Computing the gas of such journeys corresponds
to the alignment problem [31, 38]. The alignment
procedure consists of either allowing additional
steps in the log without counterparts in the model
or allowing steps in the model without steps in
the log. Since the simplification omits steps in the
model, it was here sufficient to use the informa-
tion given in the log, without inferring further
model steps. Optimal alignments can also be used
to compute the gas.

As a final step, we unroll the weighted game
with cycles, as described in Section 6, to obtain
an acyclic weighted game, which is the output
of the transformation and the input to Uppaal
for further analysis. Bounded constraints in the
properties are introduced to the unrolled model to
ensure termination.

9.2 Pipeline implementation for
sliding-window logs

For the sliding-window analysis, we use time func-
tion δ(J), mapping journeys J to their start times,
days between the first and the last journey as time-
points Idays, and a fixed window size µ, resulting
in a sliding-window log LIdays

µ , see Section 8.
The number of users may vary highly between
sub-logs Li, and many journeys contain rarely tra-
versed transitions. Thus, we use h-sequence refine-
ments without removing transitions to guarantee
connected models.

For every sub-log Li in LIdays
µ we generate a

new user journey game with h-sequence refine-
ment. Each of the resulting games is then k-times
unrolled. The unrolled game Gh

k is then model
checked with a sequence of Uppaal Stratego
queries Q.

10 Experiments
In this section we evaluate the pipeline for user
journey analysis from Section 9 experimentally.
We aim to answer the following research questions:
RQ1: Does the user journey game analysis

reveal actionable insights for stake-
holders?

RQ2: Can user journey games be used over
a time series of system logs to discover
changes in the user journey?

RQ3: How much does the experience of us-
ing the service differ from customer
to customer?

The evaluation was done on an industrial case
study from the company GrepS. We describe the
context for the system logs provided by GrepS in
Section 10.1, the experimental design and setup
for our experiments in Section 10.2 and the results
we obtained in Section 10.3. The results are dis-
cussed from the industrial perspective of GrepS in
Section 10.4 and threats to validity are considered
in Section 10.5.

10.1 Context
GrepS is a company that offers a research-based
service [9] to analyze and measure programming
skills for the Java programming language. Typi-
cal customers are organizations hiring or training
software developers. The users of the service are

Springer Nature 2021 LATEX template

User Journey Games 13

Timestamp · · · Metadata
5245944 · · · Registered
5780525 · · · Registered
6104714 · · · Activated
6104714 · · · Logged in: Web page

Figure 4: Extract of GrepS’ system logs.

developers who receive a request from a customer
organization to complete a skill analysis within a
given time frame, typically 1–2 weeks.

The service consists of a sign-up phase followed
by a phase in which users solve programming tasks
in an authentic programming environment, includ-
ing an instructional task and a practice task. The
service then analyses the users’ skills and asks
them to share the skill report with the customer.
In a successful use of the service, a user success-
fully completes three phases: (1) sign up, (2) solve
all programming tasks, and (3) review and share
the skill report. In an unsuccessful use of the ser-
vice, the user permanently stops using the service
or does not share the report with the customer.

GrepS provided two anonymized system logs
for our experiments:

• GL1 is a small system log recording users’ inter-
actions with the system during 49 days (released
in spring 2022, initially reported in [35]), and

• GL2 is a large system log spanning over more
than two years of users’ interactions with the
system (released in December 2022).

GL1 is not contained in GL2, since they span dif-
ferent time frames. The logs were provided in the
form of tabular data; only the fields Timestamp,
which gives the order of events, and Metadata,
containing meta-information on the kind of event,
were used to generate the weighted games.

Ties between concurrently recorded events can
be broken either arbitrarily, capturing different or-
der of execution for these concurrent events in the
model, or by inferring (implying) an order, e.g.
the order events are stored in the event log file,
thereby reducing the number of transitions in the
model. In our experiments, we decided to break
ties arbitrarily to capture different orders of execu-
tion and not assume additional expert knowledge
for the model generation that could give insights
about certain orders of events that are expected in
the journey. An extract of the system log is shown

in Figure 4. The full details of the data sets in the
log are given in the accompanying artifact.2

10.2 Experimental Design and Setup
To answer our research questions, GL1 was used
for the single-window analysis and GL2 for the
sliding-window analysis, respectively.

RQ1. We analyzed the user journey game gen-
erated from GL1. The outcomes of the analysis
are then discussed from the comapny’s perspective
in Section 10.4. The analyses of the user journey
game include:
RQ1-A: Observations of the weighted game,
RQ1-B: Observations of the model checking of

the properties, and
RQ1-C: Further recommendations for GrepS

to improve their service, based on the
analysis results.

The recommendations in RQ1-C form the ba-
sis for the discussion in Section 10.4.

RQ2. We analyzed the user journey games gen-
erated from GL2. We generated a sliding window
log LIdays

49 in which the window size for the slid-
ing window analysis was set to 49 days, the length
of the log GL1, and considered each day be-
tween the first and last journey as the time-points
(Idays). Comparing different window sizes reveals
that the 2-sequence refinement is sufficient to re-
duce the number of loops while generating games
with the least number of states, longer sequence
refinements increase the number of states and did
not contribute enough to the reduction of cycles.
We unrolled the resulting games, returning the
sequence of acyclic games G2

1, i.e. we construct
games with a 2-sequence history and an unrolling
parameter of 1.

We use all queries besides (2) and (3) from
Figure 5 as query sequence Q. The vector-
sequence QG2

1
contains the results from querying

the game sequence G2
1, and contains |LIdays

49 | vec-
tors ν of size 8, whereby the first and fifth element
in each ν contains the established strategies goPos
and goPosFast. As the models are automatically

2An artifact for the implementation and evaluation of the
single-window analysis pipeline is available: https://doi.org/
10.5281/zenodo.6962413. We will publish the sliding-window
analysis pipeline and the second system log as an artifact
accompanying this paper.

https://doi.org/10.5281/zenodo.6962413
https://doi.org/10.5281/zenodo.6962413

Springer Nature 2021 LATEX template

14 User Journey Games

strategy goPos = control: A<> Journey.finPos True
Journey.finPos --> gas > 0 under goPos False
control: A[] gas > -42 under goPos True
E[t<=100; 500] (max: steps) under goPos 27.5
E[t<=100; 500] (min: gas) under goPos -26.3
E[t<=100; 500] (max: finalGas) under goPos 65

strategy goPosFast = minE(steps) [t<=100] : <> Journey.finPos under goPos True
E[t<=100; 500] (max: steps) under goPosFast 20.9
E[t<=100; 500] (min: gas) under goPosFast -18.9
E[t<=100; 500] (max: finalGas) under goPosFast 36

Figure 5: Analysis of the weighed game generated from GL1.

generated, they do not necessarily allow for a guar-
anteeing strategy goPos; for this reason, we choose
default values not in the query’s solution space:−1
for non-negative results, e.g. maxFinalGas, and 1
for non-positive results, e.g. minGas. The analysis
consists of two parts:
RQ2-A: Identify sub-logs for which no guar-

anteeing strategy goPos could be es-
tablished, and

RQ2-B: Identify general insights gained from
model checking the game sequence
G2

1.

RQ3. We analyzed the user journey games gener-
ated from GL2 by filtering per customer company
the journeys contained in each sub-log in LIdays

49 ;
i.e., we grouped users applying to the same com-
pany and built sliding window logs for the three
largest customers which commissioned 78% of the
users in GL2. To compare the experiences of dif-
ferent customers with the overall experience, we
repeat experiments conducted for RQ2 on the
filtered event logs. We extend the analysis and
investigate the service phases in which users ex-
perience their minimum of gas to uncover the
customer-specific behavior of their users.

10.3 Results
RQ1. The observations in the generated user
journey game (RQ1-A) for GL1 and results from
simulations and model checking (RQ1-B) lead
to actionable insights concluded in improvement
recommendations for the service (RQ1-C).

RQ1-A. The generated cyclic user journey
game for GL1, which still contains loops, is shown

with events (or touchpoints) T and weighted tran-
sitions in Figure 6. We opt to remove transitions
with less than four traversals to ignore rare transi-
tions yet keep the graph connected. In the figure,
the transition thickness indicates how often a
transition was traversed and dashed lines repre-
sent uncontrollable transitions. Positive (negative)
transitions are green (respectively, red).

The derived weights already allow us to make
some interesting observations. The weighted game
shows negative weights (about −1 to −2) through
Phase 1 (T0–T5), up until the practice task has
been completed (T12) in Phase 2 (T6–T20). Af-
ter that, the weights are positive (about +1 to
+5) and increase steadily for each new task.
Phase 3 (T21–T26) also has positive weights
through the user journey; here, a developer logs
back into the web system after having com-
pleted all tasks (T19), waits for the report to be
ready (T21), and finally approves the sharing of
the report with GrepS’ customer (T26).

Phase 1 shows two negative weights for some
users that involve more touchpoints than what the
planned journey entails: (1) T4 captures an er-
ror where a virtual computer does not spin up
correctly thereby requiring the user to contact
support; (2) there are cyclical negative weights
between T6–T8 where a user starts receiving in-
structions for Phase 2, but stops and then returns
to the system again at a later time. Phase 3 also
has negative weights due to deviations from the
planned journey, for example when the user does
not login after the report is available (T24).

Springer Nature 2021 LATEX template

User Journey Games 15

Figure 6: The weighted game built from GL1.

The figure also shows a strong negative weight
(of −22) when a user does not submit the prac-
tice task in T11, resulting in a negative outcome,
a transition to finNeg. Seen from a user perspec-
tive, Figure 7 shows the four touchpoints where
most users stop using the service: 18% of all users
quit after finishing the practice task (T10), which
is twice that of users who stop after the first
(T12, 9%) and second task (T14, 9%); 12% of the
users do not want to share their report (T25).
The blue line shows how many users remain us-
ing the service in percent after each of the four
touchpoints.

RQ1-B. The accumulated feedback along the
paths of the journey supports the observations on
unsuccessful journeys (RQ1-A). Figure 8 shows
10 simulations with the goPos and goPosFast
strategies; the lines show the amount of gas (ac-
cumulated feedback) along the journey. We here
used k = 1 for the unrolling. For all simulations,
the gas has an initial dip with a steep increase af-
terwards. The results in Figure 5 summarize the
model checking and support the observations for
RQ1-A. Observe that the goPos strategy cannot
prevent the gas from falling below 0; in fact, it
can fall as low as −42 along the journey with an
expected minimum of −26.3.

Depending on the application context, multi-
ple factors can contribute to an optimized jour-
ney. The strategy goPosFast was introduced in
Section 7 as a refinement of goPos. It searches
for an optimal strategy towards a successful fi-
nal state, while minimizing the expected number
of steps. The lower part of Figure 5 evaluates
the queries under goPosFast. The simulations of
the refined strategy, in Figure 8, show a smaller
dip than with the goPos strategy. It improves the
expected minimum feedback by 7.4 units and re-
duces the expected length of the journey by 6.6
steps. The expected maximum final feedback is
also reduced from 65 to 36.

RQ1-C. From the company’s perspective, sev-
eral key takeaways have been identified from the
weighted game, the simulations, and the model
checking of properties:

• The instructional task and practice tasks during
Phase 2 should be integrated into a single task
that is more motivating for the user to complete.

Springer Nature 2021 LATEX template

16 User Journey Games

Figure 7: Events in unsuccessful journeys of GL1.

Figure 8: Uppaal simulations.

• Users that disconnect from the service for sev-
eral days after having progressed to the instruc-
tional, practice, or first task should be prompted
to continue by, e.g., automatically sending a
motivational email.

• The sign-up process should be simplified if
possible.

RQ2. We generated a sliding window analysis
for GL2. We answer the second research ques-
tion in two steps: RQ2-A analyzes the automatic
construction of the time series which requires
guaranteeing strategies, and RQ2-B groups the
resulting time series into regions of interest.

RQ2-A. For a positive user experience, the
company ought to guide the users to a positive
endpoint, supporting them in achieving their jour-
ney’s goal. We test if a guaranteeing strategy
exists in every sub-log, with a focus on the sub-logs
in which GrepS cannot guide users to a positive
outcome, i.e. goPos does not exist.

Figure 9: Development of users and goPos in
sliding-window log LIdays

49 .

Figure 9 shows the number of users in each
sub-log Li for the sliding-window log LIdays

49 . Here,
sub-log Li starts i days after the first journey in
GL2. The sub-logs in which goPos cannot be es-
tablished are marked with red crosses. GrepS can
establish a guaranteeing strategy for all sub-logs
except for sub-logs 140–189, which coincides with
the observed global peak of users. Further analysis
of the game sequence reveals that the previously
discussed technical error re-occurs after the com-
pletion of the first task (see RQ1-B). This behavior
is also observable at a later time in which it does
not hinder the construction of goPos.

Requiring a guaranteeing strategy reveals flaws
in the user journey: encountering technical er-
rors prevents users from progressing and favors
unsuccessful journeys.

RQ2-B. Sub-logs that allow for a guarantee-
ing strategy goPos are analyzed on their expected
number of steps throughout the journey, the min-
imum gas within the execution, minGas, and their
maximum final gas, maxFinalGas; each under
goPos and the refined strategy goPosFast (mini-
mizing the number of required steps). The model
checking results for QG2

1
are presented in Fig. 10

(results from strategies are not captured). Sub-
logs without a guaranteeing strategy are marked
with red crosses. Results under goPos are depicted
in the first row (see Figs. 10a–10c), and results un-
der goPosFast are depicted in the second row (see
Figs. 10d–10f).

The average number of steps under goPos
simulations is around 25, and under goPosFast
it is reduced by around 5 steps. These results

Springer Nature 2021 LATEX template

User Journey Games 17

(a) E(min: gas) u. goPos (b) E(max: steps) u. goPos (c) E(max: finalGas) u. goPos

(d) E(min: gas) u. goPosFast (e) E(max: steps) u. goPosFast (f) E(max: finalGas) u. goPosFast

Figure 10: Model checking results QG2
1
, improvements are highlighted with a green background span

and declines with a red background span.

align with what we previously observed while
analyzing GL1, see Fig. 5. Low gas in the sliding-
window log is captured by minGas and high gas
by maxFinalGas. With minGas ≥ 0, the gas never
drops below 0, thus all negative transitions are
timely balanced by positive ones. Significant in-
tervals in minGas are revealed through manual
analysis and marked in Fig. 10, improvements are
highlighted with a green background span and
declines with a red background span:

1. Sub-logs after the first 120 days show im-
provements under both strategies minGas and
maxFinalGas, respectively.

2. Sub-logs 270–320, 390–450, and 550–610 dis-
play that minGas suddenly drops under goPos
and goPosFast.

3. The expected number of steps steadily in-
creases in the first half of the recorded logs, and
then cycles around 25 steps, with an exception
in the later drops. The drops in minGas align
with changes in the expected number of steps
in the journey.

In between these drops, maxFinalGas peaks at dif-
ferent heights ranging from 200 to 400. Besides

these drops, GrepS is able to sustain the user jour-
neys on a constant level: minGas is often bounded
by 0 and maxFinalGas fluctuates around 200.

RQ3. From the 517 users in GL2, 78% are com-
missioned by three different customers: customers
c1, c2 and c3 commissioned 260, 96, and 46 users,
respectively, corresponding to 50%, 19% and 9%
of the total users. Figure 11 shows the distribution
of users belonging to customers c1, c2, and c3 in
relation to all users per sub-log. Observe the drift
in users: c2 commissions the largest share of users
initially, but stops after 200 days. From there on,
c1 commissions constantly 80% of the users. We
constructed three filtered sliding-window logs by
only considering users for the same customer: Lci

filters sub-logs from LIdays

49 to users from customer
ci ∈ {c1, c2, c3} only.

Figure 12 compares the distribution of success-
ful users per sub-log for the three customers with
respect to the general performance of all users,
showing that the users of customer c1 consistently
outperform those of customer c2.

The extended technical error (see RQ2-A) only
occurs for customer c1. Although customer c3

Springer Nature 2021 LATEX template

18 User Journey Games

Figure 11: Distribution of users by customer per
sub-log in LIdays

49 .

Figure 12: Distribution of successful users by cus-
tomer in LIdays

49 .

strongly varies in the number of commissioned
users, their average number of steps and minGas
are very stable, maxFinalGas, however, has a very
high variance. Customer c3 shows two drops in
minGas: one occurs slightly before the drop around
sub-log 300 and the other does not align with
previous observations. These two drops in per-
formance should be used to improve the service
offered to customer c3 and its users.

In RQ1 we observed that the phase in which
low gas is experienced coincides with the most de-
manding part of the user journey. We now shift the
analysis to the three phases of the user journey:
(1) sign-up, (2) task-solving, and (3) review. We
lift the query from states to phases by encoding
phases in the Uppaal model, such that minimum
gas is mapped to a phase, and differentiate the

severity of low gas; e.g., a minGas of 0 can be ex-
pected in the beginning of the journey, whereas
a −30 low in the review phase depicts a serious
problem at a late stage of the journey.

The low gas for customer c1 appears mainly
in the sign-up phase, customer-specific drops how-
ever move low gas into the task-solving or review
phase. The customer analysis reveals that the
maxFinalGas peak for customer c2 appears after
an improvement in minGas and maxFinalGas in
sub-logs 0–120, which is also accompanied by sta-
bility in minGas afterwards, after which customer
c2 stops to commission users. The low gas occurs
in the task-solving phase, favoring these sub-logs
for further analysis.

10.4 Evaluation
From the perspective of a company considering
automated analyses of user journeys, as proposed
in this paper, it is essential to assess whether the
proposed method yields actionable insights. The
results reported for RQ1 in Section 10.3 demon-
strated that user journey games derived from sys-
tem logs can discover weaknesses in designed user
journeys, and be used to improve and optimize
these journeys . The company needs to implement
additional actions in their service, which will im-
prove user satisfaction and reduce costs in terms
of resources. Further, the sliding window analyses
for RQ2 and RQ3 detected major technical chal-
lenges with the service at certain points in time
and showed that the user experience differs consid-
erably for the users from three major customers.
These results are evaluated by the third author, a
long-term GrepS employee with experience in user
and customer relations.

RQ1. The weighted game detects challenges early
in Phase 2; in fact, this is reassuring for our anal-
ysis, as prior work at GrepS has reported that the
users struggle more during the first three tasks [9].
However, a question that arises from our analysis
of the derived user journey game is whether good
user support during deviations from the planned
journey may result in better overall satisfaction
than if the planned journey had no deviations. It
seems plausible that unplanned journeys that in-
volve technical problems result in less motivated
users who are less likely to successfully complete
the journey. However, interactions with support

Springer Nature 2021 LATEX template

User Journey Games 19

may also result in additional service to the user
that yield positive weights in the overall game.

RQ2. We identified four separate periods to be of
primary interest, highlighted spans in Figs. 10a–
10f: one green (favorable) period, and three red
(negative) periods. The periods were detected
purely based on logs, no supplementary informa-
tion was available. We paraphrase the feedback
we got from the company on these four peri-
ods next. The initial favorable period occurred
when three full-time equivalent developers were
in an intensive development phase. The com-
pany was running out of funding at the time and
focused all its effort on testing out a business-
to-customer (B2C) version to secure new funding
by building an extension to its existing business-
to-business (B2B) solution. The favorable period
lasted until about one month after the money ran
out and all employees were laid off. The three
subsequent negative periods all occurred during
company-critical events where new funding was
attempted but failed. The first and second peri-
ods coincide with a point in time when the two
founders found a new (main) employer; the third
period coincides when the point in time when the
company’s IP was sold to the present owner. Over-
all, our method thus seems to be able to identify
both gradual technical system improvements as
well as hardships that a company might face, e.g.,
as a result of losing key personnel.

RQ3. It has become clear during this evaluation
is that the possibility of segmenting user jour-
neys into sub-groups is needed for companies to
make meaningful and timely changes to the soft-
ware and the overall service. It seems reasonably
clear that the three companies’ data-generating
mechanism (via users) is different, probably due to
differences in the customer hiring process. By com-
bining gas analysis (RQ2) with customer-specific
analysis (RQ3), the recommendation for customer
c1 would be to investigate potential problems with
the (first) sign-up phase closer. In contrast, cus-
tomer c2 has more issues during the (second) solve
task phase. Differences between customer compa-
nies in the developer’s capabilities and motivation
to complete each skill analysis may also explain
these differences in recommended actions.

10.5 Threats to Validity
We first consider threats to validity for each re-
search question.

RQ1. In the construction of the user journey
game, ties between concurrently recorded events
are broken arbitrarily, leading to the automated
discovery of different process models. In our ex-
periments, the results and insights obtained under
various generated models are comparable, includ-
ing the ones where we fixed the order of the
observed concurrent events.

RQ2. In the construction of the sliding-window
sub-logs, the choice of window size µ is a trade-off
between accuracy and generalization. The results
are more accurate with a smaller window size,
reflecting immediate temporal changes in the un-
derlying windows. We observe that the start and
end of the technical error are more detailed in
LIdays

25 than in LIdays

200 . However, structural changes
could be hidden away with small window sizes. We
could not observe structural changes with LIdays

25 ,
as the results show too many spurious changes.
With larger window sizes, e.g. LIdays

100 and LIdays

200 are
the 700 sub-logs divided into three notable ranges,
200–250, 250–450, and 450–700, each with steady
results. The varying results observed in LIdays

25 are
”smoothed”. Detailed results for mentioned win-
dow sizes are found in the repository [1]. Similarly,
the window size also affects the sliding-window
analysis performed for RQ3.

RQ3. After filtering the sliding window sub-logs
by company c1, c2, and c3, the resulting sub-logs
are significantly smaller than the original log. The
behavior of a few users thus has a large impact on
the general analysis of the respective company.

We now consider threats to the validity of our ex-
periment design. While GL1 and GL2 capture two
distinct time spans of different lengths, i.e. 49 days
and two years, the system logs are collected from
the same company. Thus, our evaluation needs to
be seen in the context of user journeys in digital
services. Furthermore, our insights were evaluated
from the third author’s perspective, and not em-
pirically. Therefore, our evaluation depends on his
own experience within the company GrepS.

Springer Nature 2021 LATEX template

20 User Journey Games

11 Discussion
In this section, we discuss two perspectives on
the work reported in this paper. First, its pos-
sible implications on industrial practice and how
practitioners work with user journeys. Second,
its possible implications on theory development
and how researchers work with formal methods.
In summary, we believe that automated analyses
techniques open for novel and less labor-intensive
ways of working with user journeys. We fur-
ther believe that data-driven model construction
combined with automated analysis techniques, as
investigated in our work, open up novel ways of
working with formal methods and novel applica-
tion domains for the techniques of our community.

11.1 Implications for industrial
practice

User journeys are an established method to gain
insights into the actual experiences of users. Un-
til now, user journeys have largely been built by
hand, collecting user feedback by means of, e.g.,
questionnaires to capture the user experience with
the journeys. Existing tools (e.g., [36, 42]) offer
limited support for automation that makes their
application in larger settings very challenging and
hinders the establishment of user-journey anal-
ysis as part of service development practice, as
illustrated in our motivating scenario (see Sect. 1).

Methods that can automate both the construc-
tion and analysis of user journeys, such as the
method proposed in this paper, open for a con-
tinuous assessment of the users’ experience with a
user journey as a service evolves. Our method uses
interactions recorded in logs to construct the user
journey game, which is then model checked for
user-centric properties (see Sect. 7), automating
major parts of the user-journey analysis, thereby
accelerating the user-journey construction and
analysis. For example, one could see this form of
user-journey analysis integrated in visual dash-
boards that display the runtime performance of a
service.

11.2 Implications for formal
methods

Formal methods offer many advanced techniques
for systematic model exploration and analysis.

Usually, models are created by hand and checked
against a desired property. In our work, we pro-
pose a procedure to automatically construct mod-
els from data sets. This is especially interesting
for data sets that evolve over time, such as sys-
tem logs, because it enables reuse of an analysis
technique over a stream of models. Specifically,
we have introduced a method for constructing
automata from system logs by means of process
mining techniques, enabling model checking to be
performed without manual model generation. By
considering the analysis of the stream of generated
models, this approach opens for analyzing changes
over time.

Data-driven model checking opens many inter-
esting problems, which are not well understood in
formal methods. The detection of changes in pro-
cesses, which has been central in our analyses of
different windows, is called concept drift detection
in process mining. The presented method detects
changes from the user’s perspective, abstracting
from system changes that do not impact the user
journey. Bose et al. discuss four different types of
concept drift [16]:

• sudden: a process is substituted by another
process,

• gradual : a new process supersedes the old one
and for a period of time both processes are
observable,

• recurring : processes reappear periodically,
• incremental : the process change is not instan-

taneous but gradual over time.

It would be interesting to understand how such
notions of concept drift in the underlying models
generally affect the results of formal analysis tech-
niques. In the use case considered in this paper, we
observed a gradual drift, witnessed by three low
gas periods in the sliding-window analysis. With a
larger system log, one could possibly detect recur-
ring changes, e.g., the re-establishment of previous
journey properties. Observe that to detect incre-
mental concept drifts, one would need analysis
techniques that relate multiple models.

Springer Nature 2021 LATEX template

User Journey Games 21

12 Conclusions and future
work

This paper introduces a novel analysis pipeline for
user journeys, based on the data-driven genera-
tion of formal models. Our generated models are
weighted games, where the weights reflect user ex-
perience. The model construction is not subject
to human inference but is built from system logs.
Both single games, derived from a log, and se-
quences of games, derived from a sliding window
view of a log, are considered. The paper proposes
a method to automatically analyze derived mod-
els to gain insights into the user journeys of a
service, by means of Uppaal Stratego queries
using the Uppaal model checker. To the best of
our knowledge, this is the first automatic analy-
sis pipeline using formal methods in the context
of service science and user journeys.

The proposed analysis pipeline was evaluated
on an industrial case study and revealed challenges
to the planned user journey of the service provider.
The analysis of the derived game demonstrated
that users’ experiences fall in their accumulated
feedback during the initial phases of the ser-
vice. Our recommendations were reviewed and
approved by an expert on user feedback in the
company. We further performed a sliding-window
analysis on a system log spanning two years, which
suggested that a number of changes had occurred
in the user journey. The company expert reviewed
the detected changes and found that they aligned
with key moments in the company’s history. We
finally showed that our analysis method can ana-
lyze user journeys for groups of users, filtering the
log that generates the weighted games, to improve
interaction with specific customer groups.

The work presented here opens many interest-
ing possibilities for further work, both in formal
methods and in service science. Our work so far
has assumed that users and service providers have
perfect knowledge of each other’s possible actions.
On the formal methods side, we therefore plan
to study imperfect information games for user
journeys with incomplete knowledge about user
actions in the setting of, e.g., PRISM-games [19].
Furthermore, our current work is restricted by a
fixed bound on loop unrolling; it would be inter-
esting to directly analyze cyclic models. On the
service science side, we plan to integrate our work

with existing modeling languages for user jour-
neys, such as CJML [27, 29], to automate the
analysis of user-journey models that are manually
reviewed today, and to provide feedback from our
analysis in the visual language of these models.
Finally, the analysis of sequences of formal mod-
els for concept drift [44] seems highly interesting
to us; a starting point here could be methods for
change point detection in a time-series by means
of cost functions [32].

Acknowledgments. The authors thank Ruben
Ernst (CTO of GrepS) for sharing data and
Steinar Haugen (eXOReaction) for feedback on
the use case evaluation. This work is part of the
Smart Journey Mining project, funded by the
Research Council of Norway (grant no. 312198).

References
[1] User Journey Games Repository.

https://github.com/smartjourneymining/
User-Journey-Games/releases/tag/
SoSym2023

[2] van der Aalst, W.M., Rubin, V., Verbeek,
E., van Dongen, B. F., Kindler, E., Gün-
ther, C. W.: Process mining: A two-step
approach to balance between underfitting
and overfitting. Software and Systems Mod-
eling 9(1): 87–111 (2010). https://doi.org/10.
1007/s10270-008-0106-z

[3] W. M. P. van der Aalst: Process Mining
- Data Science in Action. Springer (2016).
https://doi.org/10.1007/978-3-662-49851-4

[4] Baier, C., Katoen, J.P.: Principles of Model
Checking. The MIT Press (2008)

[5] Banham, A., Leemans, S. J., Wynn, M. T.,
Andrews, R.: xPM: a framework for pro-
cess mining with exogenous data. In: Process
Mining Workshops: ICPM 2021, pp. 85–97.
Springer (2022)

[6] Banham, A., Leemans, S. J., Wynn, M. T.,
Andrews, R., Laupland, K. B., Shinners,
L.: xPM: Enhancing exogenous data visi-
bility. Artificial intelligence in medicine,
133: 102409 (2022). https://doi.org/10.1016/
j.artmed.2022.102409

https://github.com/smartjourneymining/User-Journey-Games/releases/tag/SoSym2023
https://github.com/smartjourneymining/User-Journey-Games/releases/tag/SoSym2023
https://github.com/smartjourneymining/User-Journey-Games/releases/tag/SoSym2023
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1016/j.artmed.2022.102409
https://doi.org/10.1016/j.artmed.2022.102409

Springer Nature 2021 LATEX template

22 User Journey Games

[7] Behrmann, G., Cougnard, A., David, A.,
Fleury, E., Larsen, K. G., Lime, D.:
UPPAAL-Tiga: Time for playing games!
In: Proc. 19th Intl. Conf. on Computer
Aided Verification (CAV 2007)). Lecture
Notes in Computer Science 4590, pp. 121–
125. Springer (2007). https://doi.org/10.
1007/978-3-540-73368-3_14

[8] Berendes, C. I., Bartelheimer, C., Betzing,
J. H., Beverungen, D.: Data-driven customer
journey mapping in local high streets: A
domain-specific modeling language. In: Proc.
Intl. Conf. on Information Systems ICIS 2018.
Association for Information Systems (2018)

[9] Bergersen, G. R., Sjøberg, D. I. K., Dybå,
T.: Construction and validation of an in-
strument for measuring programming skill.
IEEE Transactions on Software Engineering
40(12): 1163–1184 (2014) https://doi.org/10.
1109/TSE.2014.2348997

[10] Bernard, G., Andritsos, P.: CJM-ex: Goal-
oriented exploration of customer journey
maps using event logs and data analytics. In:
Proc. BPM Demo Track and BPM Disser-
tation Award CEUR Workshop Proceedings
1920. CEUR-WS.org (2017)

[11] Bernard, G., Andritsos, P.: A process mining
based model for customer journey mapping.
In: Proc. CAiSE Forum 2017 CEUR Work-
shop Proceedings 1848, pp. 49–56. CEUR-
WS.org (2017)

[12] Bernard, G., Andritsos, P.: CJM-ab: Ab-
stracting customer journey maps using pro-
cess mining. In: Information Systems in the
Big Data Era - Proc. CAiSE Forum 2018.
Lecture Notes in Business Information Pro-
cessing 317, pp. 49–56. Springer (2018). https:
//doi.org/10.1007/978-3-319-92901-9_5

[13] Bernard, G., Andritsos, P.: Contextual and
behavioral customer journey discovery using
a genetic approach. In: Proc. 23rd Euro-
pean Conference on Advances in Databases
and Information Systems (ADBIS 2019). Lec-
ture Notes in Computer Science 11695, pp.
251–266. Springer (2019). https://doi.org/10.
1007/978-3-030-28730-6_16

[14] Bertolini, C., Liu, Z., Srba, J.: Verifi-
cation of timed healthcare workflows us-
ing component timed-arc petri nets. In:
Foundations of Health Information Engineer-
ing and Systems: (FHIES 2012). Lecture
Notes in Computer Science 7789, pp. 19–
36. Springer (2013). https://doi.org/10.1007/
978-3-642-39088-3_2

[15] Bitner, M. J., Ostrom, A. L., Morgan, F. N.:
Service blueprinting: A practical technique
for service innovation. California Manage-
ment Review 50(3): 66–94 (2008). https://
doi.org/10.2307/41166446

[16] Bose, R.J.C., van der Aalst, W.M., Žliobaitė,
I., Pechenizkiy, M.: Dealing with concept
drifts in process mining. IEEE Trans. Neu-
ral Networks Learn. Syst. 25(1): 154–
171 (2013). https://doi.org/10.1109/TNNLS.
2013.2278313

[17] Bouyer, P., Cassez, F., Fleury, E., Larsen,
K. G.: Optimal strategies in priced timed
game automata. In: Proc. 24th Intl. Conf.
on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS
2004). Lecture Notes in Computer Science
3328, pp. 148–160. Springer (2004). https:
//doi.org/10.1007/978-3-540-30538-5_13

[18] Bouyer, P., Fahrenberg, U., Larsen, K. G.,
Markey, N.: Quantitative analysis of real-time
systems using priced timed automata. Com-
mun. ACM 54(9): 78–87 (2011). https://doi.
org/10.1145/1995376.1995396

[19] Chen, T., Forejt, V., Kwiatkowska, M.,
Parker, D., Simaitis, A.: PRISM-games:
A Model Checker for Stochastic Multi-
Player Games. In: Proc. Tools and Al-
gorithms for the Construction and Anal-
ysis of Systems (TACAS). Lecture Notes
in Computer Science 7795, pp. 185–191.
Springer (2013). https://doi.org/10.1007/
978-3-642-36742-7_13

[20] Crosier, A., Handford, A.: Customer journey
mapping as an advocacy tool for disabled
people: A case study. Social Marketing Quar-
terly 18(1): 67–76 (2012). https://doi.org/10.
1177/1524500411435483

https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1109/TSE.2014.2348997
https://doi.org/10.1109/TSE.2014.2348997
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-030-28730-6_16
https://doi.org/10.1007/978-3-030-28730-6_16
https://doi.org/10.1007/978-3-642-39088-3_2
https://doi.org/10.1007/978-3-642-39088-3_2
https://doi.org/10.2307/41166446
https://doi.org/10.2307/41166446
https://doi.org/10.1109/TNNLS.2013.2278313
https://doi.org/10.1109/TNNLS.2013.2278313
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1177/1524500411435483
https://doi.org/10.1177/1524500411435483

Springer Nature 2021 LATEX template

User Journey Games 23

[21] David, A., Jacobsen, L., Jacobsen, M., Jør-
gensen, K., Møller, M., Srba, J.: TAPAAL
2.0: integrated development environment for
timed-arc Petri nets. In: Proc. 18th Intl.
Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS
2012). Lecture Notes in Computer Science
7214, pp. 492–497. Springer (2012). https:
//doi.org/10.1007/978-3-642-28756-5_36

[22] David, A., Jensen, P. G., Larsen, K. G.,
Mikučionis, M., Taankvist, J. H.: Uppaal
Stratego. In: Proc. 21st Intl. Conf. on Tools
and Algorithms for the Construction and
Analysis of Systems (TACAS 2015). Lec-
ture Notes in Computer Science 9035, pp.
206–211. Springer (2015). https://doi.org/10.
1007/978-3-662-46681-0_16

[23] Eckerson, W.W.: Performance dashboards:
measuring, monitoring, and managing your
business. John Wiley & Sons, 2010

[24] Følstad, A., Kvale, K.: Customer
journeys: A systematic literature re-
view. Journal of Service Theory
and Practice 28(2): 196–227 (2018).
https://doi.org/10.1108/JSTP-11-2014-0261

[25] Fornell, C., Mithas, S., Morgeson, F. V., Kr-
ishnan, M.: Customer satisfaction and stock
prices: High returns, low risk. Journal of Mar-
keting 70(1): 3–14 (2006). https://doi.org/
10.1509/jmkg.70.1.003.qxd

[26] Halvorsrud, R., Haugstveit, I. M., Pultier,
A.: Evaluation of a modelling language for
customer journeys. In: Proc. Symposium on
Visual Languages and Human-Centric Com-
puting (VL/HCC 2016), pp. 40–48. IEEE
Computer Society (2016). https://doi.org/10.
1109/VLHCC.2016.7739662

[27] Halvorsrud, R., Kvale, K., Følstad, A.: Im-
proving service quality through customer
journey analysis. Journal of Service Theory
and Practice 26(6): 840–867 (2016). https:
//doi.org/10.1108/JSTP-05-2015-0111

[28] Halvorsrud, R., Mannhardt, F., Johnsen,
E. B., Tapia Tarifa, S.L.: Smart journey
mining for improved service quality. In:

Proc. IEEE International Conference on
Services Computing (SCC 2021), pp. 367–
369. IEEE (2021). https://doi.org/10.1109/
SCC53864.2021.00051

[29] Halvorsrud, R., Sanchez, O.R., Boletsis, C.,
Skjuve, M.: Involving users in the develop-
ment of a modeling language for customer
journeys. Software and Systems Modeling,
pp. 1–30. Springer (2023). https://doi.org/
10.1007/S10270-023-01081-W

[30] Harbich, M., Bernard, G., Berkes, P.,
Garbinato, B., Andritsos, P.: Discovering
customer journey maps using a mixture of
markov models. In: Proc. 7th Intl. Sympo-
sium on Data-driven Process Discovery and
Analysis (SIMPDA 2017). CEUR Workshop
Proceedings 2016, pp. 3–7. CEUR-WS.org
(2017), http://ceur-ws.org/Vol-2016/paper1.
pdf

[31] Jagadeesh Chandra Bose, R.P., van der
Aalst, W.M.: Trace alignment in process
mining: Opportunities for process diagnos-
tics. In: Proc. 8th Intl. Conf. on Busi-
ness Process Management (BPM 2010). Lec-
ture Notes in Computer Science 6336, pp.
227–242. Springer (2010). https://doi.org/10.
1007/978-3-642-15618-2_17

[32] Killick, R., Fearnhead, P., Eckley, I.A.: Op-
timal detection of changepoints with a linear
computational cost. Journal of the American
Statistical Association 107(500): 1590–1598
(2012).

[33] Kobialka, P., Mannhardt, F., Tapia Tarifa,
S. L., Johnsen, E. B.: Building user jour-
ney games from multi-party event logs. In:
Proc. 3rd Intl. Workshop on Event Data and
Behavioral Analytics (EdbA 2022). Lecture
Notes in Business Information Processing
468, pp. 71–83. Springer (2022). https://doi.
org/10.1007/978-3-031-27815-0_6

[34] Kobialka, P., Schlatte, R., Bergersen, G. R.,
Tapia Tarifa, S. L., Johnsen, E. B.: Simu-
lating user journeys with active objects. In:
Active Object Languages: Current Research
Trends. Lecture Notes in Computer Science
14360. Springer (2023), to appear

https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1108/JSTP-11-2014-0261
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1109/VLHCC.2016.7739662
https://doi.org/10.1109/VLHCC.2016.7739662
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1109/SCC53864.2021.00051
https://doi.org/10.1109/SCC53864.2021.00051
https://doi.org/10.1007/S10270-023-01081-W
https://doi.org/10.1007/S10270-023-01081-W
http://ceur-ws.org/Vol-2016/paper1.pdf
http://ceur-ws.org/Vol-2016/paper1.pdf
https://doi.org/10.1007/978-3-642-15618-2_17
https://doi.org/10.1007/978-3-642-15618-2_17
https://doi.org/10.1007/978-3-031-27815-0_6
https://doi.org/10.1007/978-3-031-27815-0_6

Springer Nature 2021 LATEX template

24 User Journey Games

[35] Kobialka, P., Tapia Tarifa, S.L., Bergersen,
G.R., Johnsen, E.B.: Weighted games for user
journeys. In: Proc. 20th Intl. Conf. Software
Engineering and Formal Methods (SEFM
2022). Lecture Notes in Computer Science
13550, pp. 253–270. Springer (2022). https:
//doi.org/10.1007/978-3-031-17108-6_16

[36] Lammel, B., Korkut, S., Hinkelmann, K.:
Customer experience modelling and analysis
framework a semantic lifting approach for an-
alyzing customer experience. In: Proc. 6th
Intl. Conf. on Innovation and Entrepreneur-
ship (IE 2016). GSTF (2016)

[37] Larsen, K. G., Pettersson, P., Yi, W.: UP-
PAAL in a nutshell. Int. J. Softw. Tools Tech-
nol. Transf. 1(1-2): 134–152 (1997). https:
//doi.org/10.1007/s100090050010

[38] Leemans, S. J. J., Poppe, E., Wynn, M.T.:
Directly follows-based process mining: Explo-
ration & a case study. In: Intl. Conf. Pro-
cess Mining (ICPM 2019). pp. 25–32. IEEE
(2019). https://doi.org/10.1109/ICPM.2019.
00015

[39] Legay, A., Delahaye, B., Bensalem, S.: Statis-
tical model checking: An overview. In: Proc.
First Intl. Conf. on Runtime Verification (RV
2010). Lecture Notes in Computer Science
6418, pp. 122–135. Springer (2010). https:
//doi.org/10.1007/978-3-642-16612-9_11

[40] Plotkin, G. D.: A structural approach to op-
erational semantics. J. Log. Algebraic Meth-
ods Program. 60-61: 17–139 (2004)

[41] Razo-Zapata, I.S., Chew, E.K., Proper, E.:
VIVA: A visual language to design value
co-creation. In: 20th Conf. on Business Infor-
matics (CBI), pp. 20–29. IEEE (2018). https:
//doi.org/10.1109/CBI.2018.00012

[42] Rosenbaum, M.S., Otalora, M.L., Ramírez,
G.C.: How to create a realistic customer
journey map. Business Horizons 60(1):
143–150 (2017). https://doi.org/10.1016/j.
bushor.2016.09.010

[43] Russell, S.J., Norvig, P.: Artificial Intelli-
gence: A Modern Approach. Pearson (2020)

[44] Sato, D. M. V., De Freitas, S. C., Barddal,
J. P., Scalabrin, E. E.: A survey on concept
drift in process mining. ACM Computing
Surveys (CSUR) 54(9): 1–38 (2021)

[45] Shannon, C.E.: A mathematical theory of
communication. The Bell System Technical
Journal 27(3): 379–423 (1948). https://doi.
org/10.1002/j.1538-7305.1948.tb01338.x

[46] Terragni, A., Hassani, M.: Analyzing cus-
tomer journey with process mining: From
discovery to recommendations. In: Proc.
6th Intl. Conf. on Future Internet of
Things and Cloud (FiCloud 2018), pp. 224–
229. IEEE (2018). https://doi.org/10.1109/
FiCloud.2018.00040

[47] Terragni, A., Hassani, M.: Optimizing cus-
tomer journey using process mining and
sequence-aware recommendation. In: Proc.
34th Symposium on Applied Computing
(SAC 2019), pp. 57–65. ACM Press (2019).
https://doi.org/10.1145/3297280.3297288

[48] Thrane, C., Fahrenberg, U., Larsen, K.G.:
Quantitative analysis of weighted transition
systems. Journal of Logic and Algebraic Pro-
gramming 79(7): 689–703 (2010). https://
doi.org/10.1016/j.jlap.2010.07.010

[49] Tueanrat, Y., Papagiannidis, S., Alamanos,
E.: Going on a journey: A review of the cus-
tomer journey literature. Journal of Business
Research 125: 336–353 (2021). https://doi.
org/10.1016/j.jbusres.2020.12.028

[50] Vandermerwe, S., Rada, J.: Serviti-
zation of business: adding value by
adding services. European Management
Journal 6(4): 314–324 (1988). https:
//doi.org/10.1016/0263-2373(88)90033-3

https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
https://doi.org/10.1109/ICPM.2019.00015
https://doi.org/10.1109/ICPM.2019.00015
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1109/CBI.2018.00012
https://doi.org/10.1109/CBI.2018.00012
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/FiCloud.2018.00040
https://doi.org/10.1109/FiCloud.2018.00040
https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1016/j.jlap.2010.07.010
https://doi.org/10.1016/j.jlap.2010.07.010
https://doi.org/10.1016/j.jbusres.2020.12.028
https://doi.org/10.1016/j.jbusres.2020.12.028
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1016/0263-2373(88)90033-3

	Introduction
	Related work
	Preliminaries
	From system logs to games
	From system log to graph
	From graph to game

	Capturing user feedback in user journey games
	Finite unrolling of games
	Example
	Properties

	Model checking user journeys
	Guiding users to a target state
	Analyzing user feedback
	Analyzing user journey trajectories

	Sliding-window analysis for journeys
	Implementing the pipeline to analyze user journeys
	Pipeline implementation for single window logs
	Pipeline implementation for sliding-window logs

	Experiments
	Context
	Experimental Design and Setup
	Results
	Evaluation
	Threats to Validity

	Discussion
	Implications for industrial practice
	Implications for formal methods

	Conclusions and future work
	Acknowledgments

