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Abstract. Symbolic execution is a powerful technique for program anal-
ysis. However, the formal semantics underlying symbolic execution is
often developed on an ad-hoc basis and decoupled from the concrete
semantics of the programming language. To overcome this issue, we in-
troduce symbolic SOS : a rule format that allows us to simultaneously
specify concrete and symbolic operational semantics. We prove that sym-
bolic semantics, when generated from symbolic SOS, is both correct and
complete with respect to the corresponding concrete semantics. The ap-
proach relies only on an algebraic signature of the source language, and
is thus language-independent.

1 Introduction

Symbolic execution is an established program analysis technique with a long
history [10, 15, 16], that is widely used for bug finding, verification and even
program synthesis [1, 3, 11, 19, 21]. More recently, the systematic study of the
formal foundations of symbolic execution in its own right has gained increasing
interest [2, 9, 18, 24]. In particular, De Boer and Bonsangue [8, 9] introduce the
notions of correctness and completeness, formalizing a correspondence between
symbolic execution and concrete program execution.

Proving that a given symbolic semantics is correct and complete, however, is a
tedious task that would benefit from automation. This paper provides the basis
for such automation by answering the following question: what are sufficient
conditions for a language specification to define a symbolic semantics that is
correct and complete by design? We take language specifications to be defined in
Structural Operational Semantics (SOS) [20,25], a standard formalism to specify
programming language semantics as collections of inference rules. Our goal is to
extract, for a given language with an operational semantics expressed as an SOS
specification, a correct and complete symbolic semantics.
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Our starting point is the GSOS rule format [5]. The syntactic restrictions on
rules in GSOS specifications ensure that the resulting semantics is well-defined
and compositional with respect to bisimilarity. The GSOS format was later gen-
eralized by Turi and Plotkin into abstract GSOS [25], which formalizes spec-
ifications through interaction between algebra (representing syntax) and coal-
gebra (representing transition systems). Goncharov et al. have recently intro-
duced stateful structural operational semantics (SSOS) [13], which adapts ab-
stract GSOS to a stateful setting.

In order to automatically obtain symbolic semantics from SOS specifications,
we refine SSOS to symbolic SOS. A symbolic SOS specification defines both a
concrete and a symbolic operational semantics, in terms of two (small-step)
transition systems. Our main result is that this symbolic semantics is always
correct and complete with respect to the concrete semantics. Any programming
language defined in the symbolic SOS format thereby comes equipped with a
corresponding correct and complete symbolic semantics. To prove this general
correspondence result, we introduce the notion of syncrete bisimulation, which
gives a sufficient condition for correctness and completeness. We then show that
for every symbolic SOS specification, the induced concrete and symbolic seman-
tics are bisimilar, and therefore the symbolic semantics is correct and complete.

Contributions In summary, this paper introduces: (i) the symbolic SOS rule for-
mat (Section 4) from which both a concrete and a symbolic semantics can be
derived; (ii) the notion of syncrete bisimulation, which provides a coinductive
proof technique for correctness and completeness (Section 6); and (iii) a justifi-
cation for the rule format (Theorem 1) stating that the two derived semantics
from a symbolic SOS specification are always syncretely bisimilar.

2 Overview

This section summarizes the technical development and presents our key results.
We also introduce our running example: the imperative toy language While.
While serves as a minimal concrete example to illustrate our results, but the
approach is language-independent. In Section 7, we consider additional common
programming constructs, to showcase the power of our approach.

Example 1 (The Syntax of While). The syntax of While is given by three gram-
mars for expressions, Boolean expressions and program statements. Let us con-
sider the following grammar for expressions and Boolean expressions:

e ::= x | n | e+ e | e− e | e ∗ e b ::= ⊤ | ¬b | b ∧ b | e < e | e = e

where x ∈ X ranges over program variables and n ∈ Z over integers. The syntax
of the While programming language is given by the grammar

p ::= Skip | x:= e | p # p | if b p p | while b p

These program statements represent inaction, assignments, sequencing, branch-
ing, and unbounded iteration.
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The semantics of While can be specified using an SOS format to define a
transition system that formalizes the evolution of program configurations. In
particular, the SSOS format [13] considers pairs (p, s), where p is the program to
be executed and s is a state. Usually, states associate values to program variables.
Consider, for example, the following rules for sequencing and assignment:

(p, s) ↓c s′

(p # q, s) −→c (q, s
′) (x:= e, s) ↓c s[x 7→ s(e)]

The transition relation −→c denotes one step of concrete execution, evolving
to a new program and state, and ↓c denotes termination. The subscript c here
emphasizes that system states are concrete. With [x 7→ s(e)], an assignment
updates the value of variable x to s(e), which is the expression e evaluated
in the state s according to a standard interpretation of arithmetic operations.
Each rule actually represents a (potentially infinite) family of rules, one for each
state. Together, these two (families of) rules describe a concrete execution model
consisting of sequences of assignments to program variables.

For symbolic execution we may also define a symbolic semantics, again using
the SSOS format. This is defined as a transition relation between states σ which
are substitutions, i.e., they associate expressions to variables. The symbolic state
moreover contains a set of path constraints which we add later. Symbolic rules are
often identical to their concrete counterpart, up to the interpretation of states.
Indeed, consider the analogous symbolic rules for sequencing and assignments:

(p, σ) ↓s σ′

(p # q, σ) −→s (q, σ′)
(x:= e, σ) ↓s σ[x 7→ σ(e)]

Here, the symbolic transition relation −→s denotes one step of symbolic execu-
tion, evolving to a new program and symbolic state, and ↓s denotes termination.

The rules look identical to their concrete counterparts, but the state updates
differ subtly. While the concrete rule updates the state to map the variable x to
a new value, namely the expression e evaluated in state s, the symbolic rule up-
dates the state to map the variable x to a new expression: σ(e) is the expression e
with all variables substituted according to σ.

For symbolic execution to be useful, it must indeed be an abstraction of the
concrete execution. That is, informally, for each concrete step there must be a
symbolic step whose final state describes the state update of the concrete step.
For some rules in concrete execution, however, it is unclear what the matching
symbolic step should look like. Consider the concrete rules for branching:

s ⊨ b
(if b p q, s) −→c (p, s)

s ⊨ ¬b
(if b p q, s) −→c (q, s)

These rules express that the program if b p q evolves to p if s satisfies b, and
to q otherwise; the state s remains unaltered in either case. These rules are
deterministic: branching is resolved by checking whether or not states satisfy
the Boolean expression b, guarding the control-flow of the program.
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From a symbolic state, however, the question of whether the symbolic state
satisfies b cannot be resolved. We may enable both transitions

(if b p q, σ) −→s (p, σ) (if b p q, σ) −→s (q, σ)

rendering the symbolic transition relation non-deterministic. Starting from a
single state, therefore, a program generates many different sequences of transition
steps, called paths. In contrast, concrete execution generates a single path. So
which symbolic execution path simulates the concrete execution path?

To answer this question, states in symbolic execution are enhanced with a
path condition and the transition relation now relates triples of programs, states,
and a path condition. Path conditions aggregate the Boolean conditions that
guide a program’s control flow under the current substitution. In the case of
conditional branching, this is realized through the following two rules:

(if b p q, σ, φ) −→s (p, σ, φ ∧ σ(b)) (if b p q, σ, φ) −→s (q, σ, φ ∧ σ(¬b))

Both steps augment the path condition by substituting for the variables x their
associated expressions σ(x) in the expressions b and ¬b.4 The resulting system
is still technically non-deterministic, but the path condition “determinizes” the
symbolic execution by specifying exactly which concrete executions it simulates.

To argue that the path condition of a symbolic execution path is indeed a pre-
condition for concrete executions, the two types of executions are connected by
proving correctness and completeness. We define these notions following De Boer
and Bonsangue [9]. Below, the initial configuration (σ0, φ0) = (id,⊤) consists of
the identity substitution σ0 on variables and the Boolean truth formula ⊤.

Correctness. Symbolic execution is correct with respect to concrete execution
if all symbolic execution paths

(p0, σ0, φ0) −→s (p1, σ1, φ1) −→s . . . −→s (pk, σk, φk) (1)

simulate the concrete execution paths from (p0, s0) for which s0 ⊨ φk. Formally,

(p0, s0 • σ0) −→c (p1, s0 • σ1) −→c . . . −→c (pk, s0 • σk) (2)

is the unique concrete execution path starting from p0 and s0 ⊨ φk. Here, s • σ
denotes evaluation of s after substitution σ—this is made formal in Definition 5.

Completeness. Symbolic execution is complete with respect to concrete exe-
cution if every concrete execution path

(p0, s0) −→c (p1, s1) −→c . . . −→c (pk, sk) (3)

4 We assume that this always results in a Boolean expression; abstracting from
program-level type correctness.
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is simulated by a symbolic execution path as in Equation (1), whose resulting
path conditions are satisfied by s0, i.e., s0 ⊨ φj for all j ∈ [0..k].

Correct- and completeness are properties of symbolic execution that are de-
fined with respect to the concrete semantics: correctness is when every symbolic
execution path corresponds to a realizable concrete computation, and complete-
ness is when all concrete paths are represented by some symbolic path. In the
context of program analysis, on the other hand, correctness is about coverage
and completeness is about precision [2, 9].

The process of defining concrete and symbolic semantics separately and then
proving correctness and completeness is cumbersome. As observed, the symbolic
and concrete rules are (almost) identical, leading to our key question:

Question: Can we obtain correct and complete symbolic semantics directly from
a language specification?

We answer this question by defining a symbolic SOS rule format. A key in-
sight for our work is the observation that both concrete and symbolic transition
systems can arise from the same underlying specification, if this specification
is sufficiently structured to obtain both semantics. In particular, the resulting
state needs to be carefully constructed to ensure symbolic simulation, and care
must be taken to allow building a path condition.

In symbolic SOS specifications (Section 4), states are meta-variables, i.e.,
placeholders for both concrete and symbolic states. In Section 5 we make explicit
how the concrete semantics is derived from a symbolic SOS specification. Then,
in Section 6, we derive the symbolic semantics and we define the notion of
syncrete bisimulations. Crucially, we show that the derived semantics are related
by a syncrete bisimulation relation, ensuring both correctness and completeness.

3 Preliminaries

For our programming language, we take a signature (Σ,E, P,B, ♯, β) and a fixed
set of program variables X . The signature consists of ways to generate (i) pro-
grams using operators in Σ; (ii) expressions using E-operators; (iii) predicates
using P ; and (iv) Boolean expressions using B. Every operator has some arity
given by ♯ : Σ + E + P +B → N. The meaning of β is explained below.

For any set X, write EX for the set of terms over X using operations in E; we
call these expressions overX. Then EX is the set of program expressions, used in,
e.g., assignments. With V a set of values (integers, rationals, lists, etc.), a family
ε of maps (εf : V♯(f) → V)f∈E interprets E-operators. The inductive extension ε
of ε over itself, i.e., ε : EV → V with ε(v) = ε(v), v ∈ V and ε(f(e1, . . . , e♯(f)) =
εf(ε(e1), . . . , ε(e♯(f))) evaluates expressions over values. We will write ε for ε.

States during concrete execution (or concrete states) are mappings s : X → V
that assign values to program variables. Given ε : EV → V, program expres-
sions e ∈ EX can be evaluated in any state by inductive extension of the map
s : X → V to s : EX → V defined by s(x) = s(x) and s(f(e1, . . . , e♯(f))) =
εf(s(e1), . . . , s(e♯(f))). Then s = ε ◦ Es, where Es : EX → EV performs uniform
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substitution of variables by values in the expression according to s. Sometimes
we write s for s.

The set PX of predicates over X consists of expressions π(e1, . . . , en), where
π ∈ P is an n-ary predicate operator, i.e., ♯(π) = n, and each ei ∈ EX is an ex-
pression over X. Common examples include membership, equality, and inequal-
ities. Assume we can interpret predicates over values using I : PV → {T,F}. We
say a concrete state s ∈ VX satisfies a program predicate π(e1, . . . , en) ∈ PX ,
written s ⊨ε,I π(e1, . . . , en) iff I(π(s(e1), . . . , s(en))) = T. We will leave depen-
dence on ε and I implicit by just writing s ⊨ π(e1, . . . , en).

With B as a set of logical operators such that every n-ary L ∈ B has a
truth table {T,F}n → {T,F}, (E,P,B) is a first-order logic signature without
quantification. Let BX be the set of Boolean expressions over X inductively
generated by operators in B over predicates in PX. We assume B contains
binary conjunction ∧ and disjunction ∨, and unary negation ¬, each with its
conventional truth table. The constant ⊤ ∈ B (true) is satisfied by all states,
and ⊥ ∈ B (false) by no states. Write s ⊨ b if a state s ∈ VX satisfies b ∈ BX .

The set Σ∗(X) of programs with free variables X is inductively generated
by operators in Σ. Let T = Σ∗(∅) be the set of (closed) programs. These are
the only programs that will be equipped with a semantics. Operators in Σ may
use expressions in EX and Boolean expressions in BX . Crucial to our work,
β : Σ → BX assigns to every operator f ∈ Σ an associated guard β(f) ∈ BX
governing control flow of the semantics. For the rest of the paper, we consider
the signature (Σ,E, P,B, ♯, β), the set of variables X , and the interpretations ε
and I fixed.

Example 2 (The While Signature). The signature (Σ,E, P,B, ♯, β) for the While
language from Example 1 is as follows: Σ contains the constant Skip ∈ Σ, a bi-
nary operator for sequencing, and one constant for every pair (x, e) ∈ X × EX
of variable and expression representing an assignment x:= e. Each of these op-
erators has ⊤ as guard. Σ furthermore contains, for each Boolean expression
b ∈ BX , a binary operator if b · · for branching with guard β(if b · · ) = b and
a unary operator while b · for unbounded iteration with guard β(while b · ) =
b. The set E contains the binary operators +, −, ∗, and all integers. The set P
contains binary < and =, and B contains constant ⊤, unary ¬, and binary ∧. We
let V = Z and ε and I are standard; e.g., ε(6 ∗ 7) = 42 and I(6 ∗ 7 > 0∨⊥) = T.

4 Symbolic Rule Format

In this section, we introduce the symbolic SOS rule format. The format is purely
syntactic, to the point that meta-variables are used as placeholders for both
programs and states. This allows us to derive both concrete semantics (Section 5)
and symbolic semantics (Section 6) from a single specification in the format.

Let XVar = {x, y, . . . } and SVar = {a, b, . . . } be sets of meta-variables that
are placeholders for programs and states, respectively. An (uninterpreted) transi-
tion is either progressive or terminating. A progressive transition is an expression
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of the form (x, a) −→ (y, b) with x, y ∈ XVar and a, b ∈ SVar. Here, x is called the
source and is said to transition to the target y with input a and output b. A ter-
minating transition lacks a target and only produces output, written (x, a) ↓ b.
Terms t ∈ Σ∗(XVar) may be used as sources and targets. Using a special termi-
nation symbol ✓ ∈ Σ, we let (x, a) ↓ b be synonymous to (x, a) −→ (✓, b). We
use ℓ to denote uninterpreted transitions, progressive or terminating. An SOS
rule consists of a set {ℓi}i=1..n, called the premises, together with a conclusion ℓ.

Definition 1 (Symbolic SOS Rule). A symbolic SOS rule for an operator

f ∈ Σ of arity n = ♯(f) is a rule ℓ1 . . . ℓn ϕ

ℓ
where ϕ ∈ BX is a

Boolean expression called the trigger of the rule and

– the source of the conclusion ℓ is f(x1, . . . , xn);
– the source of the premise ℓi (each i) is xi and its target (if progressive) is yi;
– the input of each premise ℓi and the conclusion input is a;
– the output of premise ℓi is bi;
– if ℓ is progressive, its target is in Σ∗({x1, . . . , xn} ∪ {yi | ℓi is progressive});
– the conclusion output is a map X → E({a, b1, . . . , bn} × X}).

This definition is an adaptation of the format of stateful SOS [13]; we have re-
placed states by meta-variables, added extra structure in the conclusion output,
and added a Boolean trigger for control-flow. Our specification, defined just be-
low, requires the trigger to be either the guard β(f) of f, or its negation. The last
item says that the conclusion output can store an expression over SVar× X for
every variable, but it restricts to using meta-variables in SVar occurring in the
rule. An expression in E(SVar× X ) can be interpreted as a value in V once the
meta-variables have been replaced by concrete states—this is technically outlined
in Section 5—turning the conclusion output into a new concrete state. Replacing
the meta-variables by symbolic states (defined later), the map X → E(SVar×X )
can be interpreted as a new symbolic state, as outlined in Section 6.

A symbolic SOS specification requires each operator to have exactly two rules
whose triggers are complementary. Letting these triggers coincide with an oper-
ator’s guard and its complement, one rule has trigger β(f), the other ¬β(f). The
behavior of a program may also depend on whether or not any of its subterms
terminates (e.g. sequencing). There are therefore two rules for every operator f
and every set W ⊆ {1, . . . , ♯(f)} indicating which premises are progressive.

Definition 2 (Symbolic SOS Specification). A symbolic SOS specification
for a signature (Σ,E, P,B, ♯, β) is a set Ξ of symbolic SOS rules with the fol-
lowing condition: for every operator f ∈ Σ \ {✓} with n = ♯(f) and for every
subset W ⊆ {1, . . . , n}, there are exactly two rules R1,R2 ∈ Ξ such that

– the premises {ℓi}i∈W of both R1 and R2 are progressive, and
– the premises {ℓi}i∈[1..n]\W of both R1 and R2 are terminating.

Moreover, for these rules, the triggers of R1 and R2 are β(f) and ¬β(f).
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skip
(Skip, a) ↓ a

assign
(x:= e, a) ↓ a[x 7→ a(e)]

(x, a) ↓ a′
seq-0

(x # y, a) −→ (y, a′)

(x, a) −→ (x′, a′)
seq-n

(x # y, a) −→ (x′ # y, a′)

bif-T
(if b x y, a) −→ (x, a)

bwhile-T
(while b x, a) −→ (x # while b x, a)

¬bif-F
(if b x y, a) −→ (y, a)

¬bwhile-F
(while b x, a) ↓ a

Fig. 1. A symbolic SOS specification for the While language, from which both symbolic
and concrete semantics can be derived.

Example 3 (Specification for While). A symbolic SOS specification for the lan-
guage system for While (from Example 2) is shown in Figure 1. We omit the
trigger of a rule if it is ⊤. The rule for ¬⊤ does not matter for the semantics (see
Sections 5 and 6), because no state ever satisfies ¬⊤. The rules for branching,
iteration, and sequencing are syntactic sugar for sets of rules. Rule while-F, for
instance, represents two rules: one with premise (x, a) −→ (x′, a′) and one with
premise (x, a) ↓ a′. Premise targets and outputs are not used in these instances.

When writing a (or a′) in the conclusion output of a rule, we mean the map
X → E(SVar× X ) that sends x to (a, x). Rule assign uses common notation for
function updates a[x 7→ a(e)], i.e., a function that maps every y to (a, y) except
x, which is mapped to a(e). Here, a(e) is shorthand for the expression e with
every variable y substituted by (a, y).

In the following two sections, the meta-variables for states will be substituted
by concrete states (Section 5) and by symbolic states (Section 6). There, the
reasons for our choice of shorthand notations for a and a(e) will be made clear.

5 Concrete Semantics

We now show how concrete semantics is derived from a symbolic SOS specifi-
cation. We make this derivation explicit to juxtapose it with the derivation of
the symbolic semantics, and to show how the meta-variables can be formally
interpreted as actual states, both concrete and symbolic.

Recall that T = Σ∗(∅) is the set of all programs. Usually, the meta-variables
of language specification rules range over all programs. Formally, the symbolic
SOS rules from the previous section are equipped with a meta-substitution,5 i.e.,
a map ψX : XVar → T . This mapping canonically extends to Σ∗(XVar) → T ,
performing uniform substitution on programs over meta-variables. Usually, a
meta-substitution ψX is partially defined, namely on the sources {x1, . . . , xn}
and the targets {yi | ℓi is progressive} of a rule’s premises ℓ1, . . . , ℓn. The rule
format ensures that ψX can also be applied to the conclusion source f(x1, . . . , xn)

5 Not to be confused with substitutions of values or expressions.
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and the conclusion target t. The meta-variables in the rules are all distinct, but
since meta-substitutions can be injective, programs in the rule may coincide.

The key insight here is that states, much like programs, can also be inter-
preted symbolically using meta-variables:

Definition 3 (Meta-Substitution of Concrete States). A meta-substitution
of concrete states is a map ψS : SVar→ VX .

We will often combine meta-substitutions of programs ψX : XVar → T and of
states ψS : SVar→ VX into one meta-substitution ψ : XVar + SVar→ T + VX .

Meta-substitutions of states are usually only partially defined, namely on the
input a—which is the same for all premises and for the conclusion—and on the
premise outputs {b1, . . . , bn} occurring in a rule. The rule format guarantees
that a meta-substitution of states ψS can be applied to the rule’s conclusion
output u : X → E(SVar × X ), which would be of type ψS(u) : X → E(VX × X ).
But now that we have access to concrete states, we can use function evalua-
tion eval : VX ×X → V, (s, x) 7→ s(x), to interpret these pairs occurring in an
expression as values from the concrete state. Evaluating the expression of val-
ues for each variable using ε : EV → V provides us with a new state given by
ψS(u) : X → E(VX ×X ) E(eval)−−−−→ E(V) ε−→ V for the conclusion output.

A concrete execution model is a deterministic unlabeled transition system
(T ×VX ,−→c). The concrete execution model −→c intended by a symbolic SOS
specification Ξ for the signature (Σ,E, P,B, ♯, β) is recursively defined on the
structure of programs in T as follows:

Definition 4 (Concrete Semantics). Let f ∈ Σ be an operator with n = ♯f,
let p1, . . . , pn ∈ T be programs for which transitions have been defined, and
let s ∈ VX be an arbitrary state. Let W ⊆ {1, . . . , n} indicate which transitions
(pi, s) −→c (p

(i), s(i)) are progressive, and let R1,R2 ∈ Ξ be the two rules for f
and W with triggers β(f) and ¬β(f), respectively. Then let (f(p1, . . . , pn), s) −→c

(ψ(t), ψ(u)) by definition, with the meta-substitution

ψ : XVar + SVar→ T + VX , x 7→

{
pi x = xi
p(i) x = x′i

b 7→

{
s b = a
s(i) b = bi

using conclusion target and output (t, u) of R1 if s ⊨ β(f) and of R2 otherwise.

Constants in Σ use axioms in the specification and constitute the base cases
in this recursive definition. The resulting relation is clearly deterministic: every
pair (p, s) defines exactly one outgoing transition, except when p = ✓.

Example 4. Consider a program in While that computes absolute values:

pabs ≜ if (x < 0) {x:= 0− x} {Skip}

We have a specification from Example 3 which induces a concrete execution
model (−→c, T × VX ). Let s be a concrete state that maps x to −42. Then
(pabs, s) −→c (x:= 0−x, s) ↓c s′, where s′ : x 7→ 42. The number 42 was obtained
by evaluating the expression 0− (a, x) after the meta-substitution ψS : a 7→ s.
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6 Symbolic Semantics

We develop the semantics of symbolic execution, based on the same specification
as we used to derive the concrete semantics. The meta-substitution will now
substitute meta-variables by symbolic states. After describing symbolic states
and revisiting meta-substitutions, we introduce syncrete bisimulation to coin-
ductively formalize correctness and completeness. Symbolic execution semantics
is derived from the same specification as the concrete semantics. This semantics
is both correct and complete with respect to the concrete semantics (Theorem 1).

The domain of a symbolic state σ : X → EX , like that of a concrete state, can
be inductively extended from X to EX . This extension σ : EX → EX is defined by
σ(x) = σ(x) and σ(f(e1, . . . , en)) = f(σ(e1), . . . , σ(en)). Now σ = µX ◦Eσ, where
Eσ : EX → E2(X ) performs uniform substitution of variables by expressions, and
µX : E2(X )→ EX—seemingly the identity function—glues expressions together.
Contrast this with the inductive extension s of a concrete state s : X → V for
which s = ε ◦ Es: one evaluates expressions of expressions as a new expression,
the other evaluates expressions of values as a value. We sometimes write σ for σ.

Symbolic states as substitutions can be applied to predicates in PX by let-
ting σ(π(e1, . . . , en)) := π(σ(e1), . . . , σ(en)). Similarly, they can be applied re-
cursively on Boolean expressions with predicates as base cases.

Definition 5 (Symbolic States as Concrete State Transformers). Let
s ∈ VX be a concrete state and σ ∈ (EX )X a symbolic state. Then s after σ is
the new concrete state s • σ := s ◦ σ : X σ−→ EX Es−→ EV ε−→ V.
The new state s•σ evaluates an expression e by inductive extension, but we can
also first apply σ and then evaluate expression σ(e) in the initial state s. These
two always coincide: evaluating e in s • σ is equivalent to evaluating σ(e) in the
initial state s:

Lemma 1 (Substitution Lemma). Let s ∈ VX and σ ∈ (EX )X . Then (i) for
all expressions e ∈ EX , (s • σ)(e) = s(σ(e)); and (ii) for all Boolean expressions
b ∈ BX , s • σ ⊨ b iff s ⊨ σ(b).

Example 5 (Symbolic states as concrete state transformers). Consider two vari-
ables x, y, a symbolic state σ = [x 7→ 2 ∗ x, y 7→ x] and s0 = [x 7→ 21, y 7→ 0] a
concrete state. Then (s0 • σ)(x) = ε(Es(2 ∗ x)) = ε(2 ∗ 21) = 42 and similarly
(s0 • σ)(y) = 21. In general, for this σ, the map s 7→ s • σ is a concrete state
transformer that doubles the value of x and sets y equal to the old value of x.

Symbolic semantics is derived by interpreting meta-variables as symbolic states:

Definition 6 (Meta-Substitution of Symbolic States). A meta-substitution
of symbolic states is a map ψ̂S : SVar→ (EX )X .

The way ψ̂S acts on the conclusion output u : X → E(SVar × X ) of a symbolic
SOS rule is analogous to meta-substitution of concrete states:

ψ̂S(u) : X → E((EX )X ×X )
E(eval)−−−−→ E2(X ) µX−−→ EX
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The meta-substitution ψ̂S is first universally applied to u, then every pair (σ, x)
is evaluated within the expressions, and finally, the resulting expression is glued.

Example 6 (Meta-substitution for assignment). Let s0 = [x 7→ 21, y 7→ 0] and
σ = [x 7→ 2 ∗ x, y 7→ x], and let s = [x 7→ 42, y 7→ 21]. In Example 5, we saw
that σ transforms s0 to s, i.e., s0 • σ = s. Suppose ψS and ψ̂S are concrete and
symbolic meta-substitutions such that ψS(a) = s and ψ̂S(a) = σ. Consider an
assignment x:= 0−x as in Example 4 and its transition axiom (x:= 0−x, a) ↓ u in
the specification from Example 3. With X = {x, y}, we have u : X → E({a}×X )
such that u : x 7→ 0−a(x) and u : y 7→ a(y). Putting s′ := ψS(u) and σ′ := ψ̂S(u),
we have s′(x) = 0 − s(x) = −42 and σ′(x) = 0 − σ(x) = 0 − 2 ∗ x. For y,
s′(y) = s(y) = 21 and σ′(y) = σ(y) = x. Therefore, s0 • σ′ = s′.

In this example, the concrete and symbolic states are transformed concert-
edly by the assignment update. Specifically, s0 • ψ̂S(u) = ψS(u) follows from
s0 • ψ̂S(a) = ψS(a) because a is the only meta-variable occurring in u. Thus,
the example illustrates a general inductive property of our rule format: at every
step, the change in symbolic state matches the change in concrete state.

Lemma 2 (Meta-Substitution Lemma). Let ψS : SVar→ VX be a concrete
and ψ̂S : SVar → (EX )X a symbolic meta-substitution and let s0 ∈ VX be a
concrete state. For all u : X → E(SVar × X ), if s0 • ψ̂S(b) = ψS(b) for all
b ∈ SVar that occur in u, then s0 • ψ̂S(u) = ψS(u).

A symbolic execution model is a nondeterministic unlabeled transition system
(T × (EX )X × BX ,−→s ). We now define the symbolic execution model −→s

intended by a symbolic SOS specification Ξ for the signature (Σ,E, P,B, ♯, β).
For this, we let n = ♯(f) and, given arbitrary state σ and path condition φ, we
recursively define the set of outgoing transitions for (f(p1, . . . , pn), σ, φ), where
we have already defined the sets Pi = {(p′, σ′, φ′) | (pi, σ, φ) −→s (p′, σ′, φ′)} of
outgoing transitions for the subterms pi. An n-tuple ξ ∈

∏
i∈[1..n] Pi contains one

possible combination of targets for pi, . . . , pn. Let Wξ ⊆ {1, . . . , n} be the set of i
with p(i)ξ ̸= ✓, indicating progressive premises; write ξ = (p

(i)
ξ , σ

(i)
ξ , φ

(i)
ξ )i∈[1..n].

Definition 7 (Symbolic Semantics). Let f ∈ Σ be an operator, σ ∈ (EX )X
a symbolic state, φ ∈ BX a path condition, and p1, . . . , pn ∈ T a set of programs.
For ξ ∈

∏
i∈[1..n] Pi, let Rξ,1 ∈ Ξ and Rξ,2 ∈ Ξ be the rules for f and Wξ with

triggers bf and ¬bf, respectively. Let (f(p1, . . . , pn), σ, φ) −→s (p′, σ′, φ′), by
definition, for all (p′, σ′, φ′) in the set{
(ψ̂ξ(tξ,1), ψ̂ξ(uξ,1), φ∧σ(b)∧Φξ), (ψ̂ξ(tξ,2), ψ̂ξ(uξ,2), φ∧¬σ(b)∧Φξ)

}
ξ∈

∏
i Pi

where tξ,j , uξ,j (j = 1, 2) are the conclusion targets and outputs of Rξ,j,

ψ̂ξ : XVar + SVar→ T + (EX )X , x 7→

{
pi if x = xi
p
(i)
ξ if x = x′i

b 7→

{
σ if b = a
σ
(i)
ξ if b = bi

and Φξ :=
∧

i∈[1..n] φ
(i)
ξ is the conjunction of all path conditions in the premises.
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Here, Φξ includes all premise path conditions, including conditions potentially
not used in the conclusion. This condition may appear too strong for some rule
instances in symbolic execution techniques. However, since

∏
i∈[1..n] Pi comprises

all combinations of transitions, and since every ξ induces a step for both σ(b)
and ¬σ(b), the resulting set of path conditions covers all of the input path
condition φ. Many of the resulting steps may have coinciding continuations.

Proposition 1 (Path Condition One-Step Coverage). Let −→s be the in-
tended symbolic execution system of a symbolic SOS specification, and let (p, σ, φ)
be a symbolic configuration. For A = {φ′ | (p, σ, φ) −→s (p′, σ′, φ′)}:

– φ1 ∧ φ2 ≡ ⊥ for all φ1, φ2 ∈ A such that φ1 ̸= φ2; and
–

∨
A ≡ φ, where

∨
A denotes finite disjunction of all elements in A.

Example 7. We return to program pabs from Example 4 and the symbolic SOS
specification from Example 3. Using the two axioms for an if statement, the
derived symbolic execution semantics gives the two transitions (pabs, id,⊤) −→s

(x:= − x, id,⊤ ∧ (x < 0)) and (pabs, id,⊤) −→s (Skip, id,⊤ ∧ ¬(x < 0)). Con-
tinuing for one more step we obtain a set of four reachable configurations; the
two on the left stem from x:= − x; the other two from Skip:{

(✓,x 7→ −x,⊤ ∧ (x < 0) ∧ ⊤), (✓, id,⊤ ∧ ¬(x < 0) ∧ ⊤),
(✓,x 7→ −x,⊤ ∧ (x < 0) ∧ ¬⊤), (✓, id,⊤ ∧ ¬(x < 0) ∧ ¬⊤)

}

The bottom configurations can be discarded: no state satisfies ¬⊤. We further
simplify path conditions by removing ⊤-conjuncts. Then −→s reduces the if
statement to two possible transformations: x 7→ −x if x < 0 and id otherwise.

Syncrete bisimulation is a coinductive formalization of correctness and com-
pleteness for symbolic execution. We prove that our rule format induces a syn-
crete bisimulation relation between concrete and symbolic execution semantics,
namely the identity relation: every program is syncretely bisimilar to itself.

Definition 8 (Syncrete Bisimulation). Let (T × VX ,−→c) be a concrete
execution model and (T × (EX )X × BX ,−→s ) a symbolic execution model. A
relation R ⊆ T ×T is a syncrete bisimulation between −→c and −→s if, for all
σ ∈ (EX )X , φ ∈ BX , and initial states s0 ∈ VX s.t. s0 ⊨ φ, whenever pRq:

– if (p, s0 • σ) −→c (p
′, s′) then there is (q′, σ′, φ′) such that

(i) (q, σ, φ) −→s (q′, σ′, φ′) (ii) s′ = s0 • σ′ (iii) p′Rq′ and (iv) s0 ⊨ φ′.
– if (q, σ, φ) −→s (q′, σ′, φ′) and s0 ⊨ φ′ then (p, s0 • σ) −→c (p′, s0 • σ′) for

some p′ ∈ T such that p′Rq′.

The first item makes every step in the symbolic system coinductively complete:
every concrete step is matched by a symbolic step that refines the path condition
in a way that the initial state s0 remains satisfied. The second item makes
every step in the symbolic system coinductively correct. Here, it may seem like
any symbolic state σ can be chosen, but the updated path condition φ′ always
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contains the Boolean formula b that guards control-flow under substitution by σ.
Hence, the condition s0 ⊨ φ′ entails s0 • σ ⊨ b.

In the following results, let Ξ be a symbolic SOS specification and let −→c

be the intended concrete model and −→s the intended symbolic model.

Theorem 1. The identity relation on the set T of programs is a syncrete bisim-
ulation between −→c and −→s .

By induction on the length of the transition chain, with the definitions of cor-
rectness and completeness from Section 2:

Corollary 1 (Correctness and Completeness). The intended model of
symbolic execution −→s is correct and complete with respect to −→c.

The induced small-step model provides a correct and complete core for symbolic
execution. Full symbolic execution amounts to providing a search strategy for
the execution tree built by −→s , and the result is guaranteed to correspond to
concrete program behavior by Corollary 1.

7 Extensions

We consider two extensions to While: arrays (see De Boer and Bonsangue [9])
and a probabilistic programming constructs (see Voogd et al. [26]). We immedi-
ately obtain a concrete execution model (T ×VX ,−→c) and a symbolic execution
model −→s that is both correct and complete with respect to −→c.

Arrays. Arrays can be incorporated in While by imposing some structure on X ,
E and B. Let the variables be a disjoint union of regular and array variables
X +A with values in Z+(N⇀ Z). Regular variables x ∈ X are assigned integers
and a ∈ A partial integer-valued functions with index domain N.

Let expressions include a[e], a[e := e′] and |a| for a ∈ A and e, e′ ∈ EX . The
semantics is modeled by ε; we let ε map a[e] to ε(a)(ε(e)), and a[e := e′](e′′) to
ε(e′) if ε(e) = ε(e′′) or ε(a[e′′]) otherwise. We let ε(|a|) be the size of the set on
which ε(a) is defined. Now extend Σ from Example 1 by allowing the left-hand
side of an assignment to be an array expression and introduce a new constant
Error to denote out-of-bounds access.

Let δ ∈ P be a unary predicate indicating absence of indexing errors. The
semantics of the closed predicate δ(e) is inductively defined by (i) δ(n) := T
for all constants n ∈ E; (ii) δ(a[e]) iff (0 ≤ e < |a|) ∧ δ(e); (iii) δ(a[e := e′]) iff
(0 ≤ e < |a|) ∧ δ(e) ∧ δ(e′); and (iv) δ(f(e1, . . . , en)) ≡ δ(e1) ∧ · · · ∧ δ(en) for
n-ary operation symbols f ∈ E.

Now let us define a symbolic SOS specification for signature (Σ,E, P,B, ♯, β).
Array assignments require a new pair of rules:

δ(a[e])

(a[e]:= e′, s) ↓ s[a 7→ a[s(e) := s(e′)]]

¬δ(a[e])
(a[e]:= e′, s) −→ (Error, s)
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The conclusion of the left rule denotes the map X +A → E({s}× (X +A)) that
maps each variable x to s(x) (including arrays) except that a is mapped to the
expression a[s(e) := s(e′)] with e, e′ updated to replace each variable y ∈ X +A
with s(y). The rule on the right signals an error that may be handled by other
mechanisms.

The rules in Figure 1 with trivial triggers can be safely replaced with two
rules: one with the additional trigger δ(e) for expressions in the program term and
one with ¬δ(e) progressing to an error. For if- and while- rules some additional
machinery is needed to maintain the requirements of Definition 2. For each
Boolean expression b we introduce a new binary operator sif b · · (for “safe
if”). We then have exactly two rules for each of if b and sif b.

δ(b)
if-safe

(if b x y, a) −→ (sif b x y, a)
¬δ(b)

if-err
(if b x y, a) −→ (Error, a)

bif-T
(sif b x y, a) −→ (x, a)

¬bif-F
(sif b x y, a) −→ (y, a)

Thus an if-statement first checks if its condition contains a nil error, and
only then proceeds safely to one of its branches. A “safe while” is implemented
analogously by first checking its conditition, and then proceeding as before.

Randomization. For probabilistic sampling during program execution, we con-
sider a set of logical variables Y = {yk}k∈N that represent samples; states are
now maps X + Y → V. We consider a signature (Σ,E, P,B, ♯, β) similar to
the While language (see Example 2). To ensure probabilistic independence of
samples, assignments x:= e cannot involve variables from Y; they are still repre-
sented by a pair (x, e) ∈ X × EX , but Σ is extended with a sampling statement
x ∼ rnd. Consider the rule for sampling (with guard ⊤):

x ∼ rnd, a ↓ {x 7→ (a, y0), y0 7→ (a, y1), y1 7→ (a, y2), . . . }

which stores the first available sample y0 in x and shifts all other samples one
position. Writing (s, ρ) for the state X + Y → V, the concrete rule is

x ∼ rnd, s, ρ ↓ (s[x← ρ0], tl(ρ))

Taking the head and tail does not work in the symbolic counterpart of this rule.
A solution is to introduce a sampling index k and using the rule

x ∼ rnd, σ, k ↓ σ[x 7→ yk], k + 1

An indexing scheme like this must be proven correct in the presence of all the
rules in the programming system. The symbolic model of this language system
produces symbolic states σ : X + Y → E(X + Y). Keeping k constant in other
rules ensures that the part Y → E(X + Y) left-shifts the stream by k, always
giving a new variable in Y.
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For this to be a true randomization of programs, one assumes that the values
for Y, given by the map ρ : Y → V, adhere to some probability law. This is
a modeling issue; we argue that the symbolic system produces symbolic states
that accurately represent program behavior in that they produce the same result
once this initial state (randomized or not) is evaluated by the symbolic state.
For a detailed account of symbolic execution of probabilistic programs, see [26].

8 Related Work

De Boer and Bonsangue formalize symbolic execution for the While language
and define the notions of correctness and completeness of symbolic execution [9].
They employ a small-step transition system and inductive proofs of correctness
and completeness over its transitive closure. In contrast, our work offers a coin-
ductive alternative (allowing for non-finite computations) that captures both
correctness and completeness in terms of syncrete bisimulation. We do this by
quantifying over conceptual initial states s0, and making concrete small-steps on
s0 •σ rather than big-steps on s0 itself. A symbolic reconfiguration from σ to σ′

then corresponds to a concrete reconfiguration of s0 • σ to s0 • σ′.
Goncharov et al. developed stateful SOS (SSOS) for stateful programs [13],

extending GSOS [5] with state, focusing crucially on the compositionality of the
derived semantics. Via a reduction to GSOS, SSOS specifications are shown to
correspond precisely to natural transformations which induce a denotational be-
havior that ensures compositionality in resumption semantics, a very fine-grained
semantics in which very few programs are considered equivalent [13]. In particu-
lar, programs that induce the same state transformation — like x:= 1 # x:=x+ 1
and x:= 1 # x:=x ∗ 2 — may not be equivalent under resumption semantics. Gon-
charov et al. consider two coarser semantics — trace and termination — which
fail to be compositional in general. They therefore propose further restrictions
on the SSOS format to ensure compositionality also in these settings. The un-
restricted SSOS format forms the basis for symbolic SOS in our work, but we
refine state transformations to ensure that they can be symbolically simulated.

The K framework shares our goal of defining language semantics with cor-
rect and complete analysis tools [22]. In particular, Lucanu et al. develop a
language-independent coinductive description of symbolic execution [2,18], based
on Reachability Logic [23]. They use matching logic and reachability logic to de-
fine semantics as rewrite rules, whereas we provide syntactic restrictions on the
common stateful SOS format and introduce syncrete bisimulation as a useful
formalization of the correspondence between symbolic and concrete (small-step)
semantics. As a consequence, our proofs mostly use structural induction over
programs whereas their proofs use correspondences between proof trees.

Bodin et al. propose another language-independent framework that provides
analysis tools “for free” with their pretty-big-step semantics [7] and Skeletal Se-
mantics [6]. They provide a framework of simple building blocks (bones) that as-
semble into programs (skeletons). Skeletons are given interpretations, and generic
consistency results between interpretations are established. Finally, they define
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concrete and abstract interpretations and instantiate the consistency results with
language-dependent lemmas. Their approach differs from ours by focusing on
structural building blocks of semantics rather than a rule format. Additionally
they focus on abstract interpretation rather than symbolic execution.

9 Discussion

We briefly consider two interesting aspects of the presented work: (1) the con-
ditions on the rule formats to simultaneously construct concrete and symbolic
semantics, and (2) extensions to more low-level state representations.

Our symbolic SOS format provides a sufficient condition for both concrete
and symbolic semantics to be constructed simultaneously. However, identifying
necessary conditions for rule formats that ensure correctness and completeness
would be very challenging, because a lot of design choices have to be made to
bridge the gap between the desired properties and the semantics specification.
Our work on symbolic SOS is based on the following important design choices:

– Symbolic SOS builds on GSOS, which ensures that bisimilarity is always a
congruence and that canonical operational models exist. GSOS provides a
sufficient condition for this property. GSOS seems fairly close to the limits
of well-behaved SOS formats. (For more liberal formats such as ntyft/ntyxt
which allows both look-ahead and negative premises [14], the interperation
is more subtle [12] and it can even be difficult to decide whether a (unique)
model exists [17].)

– Symbolic SOS builds on stateful SOS, which ensures that the properties
above hold in a stateful setting. Symbolic SOS imposes structure such that
states can be interpreted both concretely and symbolically. Lemma 2 (meta-
substitution) proves that every step in one system is simulated by a step in
the other. Rules in a specification must come in pairs — generalizable to
complementary tuples of arbitrary size — with mutually disjoint conditions.

For our techniques to apply to a language, its operational semantics must be
expressible with rules that syntactically enforce these properties: GSOS-like re-
strictions for compositionality and our added requirement on state structure.

The sets of variables and values, and the signatures of expressions and Boolean
expressions have intentionally been kept abstract. Section 7 shows how symbolic
execution correctness and completeness is maintained with additional structur-
ing of the signatures. We believe that other extensions, e.g., for pointers or
aliasing, would work similarly. Heaps could then be implemented by imposing
structure on the states (both concrete and symbolic) similar to the arrays of
Section 7. By distinguishing non-heap and heap variables and evaluating heap
variables in partial maps (like the array variables), a pointer map is emulated.
A predicate similar to the absence of indexing errors can be used to detect null
pointer exceptions. See [9] for a discussion on aliasing. In this context, it would be
interesting to further extend the path conditions with separation logic for point-
ers [4]. This would not affect the results presented in this paper, provided the
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meta-substitution lemma (Lemma 2) is maintained, ensuring that the symbolic
SOS rules define matching transitions for the concrete and symbolic semantics.

10 Conclusion

We present a language-independent rule format for program semantics that in-
duces both concrete and symbolic models. The induced models enjoy a bisimilar-
ity relationship that ensures correctness and completeness of symbolic execution.
Our approach thus allows to define operational semantics for a language and im-
mediately obtain a symbolic execution engine that is correct by construction,
providing a formal basis for analysis and verification tools.

Technically, we exploit that symbolic states represent transformations of con-
crete states to augment stateful SOS with a more structured notion of state,
thereby obtaining symbolic stateful SOS. From symbolic SOS specifications, we
show how to derive execution models in terms of symbolic and concrete transi-
tion systems. We formulate the novel notion of syncrete bisimulation and use it
to prove that the derived symbolic execution model is correct and complete. The
proof makes crucial use of the notion of bisimulation and a very general substi-
tution lemma that relates symbolic states and concrete state transformations.

Our results work for concrete semantics that can be understood as determin-
istic state transformers. An interesting direction of development would be to
generalize this to nondeterministic settings, such as concurrent programs. This
would require a deeper investigation of the natural transformations induced by
the symbolic SOS rule format and their categorical semantics. Goncharov et
al. [13] also highlight this direction of research for the non-symbolic case.
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