
FM
Artifact
Evaluation

Available

FM
Artifact
Evaluation

FunctionalFunctional

Stochastic Games for User Journeys ⋆

Paul Kobialka (�)1 , Andrea Pferscher1 , Gunnar R. Bergersen1,2 ,
Einar Broch Johnsen1 , and S. Lizeth Tapia Tarifa1

1 University of Oslo, Oslo, Norway
{paulkob,andreapf,gunnab,einarj,sltarifa}@ifi.uio.no

2 GrepS B.V., Utrecht, the Netherlands
gunnar.bergersen@greps.com

Abstract. Industry is shifting towards service-based business models,
for which user satisfaction is crucial. User satisfaction can be analyzed
with user journeys, which model services from the user’s perspective.
Today, these models are created manually and lack both formalization
and tool-supported analysis. This limits their applicability to complex
services with many users. Our goal is to overcome these limitations by
automated model generation and formal analyses, enabling the analysis
of user journeys for complex services and thousands of users. In this
paper, we use stochastic games to model and analyze user journeys.
Stochastic games can be automatically constructed from event logs and
model checked to, e.g., identify interactions that most effectively help
users reach their goal. Since the learned models may get large, we use
property-preserving model reduction to visualize users’ pain points to
convey information to business stakeholders. The applicability of the pro-
posed method is here demonstrated on two complementary case studies.

Keywords: User journeys · Data-driven model construction · Automata
learning · Model checking · Stochastic games · PRISM

1 Introduction

The servitization of business describes a shift towards offering products as ser-
vices [44]. This shift makes companies more dependent on user satisfaction; e.g.,
it has become much easier to change service providers. Investment in user sat-
isfaction pays off [17], which raises the following question: How can we formally
model and analyze the way users experience their interaction with a service?

User journeys model services from the users’ perspective [41]. They describe
how users employ a service to achieve a goal. User journeys may include many
paths, capturing different sequences of actions between a service and its users.
These models enable the analysis of user experience along different (intended
or unintended) paths through a service. Although most user journeys today are
created manually by domain experts and the associated user experience is cap-
tured through interviews [22, 41], the method has been successful at providing
⋆ This work is part of the Smart Journey Mining project, funded by the Research

Council of Norway (grant no. 312198).

http://orcid.org/0000-0002-0635-1915
http://orcid.org/0000-0002-9446-9541
http://orcid.org/0000-0002-8135-9052
http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0001-9948-2748

2 P. Kobialka et al.

Fig. 1: Steps to create Sankey diagrams from the event logs of the case studies.

feedback to improve services. However, tool support for the modeling and anal-
ysis of user journeys is sparse [23], which makes the method difficult to apply in
complex domains and to services with numerous and diverse users.

A recent line of work aims to automatically mine user journeys and analyze
them using formal methods [26,28,30,31]. This significantly reduces the manual
effort needed to create models and enables a different scale of complexity in the
analyzed services and number of users. Starting from event logs, which are widely
available for software services, process mining [1] and automata learning [18] can
automatically generate behavioral models of user journeys from these logs, such
as finite state automata. These can then be analyzed by model checking [4].

This paper goes beyond previous work by modeling user journeys as stochas-
tic games [11]. We exploit the underlying distribution of events in the event log,
which was ignored in previous work. Stochastic games allow complex user behav-
ior to be captured, yet the resulting games can still be model checked. Figure 1
summarizes the steps applied to event logs to analyze user experience. These
steps elegantly combine and extend several known techniques. Step 1 generates
stochastic automata from event logs by means of automata learning. Step 2 con-
verts the learned automata into stochastic weighted games. The resulting games
are analyzed using probabilistic model checking to derive optimal strategies. Step
3 ranks critical actions after which users tend to abandon their journey and visu-
alizes the outcome of these novel analyses via a property-preserving visualization
technique, to improve the interpretability of the stochastic game results.

We apply these steps to two case studies: an industrial case study [30,31] and
a benchmark [15] from the literature. The case studies are complementary in
complexity and differ in the number of users. In both cases, we identified poten-
tial service improvements and automatically uncovered caveats. The case studies
suggest that our method is able to address two pressing industrial challenges:
(1) the automated construction of stochastic user journey models for complex ser-
vices from event logs, and (2) identification of service bottlenecks by automated
analysis of models that reflect user experience. In short, the contributions of this
paper are: (1) a formalization of user journeys as stochastic weighted games ex-
ploiting the underlying distribution of events in the logs; (2) a tool chain combin-
ing automata learning and model-checking techniques to automatically analyze
stochastic user journey games; (3) a method for property-preserving model re-
duction to visualize the stochastic games results; and (4) the automated stochas-
tic modeling and analysis of two case studies to showcase the usefulness and
applicability of the proposed combination of techniques and their extensions.

Stochastic Games for User Journeys 3

2 Preliminaries

In the following, we write D(X) for the set of probability distributions over a
set X, where a distribution µ : X → [0, 1] is such that

∑
x∈X µ(x) = 1.

Event Logs. An event log records so-called touchpoints (or events) between
users and a service provider. A trace τ = (a0, . . . , an) ∈ A ∗ is a finite, ordered
sequence over an alphabet A of events. An event log L is a multi-set of such
traces [1]. A multi-actor event log L = ⟨L,Π, α⟩ assigns an initiating actor to
each event in an event log L [26]; the set Π contains a set of actors, and the
actor-mapping function α : A → Π assigns events a ∈ A to an actor π ∈ Π.

Automata Learning. To learn stochastic automata from event logs, we use the
passive automata learning algorithm IOAlergia [36]. IOAlergia learns stochastic
automata for reactive systems defined by MDPs [36], based on Alergia [10]. State
merging exploits the underlying probabilities of events in the log. An MDP is a
tuple ⟨Γ,Ain, Aout, δ, s0, λ⟩ with finite sets of states Γ , input actions Ain and out-
put actions Aout, a stochastic transition function δ : Γ ×Ain → D(Γ), an initial
state s0 ∈ Γ , and a labeling function λ : Γ → Aout. We let Eδ ⊆ Γ ×Ain×Γ de-
note the finite set of transitions such that δ(s, a)(s′) > 0 for all triples (s, a, s′) ∈
Eδ. We assume MDPs to be deterministic; i.e., s′ = s′′ holds for all transitions
δ(s, a)(s′), δ(s, a)(s′′) such that δ(s, a)(s′) > 0, δ(s, a)(s′′) > 0 and λ(s′) = λ(s′′).

Let an input/output log Lio consist of traces τio = (λ(s0), (i0, o0), . . . , (in, on))
in which input and output actions alternate, starting with an initial output λ(s0),
which is only observed in the initial state. Given Lio, IOAlergia creates an in-
put/output frequency prefix tree acceptor (IOFPTA), where states are labeled
with output actions and transitions with input actions and frequencies. In the
IOFPTA, every path in the tree represents a prefix of a trace in τio ∈ Lio, and
the frequency denotes the number of traces sharing this path. After creating the
IOFPTA, IOAlergia merges states. Two states are merged if they (1) have the
same output label, (2) are locally compatible, and (3) all their successor states
with the same output labels are compatible. Local compatibility is based on the
Hoeffding bound [25]: two states s, s′ are compatible if, for all inputs i ∈ Ain,∣∣∣∣f(s, i, o)n(s, i)

− f(s′, i, o)

n(s′, i)

∣∣∣∣ ≤
√

1

2
log

2

ϵ
(

1√
n(s, i)

+
1√

n(s′, i)
),

where f(s, i, o) is the frequency of the transition to state o and n(s, i) the sum of
frequencies, for input i in state s. The parameter ϵ ∈ (0, 2] steers the algorithm’s
eagerness for state merging; e.g., ϵ = 2 leads to no state merges. Therefore, the
MDP might contain several states representing the same event. When no states
can be merged, the transition frequencies are normalized to create an MDP.

User Journey Games. A user journey game [30, 31] is a weighted two-player
game ⟨Γ,AC , AU , E, s0, T, Ts, w⟩, where Γ is a finite set of states, AC and AU

are disjoint sets of actions, E ⊆ Γ × Ac ∪ AU × Γ is a transition relation,
s0 ∈ Γ an initial state, T ⊆ Γ a set of final states, Ts ⊆ T successful final

4 P. Kobialka et al.

states, and w : E → R a weight function. Actions are separated into two disjoint
sets: controllable actions AC are taken by the service provider and uncontrol-
lable actions AU by the user. User journey games are deterministic if s′ = s′′

for (s, a, s′), (s, a, s′′) ∈ E. Uncontrollable actions have higher precedence than
controllable actions: hence, the user chooses actions first but might do nothing.

A stochastic multi-player game (SMG) [11] is a tuple ⟨Π,Γ,A, (Γi)i∈Π , s0, δ⟩,
where Π is a set of players, Γ a set of states, A a finite set of actions, (Γi)i∈Π a
partition of states among players, s0 ∈ Γ an initial state, and δ : Γ ×A→ D(Γ)
a stochastic transition function. SMGs partition the states among the players;
players can take enabled actions if the current state is in their partition. An
action a ∈ A is enabled in a state s if there is a transition to another state with
non-zero probability, i.e., ∃s′ ∈ Γ : δ(s, a)(s′) > 0. The set of transitions Eδ

defined by δ includes all triples (s, a, s′) ∈ Γ ×A×Γ with δ(s, a)(s′) > 0. Games
can include a reward structure r : Eδ → Q≥0 mapping transitions to positive
rewards (modeling weighted transitions). Rewards accumulate during the game.

Analyzing Stochastic Multiplayer Games. We are interested in analyzing a
player’s strategy, which determines the player’s actions in each state. For simplic-
ity, we focus on memory-less strategies, where the choice of action is determined
by the current state. A strategy [11] for player i ∈ Π in an SMG is a partial
function Γi → D(A) that maps states to distributions over actions.

PRISM-games [11, 32] extends the probabilistic model checker PRISM [34]
to games. While PRISM can resolve non-determinism to establish strategies for
a single player, PRISM-games can resolve nondeterminism for multiple, possi-
bly competing players. The logic Probabilistic Alternating-time Temporal Logic
with Rewards (rPATL) allows reasoning about SMGs by expressing temporal
properties [11]. The syntax of rPATL is given by:

ϕ :=⊤ | p | ¬ϕ | ϕ ∧ ϕ | ⟨⟨Ξ⟩⟩P▷◁q[ψ] | ⟨⟨Ξ⟩⟩Rr
▷◁χ[F

∗ ϕ] | ⟨⟨Ξ⟩⟩P▶◀[ψ] | ⟨⟨Ξ⟩⟩Rr
▶◀[F

∗ ϕ]

ψ :=Xϕ | ϕU≤kϕ | ϕUϕ

rPATL is a CTL-style branching-time temporal logic that extends state prop-
erties ϕ to path formula ψ with probabilistic and reward constraints. Here,
p is an atomic proposition. The coalition operator ⟨⟨Ξ⟩⟩ denotes the subset
Ξ ⊆ Π of players that collaborate in a query; these players share a common
goal against the remaining adversarial players. The probabilistic operator P▷◁q,
where ▷◁∈ {<,≤,≥, >} is a comparison operator and q ∈ Q∩[0, 1] is a probability
bound, indicates a probabilistic query under bound ▷◁ q. The expected cumulative
reward operator Rr

▷◁χ evaluates the reward structure r for eventually reaching ϕ
under bound ▷◁ χ, where χ ∈ Q≥0 is a reward bound and r is a reward structure.
The quantitative operators P▶◀ and Rr

▶◀, with ▶◀∈ {min=?,max=?}, return
the smallest, respectively largest, value that the given coalition of players Ξ can
enforce. The superscript ∗ of the eventually operator F expresses the cost for
paths when ϕ is not reached, it may be infinity (∞), zero (0), or accumulated
along the path (c). Further temporal logic operators can be constructed from
the next operator X, the until operator U, and the bounded until operator U≤k;
for example, the globally operator Gϕ is defined via U: ¬(⊤U¬ϕ) [11].

Stochastic Games for User Journeys 5

3 Case Study Overview

We conduct two complementary case studies: an industrial application (GrepS)
and a research benchmark (BPIC’17). We explain the steps of our method on
GrepS. BPIC’17 includes thousands of journeys and demonstrates scalability.

GrepS. The company GrepS offers programming skill evaluations for Java [6].
The customers of GrepS are organizations that use the service in the hiring pro-
cess to identify proficient applicants. Users of the service, the assessed trainees,
usually complete the assessment within 1–2 weeks. The service comprises three
phases: (1) sign up, (2) solve all programming tasks, and (3) review and share
the skill report with the customer. In a successful journey, the user completes
all tasks and shares the results with the organization. Otherwise, the journey is
unsuccessful. The event log contains anonymized user logs as tabular data [29].
To construct multi-actor event logs, the actor-mapping function α was detailed
by combining domain knowledge and interaction with a GrepS developer.

BPIC’17. The BPI Challenge 2017 captures a loan application process from a
bank. Users can cancel, submit or complete applications, and accept phone calls
from the bank. The process can have three different outcomes: (1) an offer can be
accepted by the user, (2) the application can be declined by the bank, or (3) the
application can be canceled by the user. We exclude declined applications as
they occur due to external factors, e.g., indebtedness. Thus, user journeys are
successful if the user accepts one of the provided loan offers; cancellations are
unsuccessful. The event log contains anonymized user logs as tabular data [15].
To construct multi-actor event logs, the actor-mapping function α was detailed
by combining domain knowledge with information given in the BPIC’17 forum.3

Interestingly, BPIC’17 contains a substantial change in the service provider’s
underlying process, a concept drift [2]. To investigate the impact of the concept
drift on the user journey, we split the log: The first part (BPIC’17-1) contains
traces until the change occurred in July 2016, and the second part (BPIC’17-2)
contains the traces after the change.

The BPIC’17 event log is preprocessed to clear inconsistencies [26,40]. Specif-
ically, we discretized call durations: A trace might contain several events associ-
ated with one call, and calls ranging from seconds to hours. Thus, we aggregate
repeated calls and classify them by their duration into “short”, “long”, or “super
long”. We exclude calls with an aggregated speaking time of less than 60 seconds.
We also distinguish different offers within the same trace. The service provider
cancels offers if there is no response after 20 days. We distinguish actively can-
celed offers and cancellations by the service provider due to timeout. We also
found some redundant events; e.g., the event W_Call after offers was always
followed by A_Complete, so we merged these events. To remove outliers we kept
only traces that appear more than once in the log; in the end, both logs still
contain more than 5000 journeys.

3 https://www.win.tue.nl/promforum/categories/-bpi-challenge-2017

https://www.win.tue.nl/promforum/categories/-bpi-challenge-2017

6 P. Kobialka et al.

4 From Logs to Stochastic Games

We explain how stochastic user journey games are constructed from multi-actor
event logs L = ⟨L,Π, α⟩, i.e., the first two steps in Fig. 1. Step 1 generates an
MDPM from the multi-actor event log L. Step 2 constructs a weighted stochastic
game, extending M with weights and actor information. These stochastic user
journey games combine user journey games and SMGs (see Sect. 2).

In a multi-actor event log L, the set of actors Π is assumed to include the
service provider C, who initiates all actions controlled by the offering company,
and the user U , who initiates all remaining actions. We assume that users engage
in only one action at a time; hence, our focus here will be on turn-based games
as models for user journeys, and not on models with parallelism.

Step 1. We first learn an MDP M = ⟨Γ,Ain, Aout, δ, s0, λ⟩ with IOAlergia. For
the construction of M , we make sure that the traces τ ∈ L are in the required
format of input/output pairs by extending each trace τ = (a0, . . . , an) to an in-
put/output trace τIO = (λ(s0), (env, λ(s0)

α(a0)), (act(a0), a0), . . . , (env, a
α(an)
n−1),

(act(an), an), (env, a
α(res)
n), (act(res), res)). Each ai ∈ τ is encoded by a pair

(env, a
α(ai)
i−1) where env is a generic input action indicating the next player, fol-

lowed by an output action a
α(ai)
i−1 that indicates the player who initiates event

ai from ai−1 according to the actor-mapping function α. This pair is followed
by a pair (act(ai), ai), which uses a function act : A → Ain to map events to
input actions, where the output action corresponds to the event itself. A naive
mapping could be act(ai) = ai, relating each event to a deterministic action.
However, it is often useful to introduce a mapping that abstracts slightly from
the events to better reflect the problem domain in the actions. Each τIO starts
with an initial output λ(s0) and ends with a final output res, which is successful
if τ records a successful user journey and unsuccessful otherwise. This result-
ing set of input/output traces is given to IOAlergia (see Sect. 2). By including
input/output pairs (env, a

α(ai)
i−1) in the traces, the learned MDP provides the

probability distribution for the actions of the next player.

Step 2. The MDP M obtained in Step 1 is extended to a stochastic user journey
game by means of a weight function w : Eδ → R, labeling transitions with
weights, and partitioning the states Γ into service provider states ΓC and user
states ΓU . For the automatic construction of the weight function w, we exploit
the distinction between successful and unsuccessful user journeys in the event
log to compute a numerical value that represents the impact of an action on the
outcome of the user journey. The calculation of w is based on previous work [30,
31]. For every transition e ∈ Eδ, we let w(e) = (1−H(e, L))·majority(e, L), where
H is the entropy of successful and unsuccessful journeys. The weight is positive
if the majority of traversals are successful journeys, otherwise negative. The
weight is maximal, respectively minimal, for transitions occurring exclusively in
successful, respectively unsuccessful, journeys. The accumulated weight along a
path in a user journey game, called gas, then represents the user’s “motivation”
to continue the journey [30,31].

Stochastic Games for User Journeys 7

Table 1: Model checking queries for SUJGs.
Name Query Description

Q1 ⟨⟨C⟩⟩Pmax=?[F successful] Probability of a successful journey
Q2 ⟨⟨C,U⟩⟩Rneg

min=?[F successful | unsuccessful]
Q3 ⟨⟨C⟩⟩Rneg

min=?[F successful | unsuccessful]
Q4 ⟨⟨C⟩⟩Rpos

max=?[F successful | unsuccessful]

Boundaries for accumulated
positive and negative rewards

Q5 ⟨⟨C⟩⟩Rneg
min=?[C≤S] Step bounded reward

Q6 ⟨⟨C⟩⟩Rpos
max=?[C≤S]

Q7 ⟨⟨C⟩⟩Rr
max=?[F

c successful] r ∈ {neg, pos, steps} Expectation of reward structures

Q8 ⟨⟨C⟩⟩Pmax=?[(F successful & gas ≥ G0 & Constrained success probability
steps ≤ S) & (G gas ≥ G1)]

The controllable and uncontrollable states are identified using the actor-
mapping function α to map states to the actors C (service provider) and U
(user); e.g., the set of states in ΓC corresponds to the copies of output actions
where C controls the next action: aα(ai)

i−1 , where α(ai) = C. Then ΓC = {s ∈ Γ |
∃a ∈ Aout : λ(s) = aC}, and ΓU = {s ∈ Γ | ∃a ∈ Aout : λ(s) = aU ∨ λ(s) = a}.

The weight function w and the state partitioning allows the MDP to be trans-
formed into a weighted, two-player SMG, hereafter called a stochastic user jour-
ney game (SUJG), i.e., a tuple G = ⟨{C,U}, Γ, Ain, (Γi)i∈{C,U}, s0, δ, T, Ts, w⟩,
where final states T = {s ∈ Γ | λ(s) = successful∨ λ(s) = unsuccessful}, success-
ful final states Ts = {s ∈ Γ | λ(s) = successful}, and w the weight function. Note
that every user journey game can be transformed into an equivalent SUJG.

5 Queries for Stochastic User Journey Games

We here assume that users do not interact infinitely with a service provider but
eventually stop. Therefore, we consider SUJGs to be stopping games, in which
we reach almost surely terminal states with reward zero [33].

Step 3. We now consider the probabilistic model checking of properties that are
crucial for the success of user journeys. The violation of these properties allows
us to locate problematic states where the user journey may be improved. The
constructed SUJG may contain loops with a positive or negative sum of weights.
For this reason, we distinguish queries applicable to games with reward structures
and with bounded integer encodings. Table 1 lists properties that we analyzed for
the case studies, and that we discuss below. The queries are specified in rPATL,
where C denotes the service provider and U denotes the user.

Let us first analyze the probability of completing a user journey successfully;
i.e., to what extent can service provider C guarantee the successful outcome
of the game? Query Q1 quantifies the service provider’s ability to guide an
independent user. Searching for states that return a small probability of reaching
any s ∈ Ts uncovers states from which the service provider has little or no
probability of successfully guiding the user. Thus, the journey is likely to fail.
Here, successful is a predicate that only holds in the successful final state Ts, and
unsuccessful is a predicate that holds in the final states T \ Ts.

8 P. Kobialka et al.

Reward Structures decouple accumulated rewards from the state space in
PRISM-games and allow efficient computation of accumulated rewards. In turn-
based SMGs, PRISM-games only supports positive rewards. Thus, we use two
reward structures: pos for positive and neg for negative gas (see Sect. 4). The
weight of a transition in the SUJG contributes to the corresponding structure,
i.e., positive weights add to pos, and negative weights add to neg. Many ser-
vices contain transitions with negative weights, e.g., reflecting actions that may
be unintuitive for the user. To analyze the effect of these transitions, we con-
sider queries concerning the user experience. Query Q2 determines the lower
bound for the negative reward that the user must accumulate to achieve any
outcome, by assuming that both actors cooperate. Queries Q3 and Q4 deter-
mine the minimum neg and maximum pos reward that the service provider can
guarantee, independent of the user, over successful and unsuccessful journeys,
respectively. Rewards can also be used to relate gas to the number of steps taken
so far: Queries Q5 and Q6 return the minimum negative or maximum positive
accumulated reward (denoted C) within the first S steps that C can guarantee.

Bounded Integer Encodings combine positive and negative weights in one
variable, enabling queries on their difference. Every transition changes the value
of this variable by the corresponding positive or negative weight, reflecting the
gas along the paths in the game (see Sect. 4). We also consider a step counter
that is updated for each transition. To restrict the size of the search space, we
give this variable a bound (i.e., steps := min(steps+1, X) for some X). We then
use concentration inequalities such as Markov’s inequality and cumulative re-
ward structures to calculate the expected values of pos, neg, and steps in Q7,
and derive upper and lower bounds that include at least a minimum part of the
distribution. Note that this construction is only needed in the presence of loops
and that the expected total rewards, used to bound the model, are finite as we as-
sume stopping games. Query Q8 determines the service provider’s probability for
a successful journey with a minimum amount of gas along the path, a maximum
amount of steps, and an overall lower bound for the gas. This multi-objective
query searches for a successful final state where gas ≥ G0 and steps ≤ S, while
ensuring that gas never decreases below G1, for constants G0, S,G1.

Experiments. PRISM-games supports experiments on queries that instantiate
a variable, e.g., the maximum number of steps, with all values in a given integer
interval. We use experiments to compare different values of player activity by
modifying the probabilities for the service provider or user to take their actions
first. Additionally, we vary the allowed number of steps to investigate how the
probabilities of a successful outcome change with a limited number of steps.

6 Model Reduction for Visualization

Model checking may reveal weaknesses in the service design and unsatisfiable
queries may suggest a need for changes. However, an unsatisfiable query does
not by itself identify the actions that negatively affect the largest number of users.

Stochastic Games for User Journeys 9

To help prioritize options during service redesign, we rank actions based on their
expected influence on the user journey outcome, to identify the most critical ac-
tions for the largest number of users (cf. Step 3, Fig. 1). We synthesize strategies
maximizing the probability of a successful outcome by returning a maximizing
strategy for the service provider and a minimizing strategy for the user, based on
the queries in Sect. 5. These strategies resolve the players’ choice of action in the
SUJG via an induced Markov chain M ′ = ⟨Γ ′, δ′, s0⟩; the states Γ ′ of M ′ form a,
possibly smaller, subset of the states Γ of the original SUJG, i.e., Γ ′ ⊆ Γ . (The
construction of the induced Markov chain M ′ from an SMG is detailed in [12].)

We say that users are guidable if the probability that they can successfully
complete the journey is greater than zero. Let the function R : Γ ′ → [0, 1] map
states s ∈ Γ ′ to the (intermediate) results of the probabilistic query Q1, express-
ing the probability of reaching the successful outcome from s. The difference in
guidable users between two neighboring states s and s′ is the absolute difference
between R(s) and R(s′), multiplied by the users traversing between these states.
Formally, the difference diff : Γ ′ → R in state s ∈ Γ ′ is the absolute difference
in guidable users between s and all neighboring states s′:

diff(s) =
∑
s′∈Γ ′

|R(s)− R(s′)| ·#Γ ′

L (s, s′) . (1)

Here, #Γ ′

L (s, s′) denotes the number of users traversing from s to s′ as recorded
in the log L, where s′ ∈ Γ ′ and δ′(s, s′) > 0. For non-neighboring states, let
#Γ ′

L (s, s′) = 0. States can then be ranked in descending order by their difference.

Visualizations of Results. Real-world processes with complex structures and
many users result in models that might be hard for humans to interpret correctly.
We discuss a model visualization method based on the model-checking results
that allows model reduction while preserving the ranking order.

The state space of M ′ can be abstracted into clusters of states with an equal
probability of success as defined by R. Neighboring states with the same results
can be merged. States {s′ ∈ Γ ′ | (s, s′) ∈ Eδ′ ∧R(s) = R(s′)} can be merged into
a state s. We also merge successful final states Ts∩Γ ′ and unsuccessful final states
(T \Ts)∩Γ ′. Note that the reduced model preserves all transitions to states that
negatively impact the user journey, and that the merge operation is commutative.

To visualize fluctuations in guidable users along the user journey, we trans-
form the reduced model into a Sankey diagram [39]. We opted for Sankey di-
agrams since they seem accessible to a wide range of stakeholders with some
previous insights into the user behavior [19]. Each bar in the diagram illustrates
changes in guidable users, divided into flows of lost and gained guidable users.
The largest bars indicate states that are promising candidates for improvement.
Note that the bars are not monotonic as they do not visualize the absolute
number of users in a state, but the weighted difference in guidable users.

A heat map visualizes the result mapping R in the reduced Markov chain. By
clustering similar states, we can keep diagrams fairly small without compromis-
ing the analysis. Fig. 2a shows a SUJG with three necessary user actions to reach
a successful outcome. States are annotated with the probability of reaching the

10 P. Kobialka et al.

(a) SUJG annotated with model
checking results.

(b) Reduced
Markov chain.

(c) Sankey diagram generated
from the reduced Markov chain.

Fig. 2: We visualize the model checking results in a Sankey diagram that is
generated from the learned stochastic user journey games (SUJGs).

successful final state, dotted lines represent uncontrollable user actions, anno-
tated with their probabilities. Fig. 2b shows the reduced Markov chain, where two
actions divide the states into four clusters with 35%, 70%, 100%, and 0% proba-
bility of success, respectively. The insights gained from the induced Markov chain
are then visualized as a Sankey diagram in Fig. 2c. The example illustrates flow
capacities through the distribution of 100 users.

7 Case Study Results

Table 2: Model checking results
for GrepS and BPIC’17.

Name GrepS BPIC’17-1 BPIC’17-2

Q2 16.49 33.11 33.87

Q3 50.55 37.35 36.07

Q4 44.98 67.79 68.07

We present results for the GrepS and
BPIC’17 case studies from Sect. 3. The steps
described in Sects. 4–6 are assembled in a
tool chain, implemented in Python 3.10.12,
and available online [27]. For automata
learning, we use the IOAlergia implementa-
tion of AALpy [37] (v. 1.4) and, for model
checking, PRISM-games [11,32] (v. 3.2.1). All experiments ran on a laptop with
32GB memory and an i7-1165G7 @ 2.8GHz Intel processor within few hours.

GrepS. Figure 3 shows the generated cyclic game, where touchpoints are repre-
sented as states, identified by T and a number. It encodes a heat map, ranging
from yellow states to green states; the darker a state’s green, the greater its prob-
ability for success (orange is the unsuccessful state). Transitions with negative
weights are orange, and those with positive weights green. The figure highlights
the three phases of GrepS’ user journey. Phase 1 consists of touchpoints T0–T4,
Phase 2 of T5–T20 and Phase 3 of T21–T26. Users receive a new task in T9,
T11, T13, T15, and T17. Feedback to users is given after every task. Users share
their results with the client company in T26. For readability, we merged the
service-provider controlled and user controlled states, which we introduced due
to the input/output format of the traces, see Step 1 in Sect. 4, with their preced-
ing touchpoint-labeled states (the full model is available at [27]). For GrepS, we
assume that users, when it is their turn, can transition according to the recorded
events, or do nothing, i.e., transition to a service-provider state, if available.

We investigate the limits for the positive and negative weights that the service
provider can guarantee during the journey, with the user and on its own. Table 2

Stochastic Games for User Journeys 11

Fig. 3: Simplified
model of GrepS’
user journey.

presents results for model checking the queries Q2–Q4 (see
Table 1) for both case studies. For GrepS, the user must en-
dure a significant number of negatively weighted transitions,
since the maximum accumulated pos (Q4) is smaller than
the minimum accumulated neg (Q3). Cooperation (Q2) re-
sults in a 67.37% reduction in accumulated neg.

We analyze the impact of the users’ and service provider’s
activity on the user journey by varying the probability in the
game’s transitions, to change how eager a player is in taking
action. Figure 4a shows the results for these changes: on the
horizontal axis, q = 0 means that the player takes action ac-
cording to the frequencies of the original game, −1 ≤ q < 0
means that the service provider gradually increases the prob-
ability of taking action (the service provider always takes an
action, if available, with q = −1). Similarly, for 1 ≥ q > 0,
the user gradually increases the probability of taking action
(until always taking an action, if available, with q = 1).
The vertical axis shows the probability of a successful jour-
ney (Q1); interestingly, GrepS has a linear gain from being
more active and a non-linear loss from being more passive.
Figure 4b shows the results for queries Q5 and Q6 by com-
paring the maximal accumulated positive and the minimum
accumulated negative weights for the first S steps of the jour-
ney, revealing that negative weights surpass positive weights,
especially at the beginning of a journey.

To evaluate whether the service provider can guide users
to a successful outcome with limited steps and lower bounds
for the gas, we consider the model with bounds derived from
query Q7 (see Sect. 5). We bound the integer encodings by
10 times their expected value, which includes at least 90% of
the traces. Figure 4c shows the development in guiding the
user under Q8. The plot’s labels are pairs (G0, G1), where
G0 is the minimum gas in the final state and G1 the lower
bound for gas along the journey. For pairs with the same
results, we only plot pairs with the maximum final gas and
the maximum gas along the journey. The plot shows that ex-
periencing a journey with high minimal gas and reaching a
successful outcome are conflicting goals; maximizing minimal
gas clearly affects the probability of success for the user jour-
ney. For the best probability of success (51%), GrepS needs
to guide the users through the negatively weighted transi-
tions, which reach a minimum gas of −64. Actually, the user
never fully recovers positive gas in this journey, which ends
with a negative gas of −4.

12 P. Kobialka et al.

(a) Parametric eagerness
of the players (Query Q1)

(b) Gas by steps
(Queries Q5 & Q6)

(c) Bounded experiment
(Query Q8) over (G0, G1)

Fig. 4: Experiment results for the GrepS case study.

The analysis has shown that users face negative experiences and that the
service provider can offer guidance. We now consider where the journey can be
improved to help users reach a successful outcome. Figure 5 shows the derived
Sankey diagram with observed users as flow capacities, as described in Sect. 6.
The reduced model contains only 6 states, while the mined one has 65 states.
Based on the state ranking function (Eq. 1), state T25, where users accept or
reject their test results, appears as the most critical state for a successful journey;
it determines whether the user will (or not) reach a successful final state; in fact,
25% percent of the users recorded in the log fail their journey immediately after
this state. The second most critical state is the first task T9 (where 37.5%
of all users are lost), followed by the other tasks. However, at these points in
the journey, several user-controlled actions are required for a successful journey,
which makes GrepS dependent on the user’s cooperation in these states.

Fig. 5: Sankey diagram of Greps’ user
journey for guidable users.

Thus, the SUJGs allow us to identify
specific states for enhancing the journey:
T9 and T25. Our analysis clearly shows
that GrepS needs to be active to achieve
a successful user journey (Fig. 4). We
note that most negatively weighted tran-
sitions are user-controlled, suggesting that GrepS can prevent users from “derail-
ing” from a successful journey by being more active within the user journey. If
GrepS provides less guidance, users tend to abandon their journeys more easily.

Stakeholder validation of GrepS results. We presented the results obtained
for GrepS to a company stakeholder4 to obtain feedback on our results and their
presentation format. The stakeholder was not involved in performing the case
study; the other authors only had access to the event log from GrepS, provided
in 2021. This validation was done after the analysis results were available.

He was familiar with Sankey diagrams and immediately observed that our
analysis makes non-trivial insights accessible to key-stakeholders, varying from
concrete recommendations to non-trivial prescriptions on company behavior.
From the company’s perspective, prioritizing limited resources to improve the
users’ success rate and experience is challenging. Our case study substantiates

4 The third author of this paper is a long-term stakeholder of GrepS.

Stochastic Games for User Journeys 13

that automated analyses based on event logs are a viable alternative to current
best-practices based on heuristics, and promise to reduce assessment efforts.

The identification of T25 as a candidate for improvement (Fig. 5) had actually
been discovered independently by GrepS, confirming our analysis. This step is
currently supplemented by a manual follow-up step, since completing the user
journey successfully is crucial to provide a good user experience. The second
suggested task, T9, is not obvious to GrepS and introduces options they have
not yet considered, namely to spend resources on guiding the user rather than
further optimizing the negative weighted sign-up phase (see Fig. 4b).

The analysis of actor eagerness related to the probability of success (Fig. 4a)
is novel and implies that revenue from resources invested in guiding users can
be computed. This allows GrepS to evaluate whether to spend more resources
on guiding users, given the linear scaling of success probability, or to cut costs
through less guidance, reducing manual work while increasing service adversity.

Figures 4b and 4c can be used to relate user profiles and user journeys. A
user’s motivation to complete tests and share results despite negatively weighted
actions, is initially unknown. If the company had some prior knowledge about
the initial motivation of a user or a group of users, it would be possible to
model different journeys through the service. In particular, Fig. 4c can support
such endeavors, because different bounds can be identified for different planned
journeys with corresponding probabilities for success.

Fig. 6: Parametric eager-
ness for Q1 in BPIC’17.

BPIC’17. Applying Steps 1 and 2 to BPIC’17
yields models with 95 states for BPIC’17-1 and
131 for BPIC’17-2. Step 3 reduces the models to
32 and 47 states, respectively (i.e., +60% reduc-
tion). When filtering on reachable states, using the
generated strategy, the models shrink to 15 and 19
states, respectively. Figure 7 shows the Sankey di-
agrams for the two event logs. For readability, we
omit the names of states with the least difference
in guidable users and use a heat map as in Fig. 3.

The comparison of model checking results between the two models with
queries Q2–Q4 (see Table 2) shows some small improvements from BPIC’17-1 to
BPIC’17-2. Figure 6 compares different levels of player eagerness for both SUJGs,
model checking Q1. It reveals improvements in the service. BPIC’17-2 outper-
forms BPIC’17-1 starting from q = 0.06 when increasing the service provider’s
probability to take an action. (Plots showing results for the remaining queries,
similar to the queries for the GrepS case study, are available online [27].)

Figure 7 shows the positive impact for BPIC’17-2 after the concept drift.
In BPIC’17-1, the number of guidable users remains constant through the user
journey, with the most critical state causing only 27% of the total user difference.
In BPIC’17-2, the main critical state causes a total of 50% difference of guidable
users. We also observe a change in loan offers: the 2nd and 3rd offers are promi-
nent in the reduced BPIC’17-2 model (while they were merged with other states
or omitted in BPIC’17-1), each with decreasing flow capacity. Furthermore, the

14 P. Kobialka et al.

(a) BPIC’17-1

(b) BPIC’17-2

Fig. 7: Sankey diagrams generated from the reduced BPIC’17 models.

probability of guiding users from “customer Create Offer 0 ” reduced; this state
is marked yellow in BPIC’17-1 and orange in BPIC’17-2, indicating a decrease
in user experience. In both journeys, the second most critical state, a short call
due to incomplete files, is user-controlled, but its fraction of the total guidable
user’s difference decreased from 26.6% to 12.5%. This can be interpreted as ev-
idence that the service provider improved this call state after the concept drift.
However, we observe that BPIC’17-2 still lacks proper guidance for the effect of
the call, based on the direct transition to the unsuccessful final state.

Threats to Validity. For model learning with IOAlergia, we set the parameter
ϵ (which regulates state merging) according to the size of the underlying event
log and the assumed complexity of the service. For GrepS, we set ϵ = 0.1 due
to a small number of possible journeys, while for BPIC’17, we set ϵ = 0.8 to
capture different decisions and possible executions. Insights from GrepS highly
depend on ϵ, where a larger ϵ restricts state merging. For BPIC’17, we observe
that the eagerness experiment (Fig. 6) replicates for various ϵ values, though with
variations for either small or large ϵ values. Further investigations are needed
to draw rigorous conclusions about this relation. The model-checking analysis
in Step 3, which generate Sankey diagrams, do not require a minimal flow of
users. Strategies might exploit rarely observed behavior, they do not consider
a minimum bound for the coverage of users. Table 1 presented queries that
target Pareto optimization problems to optimize multiple conflicting objectives,
e.g., limited steps and minimal gas in positive states. We explored solutions to
these problems with PRISM-games experiments, but one could also search for
all solutions. The efficiency of our technique depends on automata learning and
model checking; all presented results are reproducible within ∼ 9 h.

8 Related Work

Related work primarily focuses on designing domain-specific modeling languages
that allow modeling from the user’s perspective. The methods developed [5, 9,
14,20,22,23,35,38,41] concentrate on manually constructing user journeys based

Stochastic Games for User Journeys 15

on expert knowledge [9], user questionnaires [21,41], or given event logs [5]. The
analysis of the resulting models is typically also performed manually. However,
Lammel et al. [35] propose an ontology-based technique that allows the auto-
matic generation of visualizations to provide further insights.

Process discovery [1] is a technique to automatically generate models from
event logs and has been applied to generate different types of user journey
models such as customer journey maps (CJM) [7, 8, 24] or transition systems
[26,28,30,31,42]. CJMs represent grouped traces in the event logging, unlike our
work where we mine a general model. Existing approaches [26, 28, 31, 43] that
use process discovery techniques to mine transition systems ignore the underly-
ing distribution of events. By capturing the probabilities in the model, we can
perform a finer analysis and visualization, and provide guidelines to the service
provider in case of changing behavior. In our previous work [31], we also gener-
ated weighted deterministic user journey games and applied model checking to
find bottlenecks in the service. By applying automata learning instead of process
discovery techniques, we enhance this approach to generate probabilistic games.

Automata learning techniques [3, 13, 16, 45] have been used to mine process
models, e.g., transition systems or Petri nets, from given event logs. However,
our proposed approach incorporates the users’ perspective. While existing tech-
niques may also consider the underlying probability distribution of the event
log constructing the model, they neglect it for later analysis. Wieman et al. [45]
derive improvements for industrial case studies manually from the learned model.

9 Conclusion

This paper presents two complementary case studies for the automated modeling
and analysis of user journeys from event logs. Our analysis tool chain combines
automata learning and model-checking techniques, based on a formalization of
user journeys as stochastic weighted games that exploits the underlying distribu-
tion of events in the log. Model-checking results are used in property-preserving
model reduction, which allows us to automatically identify and rank actions
that are critical to the outcome of the user journey and visualize their effect.
To the best of our knowledge, this is the first work using stochastic games in an
automated method to analyze and improve user journeys.

The investigated case studies demonstrate the applicability of our approach
to real-world services, varying in size and complexity. The results of the case
studies lead us to three main observations: (1) model visualization creates com-
pact Sankey diagrams for complex services that facilitate the interpretation of
formal analyses; (2) the model reduction preserves changes in the underlying
journeys, e.g., the concept drift for BPIC’17; and (3) the state ranking method
effectively identifies candidate states for service redesign, based on user experi-
ence. Compared to previous work, our exploitation of the underlying probabilis-
tic distribution of events enabled a more targeted analysis of the user journeys.
For future work, automatically capturing the actor information in the event logs
would make our approach less dependent on domain knowledge.

16 P. Kobialka et al.

Data Availability Statement. The artifact to replicate the presented results
is publicly available on Zenodo at https://doi.org/10.5281/zenodo.12529995.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, 2 edn.
(2016), https://doi.org/10.1007/978-3-662-49851-4

2. Adams, J.N., Zelst, S.J.v., Quack, L., Hausmann, K., van der Aalst, W.M., Rose,
T.: A framework for explainable concept drift detection in process mining. In:
International Conference on Business Process Management. vol. 12875, pp. 400–
416. Springer (2021), https://doi.org/10.1007/978-3-030-85469-0_25

3. Agostinelli, S., Chiariello, F., Maggi, F.M., Marrella, A., Patrizi, F.: Process mining
meets model learning: Discovering deterministic finite state automata from event
logs for business process analysis. Information Systems 114, 102180 (2023), https:
//doi.org/10.1016/J.IS.2023.102180

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
5. Berendes, C.I., Bartelheimer, C., Betzing, J.H., Beverungen, D.: Data-driven cus-

tomer journey mapping in local high streets: A domain-specific modeling language.
In: Pries-Heje, J., Ram, S., Rosemann, M. (eds.) Proc. International Conference
on Information Systems (ICIS 2018). Association for Information Systems (2018),
https://aisel.aisnet.org/icis2018/modeling/Presentations/4

6. Bergersen, G.R., Sjøberg, D.I.K., Dybå, T.: Construction and Validation of an
Instrument for Measuring Programming Skill. IEEE Transactions on Software En-
gineering 40(12), 1163–1184 (Dec 2014), https://doi.org/10.1109/TSE.2014.
2348997

7. Bernard, G., Andritsos, P.: CJM-ab: Abstracting customer journey maps using
process mining. In: Mendling, J., Mouratidis, H. (eds.) Information Systems in
the Big Data Era - Proceedings CAiSE Forum 2018. Lecture Notes in Business
Information Processing, vol. 317, pp. 49–56. Springer (2018), https://doi.org/
10.1007/978-3-319-92901-9_5

8. Bernard, G., Andritsos, P.: Contextual and behavioral customer journey discovery
using a genetic approach. In: Welzer, T., Eder, J., Podgorelec, V., Latific, A.K.
(eds.) Proc. 23rd European Conference on Advances in Databases and Information
Systems (ADBIS 2019). Lecture Notes in Computer Science, vol. 11695, pp. 251–
266. Springer (2019), https://doi.org/10.1007/978-3-030-28730-6_16

9. Bitner, M.J., Ostrom, A.L., Morgan, F.N.: Service blueprinting: A practical tech-
nique for service innovation. California Management Review 50(3), 66–94 (Apr
2008), https://doi.org/10.2307/41166446

10. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of
a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) Proc. Second In-
ternational Colloquium on Grammatical Inference and Applications (ICGI-94).
Lecture Notes in Computer Science, vol. 862, pp. 139–152. Springer (1994),
https://doi.org/10.1007/3-540-58473-0_144

11. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. Formal Methods in System Design 43(1),
61–92 (2013), https://doi.org/10.1007/S10703-013-0183-7

12. Chen, T., Forejt, V., Kwiatkowska, M.Z., Simaitis, A., Trivedi, A., Ummels, M.:
Playing stochastic games precisely. In: Koutny, M., Ulidowski, I. (eds.) Proc. 23rd
International Conference on Concurrency Theory (CONCUR 2012). Lecture Notes

https://doi.org/10.5281/zenodo.12529995
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-85469-0_25
https://doi.org/10.1016/J.IS.2023.102180
https://doi.org/10.1016/J.IS.2023.102180
https://aisel.aisnet.org/icis2018/modeling/Presentations/4
https://doi.org/10.1109/TSE.2014.2348997
https://doi.org/10.1109/TSE.2014.2348997
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-030-28730-6_16
https://doi.org/10.2307/41166446
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/S10703-013-0183-7

Stochastic Games for User Journeys 17

in Computer Science, vol. 7454, pp. 348–363. Springer (2012), https://doi.org/
10.1007/978-3-642-32940-1_25

13. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Transactions on Software Engineering and Methodology (TOSEM)
7(3), 215–249 (1998), https://doi.org/10.1145/287000.287001

14. Crosier, A., Handford, A.: Customer Journey Mapping as an Advocacy Tool for
Disabled People: A Case Study. Social Marketing Quarterly 18(1), 67–76 (Mar
2012), https://doi.org/10.1177/1524500411435483

15. van Dongen, B.: BPI Challenge 2017 (2017), https://doi.org/10.4121/uuid:
5f3067df-f10b-45da-b98b-86ae4c7a310b

16. Esparza, J., Leucker, M., Schlund, M.: Learning workflow Petri nets. Fundamenta
Informaticae 113(3-4), 205–228 (2011), https://doi.org/10.3233/FI-2011-607

17. Fornell, C., Mithas, S., Morgeson, F.V., Krishnan, M.: Customer Satisfaction and
Stock Prices: High Returns, Low Risk. Journal of Marketing 70(1), 3–14 (Jan
2006), https://doi.org/10.1509/jmkg.70.1.003.qxd

18. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967), https://doi.org/10.1016/S0019-9958(67)91165-5

19. Gutwin, C., Mairena, A., Bandi, V.: Showing flow: Comparing usability of Chord
and Sankey diagrams. In: Schmidt, A., Väänänen, K., Goyal, T., Kristensson, P.O.,
Peters, A., Mueller, S., Williamson, J.R., Wilson, M.L. (eds.) Proc. 2023 Conference
on Human Factors in Computing Systems (CHI 2023). pp. 825:1–825:10. ACM
(2023), https://doi.org/10.1145/3544548.3581119

20. Halvorsrud, R., Boletsis, C., Garcia-Ceja, E.: Designing a modeling language for
customer journeys: Lessons learned from user involvement. In: Proc. 24th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS
2021). pp. 239–249. IEEE (2021), https://doi.org/10.1109/MODELS50736.2021.
00032

21. Halvorsrud, R., Haugstveit, I.M., Pultier, A.: Evaluation of a modelling language
for customer journeys. In: Blackwell, A.F., Plimmer, B., Stapleton, G. (eds.) Proc.
Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2016).
pp. 40–48. IEEE Computer Society (2016), https://doi.org/10.1109/VLHCC.
2016.7739662

22. Halvorsrud, R., Kvale, K., Følstad, A.: Improving service quality through customer
journey analysis. Journal of Service Theory and Practice 26(6), 840–867 (Nov
2016), https://doi.org/10.1108/JSTP-05-2015-0111

23. Halvorsrud, R., Mannhardt, F., Johnsen, E.B., Tapia Tarifa, S.L.: Smart journey
mining for improved service quality. In: Carminati, B., Chang, C.K., Daminai,
E., Deng, S., Tan, W., Wang, Z., Ward, R., Zhang, J. (eds.) Proc. International
Conference on Services Computing (SCC 2021). pp. 367–369. IEEE (2021), https:
//doi.org/10.1109/SCC53864.2021.00051

24. Harbich, M., Bernard, G., Berkes, P., Garbinato, B., Andritsos, P.: Discover-
ing customer journey maps using a mixture of Markov models. In: Ceravolo, P.,
van Keulen, M., Stoffel, K. (eds.) Proc. 7th International Symposium on Data-
driven Process Discovery and Analysis (SIMPDA 2017). CEUR Workshop Proceed-
ings, vol. 2016, pp. 3–7. CEUR-WS.org (2017), http://ceur-ws.org/Vol-2016/
paper1.pdf

25. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In:
Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding, pp. 409–
426. Springer (1994), https://doi.org/10.1007/978-1-4612-0865-5_26

https://doi.org/10.1007/978-3-642-32940-1_25
https://doi.org/10.1007/978-3-642-32940-1_25
https://doi.org/10.1145/287000.287001
https://doi.org/10.1177/1524500411435483
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.3233/FI-2011-607
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1145/3544548.3581119
https://doi.org/10.1109/MODELS50736.2021.00032
https://doi.org/10.1109/MODELS50736.2021.00032
https://doi.org/10.1109/VLHCC.2016.7739662
https://doi.org/10.1109/VLHCC.2016.7739662
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1109/SCC53864.2021.00051
https://doi.org/10.1109/SCC53864.2021.00051
http://ceur-ws.org/Vol-2016/paper1.pdf
http://ceur-ws.org/Vol-2016/paper1.pdf
https://doi.org/10.1007/978-1-4612-0865-5_26

18 P. Kobialka et al.

26. Kobialka, P., Mannhardt, F., Tapia Tarifa, S.L., Johnsen, E.B.: Building user
journey games from multi-party event logs. In: Proc. 3rd International Work-
shop on Event Data and Behavioral Analytics (EdbA 2022). Lecture Notes in
Business Information Processing, vol. 468. Springer (2022), https://doi.org/10.
1007/978-3-031-27815-0_6

27. Kobialka, P., Pferscher, A., Johnsen, E.B., Tapia Tarifa, S.L.: Supplemen-
tary material: Stochastic games for user journeys. https://github.com/
smartjourneymining/probabilistic_games/releases/tag/FM2024 (2024)

28. Kobialka, P., Schlatte, R., Bergersen, G.R., Johnsen, E.B., Tapia Tarifa, S.L.: Simu-
lating user journeys with active objects. In: de Boer, F.S., Damiani, F., Hähnle, R.,
Johnsen, E.B., Kamburjan, E. (eds.) Active Object Languages: Current Research
Trends, Lecture Notes in Computer Science, vol. 14360, pp. 199–225. Springer
(2024), https://doi.org/10.1007/978-3-031-51060-1_8

29. Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games
for user journeys (data set). https://doi.org/10.5281/zenodo.6962413 (2022),
accessed: 2024-04-01

30. Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games
for user journeys. In: Schlingloff, B., Chai, M. (eds.) Proc. 20th International
Conference on Software Engineering and Formal Methods (SEFM 2022). Lec-
ture Notes in Computer Science, vol. 13550, pp. 253–270. Springer (2022), https:
//doi.org/10.1007/978-3-031-17108-6_16

31. Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: User journey
games: Automating user-centric analysis. Software and Systems Modeling 23(3),
605–624 (2024), https://doi.org/10.1007/s10270-024-01148-2

32. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: Stochas-
tic game verification with concurrency, equilibria and time. In: Lahiri, S.K., Wang,
C. (eds.) Proc. 32nd International Conference on Computer Aided Verification
(CAV 2020). Lecture Notes in Computer Science, vol. 12225, pp. 475–487. Springer
(2020), https://doi.org/10.1007/978-3-030-53291-8_25

33. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games: verification and strat-
egy synthesis for stochastic multi-player games with multiple objectives. Int. J.
Softw. Tools Technol. Transf. 20(2), 195–210 (2018), https://doi.org/10.1007/
S10009-017-0476-Z

34. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. 23rd
International Conference on Computer Aided Verification (CAV 2011). Lecture
Notes in Computer Science, vol. 6806, pp. 585–591. Springer (2011), https:
//doi.org/10.1007/978-3-642-22110-1_47

35. Lammel, B., Korkut, S., Hinkelmann, K.: Customer experience modelling and anal-
ysis framework - a semantic lifting approach for analyzing customer experience. In:
Proc. 6th International Conference on Innovation and Entrepreneurship (IE 2016).
GSTF (Dec 2016), http://hdl.handle.net/11654/24293

36. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Machine
Learning 105(2), 255–299 (2016), https://doi.org/10.1007/S10994-016-5565-9

37. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. Innovations in Systems and Software Engineering
18(3), 417–426 (2022), https://doi.org/10.1007/S11334-022-00449-3

38. Razo-Zapata, I.S., Chew, E.K., Proper, E.: VIVA: A visual language to design
value co-creation. In: Proc. 20th Conference on Business Informatics (CBI 2018).
vol. 01, pp. 20–29. IEEE (Jul 2018), https://doi.org/10.1109/CBI.2018.00012

https://doi.org/10.1007/978-3-031-27815-0_6
https://doi.org/10.1007/978-3-031-27815-0_6
https://github.com/smartjourneymining/probabilistic_games/releases/tag/FM2024
https://github.com/smartjourneymining/probabilistic_games/releases/tag/FM2024
https://doi.org/10.1007/978-3-031-51060-1_8
https://doi.org/10.5281/zenodo.6962413
https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.1007/s10270-024-01148-2
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1007/S10009-017-0476-Z
https://doi.org/10.1007/S10009-017-0476-Z
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://hdl.handle.net/11654/24293
https://doi.org/10.1007/S10994-016-5565-9
https://doi.org/10.1007/S11334-022-00449-3
https://doi.org/10.1109/CBI.2018.00012

Stochastic Games for User Journeys 19

39. Riehmann, P., Hanfler, M., Froehlich, B.: Interactive Sankey diagrams. In: Stasko,
J.T., Ward, M.O. (eds.) IEEE Symposium on Information Visualization (InfoVis
2005). pp. 233–240. IEEE Computer Society (2005), https://doi.org/10.1109/
INFVIS.2005.1532152

40. Rodrigues, A.M.B., Almeida, C.F.P., Saraiva, D.D., Felipe, B., Moreira, Spyrides,
G.M., Varela, G., Krieger, G., Igor, T., Peres, Dantas, L.F., Lana, M., Alves, O.E.,
França, R., Ricardo, Neira, A., Gonzalez, S.F., Fernandes, W., Barbosa, S.D.J.,
Poggi, M., Lopes, H.C.V.: Stairway to value: mining a loan application process
(2017), https://www.win.tue.nl/bpi/2017/bpi2017_winner_academic.pdf

41. Rosenbaum, M.S., Otalora, M.L., Ramírez, G.C.: How to create a realistic cus-
tomer journey map. Business Horizons 60(1), 143–150 (2017), https://doi.org/
10.1016/j.bushor.2016.09.010

42. Terragni, A., Hassani, M.: Analyzing customer journey with process mining: From
discovery to recommendations. In: Proc. 6th International Conference on Future
Internet of Things and Cloud (FiCloud 2018). pp. 224–229. IEEE (Aug 2018),
https://doi.org/10.1109/FiCloud.2018.00040

43. Terragni, A., Hassani, M.: Optimizing customer journey using process mining and
sequence-aware recommendation. In: Proc. 34th Symposium on Applied Comput-
ing (SAC 2019). pp. 57–65. ACM Press (Apr 2019), https://doi.org/10.1145/
3297280.3297288

44. Vandermerwe, S., Rada, J.: Servitization of business: Adding value by adding ser-
vices. European Management Journal 6(4), 314–324 (1988), https://doi.org/10.
1016/0263-2373(88)90033-3

45. Wieman, R., Aniche, M.F., Lobbezoo, W., Verwer, S., van Deursen, A.: An expe-
rience report on applying passive learning in a large-scale payment company. In:
Proc. International Conference on Software Maintenance and Evolution (ICSME
2017). pp. 564–573. IEEE Computer Society (2017), https://doi.org/10.1109/
ICSME.2017.71

https://doi.org/10.1109/INFVIS.2005.1532152
https://doi.org/10.1109/INFVIS.2005.1532152
https://www.win.tue.nl/bpi/2017/bpi2017_winner_academic.pdf
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1109/FiCloud.2018.00040
https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1109/ICSME.2017.71
https://doi.org/10.1109/ICSME.2017.71

	Stochastic Games for User Journeys

