
Simulating User Journeys with Active Objects ⋆

Paul Kobialka1 , Rudolf Schlatte1 , Gunnar Rye Bergersen1,2 ,
Einar Broch Johnsen1 , and S. Lizeth Tapia Tarifa1

1 Dept. of Informatics, University of Oslo, Oslo, Norway
{paulkob,rudi,gunnab,einarj,sltarifa}@ifi.uio.no

2 GrepS B.V., Utrecht, the Netherlands

Abstract. The servitization of business makes companies increasingly
dependent on providing carefully designed user experiences for their ser-
vice offerings. User journeys model services from the user’s perspective,
but user journeys are today mainly constructed and analyzed manually.
Recent work analyzing user journeys as games enable optimal service-
provider strategies to be automatically derived, assuming a restricted
user behavior. Complementing this work, we here develop an actor-based
modeling framework for user journeys that is parametric in user behav-
ior and service-provider strategies, using the active-object modeling lan-
guage ABS. Strategies for the service provider, such as those derived for
user journey games, can be automatically imported into the framework.
Our work enables prescriptive simulation-based analyses, as strategies
can be evaluated and compared in scenarios with rich user behavior.

1 Introduction

Companies increasingly offer services to enhance their product range, a devel-
opment termed the servitization of business [49]. The success of these services
is highly dependent on user satisfaction: If the users are satisfied with how they
experience the offered service, the companies are rewarded financially without
increasing their risk [23]. Therefore, to provide successful services, companies
need to adjust and improve their services from the users’ perspective. However,
services are usually analyzed from the managerial perspective, centered on the
company and not on the users.

User journeys allow services to be analyzed from the user perspective, with
the aim of understanding and hopefully improving the user’s experience of a
service. User journeys model a user’s actual path through a service by capturing
so-called touchpoints; these reflect communication between the user and the ser-
vice provider, or actions performed by the user. Due to lacking formalization and
tool support, the analysis of user journeys is today mainly a manual process [25]:
analysts collect feedback on a service from a representative group of users (e.g.,
by means of questionnaires) to manually construct a user journey map, look
⋆ This work is part of the Smart Journey Mining project (Research Council of Norway,

grant no. 312198) and the SIRIUS Centre for Scalable Data Access (Research Council
of Norway, grant no. 237889).

http://orcid.org/0000-0002-0635-1915
http://orcid.org/0000-0001-5601-5517
http://orcid.org/0000-0002-8135-9052
http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0001-9948-2748
{paulkob,rudi,gunnab,einarj,sltarifa}@ifi.uio.no

2 P. Kobialka et al.

for typical pain points, and possibly suggest improvements to the user journey.
Because the user journey analysis is manual, the process is not easily applied to
complex services or analyzed with respect to many users.

The interaction between a service provider and a user can be formalized as
a game [31, 32]. Users interact with the service provider to achieve a specific
goal and the service provider may adopt different strategies to handle the users.
Strategies for these games can be automatically analyzed using model checking
tools such as UPPAAL [21] and PRISM [16] to reveal insights about the user
journey. The analysis of user journey games can identify pain points in the
user journeys (e.g., states where users abandon their journey), where the user
journey could be improved. User journey games assume that all users are equally
antagonistic, i.e., users always choose the worst possible action. However, in a
real scenario users are not always uniformly antagonistic to the service provider,
which makes it interesting to consider approaches that can relax this assumption.

In this paper, we propose to model user journeys by means of actors, to
explore more diverse user behavior, complementing previous work on user jour-
ney games. We model a service provider and concurrent users as independent
actors. The resulting actor model allows us to capture richer interaction scenar-
ios between users and a service provider, and facilitates more realistic models
than with user journey games, e.g., to explore several different service-provider
strategies. Further, we consider parameterized and randomized user models to
differentiate user behavior and explore the effect of service-provider strategies
under different assumptions about such user behavior. Specifically, we investi-
gate a user compliance parameter expressing the probability of a user waiting
for the service provider’s guidance instead of just taking a random action (e.g.,
the willingness or capability of users to follow instructions). Our model supports
prescriptive analysis of user journeys by varying service-provider strategies and
comparing the consequences of strategic decisions in the user journey.

We implement the user journey model as an actor-based simulation frame-
work, using the active objects of ABS [27,29]. ABS is a timed actor-based mod-
eling language, which supports cooperative scheduling and the specification of
timing- and resource-aware behavior. Cooperative scheduling allows a process,
executing in an actor, to be suspended while waiting for an event to occur, such
that another process that is able to make progress can execute. Timed semantics
allow the specification of the temporal behavior in the model. Resource-aware
behavior takes a supply-and-demand perspective of execution, relating locations
that provide resources to actors that require them for executing their active
processes and modeling part of a system that has limited resources.

In this paper, we focus on the development of the core framework using
ABS constructs without time and resources. We envision exploiting the time and
resource aspects of ABS to reveal the bottlenecks of the service due to the waiting
times of users and limited resources in the service (e.g., waiting for telephone calls
or manual checks in the service). Towards this aim, we now focus on capturing
the functional aspects of our proposed actor framework, which is parametric
in both user behavior and the service provider’s strategy. For example, service

Simulating User Journeys with Active Objects 3

provider strategies derived using the above-mentioned model checking techniques
can be automatically imported into our simulation framework.

Recent extensions to the ABS simulation tool [42], implemented in Erlang [3],
allow the parameters of the framework to be instantiated in a data-driven way by
means of SQL queries to instantiate user behavior and service-provider strategies
into user-defined datatypes in ABS, that later can be used to drive the execution
of the model. We then use simulations to conduct experiments on the resulting
user journey model for different user parameters, i.e. we investigate user journeys
for varying probabilities of user compliance on randomized users. We evaluate
our actor model of user journeys on an industrial case study; the results are
reviewed by a long-term employee of the cooperating company, who is also the
third author of this paper.

In short, the contributions of this paper are:

1. an active-object model for user journeys that is parametric in user behavior
and in service-provider strategies,

2. a data-driven simulation framework to evaluate and compare different strate-
gies for the service-provider, and

3. an application of the simulation framework to an industrial case study.

2 Motivating Scenario

Consider an imaginary company TestMe ltd. that offers evaluations of pro-
gramming skills. Companies searching for new developers commission TestMe
to conduct tests of their applicants to determine their level of programming skills.
TestMe is paid per user (i.e., a user is here an applicant to the commissioning
company) that completes the evaluation and does not withdraw in the middle
of the evaluation process. Therefore, TestMe wants to investigate the user ex-
perience when users engage in the tests of the evaluation process and hires a
team of analysts to analyze the user journey. The analysts start by conducting
questionnaires with selected users and manually generate, based on the answers,
a so-called user journey map outlining the experiences and feedback from the
questionnaires. The user journey map may reveal pain points in the user journey,
i.e., interactions hindering a successful completion of the skill evaluation.

To improve the user journey and engage the user more actively, TestMe
may consider different changes in the evaluation process based on the informa-
tion gained from the user journey analysis. Further, the company would like to
differentiate the user journey analysis depending on the users’ skill level, assum-
ing that users at different skill levels behave differently during the evaluation
process. To facilitate a continuous evaluation of user journeys, the analysts need
an automated process of user journey analysis that does not depend on the
manual processing of questionnaires. To address this bottleneck, previous work
by the authors proposes the use of recorded logs from the system to automat-
ically generate a model of the user journey, called a user journey game [32].
This approach drastically reduces the time until realistic models are available.

4 P. Kobialka et al.

User journey games and strategies that ensure (or increase the chances for) a
successful outcome of these games are introduced in Section 4.1.

The user journey games can be used by the team of analysts at TestMe to
derive (winning) strategies suitable for the service provider, i.e., strategies that
guide users toward completing the evaluation. However, the analysts struggle
with the strict assumptions in user journey games, needed for successful analysis.
User journey games do not distinguish users with, e.g., different skill levels,
preventing the desired prescriptive analysis based on different users. To overcome
these limitations, we here propose to model user journeys using active objects in
the Abstract Behavioural Specification (ABS) language [27] (ABS is summarized
in Section 4.2), and integrate the strategies derived from user journey games in
an active object setting. The resulting workflow is outlined in Figure 2.

Sections 5.1 and 5.2 discuss how to model user journeys as active objects
(Step 1 in Figure 2), where we describe the transfer from Uppaal [34] mod-
els to ABS and the intermediate steps needed to encode generated strategies.
Section 5.3 introduces parameterized user behavior to differentiate users and ex-
pands on the model generation. The model is further specified with additional
user parameters so that assumptions needed for games are removed (Step 2).
Further, we simulate different kinds of users to evaluate possible changes to the
service provider’s behavior (Step 3). Our simulation model is parameterized in
the user behavior and allows adaptations to reflect different user behavior, cor-
responding to the different kinds of users encountered by the company. Section 6
describes the conducted simulations and evaluates our approach on a real case
study. We summarize our work in Section 7 and outline future work.

3 Related Work

We discuss related work with respect to the data-driven analysis of user journeys
and the modeling capabilities provided by the active object language ABS. To
the best of our knowledge, this is the first work on modeling user journeys in an
actor or active object language, giving all actors an operative role.

User journeys express the interactions between a service provider and its
users from the users’ perspective [22,46]. Various modeling notations have been
proposed to support the blueprinting process [13], establishing a model of the
planned interactions between the user and service provider for a service. Ap-
proaches to create user journey diagrams include [5,18,26,33,39,40]; in most of
these approaches, diagrams are created by hand after conducting surveys and
questionnaires. Digital support exists in e.g. [33] to visualize static information
of the interactions such as the time spent from the user’s perspective, the expe-
rience per interaction, etc.

The Customer Journey Modeling Language (CJML) [24, 26] offers two di-
agram types to highlight different aspects of the users’ perspective: customer
journey network diagrams display the interaction between the user and all sub-
contractors, customer journey diagrams display the impressions from the users’
point of view. CJML highlights deviations in the actual journey, the actual im-

Simulating User Journeys with Active Objects 5

pressions a user has in the service, from the planned journey, the planned im-
pressions. The Smart Journey Mining project aims to build data-driven tool
support for user journeys [25]. Therefore, CJML was actively extended for digi-
tal support; CJML v2.0 provides an XML format for the in- and export of actual
and planned user journeys [26].

Data-driven methods from process mining [1] for process discovery have been
successfully applied to discover user journeys from recorded logs. Bernard et
al. [8, 10] investigate the possibility of using process mining for user journeys,
they use hierarchical clustering and user-defined goals to abstract from a large
number of journeys [7], and propose a method to discover user journeys from
logs at varying levels of granularity [9]. Terragni and Hassani [44] investigate
user journeys in the form of web logs and their optimization by building rec-
ommender systems proposing user-specific actions optimizing key performance
indicators [45]. In contrast, our work focuses on the modeling aspect of user
journeys with active objects and simulations to gain prescriptive insights into
the service provider behavior and user journeys.

Formal methods allow the verification and analysis of discovered models for
desired properties. David et al. present TAPAAL [19], a model checker for timed-
arc Petri nets, which has been used by Bertolini et al. [11] to verify requirements
in the healthcare domain. Kobialka et al. [31, 32] proposed user journey games
as a formal model for user journeys, where the user and service provider are
independent actors competing for a successful user journey. In [31] the approach
is applied to a large process mining benchmark log and a state reduction method
on event level is proposed.

Challenges for leveraging formal, compositional language semantics to in-
dustrially applicable tools, including how to input/output real-world data, have
been discussed in the context of ABS in [43]. The simulation tool of ABS has pre-
viously been used to model and analyze large use cases (e.g., [2,12,30,36,37,42]);
in particular, Turin et al. [47] use ABS to build and analyze a formal model for
cloud deployment in Kubernetes, illustrating the impact of large loads of users.

4 Preliminaries

4.1 User Journeys as Weighted Games

A game [4,15,16,21] consists of players that alternate in deciding on the action
to take as the game transitions from one state to the next. Players may have
strategies to try to force a specific outcome of the game; e.g., a player may try
to reach a desired outcome of the game or to ensure that certain states are never
reached. Actions in a game can have weights, e.g., to express rewards or penalties
when taking an action, transforming the game into a weighted game.

A weighted game [15] is a tuple (Γ,Ac, Au, E, s0, T, w) with a set Γ of states,
sets Ac, Au of controllable and uncontrollable actions (or labels) with Ac∩Au = ∅,
a transition relation E ⊆ Γ ×Ac ∪Au × Γ , an initial state s0 ∈ Γ , a set T ⊆ Γ
of final states, and a weight function w : E → R that assigns weights to tran-
sitions. When analyzing a two-player game in which one player (the controller)

6 P. Kobialka et al.

takes controllable actions and the other player takes uncontrollable actions, it is
assumed that only the controllable actions in Ac can be selected by the analyzer
— the actions in Au are nondeterministically decided by an adversarial environ-
ment, playing against the controller. If both players have actions available, the
uncontrollable actions have precedence over the controllable actions.

In user journey games [32], the service provider and user are modeled as
players in a two-player game, each with their own set of actions. Formally, a
user journey game is a weighted game (Γ,Ac, Au, E, s0, T, Ts, w), where Ts ⊆ T
are the successful final states. By using games as the user journey model, we in-
herently assume that (1) no player performs more than one activity concurrently,
and that (2) user journeys are goal-driven processes where the user and service
provider have the incentive to achieve the journey’s goal, i.e., to reach a success-
ful final state. For a user-centric analysis, the user is modeled as the adversarial
environment that takes uncontrollable actions and the service provider as the
controller that takes controllable actions. We require that the service provider
has suitable responses for all user interactions and does not constrain the user.

The weights in user journey games reflect the users’ experience as reflected
in the system logs in the following way: interactions that only occur in successful
journeys receive a positive weight, interactions that only occur in unsuccessful
journeys receive a negative weight, and interactions that occur in both successful
and unsuccessful journeys receive a neutral weight. The sum of weights along
a (partial) user journey is called gas, and reflects the aggregated experiences of
the respective users. In the games, a unique start state is introduced to ensure
that all users start from the same state, and positive and negative final states
are introduced to differentiate successful from unsuccessful journeys.

User journey games are generated from logs by (1) mining a transition system
from the traces in the log, (2) transforming the transition system into a game by
defining controllable and uncontrollable actions, and (3) adding user feedback by
computing weights on the transitions. An entropy-based function assigns high
positive weights to actions that primarily occur in successful journeys, high nega-
tive weights to actions that primarily occur in unsuccessful journeys and neutral
weights to actions in successful and unsuccessful journeys. The generation of
user journey games from event logs is detailed in [32].

A strategy [20] assigns a set of possible actions to every state in a game.
Formally, given a game G = (Γ,Ac, Au, E, s0, T, w), a strategy for G is a partial
function σ : Γ → 2Ac∪{λ}/{∅} from states in Γ to the power-set of controllable
actions Ac; here, λ denotes the “wait” action (i.e., no controllable action is taken
and the controller gives the next move to the environment) and the possibility
of “no action” (expressed by {∅}) is removed. We say that a player follows a
strategy σ if, in every state s ∈ Γ , the player only selects actions in σ(s). If
there is a strategy that guarantees a desired property, the controller can enforce
the desired outcome by following this strategy, preventing the adversary from
making a choice that violates the property.

We here consider memoryless strategies, i.e., strategies where the choice of
the next action only depends on the last state. Maler et al. [38] have shown that

Simulating User Journeys with Active Objects 7

memoryless strategies suffice for reachability properties. Note that strategies can
be nondeterministic; i.e., there might be more than one possible action available
to enforce the desired outcome. We call a strategy deterministic if only one
possible action can be selected in any state (i.e., |σ(s)| = 1 for all s ∈ Γ).

Uppaal Stratego [21] is a model checker for games in the Uppaal tool
suite [34], which combines Uppaal Tiga [4] with the stochastic model checker
Uppaal SMC to stochastically model check games; i.e., it verifies properties in a
game setting through random simulations and hypothesis testing until sufficient
statistical evidence is reached. Uppaal Stratego allows refining a strategy
towards an expected goal, e.g., to find the shortest path to a successful final
state [20]. Uppaal Stratego constructs strategies for adversarial users. When
refining or evaluating strategies with respect to numerical criteria, e.g. estimat-
ing the expected number of steps in a user journey under a certain strategy,
Uppaal Stratego uses stochastic simulations.

4.2 The ABS Modeling Language

The Abstract Behaviour Specification [27] language (ABS) is a language for be-
havioral modeling of distributed systems. ABS is an active object language [14],
combining executable actor-based semantics with asynchronous method calls
and first-class futures. Data is modeled via a functional, side-effect-free layer of
algebraic data types and parametric functions. The actor behavior is expressed
in a sequential, imperative way, with explicit suspension points for cooperative
scheduling in each actor. ABS has a Java-like syntax and is supported by a range
of analysis tools (see, e.g., [41,50]). The internal state of each actor can be mod-
eled in detail or completely abstracted, depending on the purpose of the model.
The following features of ABS are useful in creating behavioral models:

Asynchronous method calls and first-class futures: The essential feature
of a distributed system is that communication (sending a method call) and
execution (scheduling an incoming call) are decoupled. The caller can con-
tinue execution until the result of a call is needed, and the callee can schedule
calls from multiple callers as needed.

Process suspension and boolean guards: Inside an ABS actor, many pro-
cesses can execute in a cooperative manner, with only one process running
at any given time. Processes suspend themselves when waiting for a method
call result or waiting for a boolean condition over the actor state.

Data Structures and Functions: Algebraic datatypes are used to model ac-
tor state and data that is passed between actors via method calls. Functions
that are calculated over such datatypes are side effect-free.

Database Access. For the work presented in this paper, we use the recently added
capabilities of ABS to import structured data stored in a SQLite database file
into a running ABS model.

Structured data stored in an SQLite database can be directly read into ABS
by converting query results into ABS datatypes. Executing a query inside ABS

8 P. Kobialka et al.

data StrategyEntry =
StrategyEntry(String strategy_state, String strategy_action);

def List<StrategyEntry> strategy(String strategy_name)
= builtin(sqlite3, "../data/journeys.sqlite",

"SELECT state, action FROM strategies WHERE strategy_name = ?",
strategy_name);

Fig. 1: Querying the “journeys.sqlite” database from within ABS, passing in an
ABS value as query parameter.

SQLite
SQLite return value ABS query parameter
INTEGER Int INTEGER
INTEGER or REAL Float REAL
INTEGER or REAL Rat REAL
INTEGER (0 = False, otherwise True) Bool 0 or 1
TEXT String TEXT
Row of the above User-defined datatype n/a

Table 1: ABS to SQL datatype mapping: the first and second columns show the
SQL result to ABS datatype conversion; the second and third columns show how
ABS datatypes are converted into query parameter values.

produces a list of ABS data, which can be used like any other list after the
query has finished. If the query only returns rows of one value each, e.g. String,
the type of the query result inside ABS will be List<String>. If, on the other
hand, the query returns tuples containing more than one value, the query will
name the ABS datatype that holds each resulting row. The constructor of this
ABS datatype has to accept parameters of the same number and type as re-
turned by the query. For exampe, the result from a query like SELECT name,
age FROM persons, which returns (string, integer) tuples can be stored in
an ABS datatype defined like data Person = Person(String, Int). Table 1
shows how SQL results are mapped to ABS values, and how ABS query param-
eters are mapped to SQL values.

Figure 1 illustrates how to import data into ABS from an SQLite file. For
this example, let us assume that various strategies for a user journey game
have been stored in the file journeys.sqlite containing entries that relate
strategy_name, state, and action (See Section 4.1). It is possible to query
such a file such that the records are stored in a list of strategy entries. In this
example we define in ABS a datatype StrategyEntry that holds one entry from
one strategy, and the function strategy that reads one full strategy from the
SQLite table and stores it into a list List<StrategyEntry>.

Queries into the SQLite database can be parameterized in the standard way:
parameters inside the query string are denoted by a question mark (?); val-
ues for these parameters are supplied as additional arguments to the query.

Simulating User Journeys with Active Objects 9

Fig. 2: Workflow pipeline.

Only basic datatypes (string, integer, float) can be supplied as parameters. The
strategy_name parameter to the strategy function in Figure 1 is used as such
a query parameter; its value ends up in the corresponding WHERE clause in the
SQL query sent to the database engine.

5 Workflow Pipeline

We now consider a pipeline for analyzing user journeys by means of simulations
of an active object model of user journeys. The pipeline is depicted in Figure 2
and consists of the following steps:

– Step 1: An ABS modeling framework imports user journey games and strate-
gies from a database;

– Step 2: The model is adjusted by instantiating parameterized user behavior
and modifying transitions to finNeg to be uncontrollable; and

– Step 3: Simulations are used to explore aspects of the user journey for given
strategies of the service provider.

We develop an ABS model that implements users and service providers as
active objects that communicate and run in parallel with each other. Addition-
ally, a WorkflowProvider class that wraps all knowledge about strategies and
available controllable and uncontrollable actions, serves as common knowledge
base for both users and service providers. The model is parameterizable wrt.
strategy, user behavior, and number of users. The output of a model run is the
number and type of users in each final state, together with the average journey
length and accumulated gas.

Generated games and strategies (see Section 4.1) are aggregated in an SQLite
database that can be read from within ABS (see Section 4.2). In particular,
strategies for user journey games can be generated from user journey games
using Uppaal Stratego and integrated in the ABS model to guide users in
simulations. Since the generated strategies are memoryless, they can thus be
exported as a mapping from states to actions. Refining a strategy corresponds
to refining the mapping to be deterministic, i.e. there is at most one suggested
action per state.

We now explain how to prepare data that can be imported into the ABS
model in Section 5.1, then how the ABS model is constructed in Section 5.2.

10 P. Kobialka et al.

Source State Action Target State Controllable Cost
start Registered Registered False -1.9
start AssignInstance AssignInstance True -22
Started TaskEvent TaskEvent - 0 False -2
ResultApproval ResultsAccepted ResultsAccepted False 18

Fig. 3: Tables imported into the ABS model: The transition system as a list.

5.1 Data Preparation for the Workflow Pipeline

In Step 1 of the workflow, we import user journey games and strategies into
ABS. The workflow produces a single database file that contains all necessary
information to simulate different scenarios.

The user journey game is transformed into a CSV format, that enumerates
states and available actions in each state, as a series of entries (source state,
action, target state, controllable or uncontrollable, cost) that are imported into
a database, see Figure 3. We export strategies from Uppaal Stratego 10 by
using export queries:

saveStrategy("strategy.xml", strategy).

Strategies are then also transformed into tabular CSV format, mapping states to
actions, see Figure 4, and we import the tables into the same SQLite database.
Both imports cover Step 1 in Figure 2. In the start state, the company assigns
a virtual instance to the user, AssignInstance. When it is Started, the company
has to wait for the user to work on the TaskEvent, expressed as a Wait action
in the strategy and an uncontrollable action in the process model.

Source State Action
start AssignInstance
Started Wait
ResultApproval Wait

Fig. 4: Tables imported into the ABS
model: The strategy as a state to ac-
tion mapping.

We adapt the user journey game to
run simulations where users can give up
in the middle of their journey (and hence,
reach the unsuccessful final state). In
the imported user journey game, actions
leading to the unsuccessful final state
were defined as controllable; otherwise,
model checking could never guarantee to
reach the successful final state (cf. Sec-
tion 1). This restriction is not needed for simulation; in the adapted version,
actions leading to the unsuccessful final state are modeled as uncontrollable ac-
tions. These adaptations cover Step 2.

Step 3 uses simulations to explore the model and possible service provider
strategies. We simulate scenarios that combine the parameterized model with
different users. In the ABS modeling framework, the model of the service provider
and the user models are kept separate for easier construction and utilization.

Simulating User Journeys with Active Objects 11

Fig. 5: Sequence diagram of one interaction in the simulation.

5.2 Modeling the User and the Service Provider

In the ABS model, the structure of the underlying user journey game is im-
plemented via a component called WorkflowProvider, which is consulted by the
user and the service provider objects. The ABS model contains one interface
for users, one for service providers, and one for the workflow provider. Figure 5
shows the exchange of messages between the actors in the simulation.

Figure 6 shows the interfaces and data types of the simulation. As shown in
the interaction diagram, the user is the “active” participant that initiates each
round of choosing between actions. Consequently, the User interface offers no
methods to be called from outside.

Since both the user and service provider need knowledge about the user
journey game, the model encapsulates this knowledge in a common interface
WorkflowProvider. Its method available_tasks returns all available control-
lable and uncontrollable actions, given a user identifier and the user’s state. (The
user identifier may be used to implement per-user strategies.)

The user chooses whether to perform a controllable or uncontrollable ac-
tion and informs the service provider about its decision (see Figure 5). The
notifyUncontrolledAction method notifies the service provider about the cho-
sen action and new state of the user. In contrast, the performControlledAction
method leaves the decision of the action to be taken to the service provider, which
in turn consults the workflow provider about its options. The chosen action is
returned to the user, who updates its state accordingly.

12 P. Kobialka et al.

interface User { }

interface ServiceProvider {
Unit notifyUncontrolledAction(

Int user_id, String uncontrolled_action, String new_state);
Maybe<WorkflowTask> performControlledAction(

Int user_id, String current_state);
}

interface WorkflowDriver {
WorkflowTasks available_tasks(Int user_id, String state);

}

data WorkflowTasks = WorkflowTasks(
List<WorkflowTask> controllable_tasks,
List<WorkflowTask> uncontrollable_tasks);

data WorkflowTask = WorkflowTask(
String origin_state, String target_state,
String action, String controllable, Float cost);

Fig. 6: The internal structure of the workflow simulation model.

The classes implementing these interfaces can be seen in the online repos-
itory,1 which features the implementation of the workflow pipeline. The main
variability is located in the implementations of the WorkflowProvider interface,
where the modeler can set up workflow descriptions with varying strategies, or
no strategy at all. The user class is parameterized with the likelihood of perform-
ing an uncontrollable action if applicable. The service provider class relies on the
workflow provider for most of its behavior, but can be extended to implement
resource-sensitive behavior (see the discussion of future work in Section 7).

5.3 Parameterized User Behaviour

User journey games aggregate the behavior of several users into one model,
thereby assuming that all users are equally antagonistic; i.e., all users in the
same state have the same available actions, and, when the service provider and
the user both have available actions, all users have higher precedence than the
service provider. These assumptions are captured in the strategies generated by
Uppaal Stratego: antagonistic users exploit their precedence over the service
provider when selecting the next action, and two different users in the same state
can not be differentiated.

In reality, users differ based on individual properties which are abstracted
away in user journey games. In our simulation framework, we would like the

1 https://github.com/smartjourneymining/abs_journeys_aol-23/releases/tag/AOL23

https://github.com/smartjourneymining/abs_journeys_aol-23/releases/tag/AOL23

Simulating User Journeys with Active Objects 13

user model to capture structural differences between users that are not expressed
through choices in the user journey game but are determined already at the
beginning of the game.

For this purpose, we let the user model have parameterized user behavior
by introducing a parameter to the user model that is unknown to the service
provider but fixed at run-time, i.e. for every instantiated user. This user pa-
rameter p ranges from [0, 1] and models the probability that the user waits for
the service provider’s guidance; with probability 1 − p the user takes an un-
controllable action. This way, the parameter models the “compliance” of the
user, changing the probability to wait for the service provider’s actions or tak-
ing an arbitrary, uncontrollable transition. A non-compliant user, always taking
uncontrollable actions, can be expressed with p = 0. A compliant user can be
expressed with p = 1, waiting for the service provider’s actions until its activity
is required. All values between 0 and 1 express different levels of “compliance”;
users that have a certain probability to wait for the service provider’s action or
to take an uncontrollable action. Additionally, to allow for a wider range of possi-
ble user behaviour, besides antagonistic users, we model users that decide their
actions randomly. Figure 7 outlines the implementation of the parameterized
user class. We discretized compliance probability p with integers ranging from
0 to 100. In the main block of our simulation, shown in Figure 8, we generate
a workflow object, WorklfowDriver driver, a company object for that work-
flow, Company company and several parameterized users, List<User> users.
The user objects, which contain a run() method, start the simulation; their
results are gathered in a map storing for each end state a triple over the total
number of users in that state, the average number of steps and the average gas;
further information about individual users is gathered in the background.

In our model, we differentiate users solely based on their compliance pa-
rameters. Remark that service providers may need to invest significant effort in
determining their users’ parameters to adjust their offers and fine-tune services.
Discovering crucial user parameters is not trivial and requires extensive testing.
Therefore, we investigate in the case study presented in Section 6 whether user
compliance is a suitable way to capture realistic user behavior. Adjusting the
compliance allows us to investigate different game settings without having to
collect additional new data.

6 Case Study

6.1 Context

GrepS2 is a company offering programming skill evaluations for Java program-
mers. GrepS is commissioned by external companies for recruiting, training, and
certification. The service that GrepS provides is based on prior research [6]. Cus-
tomers of GrepS are typically companies that hire or train developers, which are

2 See the webpage of GrepS for further details: https://www.greps.com/.

https://www.greps.com/

14 P. Kobialka et al.

class ParametricUser(
WorkflowDriver driver, Company company, Int compliance)

implements User
{

Bool finished = False;
String current_state = "start";

Unit run() {
while (!finished) {

WorkflowTasks possible_tasks =
await driver!available_tasks(current_state);

WorkflowTasks u_tasks = uncontrollable_tasks(possible_tasks);
WorkflowTasks c_tasks = controllable_tasks(possible_tasks);
if (u_tasks != Nil && c_tasks != Nil)
{

// Choose with the given probability whether to perform
// an uncontrollable or controllable action.
if (random(100) < compliance) {

this.offerControllableAction();
} else {

this.uncontrollableAction(u_tasks);
}

} else if (u_tasks != Nil) {
// Only uncontrollable actions available
this.uncontrollableAction(u_tasks);

} else if (c_tasks != Nil) {
// Only controllable actions available
this.offerControllableAction();

} else {
// No action available: User reached an end state
finished = True;

}
}

}

Unit offerControllableAction() {
Maybe<WorkflowTask> action =

await company!controlledAction(current_state);
switch (action) {

Just(the_task) => {
current_state = target_state(the_task);

}
Nothing => finished = True;

}
}

}

Fig. 7: Implementation of the parameterized user class.

Simulating User Journeys with Active Objects 15

// Main block.
{

// Parameters to set for the chosen experiment
Int n_users = ...
Int obedience = ...

// Instantiate the underlying workflow model
WorkflowDriver driver = new WorkflowDriver("non_det");
// Create company object
Company company = new Company(driver);

// Create parameterized user objects
List<User> users =

await util!create_users(n_users, driver, company, obedience);

// Aggregate results (end state => (count, avg. steps, avg. gas))
Map<String, Triple<Int, Int, Float>> end_states =

await util!collectUsersInMap(users, file);
}

Fig. 8: Creation of actors.

the users of the service. Users are normally given one to two weeks to complete
their programming skill evaluation.

A typical programming skill evaluation requires the user to complete three
phases using GrepS: (1) sign-up, (2) solve a set of authentic programming tasks,
and (3) approve to share the results (via a skill report) with the customer, i.e.
the commissioning company. In a successful user journey, all three phases are
completed in order and the customer receives the report. In an unsuccessful
journey, the user permanently stops using the service at any phase, or does not
approve the sharing of the results with the customer.

The data we analyze are system logs with recorded events from the interac-
tions between users and the GrepS system. These system logs are an extended
version of the logs published as part of the work of Kobialka et al. in [32], as the
logs we use also contain the programming skill evaluations that are calculated by
the GrepS system. An extract of the extended data is shown in Figure 10. In this
previous work, we report on the systematic generation and analysis of the GrepS
user journey game. Figure 9 displays a simplified illustration of the task-solving
and approval phase, leaving out the previously analyzed sign-up phase (states
T0–T7). Controllable transitions are depicted as solid lines, uncontrollable tran-
sitions as dashed lines; transitions with positive weight are colored green, and
those with negative weight are red. Each task during phase 2 consists of a pair of
states: the first state is the solving of a task and the second is user feedback on
the task. State T8 is a set-up task that is not used to evaluate skill, and T9 its
corresponding user feedback. States T10–T17 are alternating tasks and feedback
with T10 being the first practice task, T12 the second task, T14 the third task,

16 P. Kobialka et al.

and T16 the fourth task; the respective feedback is submitted after each single
task. After each task has been submitted by the user, the system attempts to
score the solution to the task and update the user’s skill evaluation based on all
solutions that have been scored so far. If the scoring process is successful, the
log is updated (“Overall scores updated”). The increasing weights on edges along
T8–T18 result from more users completing their tasks, i.e. users struggle with
the first three tasks but from the third task on are all subsequent tasks com-
pleted [32]. In state T18, the user is informed that all tasks have been completed
and explains the next steps that are to be completed within a specific number
of workdays (as agreed with each GrepS customer in a service level agreement,
SLA). States T21–T25 form the review phase, and T25 is the user approval for
sharing the required report.

6.2 Evaluations of Users’ Programming Skills by the GrepS System

Fig. 9: GrepS user journey game
(excerpt): task solving and ap-
proval phases.

The extended system logs capture many
events with evaluated programming skills
per user. We consider the last evaluation
event as the final evaluated score (it cap-
tures the overall score of a user), and re-
fer to the previous evaluation events as
tentative scores. For each task solved by
the user, the system evaluates the tenta-
tive skill level based on all available infor-
mation (i.e., the current and any previous
tasks that can be scored automatically).
Note that the final score may involve par-
tially human-graded tasks on dimensions
such as readability, proper use of variable
names, or other aspects that cannot be
evaluated automatically. Thus, a user may
have only one final skill score but can have
many tentative skill scores during phase 2.

The unit of measurement used for the
skill score is logits (i.e., the logarithm of
the odds), which is frequently used within
education or psychology to represent differ-
ences in skills and abilities on an interval
scale using the Polytomous Rasch Model.
A 5 on the scale used by GrepS is defined
as the averagely skilled professional Java
developer reported by Bergersen et al. [6],
who also reported a standard deviation of
skill scores of 1.3 logits. Note that this type
of scale does not allow for ratio compar-
isons of skills (e.g., “someone is twice as

Simulating User Journeys with Active Objects 17

Timestamp · · · Metadata
5245944 · · · Registered
5780525 · · · Registered
6104714 · · · Activated
6104714 · · · Logged in: Web page
6106191 · · · Overall scores updated: [rasch.skill: 2.59 . . .

Fig. 10: Extract of GrepS’ system logs.

skilled”) because the number zero skill is not defined. However, the magnitude of
differences is nevertheless constant across the range of the scale so that the mag-
nitude of differences can be represented using a standardized effect size [17]. For
example, a difference of 1.5 logits (i.e., a difference between 5.0 and 6.5, or 4.0
and 5.5) in skill would be considered a “large” effect by conventional standards
(i.e., Cohen’s d = 0.8).

Fig. 11: Skill level comparison for
successful and unsuccessful journeys
from GrepS’ system logs.

Skill evaluations in the provided system
logs reveal an association between success-
ful and unsuccessful journeys. Figure 11
compares the box-plots of skill scores for
successful journeys, in orange, and unsuc-
cessful journeys, in blue. We ignore all
journeys without a skill evaluation3 and
only use the final evaluated score per user.
The current comparison contains a sur-
vival bias since we ignore the skill levels of
all users that did not receive any skill eval-
uation. For the 11 unsuccessful journeys,
the median skill level is 4.2, thus about
0.6 standard deviation for the less-than-average developer. For the 20 successful
journeys, the median recorded skill level was about the same as an average de-
veloper (5.1). Both box-plots in Figure 11 range from 2 to 7. Observe that the
data distribution of unsuccessful journeys has more variance: its lower quartile
reaches significantly lower than the lower quartile of the successful journeys. The
upper quartile of the successful journeys reaches higher and is denser than the
one of unsuccessful journeys.

Both box-plots indicate that the GrepS service is currently better suited for
at-least average proficient developers. Developers below average, with a score of
less than 3.5, have a clear disadvantage. The log also demonstrates that above-
average developers fail and below-average developers succeed. The outcome of
the journey is not determined by the skill level but also by other factors.

3 We observed that system logs contain a large amount of very short unsuccessful jour-
neys with no events containing scores. Including all these journeys would negatively
bias the comparison and therefore we remove them from the comparison.

18 P. Kobialka et al.

6.3 Simulation Analysis

We conduct several simulated scenarios in which we instantiate the parameter-
ized user journey game, evaluate different service provider strategies, and test
varying levels of user compliance, as a parametric behavior for users. We investi-
gate the impact of different game strategies and the implications for the service
provider to use the refined strategy to have a successful journey outcome and
improve the user experience.

Building the baseline of the model. The initial model is constructed by modeling
the GrepS user journey game and importing it into ABS, along with its corre-
sponding Uppaal game strategies for the service provider. We implement three
strategies that the service provider can use: (1) a random one for a random
selection between all available actions to the next transition in the game (no
strategy), (2) a nondeterministic strategy, and (3) a refined strategy, minimizing
the number of steps to reach a positive outcome, concretely, to reach the state
finPos, see Figure 9. Strategies (2) and (3) are exported from Uppaal Strat-
ego into ABS, as described in Section 5.1. The users are randomized; i.e., they
take a random, uncontrollable actions.

We first check that our ABS model reproduces the results generated in Up-
paal. The user is parameterized in its compliance, instantiated with a fixed
probability at run-time, see Section 5.3. We calibrate our ABS model with suit-
able user compliance settings and sufficient many simulated users, such that
simulation results are aligned with the results from Uppaal Stratego. By
doing so, our model reproduces the average amount of gas when reaching a fi-
nal state and the average number of steps for the nondeterministic and refined
strategy each.

Exploring alternative scenarios. We experimented with a less restrictive model
by adapting the underlying game, where we removed some of the assumptions
that were needed for the game analysis in Uppaal Stratego. In particular, in
Uppaal Stratego the analysis requires a guaranteeing strategy for the service
provider, thus, users are not allowed to give up in the middle of their journeys and
those actions (solid lines, representing transitions in the game to the final nega-
tive state finNeg, see Figure 9) are controlled by the service provider. We adapt
the model by making these interactions uncontrollable (therefore, controlled by
users). Further, the Uppaal Stratego game assumes that users always have
precedence over the service provider. We additionally adapt our simulated users
with a compliance parameter p, with probability 1 − p for each user to select a
random, uncontrollable action, thereby lifting the assumption of adversary users.
In the active object model, the generated strategies no longer guarantee a suc-
cessful user journey outcome. However, the simulations still allow us to explore
the GrepS user journey game, using one of the strategies. We observed that in
the parameterized active object model with uncontrollable transitions to finNeg,
the random strategy aligns with the nondeterministic strategy since there are no
activities that the service provider is not allowed to select. Therefore, we only
compare the random strategy with the refined strategy.

Simulating User Journeys with Active Objects 19

(a) Successful journeys (b) User journey length (c) Accumulated gas

Fig. 12: Comparison of different compliance probabilities and strategies.

Figure 12 compares different aspects of the parameterized active object model
with the two strategies, where all transitions leading to unsuccessful journey out-
comes are user-controlled. The chance of taking such transitions (and therefore
determining the outcome of the journey) is given by the compliance probabili-
ties. Figure 12a displays the number of successful journeys for given compliance
probabilities (the parameter p), we run simulations with a total of 1000 users,
and with different probabilities for noncompliance or giving up (1− p), ranging
from 0% to 100% and increasing p with 20% in each simulation. When comparing
the mean user journey length, the refined strategy improves the random strategy
drastically since user journeys are significantly shorter in the refined strategy,
see Figure 12b. Figure 12c compares the accumulated gas, revealing that the
refined strategy reduces the accumulated gas for compliant users slightly. For
noncompliant users with a short journey, the refined strategy improves the av-
erage accumulated gas from an average below −80 to −40.

Moreover, we investigate the different states where users give up their journey
in the adapted ABS model, according to different compliance levels. Figure 13
shows the simulation results. With decreasing compliance levels, more users leave
the journey, due to several states that allow users to give up, the number of
users reaching the positive outcome shrinks rapidly, see Figures 13a and 13b.
For compliant users, see Figure 13c, the service provider has good chances to
guide the user to a successful outcome.

Skill level and compliance. Observations from the system logs show that the
average GrepS user is closely comparable with the simulations that consider 80%
compliance, see Figure 13c, and that 2

3 of the users are successful. Concretely,
in the provided log 18% of users gave up after the first task event, which aligns
with the 20% decrease of users in the simulations, but only 9% gave up at the
second and third tasks, which does not entirely align with the 16% and 12%
decrease of users that is shown in the simulations, as well as 12% decrease of
users at the reporting phase in the logs, with 6% decrease in the simulations.

We also investigate the relationship between the final skill score of users,
detailed in Section 6.2, and the compliance parameter. Figure 14 shows the
correspondence between the length of user journeys and the final skill level per

20 P. Kobialka et al.

(a) 20% compliance (b) 60% compliance (c) 80% compliance

Fig. 13: Comparison of states where users stop in the simulated user journeys
with different compliance probabilities; the company’s goal is to maximize the
reachability of finPos.

Fig. 14: Box-plots over user journey
lengths per skill level in the system logs.

user. Results are grouped by skill level,
where below or equal to 5 are sorted
into the group of developers that are
“below average”, otherwise they are
sorted into the group “above average”.
In comparison, Figure 15 displays the
simulated box-plots over user journey
lengths for different compliance levels
for the random strategy (Figure 15a),
and the refined strategy (Figure 15b).
While the length of user journeys vary
from the user journey lengths observed
in the logs when using the random
strategy in the simulations, the refined
strategy produces user journeys with comparable lengths to those observed in
the system logs. We further investigated the ratio of successful and unsuccessful
journeys in the two skill groups. When ignoring users without a skill evaluation,
56% of unsuccessful user journeys belong to users that are scored “below aver-
age”, and 73% of successful user journeys belong to users that are scored “above
average”. These values correspond to a compliance probability of about 85% for
“below average” users and of more than 90% for “above average” users.

While not all aspects of the user-specific behavior could be replicated, our
model is capable of differentiating different user groups as observed in the real-
world system logs. By introducing one parameter for user compliance, we de-
termine whether a user acts before the service provider and chooses an uncon-
trollable action. Whereas compliance appears to be a suitable notion to capture
observed user behavior, users are in reality influenced by a wide range of param-
eters that are not independently recorded. We parameterized the modeling of
user-specific behaviors and gained detailed insights into different kinds of users.
The model adequately captured not only user journey lengths but also the dis-
tribution of final states and the number of successful journeys.

Simulating User Journeys with Active Objects 21

(a) Random strategy (b) Refined strategy

Fig. 15: Box-plots over varying compliance levels and strategies in simulations.

6.4 Prescriptions

By using the simulation tool of the ABS active object language, we are able to
adjust model details to conform to what is contained in the user logs. Previous
game analysis required us to assume that users do not leave the journey, oth-
erwise, no guaranteeing strategy could have been established. The active object
model was adjusted to consider user parameters in the simulations, capturing
various kinds of users. These adaptations allow service providers to evaluate the
impact of possible changes on their services before implementing them. Several
possible changes in either the strategy, the model, or both can be evaluated and
the most promising ones can be implemented. Further, including user parame-
ters in the model, allow us to adjust the simulation results towards the targeted
users. In our case study, we compared different strategies and confirmed the
suggestions from the model checker that the refined strategy is superior to the
nondeterministic or random strategy. The strategies were generated in overap-
proximated games and tested in a more realistic setting. We could elaborate
on differences between user groups and model them with proxy parameters, ex-
tracted from the system logs.

6.5 Evaluation

Our conclusions from the simulation analysis (Section 6.3) and new opportunities
from exploring alternative scenarios (Section 6.4) can be summarised as follows:

1. more positive outcomes are related to “above average” skilled users,
2. compliance is a relevant proxy for user behavior (although with a still unre-

solved relation to programming skill), and
3. “what-if” scenarios may be used to simulate changes to the existing system

for evaluating alternative directions for technical development in the future.

These insights have been further discussed with a long-term employee of the
company, and third author of this paper, for their review. We summarize the
feedback below.

22 P. Kobialka et al.

Regarding point 1, more positive outcomes, GrepS is a user-focused service
and is aware that different groups of users behave differently in their system.
Depending on what a skill evaluation is used for, there are also situations where
it is most sensible for a user to discontinue using the service. For example, if the
first couple of programming tasks appear too difficult in a recruitment setting,
a developer may opt out of the process and look for a different job. It is also
known that less skilled developers are more resource-demanding in terms of
needed support during the process, probably as a partial function of how well
the user reads and understands the process and its requirements. At the same
time, for a user-focused service, it is important to know which user groups are
the key users, for which most of the resources should be used to keep satisfied
with the service. Internally, the company is aware that less skilled users are less
likely to complete all the programming tasks in Phase 2, or share an unsatisfying
result during Phase 3.

Regarding point 2, compliance as a proxy of user behavior, companies need
to challenge and further refine their own understandings of their key user groups.
User parameters such as compliance—the willingness or capability to follow
instructions—provide a more nuanced view than merely using programming skill
evaluation to explain why some user journeys are unsuccessful. Compliant users
tend to be more successful in their journey and have fewer problems solving
the presented tasks, but it is at present unclear what the conceptual overlap is
between “compliance” and factors such as technical skill or motivation.

Regarding point 3, the prescriptive analysis used to investigate “what-if”
scenarios and to challenge assumptions that do not hold, GrepS is positive to
evaluate such functionality more closely. For example, if a user in the present
setup of the system stops solving a task, e.g. in states T10, T12, or T14, this
user is unsuccessful. The simulation model could then attempt to answer the
hypothetical question of what would happen if GrepS introduces a “user re-
covery” state where the sole goal is to bring the user back to the system, for
example, by asking for feedback (is the user satisfied?), reminding the user (has
the user forgot to continue?) or providing other kinds of targeted information
(do the user know that valuable feedback is possible even though the report
is not shared with GrepS’ customer?). By estimating both expected costs (de-
velopment time) and expected success (probabilities that users continue), such
a simulation may yield better predictions of how many additional users would
complete the analysis. If the simulation reveals that the additional users in the
positive final state from a hypothetical intervention exceeds the cost of imple-
menting it, such an intervention might be prioritized. Simulations of large and
complex systems where relevant factors are parameterized, seem preferable to
heavily relying on heuristics of what works (and doesn’t) that require extensive
experience to validate.

Simulating User Journeys with Active Objects 23

7 Conclusion and Future Work

This paper presents an active object simulation framework for user journeys. The
framework can be combined with strategy analysis for service providers, based
on model checking user journey games. We considered strategies generated in the
model checker Uppaal Stratego and showed that the results of model checking
can be reproduced in our framework. Then, we extended the framework to pa-
rameterize the users’ compliance with the intended user journey, and estimated
how resilient different service provider strategies are to non-cooperating users.
The active object framework allows prescriptive analysis, where the impact of
changes can be evaluated before implementing them in the real system.

Previous analysis based on user journey games, using Uppaal Stratego,
over-approximates the service provider behavior, to establish strategies that
guarantee a successful outcome. The active object simulation framework alle-
viates these assumptions, making the user journey model more realistic. The
simulation framework uses two measures for the modeled user journeys: the to-
tal number of actions taken in the journey and the accumulated cost. When
adapting the user journey game to the simulation framework, one has to evalu-
ate if the strategy generated from the user journey game is compatible with the
active object model. Otherwise, a random strategy might outperform a refined
strategy. Therefore, it is important to compare refined strategies to a valid base-
line, i.e. a random or nondeterministic strategy, and, if necessary, update the
refined strategy to the new assumptions.

We present an industrial case study from GrepS, a small company offering
programming skill evaluations to other companies. We investigated users with
“below average” and “above average” proficiency. Our simulations reproduced
findings from the Greps log, suggesting that GrepS is configured for “above
average” proficient users. These users have a higher chance for a successful user
journey with shorter user journeys than “below average” proficient users. In the
case study, the active object model harmonized well with the refined strategy,
user journey lengths were reduced and the final gas was kept at comparable
levels in the system logs and simulations.

The presented active object simulation framework opens many interesting
possibilities for future work. One obvious extension is to make the active object
framework resource-sensitive, exploiting the resource-model of ABS [29]. The
current model only considers gas as a resource, but every interaction between
service provider and user has a duration and also requires physical resources,
e.g. interactions with a GrepS employee. A time- and resource-sensitive model
allows scenarios to be explored that show response times under various loads and
“what-if” scenarios; e.g., whether adding personnel to answer user messages in a
certain state of the user journey would increase overall completion rates. Such
extension could consider load balancers that distribute or delegate activities in
the service to workers with limited resources, mimicking resource management
in cloud-based distributed systems, as previously modeled and analyzed using
ABS with time and resources [28,35,37,48].

24 P. Kobialka et al.

The current model is Markovian, as the next decision only depends on the
current state. However, the model does provide access to the accumulated gas
of users (i.e., the sum of the weights from previous interactions with the service
provider). This allows richer models of decision-making to be investigated, where
the current decision not only depends on the users’ compliance parameter but
also on past experiences by taking into account the accumulated gas, capturing
how much “steam” the user has left to continue the journey. Accordingly, it would
also be interesting to investigate further model parameters and their influence
on successful user journeys (e.g., to fine-tune compliance or to capture other user
behavior characteristics).

Conflict of Interest The third author has financial interests in the company
(GrepS) that owns the skill testing tool evaluated in the case study in this work.

References

1. W. M. P. van der Aalst: Process Mining - Data Science in Action. Springer, 2 edn.
(2016). https://doi.org/10.1007/978-3-662-49851-4

2. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tapia Tarifa,
S.L., Wong, P.Y.H.: Formal modeling and analysis of resource management for
cloud architectures: an industrial case study using Real-Time ABS. Serv. Oriented
Comput. Appl. 8(4), 323–339 (2014). https://doi.org/10.1007/s11761-013-0148-0

3. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

4. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.)
Proc. 19th Intl. Conf. on Computer Aided Verification (CAV 2007). Lecture Notes
in Computer Science, vol. 4590, pp. 121–125. Springer (2007). https://doi.org/10.
1007/978-3-540-73368-3_14

5. Berendes, C.I., Bartelheimer, C., Betzing, J.H., Beverungen, D.: Data-driven cus-
tomer journey mapping in local high streets: A domain-specific modeling language.
In: Pries-Heje, J., Ram, S., Rosemann, M. (eds.) Proc. Intl. Conf. on Information
Systems - Bridging the Internet of People, Data, and Things (ICIS 2018). Asso-
ciation for Information Systems (2018), https://aisel.aisnet.org/icis2018/modeling/
Presentations/4

6. Bergersen, G.R., Sjøberg, D.I.K., Dybå, T.: Construction and validation of an
instrument for measuring programming skill. IEEE Trans. Software Eng. 40(12),
1163–1184 (2014). https://doi.org/10.1109/TSE.2014.2348997

7. Bernard, G., Andritsos, P.: CJM-ex: Goal-oriented exploration of customer journey
maps using event logs and data analytics. In: Clarisó, R., Leopold, H., Mendling, J.,
van der Aalst, W.M.P., Kumar, A., Pentland, B.T., Weske, M. (eds.) Proc. BPM
Demo Track and BPM Dissertation Award co-located with 15th Intl. Conf. on
Business Process Modeling (BPM 2017). CEUR Workshop Proceedings, vol. 1920.
CEUR-WS.org (2017), http://ceur-ws.org/Vol-1920/BPM_2017_paper_172.pdf

8. Bernard, G., Andritsos, P.: A process mining based model for customer journey
mapping. In: Franch, X., Ralyté, J., Matulevicius, R., Salinesi, C., Wieringa, R.J.
(eds.) Proc. Forum and Doctoral Consortium Papers at the 29th Intl. Conf. on

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/s11761-013-0148-0
https://doi.org/10.1007/s11761-013-0148-0
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://aisel.aisnet.org/icis2018/modeling/Presentations/4
https://aisel.aisnet.org/icis2018/modeling/Presentations/4
https://doi.org/10.1109/TSE.2014.2348997
https://doi.org/10.1109/TSE.2014.2348997
http://ceur-ws.org/Vol-1920/BPM_2017_paper_172.pdf

Simulating User Journeys with Active Objects 25

Advanced Information Systems Engineering (CAiSE 2017). CEUR Workshop Pro-
ceedings, vol. 1848, pp. 49–56. CEUR-WS.org (2017), http://ceur-ws.org/Vol-1848/
CAiSE2017_Forum_Paper7.pdf

9. Bernard, G., Andritsos, P.: CJM-ab: Abstracting customer journey maps using
process mining. In: Mendling, J., Mouratidis, H. (eds.) Information Systems in
the Big Data Era - Proc. CAiSE Forum 2018. Lecture Notes in Business Infor-
mation Processing, vol. 317, pp. 49–56. Springer (2018). https://doi.org/10.1007/
978-3-319-92901-9_5

10. Bernard, G., Andritsos, P.: Contextual and behavioral customer journey discovery
using a genetic approach. In: Welzer, T., Eder, J., Podgorelec, V., Latific, A.K.
(eds.) Proc. 23rd European Conference on Advances in Databases and Information
Systems (ADBIS 2019). Lecture Notes in Computer Science, vol. 11695, pp. 251–
266. Springer (2019). https://doi.org/10.1007/978-3-030-28730-6_16

11. Bertolini, C., Liu, Z., Srba, J.: Verification of timed healthcare workflows using
component timed-arc Petri nets. In: Proc. Second International Symposium on
Foundations of Health Information Engineering and Systems (FHIES 2012). pp.
19–36. Springer (2013). https://doi.org/10.1007/978-3-642-39088-3_2

12. Bezirgiannis, N., de Boer, F.S., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.:
Implementing SOS with active objects: A case study of a multicore memory
system. In: Hähnle, R., van der Aalst, W.M.P. (eds.) Proc. 22nd International
Conference on Fundamental Approaches to Software Engineering (FASE 2019).
Lecture Notes in Computer Science, vol. 11424, pp. 332–350. Springer (2019).
https://doi.org/10.1007/978-3-030-16722-6_20

13. Bitner, M.J., Ostrom, A.L., Morgan, F.N.: Service blueprinting: A practical tech-
nique for service innovation. California Management Review 50(3), 66–94 (Apr
2008). https://doi.org/10.2307/41166446

14. de Boer, F., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Din, C.C., Johnsen,
E.B., Sirjani, M., Khamespanah, E., Fernandez-Reyes, K., Yang, A.M.: A Survey
of Active Object Languages. ACM Comput. Surv. 50(5), 76:1–76:39 (Oct 2017).
https://doi.org/10.1145/3122848

15. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed
game automata. In: Lodaya, K., Mahajan, M. (eds.) Proc. 24th Intl. Conf. on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2004). Lecture Notes in Computer Science, vol. 3328, pp. 148–160. Springer (2004).
https://doi.org/10.1007/978-3-540-30538-5_13

16. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games:
A model checker for stochastic multi-player games. In: Piterman, N., Smolka,
S.A. (eds.) Proc. 19th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2013). Lecture Notes in Com-
puter Science, vol. 7795, pp. 185–191. Springer (2013). https://doi.org/10.1007/
978-3-642-36742-7_13

17. Chinn, S.: A simple method for converting an odds ratio to effect size for use in
meta-analysis. Statistics in medicine 19(22), 3127–3131 (2000)

18. Crosier, A., Handford, A.: Customer journey mapping as an advocacy tool for
disabled people: A case study. Social Marketing Quarterly 18(1), 67–76 (Mar 2012).
https://doi.org/10.1177/1524500411435483

19. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K., Møller, M., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In:
Proc. 18th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2012). Lecture Notes in Com-

http://ceur-ws.org/Vol-1848/CAiSE2017_Forum_Paper7.pdf
http://ceur-ws.org/Vol-1848/CAiSE2017_Forum_Paper7.pdf
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-319-92901-9_5
https://doi.org/10.1007/978-3-030-28730-6_16
https://doi.org/10.1007/978-3-030-28730-6_16
https://doi.org/10.1007/978-3-642-39088-3_2
https://doi.org/10.1007/978-3-642-39088-3_2
https://doi.org/10.1007/978-3-030-16722-6_20
https://doi.org/10.1007/978-3-030-16722-6_20
https://doi.org/10.2307/41166446
https://doi.org/10.2307/41166446
https://doi.org/10.1145/3122848
https://doi.org/10.1145/3122848
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1007/978-3-540-30538-5_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1177/1524500411435483
https://doi.org/10.1177/1524500411435483

26 P. Kobialka et al.

puter Science, vol. 7214, pp. 492–497. Springer (2012). https://doi.org/10.1007/
978-3-642-28756-5_36

20. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G.,
Taankvist, J.H.: On time with minimal expected cost! In: Cassez, F., Raskin, J.
(eds.) Proc. 12th International Symposium on Automated Technology for Verifi-
cation and Analysis (ATVA 2014). Lecture Notes in Computer Science, vol. 8837,
pp. 129–145. Springer (2014). https://doi.org/10.1007/978-3-319-11936-6_10

21. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Up-
paal Stratego. In: Baier, C., Tinelli, C. (eds.) Proc. 21st Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2015).
Lecture Notes in Computer Science, vol. 9035, pp. 206–211. Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_16

22. Følstad, A., Kvale, K.: Customer journeys: A systematic literature review. Journal
of Service Theory and Practice 28(2), 196–227 (Mar 2018). https://doi.org/10.
1108/JSTP-11-2014-0261

23. Fornell, C., Mithas, S., Morgeson, F.V., Krishnan, M.: Customer satisfaction and
stock prices: High returns, low risk. Journal of Marketing 70(1), 3–14 (Jan 2006).
https://doi.org/10.1509/jmkg.70.1.003.qxd

24. Halvorsrud, R., Kvale, K., Følstad, A.: Improving service quality through customer
journey analysis. Journal of Service Theory and Practice 26(6), 840–867 (Nov
2016). https://doi.org/10.1108/JSTP-05-2015-0111

25. Halvorsrud, R., Mannhardt, F., Johnsen, E.B., Tapia Tarifa, S.L.: Smart journey
mining for improved service quality. In: Carminati, B., Chang, C.K., Daminai, E.,
Deng, S., Tan, W., Wang, Z., Ward, R., Zhang, J. (eds.) Proc. IEEE International
Conference on Services Computing (SCC 2021). pp. 367–369. IEEE (2021). https:
//doi.org/10.1109/SCC53864.2021.00051

26. Halvorsrud, R., Sanchez, O.R., Boletsis, C., Skjuve, M.: Involving users in the
development of a modeling language for customer journeys. Software and Systems
Modeling pp. 1–30 (2023). https://doi.org/10.1007/s10270-023-01081-w

27. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Proc. 9th International Sym-
posium on Formal Methods for Components and Objects (FMCO 2010). Lec-
ture Notes in Computer Science, vol. 6957, pp. 142–164. Springer (2010). https:
//doi.org/10.1007/978-3-642-25271-6_8

28. Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: A formal model of cloud-deployed
software and its application to workflow processing. In: 2017 25th International
Conference on Software, Telecommunications and Computer Networks (SoftCOM).
pp. 1–6 (Sep 2017). https://doi.org/10.23919/SOFTCOM.2017.8115501

29. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment archi-
tectures and resource consumption in timed object-oriented models. Journal of
Logical and Algebraic Methods in Programming 84(1), 67–91 (Jan 2015). https:
//doi.org/10.1016/j.jlamp.2014.07.001

30. Kamburjan, E., Hähnle, R., Schön, S.: Formal modeling and analysis of railway
operations with active objects. Sci. Comput. Program. 166, 167–193 (2018). https:
//doi.org/10.1016/j.scico.2018.07.001

31. Kobialka, P., Mannhardt, F., Tapia Tarifa, S.L., Johnsen, E.B.: Building user
journey games from multi-party event logs. In: Montali, M., Senderovich, A.,
Weidlich, M. (eds.) Process Mining Workshops (ICPM 2022). Lecture Notes in
Business Information Processing, vol. 468, pp. 71–83. Springer (2022). https:
//doi.org/10.1007/978-3-031-27815-0_6, Proc. 3rd Intl. Workshop on Event Data
and Behavioral Analytics (EdbA 2022)

https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1108/JSTP-11-2014-0261
https://doi.org/10.1108/JSTP-11-2014-0261
https://doi.org/10.1108/JSTP-11-2014-0261
https://doi.org/10.1108/JSTP-11-2014-0261
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1509/jmkg.70.1.003.qxd
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1109/SCC53864.2021.00051
https://doi.org/10.1109/SCC53864.2021.00051
https://doi.org/10.1109/SCC53864.2021.00051
https://doi.org/10.1109/SCC53864.2021.00051
https://doi.org/10.1007/s10270-023-01081-w
https://doi.org/10.1007/s10270-023-01081-w
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.23919/SOFTCOM.2017.8115501
https://doi.org/10.23919/SOFTCOM.2017.8115501
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.scico.2018.07.001
https://doi.org/10.1016/j.scico.2018.07.001
https://doi.org/10.1016/j.scico.2018.07.001
https://doi.org/10.1016/j.scico.2018.07.001
https://doi.org/10.1007/978-3-031-27815-0_6
https://doi.org/10.1007/978-3-031-27815-0_6
https://doi.org/10.1007/978-3-031-27815-0_6
https://doi.org/10.1007/978-3-031-27815-0_6

Simulating User Journeys with Active Objects 27

32. Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games
for user journeys. In: Proc. 20th International Conference Software Engineering and
Formal Methods (SEFM 2022). Lecture Notes in Computer Science, vol. 13550, pp.
253–270. Springer (2022), https://doi.org/10.1007/978-3-031-17108-6_16

33. Lammel, B., Korkut, S., Hinkelmann, K.: Customer experience modelling and anal-
ysis framework a semantic lifting approach for analyzing customer experience. In:
Proc. 6th Intl. Conf. on Innovation and Entrepreneurship (IE 2016). GSTF (Dec
2016). https://doi.org/10.5176/2251-2039_IE16.10

34. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1-2), 134–152 (1997). https://doi.org/10.1007/s100090050010

35. Lin, J., Lee, M., Yu, I.C., Johnsen, E.B.: Modeling and simulation of spark stream-
ing. In: Barolli, L., Takizawa, M., Enokido, T., Ogiela, M.R., Ogiela, L., Javaid,
N. (eds.) Proc. 32nd IEEE Intl. Conf. on Advanced Information Networking and
Applications (AINA 2018). pp. 407–413. IEEE Computer Society (2018)

36. Lin, J., Mauro, J., Røst, T.B., Yu, I.C.: A model-based scalability optimization
methodology for cloud applications. In: Proc. 7th International Symposium on
Cloud and Service Computing (SC2 2017). pp. 163–170. IEEE Computer Society
(2017). https://doi.org/10.1109/SC2.2017.32

37. Lin, J., Yu, I.C., Johnsen, E.B., Lee, M.: ABS-YARN: A formal framework for mod-
eling hadoop YARN clusters. In: Stevens, P., Wasowski, A. (eds.) Proc. 19th Inter-
national Conference on Fundamental Approaches to Software Engineering (FASE
2016). Lecture Notes in Computer Science, vol. 9633, pp. 49–65. Springer (2016).
https://doi.org/10.1007/978-3-662-49665-7_4

38. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: Proc. 12th Annual Symposium on Theoretical Aspects of Computer
Science (STACS 95). Lecture Notes in Computer Science, vol. 900, pp. 229–242.
Springer (1995). https://doi.org/10.1007/3-540-59042-0_76

39. Razo-Zapata, I.S., Chew, E.K., Proper, E.: VIVA: A visual language to design
value co-creation. In: Proc. 20th Conference on Business Informatics (CBI 2018).
vol. 01, pp. 20–29. IEEE (Jul 2018). https://doi.org/10.1109/CBI.2018.00012

40. Rosenbaum, M.S., Otalora, M.L., Ramírez, G.C.: How to create a realistic customer
journey map. Business Horizons 60(1), 143–150 (2017). https://doi.org/10.1016/j.
bushor.2016.09.010

41. Schlatte, R., Johnsen, E.B., Kamburjan, E., Tapia Tarifa, S.L.: Modeling and ana-
lyzing resource-sensitive actors: A tutorial introduction. In: Damiani, F., Dardha,
O. (eds.) Coordination Models and Languages. Lecture Notes in Computer Science,
vol. 12717, pp. 3–19. Springer (2021). https://doi.org/10.1007/978-3-030-78142-2_
1

42. Schlatte, R., Johnsen, E.B., Kamburjan, E., Tapia Tarifa, S.L.: The ABS simulator
toolchain. Sci. Comput. Program. 223, 102861 (2022). https://doi.org/10.1016/j.
scico.2022.102861

43. Schlatte, R., Johnsen, E.B., Mauro, J., Tapia Tarifa, S.L., Yu, I.C.: Release the
beasts: When formal methods meet real world data. In: It’s All About Coordination
- Essays to Celebrate the Lifelong Scientific Achievements of Farhad Arbab. Lecture
Notes in Computer Science, vol. 10865, pp. 107–121. Springer (2018). https://doi.
org/10.1007/978-3-319-90089-6_8

44. Terragni, A., Hassani, M.: Analyzing customer journey with process mining: From
discovery to recommendations. In: Proc. 6th International Conference on Future
Internet of Things and Cloud (FiCloud 2018). pp. 224–229. IEEE (Aug 2018).
https://doi.org/10.1109/FiCloud.2018.00040

https://doi.org/10.1007/978-3-031-17108-6_16
https://doi.org/10.5176/2251-2039_IE16.10
https://doi.org/10.5176/2251-2039_IE16.10
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
https://doi.org/10.1109/SC2.2017.32
https://doi.org/10.1109/SC2.2017.32
https://doi.org/10.1007/978-3-662-49665-7_4
https://doi.org/10.1007/978-3-662-49665-7_4
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1109/CBI.2018.00012
https://doi.org/10.1109/CBI.2018.00012
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1007/978-3-030-78142-2_1
https://doi.org/10.1007/978-3-030-78142-2_1
https://doi.org/10.1007/978-3-030-78142-2_1
https://doi.org/10.1007/978-3-030-78142-2_1
https://doi.org/10.1016/j.scico.2022.102861
https://doi.org/10.1016/j.scico.2022.102861
https://doi.org/10.1016/j.scico.2022.102861
https://doi.org/10.1016/j.scico.2022.102861
https://doi.org/10.1007/978-3-319-90089-6_8
https://doi.org/10.1007/978-3-319-90089-6_8
https://doi.org/10.1007/978-3-319-90089-6_8
https://doi.org/10.1007/978-3-319-90089-6_8
https://doi.org/10.1109/FiCloud.2018.00040
https://doi.org/10.1109/FiCloud.2018.00040

28 P. Kobialka et al.

45. Terragni, A., Hassani, M.: Optimizing customer journey using process mining and
sequence-aware recommendation. In: Proc. 34th Symposium on Applied Com-
puting (SAC 2019). pp. 57–65. ACM Press (Apr 2019). https://doi.org/10.1145/
3297280.3297288

46. Tueanrat, Y., Papagiannidis, S., Alamanos, E.: Going on a journey: A review of
the customer journey literature. Journal of Business Research 125, 336–353 (Mar
2021). https://doi.org/10.1016/j.jbusres.2020.12.028

47. Turin, G., Borgarelli, A., Donetti, S., Damiani, F., Johnsen, E.B., Tapia Tarifa,
S.L.: Predicting resource consumption of kubernetes container systems using re-
source models. Journal of Systems and Software (2023). https://doi.org/10.1016/j.
jss.2023.111750, to appear

48. Turin, G., Borgarelli, A., Donetti, S., Damiani, F., Johnsen, E.B., Tapia Tar-
ifa, S.L.: Predicting resource consumption of kubernetes container systems us-
ing resource models. Journal of Systems & Software 203, 111750 (Sep 2023).
https://doi.org/10.1016/j.jss.2023.111750

49. Vandermerwe, S., Rada, J.: Servitization of business: Adding value by adding ser-
vices. European Management Journal 6(4), 314–324 (Dec 1988). https://doi.org/
10.1016/0263-2373(88)90033-3

50. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The
ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. Int. J. Softw. Tools Technol. Transf. 14(5), 567–588 (2012). https:
//doi.org/10.1007/s10009-012-0250-1

https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1145/3297280.3297288
https://doi.org/10.1016/j.jbusres.2020.12.028
https://doi.org/10.1016/j.jbusres.2020.12.028
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1007/s10009-012-0250-1
https://doi.org/10.1007/s10009-012-0250-1
https://doi.org/10.1007/s10009-012-0250-1
https://doi.org/10.1007/s10009-012-0250-1

	Simulating User Journeys with Active Objects

