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Abstract

Cloud computing has radically changed the way organisations operate their software by allowing
them to achieve high availability of services at affordable cost. Containerized microservices is
an enabling technology for this change, and advanced container orchestration platforms such as
Kubernetes are used for service management. Despite the flourishing ecosystem of monitoring
tools for such orchestration platforms, service management is still mainly a manual effort.

The modeling of cloud computing systems is an essential step towards automatic manage-
ment, but the modeling of cloud systems of such complexity remains challenging and, as yet,
unaddressed. In fact modeling resource consumption will be a key to comparing the outcome of
possible deployment scenarios. This paper considers how to derive resource models for cloud sys-
tems empirically. We do so based on models of deployed services in a formal modeling language
with explicit CPU and memory resources; once the adherence to the real system is good enough,
formal properties can be verified in the model.

Targeting a likely microservices application, we present a model of Kubernetes developed
in Real-Time ABS. We report on leveraging data collected empirically from small deployments
to simulate the execution of higher intensity scenarios on larger deployments. We discuss the
challenges and limitations that arise from this approach, and identify constraints under which we
obtain satisfactory accuracy.
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1. Introduction

Cloud-native applications are collections of microservices [48, 12], i.e., small, independent,
and loosely coupled services. Deploying these applications is challenging and error-prone. Con-
tainer technologies such as Docker [46] facilitate this deployment process by addressing the com-
plexity rising from modules dependencies and by isolating small services in a protected environ-
ment. Container orchestrator systems such as Kubernetes [19] are used to organize and deploy
containerized services in cloud-native applications. The Cloud Native Computing Foundation
(CNCF) reports an increased adoption of containers by 300% from 2016 to 2021 [23]. Their most
recent user survey [24] shows the adoption of Kubernetes has grown along: 96% of organizations
are either using or evaluating Kubernetes in production. In general we can expect the adoption of
Cloud computing to continue to increase, and support for these spreading technologies will be of
paramount importance [20].

Kubernetes is Google’s third generation of container orchestrator systems [19] and was open-
sourced in 2014. The system provides a layer between the cluster operator and the applications
running on the cluster. Applications are implemented as collections of services, each developed,
deployed and scaled individually. It leverages containerization to handle scaling and failover for
the application, and provides deployment patterns, service definitions, service discovery and ba-
sic load balancing [28]. Containers are deployed in pods, which are abstractions for groups of
containerized components. Services and automatic scalers let the application scale, adapt the
application to variable demand, restart or gradually update failing components, accommodating
continuous deployment.

Deploying and running a microservice application in Kubernetes in a proficient way remains
a highly technical challenge [57], despite a flourishing ecosystem of open source plugins and
documentation. Performance is affected by several steps of the DevOps toolchain, such as defining
requested resources, (anti)affinity and load balancing. The performance outcome of a Kubernetes
deployment is strictly affected by the operator decisions, and thus deployment cannot be easily
automated. To track performance over costs, the operator needs to decide on a service allocation
for the initial deployment and achieve proper load balancing across the cluster nodes while keeping
a clear picture of the current cluster settings and demand. It is difficult to achieve resource-efficient
solutions.

Containers are often perceived as lightweight virtual machines, since in some cases they re-
place virtual machines. However, this association can be misleading: on the surface containers
are independent units of deployment, as they have their own process space, network space and
file system, they can orchestrate network ports, and they can safely rely on different kinds of
volumes. Underneath, resources are shared between different containers. This indirectly affects
their resource usage and thereby their availability. Understanding what goes on under the hood in
container orchestration systems is essential in order to reach a proficient deployment.

In this paper, we introduce a modeling framework for cloud-native applications orchestrated
using Kubernetes, to predict how CPU and memory resources will be used by multiple contain-
ers and how resource consumption will be affected in different cluster settings. The proposed
modeling framework can help the system administrator in finding a cluster configuration for a
microservice-based system which meets the system’s performance requirements. We aim to fa-
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cilitate the comparison of different deployment scenarios by means of a highly configurable, exe-
cutable model. The main contributions of this paper are:

1. a framework for modeling the resource-sensitive behavior of cluster configurations for a
microservice-based system;

2. a methodology to create formal models of resource consumption for containerized microser-
vices deployed and managed by Kubernetes in this framework; and

3. an evaluation of the proposed methodology on an actual microservice application in Kuber-
netes, the open-source Online Boutique cloud-native application.2

Although the proposed modeling framework abstracts from many aspects of Kubernetes (e.g.,
rollouts, rollbacks, orchestration of volumes, user roles and authorizations, scalability), once cali-
brated following our proposed methodology, the derived models already allow system deployment
under several configurations to be explored and compared at the modeling level, before the system
is actually deployed in these configurations.

Paper Overview. Section 2 introduces Kubernetes and Real-Time ABS. The developed model-
ing framework for cloud-native applications using Kubernetes is presented in Section 3, and the
methodology for instantiating the framework for a specific application, in Section 4. Section 5
evaluates the methodology on different deployments of the Online Boutique application. Section 6
elaborates on the applicability and extensibility of the presented work. Section 7 discusses related
work, and Section 8 concludes the paper.

2. Background

2.1. Kubernetes
Kubernetes [19] is an open-source system [4] for managing containerized applications across

multiple hosts. It provides basic mechanisms for deployment, maintenance, and scaling of appli-
cations. The core of Kubernetes includes services running on pods with various components for
their management. We here briefly introduce the main Kubernetes components related to resource
management: service allocation and load balancing of service requests, containers, pods, nodes
and their capabilities [5, 29].

Services represent components that act as basic internal load balancers and ambassadors for
pods. A service comprises a logical collection of pods (explained below) that perform the same
function and presents them as a single entity via a service endpoint. This allows the Kubernetes
framework to deploy a service that can keep track of and route requests to the different back-end
containers of a particular type. Internal service clients only need to know about the service end-
point. Meanwhile, the service abstraction enables the scaling or replacing of back-end containers
as necessary. The address of a service endpoint remains stable regardless of changes to the pods to
which it routes requests. By deploying a service, the associated pods gain discoverability, which
simplifies container design. Whenever access to one or more pods needs to be provided to an-
other application or to external service clients, a service can be configured. Although services, by

2https://github.com/GoogleCloudPlatform/microservices-demo
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default, are only available using an internally routable address, they can be made available to the
outside of the cluster.

Containers [49] facilitate the deployment process by addressing the complexity rising from
module dependencies and by isolating small services in protected environments. Container tech-
nology enables self-contained, ready-to-deploy parts of applications, including middleware and
business logic, to be packaged into binaries and libraries that can be used to run the applications.
The processes inside a container share network space, process space, and file system. This means
that they can talk to each other through different ports, a process can signal another process, and all
files inside the container are available to these processes. Tools like Docker [46] provide engines
to package applications into containers. The core of a container engine is leveraged by Kubernetes
to run the pods. When a container is built, its image — the executable binary package that is
produced from the container definition — is usually pushed to an online container registry and
tagged. The URL and tag are then set inside Kubernetes deployments to retrieve the containers
and activate the corresponding service.

Pods are the basic scheduling unit in Kubernetes. They are high-level abstractions for groups
of containerized components. A pod consists of one or more containers that are guaranteed to be
co-located on a host machine and can share resources. A pod is deployed on a node (explained
below) according to its resource requirements and has its own specified resource limits. For two
or more pods to be deployed in the same node, the sum of the pods’ minimum amounts of required
resources needs to be available in the node. All pods have unique (IP) addresses, which allows
developers to use ports without the risk of conflict. Within the pod, containers can reference each
other directly, but a container in one pod cannot address a container in another pod without passing
through a reference to a service; the service then holds a reference to the target pod at the specific
pod address. The addresses of pods are ephemeral; i.e., they are reassigned on pod creation and
system boot.

In Kubernetes, pods can consist of multiple containers, including additional init containers,
sidecars, and helper containers that carry out side tasks such as checking health and replying
to health probes. Init containers and sidecars are not considered for an application’s resource
consumption, since the init container only partakes in the creation of the pod and sidecars generally
handle networking tasks that can be separated from the consumption of the pod. In contrast, helper
containers can be counted as part of a pod’s resource consumption and of the application logic.
Putting multiple service containers in the same pod would be an anti-pattern for a cloud-native
application, restricting the flexibility of the microservice architecture. Kubernetes offers several
options for communication between endpoints (discussed below), which should be preferred over
pods with multiple service containers.

The nodes in a cluster are given different roles in the Kubernetes framework: one node func-
tions as the master node and the others as worker nodes. The master node acts as the primary
point of contact with the cluster and is responsible for most of the centralized logic that Kuber-
netes provides. The master node implements a server that acts as a gateway and controller for the
cluster by exposing an API for developers and external traffic. It allocates pods and orchestrates
communication between the components of the framework. In contrast, worker nodes host pods
and form the larger part of a Kubernetes cluster. Worker nodes have explicit resource capabilities,
CPU and memory, which are known by the system. The memory capability is specified as the ratio
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between occupied space and free space, and the CPU capability in terms of cores or millicores,
where a single core CPU provides 1000 millicores (i.e., milliseconds of processor activity). When
a pod is deployed on a node, the pod detains an amount of millicores which represents the segment
of time within which they are allowed to use the CPU.

The scheduler is in charge of service allocation, and assigns pods to specific nodes in the
cluster. The scheduler matches the operating requirements of a pod’s workload to the resources that
are currently available on the nodes in the Kubernetes framework, and places pods on appropriate
nodes. The scheduler is responsible for monitoring the available capacity on each node to make
sure that service containers are not scheduled in excess of the available resources. The scheduler
needs to keep track of the total capacity of each node as well as the resources already allocated to
existing service pods on the nodes.

The load balancing of service requests across multiple pods is handled by the Kubernetes
framework. This load balancing is content agnostic; i.e., this load balancing, which is also called
layer-4, has limited capabilities because it operates at the Transport layer (TCP/IP) of the ISO/OSI
stack. Modern applications can suffer load balancing issues in Kubernetes due to newer protocols
that bypass layer-4 load balancers [47]. For example, gRPC (Remote Procedure Call) breaks the
standard layer-4 load balancing of Kubernetes because it is built on HTTP/2, which multiplexes
requests using a single long-lived TCP connection. Thus, multiple requests can be active on the
same connection at any point in time. This reduces the overhead of connection management, but
it reduces the usefulness of connection-level load balancing: once the connection is established,
there is no load balancing and all requests are routed to a single destination pod. For this reason,
clusters are often equipped with additional load balancers, such as the service meshes Linkerd
[6] and Istio [3]. These provide content aware layer-7 load balancing, which operates at the
Application layer, rerouting requests at the highest level of the network protocol stack by means
of a High Availability proxy (HA proxy) for each pod. This type of load balancing is much more
expensive than just layer-4, in terms of consumed computational resources and latency. In fact,
redistributing requests consume resources on distributed proxies. When layer-4 load balancing
fails, a few proxies receive the major part of the requests, and redirecting all that traffic consumes
a significant amount of resource only on few nodes.

2.2. Real-Time ABS
ABS [1, 32] is an executable modeling language which targets the design and verification of

concurrent and distributed systems. ABS is an actor-based, object-oriented, executable model-
ing language with a Java-like syntax and a real-time operational semantics [14]. Its concurrency
model is based on active objects [15], which decouple communication and synchronization to
support very flexible orchestration of parallel activities within and between active objects. ABS
has previously been used to model and analyze cloud deployments of resource-aware virtualized
systems [35, 55], including workflow processing [36], AWS deployment decisions [33], Hadoop
[43], Spark Streaming [42] and industrial cloud applications [7]. Therefore, ABS is an adequate
match for exploring resource usage analysis in Kubernetes. We can understand ABS in terms of
layers.

The functional layer of ABS is used to model computations on the internal data of objects.
It allows designers to abstract from the implementation details of imperative data structures at
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an early stage in the software design. The functional layer combines parametric algebraic data
types (ADTs) and a simple functional language with case distinction and pattern matching. ABS
includes a library with predefined datatypes such as Bool, Int, String, Rat, Float, Unit, etc. It
also has parametric datatypes such as lists, sets and maps. All other types and functions are user-
defined.

The imperative layer of ABS allows designers to express communication and synchronization
between active objects, which encapsulate threads [54, 32]. Threads are created automatically at
the reception of a method call and terminated after the execution of the method call is finished.
ABS combines active (with a run method which is automatically activated) and reactive behavior
of objects by means of cooperative scheduling: Inside the active objects, threads may suspend at
explicitly defined release points, after which control may be transferred to another thread. Sus-
pension allows other pending threads to be activated. However, the suspending thread does not
signal any other particular thread, instead the selection of the next thread to be executed is left to
the thread scheduler. In between these explicit release points, only one thread is active inside an
active object, which means that race conditions are avoided.

The temporal layer of ABS, called Real-Time ABS [14, 55], develops a real-time operational
semantics for active objects which allows the logical execution time to be captured during the
execution of methods inside active objects. To express dense time in the models, Real-Time ABS
considers two types Time and Duration. Time values represent points in time as reflected on a
global, logical clock during execution. In contrast, finite duration values represent the passage
of time as local timers over time intervals. Thus, the local passage of time is expressed in terms
of duration statements which capture how long the local execution is delayed (similar to, e.g.,
UPPAAL [39]).

ABS is an open-source research project [2, 56] supported by a range of analysis tools (see, e.g.,
the ABS tool survey [7]); for the analysis results in this paper, we are using the ABS simulation
tool [55], which is implemented in Erlang [11].

3. A Modeling Framework for Resource Consumption in Kubernetes

In this section, we present a general resource modeling framework for systems orchestrated
using Kubernetes, and discuss how the framework can be instantiated for a specific cloud-native
application. The focus of the modeling framework is on resource management and load distribu-
tion. We distinguish two main categories of resources: resources that are temporarily available and
periodically recharged (e.g., CPU or energy), and resources that are acquired and released (e.g.,
memory or storage). In this framework we explore both categories concretely, via CPU and mem-
ory resources. Further generalization of the resource analysis framework is discussed in Section 6.
The framework is executable and developed in ABS; i.e., it provides a simulation environment
that can be used to make model-based load predictions. In particular, the framework can be used
to predict costs for different scenarios under stress and to compare CPU and memory usage be-
tween different system configurations of Kubernetes nodes, at the modeling level. The precision
of the model will determine the predictive capabilities of these simulations for real world cluster
production scenarios. Figure 1 shows the structure of modeled clusters in the framework.
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Figure 1: The architecture of the modeled Kubernetes cluster.

Clients invoke a service by sending requests to the service endpoint, requests are distributed
among the worker nodes using the load balancer. The amount of requests a node receives is
determined by the type and number of the pods it hosts and measured in Request Per Second
(RPS). A pod is deployed on a node and consumes its resources while processing requests. The
autoscaler manages the number of pods for the service, and calls the scheduler to deploy new pods.

Model Input/Output. To instantiate the outlined framework on a concrete cluster of services, we
need to specify:

1. application settings, which include pod configurations (placement, required resources),
service configurations (specifically, the load balancing policy) and workflows that are sup-
ported by the services of the cluster; and

2. cost tables, which specify the resource consumption of services for different workflows, at
different intensities and for different node configurations.

Observe that the isolation properties may vary between container systems. This is reflected in
our modeling framework by the specified cost tables; for perfectly isolated containers a simpler
specification of cost would suffice [7, 38].

In the remainder of this section, we discuss aspects of the modeling framework of particular
relevance for resource management and load balancing. The complete modeling framework is
open source and available online.3

3.1. Modeling of Requests and Workflows
In our modeling framework, the workload of services is abstracted into batches of requests. A

batch of requests has a size that specifies the actual number of requests, while its processing cost is
determined by the hosting node according to its cost table and the total amount of requests that the

3https://github.com/giaku/abs-k8s-model/tree/ld-fixed-nodes
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1 data WorkflowData = WorkflowData(String wfName, List<String> services);
2 data ClientRequest = ClientRequest(WorkflowData wf, Int rps);
3

4 WorkflowData wf3Data = WorkflowData( // workflow definition with activated services
5 ”workflow3”,
6 list[”frontend”,”service1”,”service2”,”service3”, ...]);
7

8 ClientRequest cr1 = ClientRequest(wf3Data, 150); // batch of requests to be sent by a client
9

10 Client c1 = // client instantiation
11 new ClientObject(cr1,loadBalancer,80,rat(1.0)); // client req, target lb, num of batches, delay between batches
12 c1!start() // client activation, it will start to asynchronously send its batches over time

Figure 2: Request declaration and client hatching.

node is handling. To recover a finer granularity for load balancing, batch requests from clients are
partitioned into smaller batches by the load balancer, as explained in Section 3.2. These smaller
batches are received by a node and transformed into resource consumption by the pods hosted on
that node.

Figure 2 shows how workflows, client requests, and clients are modeled. Workflows are com-
positions of activated services; the workflow datatype in ABS defines a workflow to have a name
and include a collection of services. The ClientRequest datatype in ABS defines a batch of re-
quests of a given size to a named workflow. We assume that the different services of a workflow
can be executed in parallel and abstract from the activation order of the services, because of the
pipeline effect for the multiple requests contained in each batch when we consider batches of re-
quests. Clients are implemented by the ClientObject class in ABS, which fires batches of requests
of a given size of a given workflow to a service endpoint.

3.2. Modeling of Services and Pods
A service in our modeling framework is configurable, and carried out by a number of pods.

Services are configured by passing parameters to the service when it is instantiated, including the
parameters PodConfig and ServiceConfig, as shown in Figure 3:

• The datatype PodConfig specifies the requested CPU resources and the CPU limit for pro-
cessing tasks on the pods, the memory cool-down time for insufficient memory and the
cost granularity. The requested CPU resources specify the minimum amount of CPU re-
sources required for the pod to execute and the CPU limit specifies the maximum amount of
CPU resources that the pod will consume. The memory cool-down is the time delay before
rescheduling a pod in case the node lacks sufficient memory for the pod to execute. The cost
granularity captures the number of resource consumption steps the pod will use to process
a request. The amount of CPU consumed per step is then obtained by dividing the cost of
the request by the cost granularity.

• The datatype ServiceConfig specifies the initial number of pods, the minimum and maximum
number of pods for the service and the configuration of the autoscaler.

For simplicity in the modeling framework, pods are assumed to consist of a single container.
(A pod with many containers can be modeled by a pod running one container which consumes the
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1 data PodConfig = PodConfig(Rat monitorCycle, Rat memoryCooldown, Rat cpuRequest,
2 Rat cpuLimit, Int costGranularity);
3 data ServiceConfig = ServiceConfig(String name, Int startingPods, Int minPods,
4 Int maxPods, Rat scalerCycle, Rat upscaleThreshold, Rat downscaleThreshold,
5 Int downscalePeriod);

Figure 3: The datatypes PodConfig and ServiceConfig.

1 Unit processRequest(Request request) {
2 Rat cost = requestCost(request); Rat requiredMemory = memory(request);
3 this.allocateMemory(requiredMemory); // memory allocation
4 monitor!consumedMemoryUpdate(requiredMemory);
5

6 Rat computationStep = (cost / costGranularity) // compute step size
7

8 while (cost > 0){ // until fully processed
9 ...

10 if (cost > computationStep){ // consume a step size amount
11 await this.availableCpu > 0; // check on the pod limit
12 await node!consumeCpu(computationStep,this); // consume node CPU
13 await !this.blocked; // refresh sync
14 availableCpu = availableCpu − computationStep; // reduce available CPU (pod limit)
15 monitor!consumeCpu(computationStep);
16 cost = cost − computationStep; // cost decreases
17 } else if (cost > 0){ ... } // consume remaining amount, if less than step size
18 ... suspend; // release control at the end of each consumption step, allows interleaving
19 }
20

21 this.releaseMemory(requiredMemory); // memory release
22 monitor!consumedMemoryUpdate(−requiredMemory);
23 }

Figure 4: The processRequest method of the pods.

sum of their total resources.) The pods are deployed onto nodes and consume resources when they
process requests, as shown in Figure 4: memory is allocated at the beginning and released at the
end of the processRequest method, while CPU resources are consumed gradually according to the
costGranularity parameter of the model. The nature and number of pods on a node determine the
type and number of requests that the node receives from the service endpoint.

3.3. Modeling of Nodes
The Kubernetes master node is not explicitly modeled, its functionalities are implemented in

the model logic. The Node class in ABS models the Kubernetes worker node, which has a given
amount of resources available for consumption by its running pods. In addition to its capacities,
the modeled nodes include information about resource consumption in their cost table, both the
capacities and cost table are specified upon node creation:

• CPU capacity. CPU resources are time dependent. They are replenished at every time
interval, the total amount of computed costs on a node in the time interval cannot exceed the
node’s CPU capacity.

• Memory capacity. Memory is time independent. Memory can be acquired and released.
The node decreases its available memory when a pod starts the processing of a request and
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1 Unit convertRps(){
2 // ’Service’ −> Map<’Workflow’,Rps>
3 Map<String,Map<String,Int>> serviceWfRpsMap = map[];
4 Map<String,Int> totRpsMap = map[];
5

6 // scan node requests from master load balancer, retrieve RPS per each service and workflow
7 foreach (nodeReq in this.nodeReqsQueue){ ... }
8

9 List<String> services = elements(keys(serviceWfRpsMap));
10

11 // create map with <service,total rps>, total amount of RPS for each service
12 foreach (service in services){ ... }
13

14 // convert total rps and workflow info in millicores costs, using the cost tables
15 Map<String,Rat> serviceConsumptionMap =
16 this.buildServWfConsumption(serviceWfRpsMap,totRpsMap);
17

18 // generate and send the requests to pods
19 foreach (service in services){
20 Int totServRps = lookupDefault(totRpsMap,service,0); // total RPS
21 Int nOfServPods = lookupDefault(podsMap,service,0); // number of service pods
22 Rat serviceCost = lookupDefault(serviceConsumptionMap,service,0); // total cost
23 Rat costPerRps = serviceCost / totServRps; // cost per request
24

25 List<Pod> servicePods = lookupDefault(this.servPodsReferenceMap,service,list[]);
26

27 List<Int> rpsQuotas = this.generatePodsRequestsSizes(totServRps,nOfServPods); // split total RPS amount}
28

29 Int index = 0;
30 while (index < nOfServPods){ // send each pod its batch of requests
31 Int rpsQuota = nth(rpsQuotas,index);
32 Rat requestCost = costPerRps ∗ rpsQuota; // compute the cost
33 Request req = Request(service,requestCost,1,rpsQuota); // generate the request
34 Pod p = nth(servicePods,index);
35 // send request to pod with millicores information
36 p!processRequest(req);
37 index = index + 1;
38 }}}

Figure 5: The Node convertRps method of the the class Node.

allocates memory cost on the node memory. The memory stays decreased for the whole
computation time and the allocated amount is restored on request completion. In case the
free memory is insufficient, the request remains pending until enough memory is available.

• Cost table. The cost table is used to capture the resource consumption on a node for specific
configurations. The cost table stores information about resource consumption for each work-
flow and service for different RPS entries. The table maps triplets (workflow, serviceName,
RPS) to their known resource consumption.

The modeling framework considers cluster of nodes from fixed images; i.e., nodes are fixed to
be of given configurations during model instantiation. However, this is not a major limitation as
many different images can be modeled in the framework and nodes can change between images
during a simulation.

Cost tables are introduced to address the problem of dependencies between pod consumption
in container systems without perfect isolation between pods. When a pod processes batch requests,
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it needs to acquire resources from its node. As the CPU costs associated to RPS are stored in the
node’s cost table, the node calculates the actual resource consumption that each pod will require. If
the exact amount of RPS for a service is not found in the cost table, the model interpolates between
the values of the two closest table entries. The number of pods and load balancing between pods
affect the number of requests that a pod receives.

Figure 5 shows how the the node parses its share of requests and calculates the total amount
of RPS from the queue, for each service and for each workflow (Lines 6–16). In the final loop
(Line 19), the amounts of RPS are converted into millicores by means of the serviceConsumption-
Map. Finally, the node notifies each pod about its total consumption that will start consuming (the
while-loop at Line 30). The pods will start to execute once they know the allocated amount of
millicores for this time unit.

3.4. Modeling of Load Balancers
In the modeling framework, we have implemented a round-robin load balancing policy for

batches of requests. Other load balancing policies can be implemented in a similar way, such as
random, ring, or hash. The modeling framework can also accommodate different policies for dif-
ferent services. Since the modeling framework focuses on resource consumption, policies that are
based on non-functional properties are difficult to capture within our framework. These policies,
which direct more requests to the best-performing endpoints, can be based on, e.g., the latency
and error rates of the endpoints. Implementing these policies would require encoding a statisti-
cal distribution of loads in the Master LoadBalancer, which goes beyond our current modeling
framework.

The Master LoadBalancer (MLB) converts batches of workflow requests sent by the clients
into smaller batches of service requests directed towards the pods. Figure 6 shows the method
balanceClientRequest of the MLB class, invoked by the clients. The ClientRequest method refers to
a specific workflow, including the size of the workflow and the list of services that will be activated
(see Section 3.1). Based on this information, the MLB generates proper batches of requests for
each service and for each pod of that service. In the method, the first cycle (Line 6) goes through
the services of the workflow and divides the RPS with a round-robin policy among the pods. The
second for-loop (Line 11) generates and forwards the requests to the nodes.

3.5. Modeling of Schedulers
The Scheduler class finds places for pods on nodes. The default deployment strategy is to

compare the pod’s requested CPU resources to the available CPU resources in the least busy node.
If there are enough CPU resources available on a given node, the pod is scheduled on that node. If
no node has enough resources available the pod remains pending, to be scheduled in another time
interval. This strategy is implemented in the deployPod method of the Scheduler class, which is
shown in Figure 7.

To support the definition of fixed scheduling of pods onto nodes, the scheduling can also be
guided by a map specifying an ordered list of nodes for each service. If the list is exhausted,
the scheduler will start again from the beginning of the list. For example, Figure 8 shows a rule
defined for the service frontend. If eight pods are to be deployed, they will end up two per node;
if ten pods are to be deployed, three pods will be in node 1 and 2 and two pods in node 3 and 4.
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1 Unit balanceClientRequest(ClientRequest request){
2 WorkflowData wfd = wf(request);
3 String wfName = wfName(wfd);
4 List<String> services = services(wfd);
5 //here big batches of requests from the client have been transformed into small batches for each pod
6 foreach (service in services){
7 // group small batches by the node hosting the pods
8 Map<Node,Int> servicePodMap = lookupDefault(perServicePodsNumber,service,map[]);
9 List<Pair<Node,Int>> quotas = this.generateSubrequestsSizes(rps(request),servicePodMap);

10

11 foreach (quota in quotas){ // send each node its group of small batches
12 Node node = fst(quota);
13 Int size = snd(quota);
14 NodeRequest nodeReq = NodeRequest(service,wfName,size);
15 // create the node request (service,wf,rps)
16 node!processRequest(nodeReq);
17 }}}

Figure 6: The balanceClientRequest method of the class MasterLoadBalancer.

4. A Methodology for Modeling Specific Kubernetes Deployments

In this section, we propose a methodology to instantiate the modeling framework in order to
make model-based predictions of resource consumption for a concrete cloud-native application.
To this aim, the cluster administrator needs to know the relevant node configurations (that specify
how pods are deployed on different nodes), the workflows that the application exposes to the
endusers (i.e., which services are involved in a high-level action such as “load the homepage”),
and the different service and pod configurations chosen for Kubernetes (i.e., the load balancing
choices for services and the required and maximum amount of resources of each pod). Since the
modeling framework considers deployments of nodes from fixed images (cf. Section 3.3), we need
to derive execution costs for the images that we consider.

The methodology is used to calibrate the modeling framework to the targeted cloud-native
application by deriving cost tables for the node images of the model from experiments on the
corresponding node configurations of the application. In the experiments, each node configuration
of the application is monitored while the node is subjected to an increasing demand for each
workflow. Thus, instantiating the modeling framework for the Kubernetes deployment of a specific
cloud-native application with multiple node images, requires a few steps:

1. instrument the cluster,
2. identify suitable workflows,
3. identify node configurations,
4. define a sampling strategy for service loads to derive cost tables, and
5. perform model-based predictions by means of simulation.

We now detail the process for each step.

Step 1: Instrument the Cluster. We need to instrument the cluster for monitoring the targeted
cloud-native application.4 We deploy the application and isolate the resource consumption of

4In Kubernetes the most widely adopted open-source tools for this purpose are Prometheus (https://
prometheus.io/) and Grafana (https://grafana.com/), but their integration currently requires additional work
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1 Node deployPod(Pod p, ResourcesMonitor rm){
2 Bool deployed = False;
3 Rat requestedCpu = await rm!getCpuRequest();
4 Node result = null;
5

6 List<Int> nodeIds = lookupDefault(rulesMap,serviceName,list[]); // check rule
7

8 // get the list of candidate nodes
9 if (!isEmpty(nodeIds)){ // rule defined

10 Node selected = lookupDefault(nodesMap,head(nodeIds),null);
11 nodesToCheck = list[selected];
12 ... // cycle the rule list
13 } else { // default behavior
14 nodesToCheck = activeNodes
15 }
16

17 while (!deployed){ // try to deploy on the least loaded node
18 Rat maxCpu = −1
19 List⟨Node⟩ nodesToCheck = tail(activeNodes);
20 foreach ( n in nodesToCheck){ ... } // get the node with maximum available CPU
21 if (maxCpu >= requestedCpu){await result!addPod(p,rm); deployed = True;} // deploy if enough CPU
22 else{await duration(1,1);} // if not successful, wait before retrying
23 }
24 return result;}

Figure 7: The deployPod method of the class Scheduler.

1 Map<String,List<Int>> rulesMap = map[];
2 rulesMap = put(rulesMap,”frontend”,list[1,2,3,4]);

Figure 8: A deploy rule for the service Frontend in the class Scheduler.

Kubernetes system pods and monitoring plugins that perform periodic jobs that would otherwise
interfere. For example, we used a dedicated worker node to host these system pods; such node,
just like the master node, has not been modeled since it constitutes a very low amount of resource
usage (about 1% of the total cluster consumption in our experiments).

Note that many stress test tools send requests synchronously; i.e., the thread sending requests
will always wait for the previous response to return. Consequently, when approaching the max-
imum load capability of the cluster, the response time grows and yields an RPS rate drop. This
drop cannot be avoided and should not be reproduced in the model. To run meaningful stress tests,
we need a tool capable of maintaining a fixed number of requests per second, independent of the
response time.5

Step 2: Identify Suitable Workflows. We now identify the workflows that are relevant for the re-
source consumption of the cloud-native application. We are primarily interested in workflows that
significantly impact the resource needs of the target application. These workflows can be identified
by the application owner, from the specifications, or by their resource consumption. A workflow
with low impact in terms of the number of services involved and the load on those services, would

that the package manager Helm (https://helm.sh/) can significantly relieve. The full Prometheus stack chart for
Helm is available from the Prometheus community.

5In our experiments, we have used the open-source tool Vegeta, which is available on GitHub, https://github.
com/tsenart/vegeta
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be of limited interest when we instantiate the modeling framework. A suitable workflow is static;
i.e., the workflow never changes the set of activated services despite randomised parameters (e.g.
‘set a different currency’).

Step 3: Identify Node Configurations. We now identify the node configurations that we want to
capture as node images in the model. We consider nodes configured with a set of pods that will
not change while profiling the resource consumption of the node. These nodes would typically
correspond to the nodes used by the administrator when scaling the cloud-native application.

Step 4: Define a Sampling Strategy for Service Loads to Derive Cost Tables. In order to construct
cost tables for each modeled worker node image that reflect the resource usage on the cluster, we
need to define a sampling strategy. We run experiments on the cluster to measure the resource
consumption of every service of any workflow for different RPS entries; i.e., we run experiments
on the cluster to derive the resource consumption Y for each node configuration A, workflow
wf1 with its set of activated services, and level of service requests r (e.g., 25,50, ...,150 RPS).
The experiments result in entries such as CostA (wf1,25,service1) 7→ Y , where Y is specified in
millicores, in the derived cost table for node A. A cost table containing all workflows, their services
and corresponding resource consumption for each node image. The derived cost tables will be used
to calculate the resource consumption for the pods. Different sampling strategies will provide more
or less entries; the more entries a cost table contains, the more accurate will be the resulting model.

When our target node reaches its capabilities, the success rate for the requests drops, the latency
of the pods increases and resource consumption becomes less predictable. Therefore we will let
the maximum RPS in the cost table be such that latencies never exceed a reasonable amount (e.g.,
ten times a low demand latency), and success rate never drops below 90% during the sampling
process.

Step 5: Perform Model-based Predictions by Means of Simulation. Using an instance of the mod-
eling framework with the derived cost tables for node images, we can compare the outcomes of
running simulations of different configurations of the modeled cloud-native application. Having
sampled service loads for multiple node images allows us to simulate different scheduling choices
in the cluster.

Note that Kubernetes systems often scale up and down at the level of individual pods, thereby
changing node compositions by adding or removing single pods. This may introduce a higher
variability for possible node configurations than what we have considered in the proposed method-
ology, where we considered scaling at the abstraction level of node images to keep the number of
node configurations for the sampling process fairly low. The methodology can be extended to
cover the scaling of individual pods by increasing the number of node configurations in the sam-
pling process.

5. Evaluating the Methodology

With the proposed methodology, we aim to configure the modeling framework to predict re-
source consumption for real cloud-native applications. Therefore, we evaluate the predictions
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of resource consumption that we obtain for models derived by following the methodology intro-
duced in Section 4. The proposed methodology aims to derive cost tables for node images for
cloud-native applications with different workflows. In order to evaluate the accuracy of the result-
ing model for predicting the resource consumption on the nodes, we apply the methodology to
a cloud-native application with mixed workflows, focus on CPU resources and consider different
node images and load distributions. In detail, we investigate the following research questions:

RQ1 How accurate is the prediction of CPU consumption under a mixed workflow scenario on a
cluster with homogeneous nodes?

RQ2 How accurate is the prediction of CPU consumption for a mixed workflow scenario, on
different cluster setups with heterogeneous nodes?

RQ3 Is there a correlation between fair load distribution and response time for microservices
application deployed in Kubernetes?

By a cluster with homogeneous nodes, we mean that all nodes in the cluster contain the same
set of pods. In contrast, by a cluster with heterogeneous nodes, we mean that the cluster consists
of different nodes that contain different sets of pods.

5.1. Experimental Design and Subject
To answer these research questions, we performed experiments with a cloud-native application

managed by Kubernetes, running on a cluster. There are no standard benchmarks for cloud-native
applications. Therefore, we constructed a set of experiments based on a microservices demo
application6 from Google: an online shop where customers can browse and buy products. This
application has previously been used to demonstrate the functionalities and scaling capabilities
of several Kubernetes plugins. In our experiments, the load generator component of the demo
application was not used since the stress tests have been implemented differently.

The Architecture of the Microservice Application. The microservice architecture of the online
boutique, their interactions and the relevant language technologies are shown in Figure 9. The
communication between the services of the online boutique are mostly based on gRPC calls, an
HTTP/2 based protocol which keeps connections alive by bypassing the de facto Kubernetes layer-
4 load balancing.

The application was deployed using the load balancer Istio,7 a service mesh platform working
on top of Kubernetes. Istio was chosen for its high availability (HA) proxies based on the open
source project Envoy, which provides every service pod with a sidecar container and redirects all
requests, achieving layer-7 load balancing also on HTTP/2 based communication protocols. To
change the load balancing strategy, we defined Istio Destination Rules for every service with the
random policy.

6https://github.com/GoogleCloudPlatform/microservices-demo
7https://istio.io/
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Figure 9: Online shop service mesh.

The main workflows that are relevant for users of the online boutique were identified by brows-
ing the web application. A workflow can be get the index page, change currency and view a ran-
dom product. Despite their simplicity, tasks like these are already perceived as workflows and do
in fact activate a variety of services. For example, viewing the index page activates the services
frontend, currencyservice, cartservice, adservice, productcatalogservice and redis-cart. It is com-
mon in this type of applications that a frontend service builds the frontend page upon information
retrieval from other services. These relations can be seen as service dependencies, though with our
notion of workflows, we separate external services that can be activated by the users from internal
services that implement the backend of the application.

A service can generally implement multiple functions: In simple cases (like the online bou-
tique), static workflows activate internal services in a deterministic way; i.e. no parameter values
can be used to influence the set of services that are activated by a given workflow (by activation we
mean calls of the form ServiceA.MethodA). Indeed, randomising parameter values for the online
boutique made no difference from the point of view of resource consumption. In more complex
cases, variable workflows can be modeled as different workflows by fixing different parameters
for the same workflow.

The Configuration of the Cluster. The online boutique application was deployed on a cluster of
nodes provided by Norwegian Research and Education Cloud.8 We used five large nodes, with
4 cores and 16GB of memory, divided into one master and four worker nodes. In addition, two
small nodes, with a single core and 4GB of memory, were used to host system services, such as
the Kubernetes cluster DNS, the Kubernetes metrics monitor, the monitoring services (Grafana
and Prometheus stack), and the HA proxy services (Istio components and Kiali for Istio commu-
nications monitoring). Finally, a separate node, with 2 cores and 8GB of memory, was created

8https://www.nrec.no/
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Name Description HTTP request Services

WF1 View homepage GET http://ip:port/
frontend, currency, ad, cart,
productcatalog, redis-cart

WF2
Change
currency

POST
http://ip:port/setCurrency

frontend, currency, ad, cart,
productcatalog, redis-cart

WF3
View
product details

GET
http://ip:port/product/product-
code

frontend, currency, ad, cart,
productcatalog, redis-cart,
recommendation

Table 1: An overview of the considered workflows, with a brief description, the corresponding HTTP requests and
a listing of the involved services. Services in bold denote the most stressed, hence important, services for the corre-
sponding workflow.

Node
name

Purpose Pods

Node
type A

Nodes which implement the workflows
and handle a reasonable amount of re-
quest throughput

2×frontend, 2×currency, 1×ad,
1×cart, 2×productcatalog,
1×redis-cart, 2×recommendation

Node
type B Nodes which favor WF1 and WF2

4×frontend, 3×currency,
1×productcatalog,
1×recommendation

Node
type C Nodes which favor WF3

3×frontend, 2×currency,
2×productcatalog,
3×recommendation

Table 2: An overview of the node images, with a brief description and the associated pods.

as an attacker using Vegeta. Such an additional node is necessary to prevent that the CPU load
generated by the stress tests affects the tailoring of the target application’s performance.

The services needed for the sampling process could easily fit on a single node. Two services
were particularly resource consuming in the first two workflows: frontend and currencyservice;
these two services were deployed in two pods. The third workflow was mostly hitting frontend,
which has already two pods, and productcatalogservice and recommendationservice, which we
deployed in two pods as well. To instantiate the modeling framework, we focus on the workflows
of the online boutique listed in Table 1.

We configured a node image (Node type A) to implement the considered workflows and handle
a reasonable amount of request throughput, another (Node type B) which favors WF1 and WF2
and a third (Node type C) which favors WF3. The pods on the node images are listed in Table 2.
An excerpt of the resulting sampling process outcome for Node type A can be seen in Figure 10,
the created maps will then form a higher level map containing the full calibration data. Next, we
identified two other types of nodes, both meant to extend this deployment. The two last node types
are not sufficient to implement the workflows of the application by themselves, so they have been
deployed with a helper node hosting the missing pods for the sampling process.
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1 Map<String,Rat> a wf1 25 = // node type A, workflow 1 with 25 RPS
2 map[
3 Pair(”frontend”,526),Pair(”currencyservice”,434),Pair(”adservice”,72),
4 Pair(”cartservice”,72),Pair(”productcatalogservice”,57),Pair(”redis−cart”,12)];
5 //... up to 150 RPS
6

7 Map<String,Rat> a wf2 25 = // same for workflow 2
8 map[
9 Pair(”frontend”,558),Pair(”currencyservice”,436),Pair(”adservice”,72),

10 Pair(”cartservice”,73),Pair(”productcatalogservice”,57),Pair(”redis−cart”,12)];
11 //... up to 150 RPS
12

13 Map<String,Rat> a wf3 25 = // same for workflow 3
14 map[
15 Pair(”frontend”,467),Pair(”currencyservice”,114),Pair(”adservice”,73),
16 Pair(”cartservice”,73),Pair(”productcatalogservice”,276),
17 Pair(”recommendationservice”,135),Pair(”redis−cart”,12)];
18 //... up to 150 RPS

Figure 10: Data from the sampling process integrated in the model for node type A.

Workflow mix WF1 WF2 WF3
P1 100 100
P2 300 100
P3 150 350
P4 150 350
T1 425 75 75
T2 175 200 175
T3 125 375 100
T4 75 50 400

Table 3: Mixed workflow RPS profiles for RQ1
(workflow pairs are denoted by P and triplets by T).

Workflow mix WF1 WF2 WF3
P1 100 100
P2 175 100
P3 100 200
P4 150 150
T1 175 75 25
T2 50 125 125
T3 50 50 200
T4 25 250 25

Table 4: Mixed workflow RPS profiles for RQ2
(workflow pairs are denoted by P and triplets by T).

The Configuration of the Experiments. To investigate research question RQ1, we need to com-
pare model predictions to the measured CPU consumption under mixed workflow scenarios on
homogeneous nodes. For this purpose, we performed a series of mixed workflow stress tests on
the cluster with Node type A. The mixed workflows varied between two and three workflows,
chosen to cover different scenarios where the workflows are balanced as well as scenarios where
one workflow dominates the service requests. The stress tests spanned from 200 to over 500 RPS
in total. Table 3 shows the composition of workflows for each stress test; stress tests P1–P4 con-
sider two workflows and stress tests T1–T4 consider three workflows with different RPS. Each
stress test lasted 15 minutes and was executed five times to detect possible fluctuations in resource
consumption.

To investigate research question RQ2, we need to compare model predictions to the measured
CPU consumption under mixed workflow scenarios on heterogeneous nodes. For this purpose,
we performed experiments on the cluster with Node types B and C. Because the load distribution
between nodes is slightly unbalanced between different runs of the same deployment on the cluster
(see Section 2.1), we need to be more careful in designing the experiments with heterogeneous
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nodes than with homogeneous nodes (used for RQ1). We address this issue by implementing a
turnover of the nodes and run three iterations of each stress test on each cluster configuration,
resulting in a total of twelve iterations for each stress test for RQ2. For the first three iterations
the node types were instantiated on the four worker nodes, for the next three iterations all node
types where shifted such that the first worker node hosted the pods of the second worker in the
previous round of stress tests, the second worker node hosted the pods of the third worker node
in the previous round, etc. The mixed workflows used in the experiments for RQ2 are shown
in Table 4 and the cluster configurations are shown in Table 5. They have been reduced in the
amount of service requests considered, because some cluster configurations could not handle the
same service demand as in RQ1.

Cluster Node Node
configuration type B type C

1B3C 1 3
2B2C 2 2
3B1C 3 1

Table 5: Cluster configurations
combining heterogeneous nodes.

To investigate research question RQ3, we need to
compare fair load distribution and response time. For this
purpose, we developed a resource model to calculate the
estimated consumption in different scenarios. To demon-
strate the usefulness of the model, we need to show that
fairly balanced nodes lead to better performance. Several
metrics have been used for measuring the performance
of cloud systems [27]. We focused our evaluation exclu-
sively on service response time (i.e., the latency between service request and response) and the
corresponding system utilisation (i.e., the percentage of system resources that are used for service
provisioning). In the experiments, we report on the response time of the median request and com-
pare their latencies and resource consumption. The median request is more meaningful than the
average response time since response time distribution is asymmetric w.r.t. its average. We can
compare their latencies and resource consumption since the computation capabilities of the cluster
were never exceeded in our experiments, all tests obtained a success rate greater than 95%.

5.2. Results and Discussion
This section is organized according to research questions RQ1—RQ3. The scripts developed

to perform the experiments have been made available on GitHub.9

RQ1. Figures 11–14 compare measurements for the five iterations of the stress tests to the corre-
sponding model predictions for the workflows specified in Table 3. In the figures, consumption is
grouped by service in the first row of plots, and by node in the second row. Figure 11 considers
the mixed workflows P1 and P2, Figure 12 considers P3 and P4, Figure 13 considers T1 and T2,
and Figure 14 considers T3 and T4.

When we look at the consumption by service, the model’s prediction is well aligned with the
consumption observed on the cluster. Service consumption is always very close to the measured
outcome. The model’s largest divergence can be observed for service consumption in workflow
T3 (see Figure 14, top left). For the service frontend, the model predicts a consumption of 6000
millicores and the system consumes on average 5500, accounting for an overestimation of 10%.
This can be explained by the fact that when the total load on the cluster brings the nodes close to

9https://github.com/giaku/abs-k8s-experiments
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P1 Average Load (Millicores) P2 Average Load (Millicores)

P1 Average Load (Millicores) P2 Average Load (Millicores)

Figure 11: Measurements for the mixed workflows P1 and P2, comparing the resource consumption recorded in the
cluster stress tests (orange dots) with the expected values given by the resource model (blue plus). The plots are
reported by service (top), and by node (bottom).

saturation, the behaviour of the system becomes unpredictable. Resources cannot be consumed
in excess of their availability, and resources are also needed for the Kubernetes internals. Fur-
thermore, the real system degrades performance and some requests fail in order to keep the pace,
while the model can consume every single millicore of CPU.

When we consider the consumption by node, we observe a slightly unbalanced distribution
among the worker nodes in the real system. Since all nodes are a priori equal, the model predicts
the same load for every node, but the real Kubernetes cluster does not. The reasons for this
difference lie in the load balancing problem discussed in Section 2.1: When the kube-proxies
distribute gRPC requests, they fail to achieve a fair load distribution. This problem is addressed by
equipping every pod with a sidecar pod that works as an additional High Availability proxy; these
sidecars are provided by Istio and called Istio-proxies. After the initial distribution of requests
by the Kubernetes system, the Istio-proxies carry out a final rerouting of the requests. However,
the consumption of these proxies is not considered part of the system consumption; instead it is
part of the pod consumption. Consequently, the consumption of a frontend service is measured
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P3 Average Load (Millicores) P4 Average Load (Millicores)

P3 Average Load (Millicores) P4 Average Load (Millicores)

Figure 12: Measurements for the mixed workflows P3 and P4, comparing the resource consumption recorded in the
cluster stress tests (orange dots) with the expected values given by the resource model (blue plus). The plots are
reported by service (top), and by node (bottom).

together with its sidecar Istio-proxy in the sampling phase and then replicated in the simulations.
However, the work of the Istio-proxies at different places in the cluster is not fairly balanced. Some
Istio-proxies are redirecting more requests than others, because the kube-proxies target them more
heavily. This lack of balance does not affect the experiments for RQ1 because the consumption
per service is quite accurate and the consumption per node is accurate when considering average
values.

RQ2. Figures 15–17 compare measurements for the twelve iterations of the stress tests to the
corresponding model predictions for the mixed workflows specified in Table 4, using node turnover
in the cluster experiments. The consumption recorded during the experiments is presented as
box plots for all cluster configurations. In particular, Figure 15 shows the results of the four pair
workflows P1, P2, P3 and P4 (first row) and four triplet workflows T1, T2, T3 and T4 (second row)
for the cluster configuration 2B2C (see Table 5), and Figures 16 and 17 show the corresponding
results for the cluster configurations 3B1C and configuration 1B3C, respectively. The green area
of the box plots cover 50% of the observations, and the two brackets span to the minimum and
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T1 Average Load (Millicores) T2 Average Load (Millicores)

T1 Average Load (Millicores) T2 Average Load (Millicores)

Figure 13: Measurements for the mixed workflows T1 and T2, comparing the resource consumption recorded in the
cluster stress tests (orange dots) with the expected values given by the resource model (blue plus). The plots are
reported by service (top), and by node (bottom).

maximum value observed. The red dot depicts the expected consumption from the calibrated
model.

In these experiments, we observe that the expected resource consumption from the model
corresponds well to the observed consumption measured on the cluster during the turnover stress
tests. In our experiments, the best balanced cluster load is obtained with cluster configuration
3B1C (shown in Figure 16) and we see that this can be detected from the model predictions. When
the system is overloaded, the model can predict that some failures may occur in a given scenario,
but it cannot predict how such failures will impact resource consumption. This is because effects
such as requests lost due to oversaturated queues are not reflected in the model. For example, in
Figure 17 (second row) the workflows tend to systematically overload Worker 1 (which is clearly
not a desirable scheduling) and the predicted consumption from the model is less accurate than for
the non-overloaded scenarios.

RQ3. Figure 18 shows the time of the median request in the stress tests for each workflow and
cluster configuration. In the plots, the Y -axis depicts a time scale in milliseconds and the X-axis
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T3 Average Load (Millicores) T4 Average Load (Millicores)

T3 Average Load (Millicores) T4 Average Load (Millicores)

Figure 14: Measurements for the mixed workflows T3 and T4, comparing the resource consumption recorded in the
cluster stress tests (orange dots) with the expected values given by the resource model (blue plus). The plots are
reported by service (top), and by node (bottom).

depicts the different cluster configurations. The three different cluster settings are identified by
the three colours — the top-down order in the legend reflects the left-to-right order of boxes in the
plots.

In these experiments, we can observe that cluster configuration 3B1C (the rightmost, red col-
umn of each plot in Figure 18) was the most resilient and performant under the different workloads.
We can further observe that in the experiments in which the load is fairly distributed among the
nodes, cluster configuration 2B2C is likewise performant. Nevertheless, there are cases (P2 and
T4) where the unbalance seems impairing for performance.

5.3. Threats to Validity
Our experiments reduce the configuration space in terms of the number of node configura-

tions and workflows, and by only considering static workflows. First, in principle there could be
a combinatory explosion of node configurations on a cluster. However, in practice, we believe
that configurations do not vary too much due to deployment constraints that prevent many con-
figurations from being used. In the proposed methodology, we consider a set of calibrated nodes
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Workflow P1 Workflow P2 Workflow P3 Workflow P4

Workflow T1 Workflow T2 Workflow T3 Workflow T4

Figure 15: Mixed workflow measurements for cluster configuration 2B2C. The first line of plots reports consumption
by service, the second line by node.

with fixed workloads since containers and pods are not independent. Containers and pods affect
each other’s consumption and performance when running on the same machine [64]. Thus, the
single pod consumption, stressed by the same demand, can differ from one node configuration
to another. Second, cloud-native applications with a huge number of workflows have not been
considered in the experiments. This potential limitation of the methodology could be addressed
by a fully automated sampling process as an extension to the current work (see Section 6). Third,
our experiments have not considered dynamic workflows. We do not believe that this is a major
limitation of the proposed methodology because a dynamic workflow can be treated as a set of
static workflows, one for each workflow variation in accordance to a parameter change.

6. Discussion

We complement the presentation of the modeling framework by discussing two perspectives
on its applicability: the integration of the modeling framework in a Continuous Integration/Con-
tinuous Delivery (CI/CD) pipeline and its generalization beyond Kubernetes and CPU resources.

6.1. From a Modeling Framework to a Full-fledged Tool
Nowadays, cloud-native applications are built, packaged, tested and deployed automatically

by mean of CI/CD pipelines. These pipelines can be seen as sequences of stages where each
stage runs a set of scripts. Companies tend to split staging and development environments from
production to prevent that problems spread from the applications under development and testing
to the production environment. Having a sandbox in which applications can be properly tested and
possibly calibrated before they move to the production environment, can be considered as part of
today’s best practices in software engineering.

The modeling framework presented in this paper enables the further development of an auto-
mated calibration stage in such a sandbox, which would be an additional stage in the pipeline for
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Workflow P1 Workflow P2 Workflow P3 Workflow P4

Workflow T1 Workflow T2 Workflow T3 Workflow T4

Figure 16: Mixed workflow measurements for cluster configuration 3B1C. The first line of plots reports consumption
by service, the second line by node.

building an application, before it moves into production. The modeling framework generates re-
source consumption plots for services and nodes as the outcome of simulations. The comparison
of different plots for different simulations, helps in finding suitable configurations. A next step
towards fully integrating the modeling framework in a CI/CD calibration stage could be to, e.g.,
configure multiple simulation scenarios ahead of time, run the simulations for the resulting models
and automatically generate comparison plots for the considered deployments.

To configure a simulation scenario, the model must specify a set of clients calling each work-
flow with a certain demand (i.e., RPS, intensity) and the services involved for each workflow. We
believe this could be significantly simplified by developing a proper GUI and automating the cor-
responding model generation alongside the calibration process. In the evaluation of our proposed
methodology for instantiating the modeling framework (Section 5.1), we considered an applica-
tion exposing an API of about 10 different workflows. Among these, we identified the three most
common and resource demanding workflows that were responsible for the most of the application’s
CPU consumption. We believe this scenario, with a few workflows that dominate the resource con-
sumption of an application, is fairly common and covers a wide range of applications deployed
in Kubernetes. An interesting line of future work would be to test a larger number of workflows
together, especially from several applications. Although specifying a large number or workflows
in the model can be demanding, the additional manual work in a CI/CD setting would in fact be
fairly limited; the configuration of URLs to access the different endpoints exposed via the API in
order to build the cost tables for calibration, would also be needed for integration testing.

The modeling framework is well-suited to quickly discover bottlenecks in a configuration:
When resource consumption remains within the thresholds, the outcome of the simulations can be
used to explore configurations. Although our models can be used to detect hazardous scenarios in
which consumption goes beyond the thresholds, they cannot be used to fully explain the conse-
quences of these scenarios. For example, if a service pod is overloaded because it reaches its CPU
limit or its host node is saturated, the pod will trigger a cascade of request failures as messages are
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Workflow P1 Workflow P2 Workflow P3 Workflow P4

Workflow T1 Workflow T2 Workflow T3 Workflow T4

Figure 17: Mixed workflow measurements for cluster configuration 1B3C. The first line of plots reports consumption
by service, the second line by node.

dropped from the queues (see Section 5.2). It would significantly increase the complexity of the
modeling framework to capture how such chaotic failures may impact the cluster. In this paper,
we have opted to abstract away the dependencies between tasks in a workflow and model them
as a set of tasks that execute in parallel, we believe this abstraction from service dependencies
does not induce a significant loss of precision for the analysis of resource consumption, because
the pods processing requests form a pipeline, microservices process requests asynchronously and
consumption falls within the thresholds. However, workflows with dependencies can be modeled
in ABS when needed (see, e.g., [36, 43]).

6.2. Generalizing the Modeling Framework Beyond Kubernetes and CPU Consumption
The presented methodology is currently tailored to containerized applications, thus, we be-

lieve it can be applied to other cloud deployment architectures. Some parts of the implemented
framework can be easily reused; for example, the chosen monitoring tools were used to mon-
itor custom cloud deployments before the Kubernetes platform was introduced. Other parts of
the framework will require further investigation and careful changes; for example, the prediction
model would need to be adjusted for different deployment platforms. The current model calculates
CPU consumption based on the load balancing strategy used on the cluster. Other platforms may
offer different load balancing strategies and may interact with containers in different ways; e.g.,
evicting or killing containers that exceed their memory limits.

Resources generally fall into two categories, counting semaphores (like memory) and temporal
(like CPU). Both categories are already covered in our modeling framework. For the evaluation
framework, we have focused on how to derive resource models empirically for CPU resources. For
memory-intensive applications, memory usage will also be of interest, and the cost tables should
include memory usage. The memory usage of a node can easily be obtained in the calibration
process from the memory usage of the hosted containers. In contrast to CPU resources, memory
is acquired and released rather than consumed over time. The simulations check that no pod
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Figure 18: Comparison of median response time between multiple cluster settings for pairs (top) and triplets (bottom).

or node exceeds its memory limit and output memory consumption by services and nodes (see
Section 3.3). Other resources such as disk I/O, network bandwidth, and energy consumption can
also in principle be monitored and targeted by our methodology. Proper instrumentation would
then be required to monitor the chosen metric and build the appropriate cost tables. In this case,
the resource model should be extended to include the provisioning of the new resource and the
simulation model to capture how the resource is acquired and released.

7. Related work

We position our contribution with respect to related work concerning the modeling of cloud
systems, the optimisation of microservice management and tools for improving Kubernetes de-
ployment.

Resource Models for Cloud-based Applications. Whereas there are many cloud modeling lan-
guages (see, e.g., Bergmayr et al. [13]), the majority of them deals with the description of cloud
deployment configurations. In contrast, this paper is part of a line of work on formal modeling
of virtualized systems in ABS [32], a concurrent, executable modeling language. The perspective
on virtualized systems taken in this line of work, is to focus on resource provisioning and quality-
of-service, which typically affects the timing behavior of systems on the cloud. The underlying
technical idea is to introduce a separation of concerns between the resource needs of different
computational tasks, and resource provisioning in the infrastructure [34, 37, 38]. This approach
has been successfully applied to different kinds of virtualization infrastructure, including Ama-
zon AWS [33], Hadoop YARN [43] and Hadoop Spark Streaming [42]. The concurrency model
of ABS, based on actors, has also been used for the verification of industrial case studies in a
DevOps setting [7], for the analysis of worst-case memory bounds [9] and for parallel cost analy-
sis [8], a novel static analysis method related to parallelism and maximal span. The formal model
of Kubernetes presented in this paper differs from previous work in its nested virtualization; i.e.,
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the containerization of microservices leads to two levels of book-keeping in the resource-sensitive
architecture, corresponding to the pods and nodes of the Kubernetes framework. Furthermore,
the lack of isolation that we observed for the containers led to a generalization of the cost mod-
els used in the discussed work, from cost expressions to cost tables. An early case study of the
nested model [60] did not account for this lack of isolation and the associated cost tables. To the
best of our knowledge, our paper introduces the first concrete methodology for instantiating cost
models for Kubernetes deployments; we outline a methodology for instantiating cost models for
Kubernetes deployments and provide a concrete example of how the methodology can be applied.

Optimization of Microservice Management. General techniques for resource provisioning on the
cloud are surveyed by Zhang et al. [62]. These techniques are not specific to Kubernetes, and
include algorithms aiming to improve autoscaling [31], performance [16, 52] and energy effi-
ciency [65]. Methods for optimizing microservices include model-driven optimization techniques
such as [26, 53]; these are also not specific to Kubernetes systems.

It has been shown that deployment management can be formalized as finite state machines,
such as the Aeolus [25] and TOSCA-compliant deployment models [18], which have been adapted
to formally reason about the static deployment of microservices in Kubernetes [22]. For example,
the static deployment of microservices can be encoded as a constraint problem [17]. This work,
which is based on Aeolus, takes an ABS model as its starting point. In contrast to our work,
their focus is on how to solve the logical grouping of microservices on nodes and the resource
consumption of the deployed microservices has not been considered.

Tools for Improving Kubernetes Deployments. Several approaches have been proposed to improve
resource allocation for Kubernetes systems. For example, Ramos et al. [51] propose a machine
learning model for detection of Docker-based app overbooking on Kubernetes and RLSK [30] is a
deep Reinforcement Learning Scheduler for Kubernetes that uses reinforcement learning to refine
deployment heuristics. To improve resource distribution, Zhang et al. [63] proposed to combine
ant colony and particle swarm optimization algorithms. Li et al. [41] introduced a dynamic In-
put/Output sensing scheduler for Kubernetes. The scheduler considers the disk pressure in the
scheduling process and tries to balance the node disk I/O usage across the cluster dynamically.
Similarly, Gaia [58] is a scheduler specifically designed to improve load distribution on GPUs,
treating GPU resources in the same way as Kubernetes treats CPUs. Townend et al. [59] and
Wang et al. [61] studied schedulers to reduce energy consumption and heat waste. These sched-
ulers need to generalise over the kind of services that are being instantiated, so even an optimal
deployment [40] that has been statically decided, may turn out to be poor and benefit from being
refined after collecting some data. For a recent survey on scheduling approaches for Kubernetes,
see [21].

Closer to our work, Medel et al. [44] propose a model-based approach to predict performance
and resource management for Kubernetes systems. Their work focuses on simulating the lifecycle
behaviour of containers in a Kubernetes deployment, using timed Petri nets [50]. While their work
targets pod and container lifecycle management, our work has focused on resource consumption
and load balancing, and we model nodes in order to address bigger clusters with multiple nodes
and services. In contrast to our work, they do not propose a specific methodology to leverage the
model to estimate performance and resource consumption of specific cloud-native applications.
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Interestingly, Mendel et al. point out that according to their experiments two containers that
are in the same pod perform better than if they are deployed on different pods. This seems to be
the case also for identical pods deployed on the same node rather than deployed on two nodes. In
our experiments, we have also observed that pods are rarely independent and that modeling pods
in isolation leaves open the problem of how to calculate resource consumption. By focusing on
resource consumption, our model complements the work of Mendel et al.; in fact, they point to
resource contention for containers as a direction for future work [45], in order to investigate the
behavior of different resource management policies, which is what our model achieves.

In contrast to the above mentioned work on model-based analyses of Kubernetes deployment,
our work proposes a methodology for applying the proposed modeling framework to concrete
cloud-native applications, and validates the methodology on a concrete use case.

8. Conclusion and Future Work

The problem of predicting resource-efficient cluster configurations in a complex industrial
scenario quickly becomes challenging for the human administrator. In this paper, we propose and
evaluate a modeling framework and an associated model-based methodology which can be inte-
grated in a Continuous Integration/Continuous Delivery (CI/CD) pipeline to address this problem.
The proposed methodology aims to reduce a continuous space of possible cluster configurations
to a finite number of experiments, in order to instantiate the modeling framework for cloud-native
applications deployed on a Kubernetes cluster. The resulting model-based analysis can be used to
predict the resource load of different nodes in the cluster for different scenarios of stress.

A particular challenge that we encountered in developing the modeling framework for Kuber-
netes clusters, was a lack of isolation between pods (due to reuse in the underlying system). To
address this challenge, we propose the use of node images and cost tables in the resource model,
rather than uniform cost expressions as used in previous work. The derivation of these cost tables
was handled in the associated methodology by a cost sampling strategy. The granularity of the
sampling strategy determines how precisely the model reflects the resource consumption of the
real system on the cluster. Since resource consumption need not be linear, only sampling resource
consumption for a finite number of points in the domain of RPS levels that can be processed,
will always lead to an approximation of the continuum. In future work, we plan to investigate
the cost benefit trade-off of sampling strategies with different granularities following the proposed
methodology. Obviously, the more time is invested in the sampling process, the more accurate the
resulting model.

The proposed methodology is not meant to investigate critical service loads. With very high
service demands, the stressed pods and nodes are no longer able to guarantee a high success rate.
In this case, errors cause exceptions that detour the execution such that the resource consumption
reflects the handling of exceptions rather than the handling of requests. We did not aim to capture
such erroneous behavior in the cost tables of our model.

To evaluate the proposed methodology, we instantiated, calibrated and explored a model of
the cloud-native application Online Boutique with stress tests under different mixed workflow
scenarios. The resulting model reflects the different workflows and how they stress their associated
services, the load balancing of the services, and the composition of pods and nodes. By simulating
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mixed workflow scenarios, we were able to understand which nodes will be overloaded on the
cluster. In fact, the best configuration in terms of performance turned out to be the best balanced
configuration with respect to resource consumption in the majority of the cases. The results show
that the expected load calculated by the model is close to the average load observed on the real
Kubernetes cluster.

In the experimental part of this paper, we used stress tests that generated requests with uni-
formly distributed delays, both for the sampling to derive the model and for the evaluation of
derived model with mixed stress tests. An interesting line of future work is to compare the re-
sults obtained using these uniformly distributed delays to non-uniformly distributed delays such
as bursts of requests according to a non-uniform distribution, both with respect to the accuracy of
predictions and the granularity of the required sampling strategy. It would also be interesting to
investigate whether other metrics than the node loads could be predicted with equally satisfying
accuracy.

Our experiments demonstrate that the proposed modeling framework and methodology can
already be used to derive models that can facilitate deployment decision making. Another line of
future work is to enhance the usability of the approach by automating the sampling process and
the derivation of resource models for Kubernetes deployed cloud-native applications, resulting in a
tool capable of discovering the cluster settings and generating the simulation module automatically
after the sampling is completed. Many Kubernetes plugins already implement such automatic
configuration retrieval.
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