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Abstract. Self-adaptation is a crucial feature of autonomous systems
that must cope with uncertainties in, e.g., their environment and their
internal state. Self-adaptive systems are often modelled as two-layered
systems with a managed subsystem handling the domain concerns and a
managing subsystem implementing the adaptation logic. We consider a
case study of a self-adaptive robotic system; more concretely, an au-
tonomous underwater vehicle (AUV) used for pipeline inspection. In
this paper, we model and analyse it with the feature-aware probabilistic
model checker ProFeat. The functionalities of the AUV are modelled in a
feature model, capturing the AUV’s variability. This allows us to model
the managed subsystem of the AUV as a family of systems, where each
family member corresponds to a valid feature configuration of the AUV.
The managing subsystem of the AUV is modelled as a control layer capa-
ble of dynamically switching between such valid feature configurations,
depending both on environmental and internal conditions. We use this
model to analyse probabilistic reward and safety properties for the AUV.

1 Introduction

Many software systems are subject to different forms of uncertainty like changes
in the surrounding environment, internal failures and varying user requirements.
Often, manually maintaining and adapting these systems during runtime by a
system operator is prohibitively expensive and error-prone. Enabling systems to
adapt themselves provides several advantages. A system that is able to perform
self-adaptation can also be deployed in environments where, e.g., communication
between an operator and the system is very limited or impossible, like in space
or under water. Thus, self-adaptation gives a system a higher level of autonomy.

A self-adaptive system (SAS) can be implemented using a two-layered ap-
proach which decomposes the system into a managed and a managing subsys-
tem [18], see Fig. 1. The managed subsystem deals with the domain concerns
and tries to reach the goals set by the system’s user, e.g., navigating a robot to
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a specific location. The managing subsystem handles the adaptation concerns
and defines an adaptation logic that specifies a strategy on how the system can
fulfil the goals under uncertainty [24], e.g., adapting to changing environmen-
tal conditions. While the managed subsystem may affect the environment via
its actions, the managing subsystem monitors the environment and the internal
state of the managed subsystem. By using the adaptation logic, the managing
subsystem deduces whether and which reconfiguration is needed and adapts the
managed subsystem accordingly.

Managed Subsystem 
(domain concerns)

monitor

Managing Subsystem 
(adaptation logic)

monitor adapt

Self-Adaptive System

Environment

monitor effect

Fig. 1: Two-level SAS architecture

This paper models and analyses
the case study of a self-adaptive au-
tonomous underwater vehicle (AUV)
as a two-layered system based on
Markov decision processes. The func-
tionalities of the managed subsystem
of the AUV are modelled in a fea-
ture model, making the dependencies
and requirements between the compo-
nents of the AUV explicit. The be-
haviour of the managed subsystem
is modelled as a probabilistic transi-
tion system whose transitions may be
equipped with feature guards, which
only allow a transition to be taken if

the feature guarding it is included in the current system configuration. Thus, it
is modelled as a family of systems whose family members correspond to valid
feature configurations. As the behaviour of the AUV depends on environmental
and internal conditions, which are both hard to control, we opted for a prob-
abilistic model in which uncontrolled events, like a thruster failure, occur with
given probabilities. We model the behaviour of the managing subsystem as a
control layer that switches between the feature configurations of the managed
subsystem according to input from the probabilistic environment model and the
managed subsystem. We consider a simplified version of an AUV, with limited
features and variability, but there are many different possibilities to extend the
model to a more realistic underwater robot.

The case study is modelled in ProFeat [8], a tool for probabilistic family-
based model checking. Family-based model checking provides a means to simul-
taneously model check, in a single run, properties of a family of models, each
representing a different configuration [22]. Analyses with ProFeat give system
operators an estimate of mission duration and the AUV’s energy consumption,
as well as some safety guarantees.

The main contributions of this paper are as follows:

– A case study of an SAS from the underwater robotics domain, modelled
as a probabilistic feature guarded transition system with dynamic feature
switching;
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– Automated verification of (quantitative) properties that are important for
roboticists, using family-based analysis.

Outline. Sec. 2 presents the case study of pipeline inspection with an AUV.
Sec. 3 explains both the behaviour of the managed and managing subsystem
of the AUV and the environment, as well as their implementation in ProFeat.
Sec. 4 presents quantitative analyses conducted on the case study. Sec. 5 provides
related work. Sec. 6 discusses our results and ideas for future work.

2 Case Study: Pipeline Inspection by AUV

In this section, we introduce our case study of an AUV used for pipeline inspec-
tion, which was inspired by the exemplar SUAVE [21].

An AUV has the mission to first find and then inspect a pipeline located
on a seabed. During system operation, the water visibility (i.e., the distance in
meters within which the AUV can perceive objects) might change (e.g., due to
currents that swirl up the seabed), while one or more of the AUV’s thrusters
might fail and needs to be restarted before the mission can be continued.

The AUV can choose to operate at three different altitudes, low, med (for
medium) and high. A higher altitude allows the AUV to have a wider field of
view and thus increases its chances of finding the pipeline during its search. The
probability of a thruster failure is lower at a higher altitude because, e.g., seaweed
might wrap around the thrusters at a lower altitude. However, the altitude at
which the AUV can perceive the seabed depends on the water visibility. With
low water visibility, the AUV cannot perceive the seabed from a high or medium
altitude. Thus, it is not always possible to operate at a high or medium altitude,
and the altitude of the AUV needs to be changed during the search, depending
on the current environmental conditions. Once the pipeline is found, the AUV
will follow it at a low altitude to avoid costs for switching altitudes. In fact, once
found, a wider field of view provides no benefit. However, the AUV can also lose
the pipeline again (e.g., when the pipeline was partly covered by sand or the
AUV’s thrusters failed for some time causing the AUV to drift off its path). In
this case, the AUV has to search the pipeline again, enabling all three altitudes.

Two-layered View of the AUV. Considering the AUV as a two-layered SAS, the
AUV’s managed subsystem is responsible for the search for and inspection of
the pipeline. Depending on the current task and altitude of the AUV, a different
configuration of the managed subsystem must be chosen. Thus, the managed
subsystem can be seen as a family of systems where each family member corre-
sponds to a valid configuration of the AUV. To do so, the different altitudes for
navigation (low, med and high) and the tasks search and follow can be seen as
features of the managed subsystem that adhere to the feature model in Fig. 2,
which models the dependencies and constraints among the features. Each con-
figuration of the AUV contains exactly one feature for navigation and one for
pipeline inspection, and feature follow requires feature low, yielding four different
configurations of the managed subsystem of the AUV.
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Fig. 2: Feature model of the case study

The managing subsystem
of the case study switches
between these configurations
during runtime by activat-
ing and deactivating the sub-
features of navigation and
pipeline inspection, while the
resulting feature configura-
tion has to adhere to the fea-
ture model in Fig. 2. The fea-
tures low, med and high are
activated and deactivated ac-

cording to the current water visibility. If the water visibility is good, all three
features can be activated; if the water visibility is average, high cannot be acti-
vated; and if the water visibility is poor, only low can be activated. The managing
subsystem switches from the feature search to follow if the pipeline was found,
and from follow to search if the pipeline was lost.

3 Modelling the AUV Case Study with ProFeat

In this section, we describe the behavioural model of the managed and managing
subsytem and the environment and model the case study with the family-based
model checker ProFeat1 [8]. ProFeat provides a means to both specify probabilis-
tic system families and perform family-based quantitative analysis on them. It
extends the probabilistic model checker PRISM2 [19] with functionalities such as
family models, features and feature switches. Thereby, it enables family-based
modelling and (quantitative) analysis of probabilistic systems in which feature
configurations may dynamically change during runtime. The whole model can
be analysed with probabilistic family-based model checking using PRISM. The
probabilities used in our model are estimates and have not been validated by
experiments, since in this paper our goal was not to make a model that is as
realistic as possible, but rather to show the feasibility of our approach.

Similar to an SAS, a ProFeat model can be seen as a two-layered model, as
illustrated in Fig. 1. The behaviour of a family of systems that differ in their
features, such as the managed subsystem of an SAS, can be specified. Then a so-
called feature controller can activate and deactivate the features during runtime,
and thus change the behaviour of the system, such as the managing subsystem of
an SAS that changes the configuration of the managed subsystem. Furthermore,
the environment can be specified as a separate module that interacts with the
managed and managing subsystem. Thus, ProFeat is well suited to model and
analyse the case study described in Sec. 2.

A ProFeat model consists of three parts: an obligatory feature model that
specifies features and their relations and constraints, obligatory modules that
1 https://pchrszon.github.io/profeat.
2 https://www.prismmodelchecker.org/manual

https://pchrszon.github.io/profeat
https://www.prismmodelchecker.org/manual
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specify the behaviour of the features, and an optional feature controller that
activates or deactivates features. The pipeline inspection case study was modelled
as a Markov decision process in ProFeat.3 It consists of (i) the implementation
of the feature model of Fig. 2; (ii) modules describing the behaviour of the
managed subsystem of the AUV (see Fig. 3) and of the environment (see Fig. 4);
and (iii) the feature controller that switches between features during runtime,
corresponding to the managing subsystem of the AUV (see Fig. 5).

We start by explaining how the feature model was implemented in ProFeat
in Sec. 3.1, then describe the behaviour and implementation of the managed and
managing subsystem and of the environment in Sec. 3.2, 3.4, and 3.3 respectively.

3.1 The Feature Model

We first show how the feature model of the case study is expressed in ProFeat,
including connections and constraints among features. Each feature is specified
within a feature . . . endfeature block, the declaration of the root feature is done
in a root feature . . . endfeature block.

The Root Feature. An excerpt of the implementation of the root feature of the
pipeline inspection case study according to Fig. 2 is displayed in Listing 1.1.
The root feature can be decomposed into subfeatures; in this case only one, the
subfeature robot, see Line 2. The all of keyword indicates that all subfeatures
have to be included in the feature configuration if the parent feature, in this
case the root feature, is included. It is, e.g., also possible to use the one of key-
word if exactly one subfeature has to be included, see Line 2 of Listing 1.2. The
modules modelling the behaviour of the root feature are specified after the key-
word modules. In this case study, the root feature is the only feature specifying
modules, thus the behaviour of all features is modelled in the modules auv and
environment described later.

Contrary to an ordinary feature model, ProFeat allows to specify feature-
specific rewards in the declaration of a feature. Like costs, rewards are real
values, but unlike costs (and although they may be interpreted as costs) rewards
are meant to motivate rather than penalise the execution of transitions. Each
reward is encapsulated in a rewards . . . endrewards block. In the case study, we
consider the rewards time and energy, see Lines 4–18 of Listing 1.1. During
each transition the AUV module takes, the reward time is increased by 1; it is a
transition-based reward, see Line 5. We assume that one time step corresponds
to one minute, allowing us to compute an estimate of a mission’s duration.

The reward energy is a state-based reward and can be used to estimate the
necessary battery level for a mission completion. If a thruster of the AUV failed
and needs to be recovered, a reward of 2 is given, see, e.g., Line 9. The model also
reflects that switching between the search altitudes requires significant energy.
Since the altitude is switched if the AUV is in a search state and a navigation
subfeature that does not correspond to the current search altitude is active, a
3 The model is publicly available at [?].
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1 root f ea tu re
2 a l l o f r obo t ;
3 modules auv , env i ronment ;
4 rewards " t ime "
5 [ s t e p ] t r u e : 1 ;
6 endrewards
7 rewards " ene rgy "
8 // Cost s f o r be i ng i n a r e c o v e r y s t a t e
9 ( s=recove r_h igh ) : 2 ;

10 // . . omi t t ed code . .
11
12 // Cost s f o r sw i t c h i n g a l t i t u d e s
13 ( s=search_high ) & a c t i v e ( low ) : 4 ;
14 ( s=search_high ) & a c t i v e (med) : 2 ;
15 ( s=found ) & a c t i v e ( h igh ) : 4 ;
16 ( s=found ) & a c t i v e (med) : 2 ;
17 // . . omi t t ed code . .
18 endrewards
19 endfeature

Listing 1.1: An excerpt of the declaration of the root feature of the case study
1 f ea tu re n a v i g a t i o n
2 one o f low , med , h igh ;
3 i n i t i a l c o n s t r a i n t a c t i v e ( low ) ;
4 endfeature

Listing 1.2: The declaration of the navigation feature of the case study

higher energy reward is given in these states. If the AUV needs to switch between
low and high altitude, as, e.g., in Line 13, an energy reward of 4 is given, while all
other altitude switches receive a reward of 2, see, e.g., Line 14. Since the altitude
must be changed to low once the pipeline is found, these cases also receive an
energy reward as explained above, see Lines 15–16. All other states receive an
energy reward of 1. We use the function active to determine which feature is
active, i.e., included in the current feature configuration; given a feature, the
function returns true if it is active and false otherwise. Note that both time and
energy rewards are interpreted as costs.

Ordinary Features. The remainder of the feature model is implemented similar
to the root feature, but the features do not contain feature-specific modules
or rewards. The features are implemented and named according to the feature
model in Fig. 2. To have only one initial state, we initialise the model with the
features search and low active, using the keyword initial constraint , see Line 3
of Listing 1.2. As an example of the implementation of another feature, the
declaration of the feature navigation can be seen in Listing 1.2.

3.2 The Managed Subsystem

The Behavioural Model of the Managed Subsystem. The behaviour of the man-
aged subsystem of the AUV can be described by a probabilistic transition system
equipped with features that guard transitions (a probabilistic featured transition
system). Only if the feature guarding a transition is included in the current con-
figuration of the managed subsystem of the AUV, the transition can be taken.
This transition system adheres to the feature model in Fig. 2 and is depicted in
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Fig. 3, where a number of details have been omitted to avoid cluttering (in par-
ticular, all probabilities). The details can be obtained from the publicly available
model. The probabilistic model allows to easily model the possibilities of, e.g.,
finding and losing the pipeline depending on the system configuration.

The transition system can roughly be divided into two parts, one concerning
the search for and one the following of the pipeline, as shown by the grey boxes
in Fig. 3. At deployment time, i.e., in state start task, the AUV can either
immediately start following the pipeline if it was deployed above it, or start
searching for it. During the search for the pipeline, i.e., when the AUV is in the
grey area labelled search, the feature search should be active and remain active
until the state found is reached. The managing subsystem can switch between
the features low, med and high during every transition, depending on the water
visibility as described later. Once the pipeline is found, the managing subsystem
has to deactivate the feature search and activate the feature follow, which also
implies activating the feature low and deactivating med and high due to the
feature constraints in Fig. 2. We assume that the managing subsystem activates
and deactivates features during transitions, so the features follow and low should
be activated during the transition from the state found to the state start task.
When the AUV is following the pipeline, i.e., in the grey area labelled follow, it
can also lose the pipeline again, e.g., because of sand covering it or because it
drifted off its path due to thruster failures. Then the managing subsystem has
to activate the feature search during the transition from lost pipe to start task.

We distinguish two kinds of transitions: probabilistic transitions that model
the behaviour of a certain configuration of the managed subsystem (black tran-
sitions) and non-deterministic (featured) transitions that depend on the feature
choice of the managing subsystem during runtime (blue transitions). The labels
search, follow, low, med and high on the transitions represent the features that
have to be active to execute the respective transition. The non-deterministic
(blue) transitions implicitly carry the action to start the task or go to the al-
titude specified by the feature associated with the transition. For instance, the
transitions from search low to search medium can be taken if the feature med is
active because the transition has the guard med. When taking this transition,
the AUV should perform the action of going to a medium altitude. The proba-
bilistic (black) transitions with a feature label contain the implicit action to stay
at the current altitude because the navigation subfeature has not been changed
during the previous transition.

Whether a probabilistic or a non-deterministic transition is executed in the
search states search low, search medium and search high depends on the manag-
ing subsystem, i.e., the controller switching between features (see Sec. 3.4). If the
managing subsystem switched between the features low, med and high during
the last transition, a non-deterministic transition to the search state correspond-
ing to the new feature will be executed. Otherwise, a probabilistic transition will
be executed. For instance, consider the state search low. If the feature low is ac-
tive, then a probabilistic transition will be executed. If, however, the managing
subsystem deactivated the feature low during the last transition and activated
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Fig. 3: The managed subsystem of the AUV

either med or high, then the AUV will perform a transition to the state search
medium or search high, respectively.

The ProFeat Implementation of the Managed Subsystem. The module auv models
the behaviour of the managed subsystem of the AUV as displayed in Fig. 3,
see Listing 1.3 for an excerpt of the model. As in Fig. 3, there are thirteen
enumerated states in the ProFeat module with names that correspond to the
state labels in the figure. The recovery states are named according to the state
they are connected to (e.g., the recovery state connected to search_high is called
recover_high). The variable s in Line 2 represents the current state of the AUV
and is initialised using the keyword init with the state start_task. To record how
many meters of the pipeline have already been inspected, the variable d_insp in
Line 3 represents the distance the AUV has already inspected the pipeline, it is
initialised with 0. The variable inspect represents the desired inspection length
and can be set by the user during design time. Since the number of times a
thruster failed impacts how much the AUV deviates from its path, the variable
t_failed can be increased if a thruster fails while the AUV follows the pipeline.
It is bounded by the influence a thruster failure can have on the system ( infl_tf )
that can be set by the user during design time.
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1 module auv
2 s : [ 0 . . 1 2 ] i n i t s t a r t_ t a s k ;
3 d_insp : [ 0 . . i n s p e c t ] i n i t 0 ;
4 t_ f a i l e d : [ 0 . . i n f l _ t f ] i n i t 0 ;
5
6 // To the c o r r e c t t a s k
7 [ s t e p ] ( s=s t a r t_ t a s k & a c t i v e ( s e a r c h ) ) −> 1 : ( s ’= s t a r t_ s e a r c h ) ;
8 [ s t e p ] ( s=s t a r t_ t a s k & a c t i v e ( f o l l o w ) ) −> 1 : ( s ’= f o l l o w i n g ) ;
9

10 // . . omi t t ed code . .
11 // From sea r ch s t a t e to ano the r s t a t e
12 [ s t e p ] ( s=search_high & a c t i v e ( h igh ) )
13 −> 0 . 5 9 : ( s ’= found )
14 + 0 . 4 : ( s ’= search_high )
15 + 0 . 0 1 : ( s ’= recove r_h igh ) ;
16 [ s t e p ] ( s=search_high & a c t i v e (med) ) −> 1 : ( s ’=search_med ) ;
17 [ s t e p ] ( s=search_high & a c t i v e ( low ) ) −> 1 : ( s ’= search_low ) ;
18 // . . omi t t ed code . .
19
20 // Go to o th e r t a s k i f p i p e l i n e i s found
21 [ s t e p ] ( s=found ) −> 1 : ( s ’= s t a r t_ t a s k ) ;
22
23 // Fo l l ow i ng the p i p e l i n e
24 [ s t e p ] ( s=f o l l o w i n g ) & ( d_insp<i n s p e c t ) & ( t_ f a i l e d =0)
25 −> 0 . 9 2 : ( s ’= f o l l o w i n g ) & ( d_insp ’=d_insp+1)
26 + 0 . 0 5 : ( s ’= l o s t_p i p e )
27 + 0 . 0 3 : ( s ’= r e c o v e r_ f o l l ow i n g )
28 & ( t_ f a i l e d ’=( t_ f a i l e d <i n f l _ t f ? t_ f a i l e d+1 : t_ f a i l e d ) ) ;
29 [ s t e p ] ( s=f o l l o w i n g ) & ( d_insp<i n s p e c t ) & ( t_ f a i l e d >0)
30 −> 0.92∗(1− t_ f a i l e d / i n f l _ t f ) : ( s ’= f o l l o w i n g )
31 & ( d_insp ’=d_insp+1) & ( t_ f a i l e d ’= t_ f a i l e d −1)
32 + 0.05∗ (1+((0 .92∗ t_ f a i l e d ) /(0 .05∗ i n f l _ t f ) ) ) : ( s ’= l o s t_p i p e )
33 + 0 . 0 3 : ( s ’= r e c o v e r_ f o l l ow i n g )
34 & ( t_ f a i l e d ’=( t_ f a i l e d <i n f l _ t f ? t_ f a i l e d+1 : t_ f a i l e d ) ) ;
35 [ s t e p ] ( s=f o l l o w i n g ) & ( d_insp=i n s p e c t ) −> ( s ’=done ) ;
36
37 // Los t the p i p e l i n e
38 [ s t e p ] ( s=l o s t_p i p e ) −> 1 : ( s ’= s t a r t_ t a s k ) & ( t_ f a i l e d ’=0) ;
39
40 // Recovery s t a t e s
41 [ s t e p ] ( s=recove r_h igh ) −> 0 . 5 : ( s ’= recove r_h igh ) + 0 . 5 : ( s ’= search_high ) ;
42 // . . omi t t ed code . .
43 endmodule

Listing 1.3: An excerpt of the ProFeat AUV module of the case study

The behaviour of the module is specified with guarded commands, corre-
sponding to possible, probabilistic transitions, of the following form.

[ action ] guard −> prob_1: update_1 + ... + prob_n: update_n;

A command may have an optional label action to annotate it or to synchronise
with other modules. In PRISM, the guard is a predicate over global and local
variables of the model, which can also come from other modules. ProFeat extends
the guards by, e.g., enabling the use of the function active . If the guard is true,
then the system state is changed with probability prob_i using update_i for all i.
An update describes how the system should perform a transition by giving new
values for variables, either directly or as a function using other variables.

For instance, consider the command in Lines 12–15, which can be read as
follows. If the system is in state search_high and the feature high is active, then
with a probability of 0.59, the system changes its state to found, with a proba-
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bility of 0.4 it changes to search_high and with a probability of 0.01 it changes
to recover_high. These are exactly the probabilistic transitions shown in Fig. 3
exiting from state search high. This command also has an action label, step.
Using this action label, it synchronises with the environment module and the
feature controller, as described later. The non-deterministic transitions exiting
state search high in Fig. 3 are modelled in Lines 16–17. If the model is in state
search_high, but the feature low or med is active, indicating that the AUV should
go to the respective altitude, then the state is changed to the respective search
state. The transitions exiting the states search_med and search_low are modelled
similarly. However, the probability of going to the state found is highest from
state search_high and lowest from search_low because the AUV has a wider field
of view when performing the search at a higher altitude. Furthermore, the proba-
bility of a thruster failure, i.e., of going to the respective recover state, is highest
in state search_low and lowest in state search_high because the probability of
seaweed getting stuck in the thrusters is higher at a lower altitude. If the AUV
found the pipeline, then a transition to start_task is taken, see Line 21.

From the state start_task, a transition to either start_search or following can
be taken, depending on which subfeature of pipeline_inspection is currently active,
see Lines 7–8.

From the following state, the transitions that can be taken depend on the
variables d_insp and t_failed . Lines 24–28 consider the case where the distance
of the pipeline that has already been inspected (d_insp) is less than the distance
the pipeline should be inspected ( inspect) and the variable t_failed is 0, indicating
that there were no recent thruster failures. Then the AUV stays in the following
state and inspects the pipeline one more meter, it loses the pipeline, or a thruster
fails and it transitions to the failure state and increases t_failed if t_failed is not
at its maximum. Lines 29–34 consider the case where d_insp is less than inspect
and t_failed is greater than 0. In this case, the probabilities of following and of
losing the pipeline depend on the value of t_failed . The bigger the value, the more
likely it is to lose the pipeline because it indicates that the AUV’s thrusters did
not work for some time, causing it to drift off its path. If the already inspected
distance is equal to the required inspection distance, the AUV transitions to the
done state (see Line 35) and finishes the pipeline inspection. If the AUV lost the
pipeline (see Line 38), then a transition to start_task is taken and the variable
t_failed is set to 0 again.

When the AUV is in a recovery state, it can either stay there for another
time step or exit it again to the state from where the recovery was triggered (see
Line 41).

All commands in the module auv are labelled with step. Thus, every transition
receives a time reward of 1, i.e., the time advances with every transition the AUV
takes, see Lines 4–6 of Listing 1.1.

3.3 The Environment

The Behavioural Model of the Environment. We assume that there is a minimum
and a maximum visibility of the environment, depending on where the AUV is
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Fig. 4: The behaviour of the environment
1 module env i ronment
2 wat e r_v i s i b : [ m in_v i s ib . . max_vis ib ]
3 i n i t round ( ( max_vis ib−min_v i s ib ) /2) ;
4 [ s t e p ] t r u e −> cur rent_prob : ( wate r_v i s i b ’= ( wa t e r_v i s i b=min_v i s ib ?
5 min_v i s ib : wa te r_v i s i b −1) ) + (1− cur rent_prob ) /2 : ( wate r_v i s i b ’=
6 ( wa t e r_v i s i b=max_vis ib ? max_vis ib : wa t e r_v i s i b +1) )
7 + (1− cur rent_prob ) /2 : t r u e ;
8 endmodule

Listing 1.4: The ProFeat environment module of the case study

deployed and set by the user during design time. Furthermore, different envi-
ronments also have different probabilities of currents that influence the water
visibility. This can also be set during design time. The behaviour of the envi-
ronment is then modelled as depicted in Fig. 4, where cp represents the current
probability. With the probability of currents cp, the water visibility decreases
by 1, while it stays the same or increases by 1 with probability (1-cp)/2. If the
water visibility is already at minimum visibility, the water visibility stays the
same with probability (1+cp)/2 and, at maximum visibility, it stays the same
with probability (1-cp).

The Implementation of the Environment in ProFeat. The environment is mod-
elled in a separate environment module, see Listing 1.4. The variable water_visib
in Line 2 reflects the current water visibility and is initialised parametrically,
depending on the minimum and maximum visibility, see Line 3. The function
round() is pre-implemented in the PRISM language and rounds to the nearest
integer. The environment module synchronises with the AUV module via the
label of its action, step. Since the guard of the only action in the environment
module is true, the environment executes a transition every time the AUV mod-
ule does. By decoupling the environment module from the AUV module, we
obtain a separation of concerns which makes it easier to change the model of the
environment if needed.

3.4 The Managing Subsystem

The Behavioural Model of the Managing Subsystem. As described in Sec. 2,
the managing subsystem of the AUV implements the AUV’s adaptation logic,
which corresponds to activating and deactivating the features of the managed
subsystem. The behaviour of the managing subsystem of the AUV is displayed
in Fig. 5. The grey area of the figure includes the transitions that can be taken
during the search for the pipeline, and the white area the transitions once the
pipeline has been found. Each transition contains a guard, written in black, and
an action, written in grey after a vertical bar.

During the search for the pipeline, i.e., in the grey area of Fig. 5, the manag-
ing subsystem activates and deactivates the features low, med and high according
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Fig. 5: The managing subsystem of the AUV

to the current water visibility as described in Sec. 2. The activated feature is
displayed in grey on the transition, implicitly the other two subfeatures of navi-
gation are deactivated. Note that the transitions in the grey area implicitly carry
the guard s != found, i.e., the AUV is not in the state found, because they rep-
resent the transitions during the search for the pipeline. This guard was omitted
for better readability.

Once the pipeline has been found, i.e., the managed subsystem is in the
state found, one of the transitions in the white area, guarded by s = found, is
taken. These transitions include the action of activating low and follow, and thus
deactivating med, high and search. When the AUV loses the pipeline, i.e., it is
in the state lost pipe, the managing subsystem activates search and deactivates
follow. Since the AUV is following the pipeline at a low altitude, the AUV will
start searching at a low altitude.

The Implementation of the Managing Subsystem in ProFeat. The managing sub-
system of the AUV is implemented as a feature controller in ProFeat. The fea-
ture controller can also use commands to change the state of the system. Such
commands are similar to those used in a module; they are mostly of the form
[ action ] guard −> update. Each command can have an optional label action to
synchronise with the modules, and its guard is a predicate of global and local
variables of the model and can also contain the function active . In contrast to
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1 formula med_vis ib = ( max_vis ib−min_v i s ib ) /3 ;
2 formula h i g h_v i s i b = 2∗( max_vis ib−min_v i s ib ) /3 ;
3
4 c o n t r o l l e r
5 // Change a l t i t u d e depend ing on water v i s i b i l i t y
6 [ s t e p ] ( s != found ) & a c t i v e ( s e a r c h ) & wa t e r_v i s i b < med_vis ib
7 −> a c t i v a t e ( low ) & d e a c t i v a t e ( h igh ) & d e a c t i v a t e (med) ;
8 [ s t e p ] ( s != found ) & a c t i v e ( s e a r c h )
9 & med_vis ib <= wat e r_v i s i b & wa t e r_v i s i b < h i g h_v i s i b

10 −> a c t i v a t e ( low ) & d e a c t i v a t e (med) & d e a c t i v a t e ( h igh ) ;
11 [ s t e p ] ( s != found ) & a c t i v e ( s e a r c h )
12 & med_vis ib <= wat e r_v i s i b & wa t e r_v i s i b < h i g h_v i s i b
13 −> a c t i v a t e (med) & d e a c t i v a t e ( low ) & d e a c t i v a t e ( h igh ) ;
14 // . . omi t t ed code . .
15
16 // Switch t a s k from " s e a r c h " to " f o l l o w "
17 [ s t e p ] ( s=found ) & a c t i v e ( s e a r c h )
18 −> de a c t i v a t e ( s e a r c h ) & a c t i v a t e ( f o l l o w ) & a c t i v a t e ( low )
19 & de a c t i v a t e (med) & d e a c t i v a t e ( h igh ) ;
20
21 // Switch t a s k from " f o l l ow " to " s e a r c h "
22 [ s t e p ] ( s=l o s t_p i p e ) & a c t i v e ( f o l l o w )
23 −> de a c t i v a t e ( f o l l o w ) & a c t i v a t e ( s e a r c h ) ;
24
25 // Enab le t r a n s i t i o n s when f o l l o w i n g the p i p e l i n e
26 [ s t e p ] ( s != l o s t_p i p e ) & a c t i v e ( f o l l o w ) −> t r u e ;
27 endcon t r o l l e r

Listing 1.5: An excerpt of the ProFeat feature controller of the case study

the commands in the modules, the feature controller can activate and deactivate
features in the update of a command. Several features can be activated and de-
activated at the same time, but this cannot be done probabilistically and the
resulting feature configuration has to adhere to the feature model.

In the pipeline inspection case study, subfeatures of navigation (i.e., the differ-
ent altitudes at which the AUV can operate) and subfeatures of pipeline_inspection
(i.e., the tasks the robot has to fulfil) can be switched by the feature controller
during runtime, see Listing 1.5.

When the feature search is active and the pipeline has not been found yet, the
feature controller activates and deactivates the altitudes non-deterministically,
but according to the current water visibility, as described before. The minimum
and maximum water visibility can be set by the user during design time and
influence the altitudes associated with the features low, med and high; i.e., it
influences when the feature controller is able to switch features. To reflect this,
the variables med_visib and high_visib are declared as in Lines 1–2 (a formula in
PRISM and ProFeat can be used to assign an identifier to an expression). If the
water visibility is less than med_visib, the feature controller activates the feature
low (see Lines 6–7) because the AUV cannot perceive the seabed from a higher
altitude. If the water visibility is between med_visib and high_visib, it chooses
non-deterministically between low and med (see Lines 8–13), whereas it chooses
non-deterministically between all three altitudes if the water visibility is above
high_visib. Note that it is also possible to deactivate or activate a feature if it is
already inactive or active, respectively.

When the pipeline is found, i.e., the AUV is in state found, the feature con-
troller activates the feature follow and deactivates search, see Lines 17–19. Since
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the AUV should be at a low altitude while following the pipeline, the feature
controller also deactivates the features high and med and activates low. If the AUV
lost the pipeline, i.e., it is in state lost_pipe, the feature controller deactivates
follow and activates search to start the search for the pipeline, see Lines 22–23.

The feature controller synchronises with the auv and environment modules via
action label step. Since all transitions of the modules and feature controller have
the same action label, they can only execute a transition if there is a transition
with a guard evaluating to true in both modules and in the feature controller.
Thus, the feature controller needs to include a transition doing nothing if the
feature follow is active and the AUV is not in state lost_pipe, see Line 26.

4 Analysis

ProFeat automatically converts models to PRISM for probabilistic model check-
ing. To analyse a PRISM model, properties can be specified in the PRISM prop-
erty specification language, which includes several probabilistic temporal logics
like PCTL, CSL and probabilistic LTL. For family-based analysis, ProFeat ex-
tends this specification language to include, e.g., the function active . (ProFeat
constructs have to be specified in $ {...} to be correctly translated to the PRISM
property specification language.)

The operators used for analysis in this paper are P and R, which reason
about probabilities of events and about expected rewards, respectively. Since we
use Markov decision processes which involve non-determinism, these operators
must be further specified to ask for the minimum or maximum probability and
expected cost, respectively, for all possible resolutions of non-determinism.

The analysis of the model considered two different aspects. First, the rewards
energy and time were used to compute some safety guarantees that can be used
for the deployment of the AUV. Second, safety properties with regard to unsafe
states were analysed. Note that it is not necessary to analyse whether the model
satisfies the constraints of the feature model because this is automatically en-
sured by ProFeat. Of course, in addition to that, more complex analysis can be
done. In this paper, we just give a taste of possible analyses to demonstrate the
feasibility of our approach.

Table 1: Two different scenarios used for analysis
Scenario min_visib max_visib current_prob inspect

1 (North Sea) 1 10 0.6 10
2 (Caribbean Sea) 3 20 0.3 30

We analysed two
different scenarios; the
values used in these
scenarios are reported
in Table 1. Scenario 1

is in the North Sea, where the minimum and maximum water visibility (in 0.5 me-
ter units) are relatively low and the probability of currents that decrease the wa-
ter visibility is relatively high. In this case, only 10 meters of the pipeline have
to be inspected. Scenario 2 is in the Caribbean Sea, with a higher minimum and
maximum visibility and a lower probability of currents compared to the North
Sea, and 30 meters of pipeline that have to be inspected. For both scenarios, we
first analysed whether it is always possible to finish the pipeline inspection, i.e.,
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1 R{" ene rgy "}min=? [ F ${ s=done } ] ;
2 R{" ene rgy "}max=? [ F ${ s=done } ] ;

Listing 1.6: Analysis using the rewards
1 l a b e l " un sa f e " = s=recove r_h igh | s=recover_med | s=recover_low
2 | s=r e c o v e r_ f o l l ow i n g ;
3 l a b e l " s a f e " = s=s t a r t_ t a s k | s=l o s t_p i p e | s=s t a r t_ s e a r c h | s=search_high
4 | s=search_med | s=search_low | s=found | s=f o l l o w i n g | s=done ;
5 Pmin=? [G " s a f e " ] ;
6 f i l t e r (min , Pmin=? [ F<=k " s a f e " ] , " un sa f e ") ;
7 f i l t e r (max , Pmax=? [ F<=k " un sa f e " ] , " s a f e ") ;
8 f i l t e r ( avg , Pmax=? [ F<=k " unsa f e " ] , " s a f e ") ;

Listing 1.7: Analysis of unsafe states

reach the state done. This could be confirmed since the minimum probability for
all resolutions of non-determinism of eventually reaching the state done is 1.0.

Table 2: Expected min-/maximum
rewards for completing the mission
for both scenarios

Energy Time
Scenario min max min max

1 24.78 44.39 23.66 32.40
2 59.08 4723.29 55.54 1315.58

Reward Properties. The rewards time and
energy were used to analyse some safety
properties related to the execution of the
AUV. Since the AUV only has a limited
amount of battery, an estimation of the
energy needed to complete the mission is
required. This ensures that the AUV is
only deployed for the mission if it has suf-
ficient battery to complete it. The commands in Listing 1.6 were used to com-
pute the minimum and maximum expected energy (for all resolutions of non-
determinism) to complete the mission. Since the model includes two reward
structures, the name of the reward has to be specified in {"..."} after the R
operator. Similarly, the minimum and maximum expected time to complete the
mission was analysed to give the system operators an estimate of how long the
mission might take. The results for Scenarios 1 and 2 are reported in Table 2.
It can be seen that the variation of the parameters in the two scenarios strongly
influences the expected energy and time of the mission. It is interesting to see
that the difference between minimum and maximum expected energy and min-
imum and maximum expected time for Scenario 2 are significantly bigger than
for Scenario 1. In particular, the maximum expected energy and time are much
higher for Scenario 2 than for Scenario 1. Further analysis in this direction could
investigate trade-offs between different scenarios and a better understanding of
the influence in the results for the different parameters.

Unsafe States. Thruster failures, although we assume that they can be repaired,
pose a threat to the AUV. Unforeseen events like strong currents might cause
the AUV to be damaged, e.g., by causing it to crash into a rock. To analyse this,
the state space was partitioned into two parts, safe and unsafe states. This was
achieved by using labels, see Lines 1–4 of Listing 1.7.

These labels were then used to calculate the probability of several properties.
The minimum probability of only taking safe states (see Line 5) was shown to
be 0.65 for Scenario 1 and 0.32 for Scenario 2. As expected, the probability
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of only taking safe states is higher for a shorter pipeline inspection. It is also
important to ensure that a safe state will be reached from an unsafe state after
a short period of time, as, e.g., in Line 6, where k is an integer. For every unsafe
state, the minimum probability (for all possible resolutions of non-determinism)
of reaching a safe state within k time steps is calculated. Then the minimum
over all these probabilities is taken. Thus, it gives the minimum probability of
reaching a safe state from an unsafe state in k time steps. PRISM experiments
allow analysing this property automatically for a specified range of k. Using
PRISM experiments, it was shown that in both scenarios the probability of
reaching a safe state from an unsafe state is above 0.95 after 5 time steps and
above 0.99 after 7 time steps.

The probability of going to an unsafe state from a safe state should be as small
as possible. This is analysed with the properties in Lines 7–8. First, the maximum
probability (over all possible resolutions of non-determinism) for reaching an
unsafe state from a safe state is calculated, and then the maximum (or average)
is taken. Again, PRISM experiments were used to analyse this, the plotted graphs
for Scenarios 1 and 2 are displayed in Fig. 6. They show that the probability of
reaching an unsafe state from a safe state increases with the number of considered
time steps. Furthermore, the probability of reaching an unsafe state from a safe
state stabilises much later and at a higher value in Scenario 2 than in Scenario 1.
While the maximum probability of reaching an unsafe state from a safe state
stabilises after about 42 time steps at ≈0.37 in Scenario 1, it stabilises after
about 76 time steps at ≈0.69 in Scenario 2. Similar differences can be observed
for the average probability.

Fig. 6: Results for reaching an unsafe state from a safe state in k time steps
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5 Related Work

The analysis of behavioural requirements is often crucial when developing an SAS
that operates in the uncertainty of a physical environment. These requirements
often use quantitative metrics that change during runtime. Both rule-based and
goal-based adaptation logics can be used to enable the SAS to meet its be-
havioural requirements. Many practitioners rely on formal methods to provide
evidence for the system’s compliance with such requirements [25,20], but many
different methods are used [15,1]. We consider related work for family-based
modelling and analysis approaches.

Family-based model checking of transition systems with features allows to
model check properties of multiple behavioural models in a single run, following
the seminal work by Classen et al. [10]. Such model-checking tools can be encoded
in well-known classical model checkers like SPIN [17], NuSMV [9] or PRISM [19].
In this paper, we used ProFeat [8], a software tool built on top of PRISM for the
analysis of feature-aware probabilistic models. Alternatively, QFLan [23] offers
probabilistic simulations to yield statistical approximations, thus trading 100%
precision for scalability. In [6,7], configurable systems are modelled and analysed
as role-based systems, an extension of feature-oriented systems, with a focus on
feature interaction; in contrast to our paper, they do not consider a separation
between managed and managing subsystem.

Software product lines (SPLs) can be seen as families of (software product)
models where feature selection yields variations in the products (configurations).
SPLs have previously been proposed to model static variability, i.e., variability
during design time, for robotic systems [12]. In [3] it is argued that most of the
costs for robotic systems come from non-reusable software. A robotic system
mostly contains software tailored to the specific application and embodiment of
the robot, and often even software libraries for common robotic functionalities
are not reusable. Therefore, they must be re-developed all the time. Thus, a new
approach for the development of robotic software using SPLs is proposed in [3].

Finally, dynamic SPLs (DSPLs) [13,16] have been proposed to manage vari-
ability during runtime for self-adaptive robots [4]. There are several approaches
that model, but do not analyse, SASs as DSPLs, e.g., [2,11,14]. For robotics,
the authors in [12] propose the toolchain HyperFlex to model robotic systems
as SPLs; it supports the design and reuse of reference architectures for robotic
systems and was extended with the Robot Perception Specification Language for
robotic perception systems in [5]. It allows to represent variability at different
abstraction levels, and feature models from different parts of the system can be
composed in several different ways. However, contrary to the approach used in
this paper, HyperFlex only considers design time variability. Furthermore, it is
only used for modelling robotic systems, not for analysing them.

6 Discussion and Future Work

In this paper, we used a feature model together with a probabilistic, feature
guarded transition system to model the managed subystem of an AUV used for
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pipeline inspection, and a controller switching between these features to model
the managing subsystem of the AUV. This allowed modelling the managed sub-
system of the AUV as a family of systems, where each family member corre-
sponds to a valid feature configuration of the AUV. The managing subsystem
could then be considered as a control layer capable of dynamically switching
between these feature configurations depending on both environmental and in-
ternal conditions. The tool ProFeat was used for probabilistic family-based model
checking, analysing reward and safety properties.

ProFeat allowed to model the two different layers of abstraction of an SAS,
the managed and managing subsystem, which also makes it easier to understand
the model and the adaptation logic. Furthermore, it makes analysing all configu-
rations of the managed subsystem more efficient by enabling family-based model
checking. However, it remains to be seen how this scales with larger models. We
are unaware of other work that exploits the family-based modelling and analysis
capabilities of ProFeat for SASs, but we believe this is a natural approach.

The case study in this paper is of course a highly simplified model of an AUV
and its mission. However, we showed that it is feasible to model and analyse a
two-layered self-adaptive cyber-physical system as a family of configurations with
a controller switching between them. To analyse a real AUV, both the models
of the AUV and the environment, and in particular the probabilities, have to be
adapted to the robot and the environment with the help of real data and domain
experts. We plan to investigate this together with an industrial partner of the
MSCA network REMARO (Reliable AI for Marine Robotics).

In the future, we plan to investigate which kind of models can be modelled
and analysed as we did with the case study to try to find a general methodology
for modelling and analysing SASs as family-based systems. Furthermore, we
plan to find optimal strategies for the managing subsystem, i.e., the controller
switching between features, e.g., to minimise energy consumption. We would
also like to find patterns between choosing a certain feature configuration and
the effect of this on quality criteria of the system. Finding such control patterns
could help to improve the adaptation logic of the managing subsystem to be
more resilient towards faults.
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