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Abstract. Symbolic execution is a technique to systematically explore
all possible paths through a program. This technique can be formally ex-
plained by means of small-step transition systems that update symbolic
states and compute a precondition corresponding to the taken execution
path (called the path condition). To enable swift and robust composi-
tional reasoning, this paper defines a denotational semantics for sym-
bolic execution. We prove the correspondence between the denotational
semantics and both the small-step execution semantics and a concrete
semantics. The denotational semantics is a function defined piecewise
using a partitioning of the input space. Each part of the input space is
a path condition obtained from symbolic execution, and the semantics
of this part is the corresponding symbolic substitution interpreted as a
function on the initial state space. Correctness and completeness of sym-
bolic execution is encapsulated in a graceful identity of functions. We
provide mechanizations in Coq for our main results.

Keywords: Formal methods, Programming semantics, Denotational se-
mantics, Symbolic execution

1 Introduction

Major successes in program analysis, particularly for debugging, test case gen-
eration, and verification, have been achieved by symbolic execution [2–6, 8–10]:
a powerful simulation technique in which symbolic states represent a wide range
of concrete program states. It has only recently been formalized and proven
correct [2] with respect to a concrete operational semantics.

With symbolic execution, program states associate program variables to sym-
bolic expressions rather than concrete values. Assignments in the program can
then be understood as updating the symbolic state through substitutions σ.
When encountering control-flow statements guarded by Boolean expressions, no
concrete choice can be made. Instead, the transition system modeling symbolic
execution branches in both possible directions (theoretically using nondetermin-
ism, in practice exploring both branches), and updates its own state by storing
the Boolean guard under substitution. It thus generates the path condition ϕ: an
aggregation of all Boolean control-flow guards under substitution. If a program
p has a finite trace in the symbolic execution system that ends in a symbolic
state (σ, ϕ), then the final state of a concrete execution of p on an initial state
satisfying ϕ can also be obtained by performing the substitution σ on that intial
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state. Thus, symbolic execution is really a way to partition program behavior
into different branches, where behavior of the branch is tracked by the symbolic
subsitution σ, and the path conditions ϕ are preconditions specifying the branch
that is taken.

Symbolic execution is a compelling technique for verification purposes: given
a postcondition ψ and a terminated symbolic execution (σ, ϕ) of a program p,
the formula ϕ ∧ σ ψ is a precondition for ψ. The path condition ϕ ensures that
program behavior corresponds to σ, and applying σ to the postcondition ψ –
this is done variable-wise – is a way of inverting program behavior correspond-
ing to σ on the set specified by ψ—this inversion is made formal later in (3).
Ranging over the (possibly infinite) set of terminated symbolic executions, tak-
ing the disjunction of all the formulae ϕ ∧ σ ψ yields the weakest precondition
in disjunctive normal form.

All this and more can be reasoned about more effectively when symbolic
execution is equipped with a denotational semantics, which is the goal of this
work. To this end, two seemingly obvious, yet crucial observations are in order:

– The symbolic substitutions σ are syntactic objects representing functions
that denotationally transform concrete initial states (cf. (1) in Section 4).

– The path conditions ϕ are syntactic objects representing subsets of the initial
state space, and form a subpartition for it. For programs that terminate on
all inputs, the path conditions form a partition of the input space.

It is well-understood that syntactically performing a substitution within a substi-
tution means to do function composition. This means that symbolic execution
traces can be denotationally composed by performing nested substitutions. A
natural question to ask now is: what happens to the path condition when we
compose symbolic execution traces?

Example. As a simple example, consider a program1 that stipulates the behavior
of the absolute value function for real numbers:

pabs ≡ if (x<0) { x := -x; } else { Skip; }

Symbolically executing a program is usually done starting from the initial con-
figuration (σ0,⊤): the identity substitution σ0 along with the path condition
⊤ (true) specifying the entire input space. The program pabs above has two
symbolic executions, both terminating. One of these executions is

(pabs, σ0,⊤)⇝ (x:=-x, σ0,⊤ ∧ x < 0)⇝ (Skip, (x 7→ −x),⊤ ∧ x < 0)

where Skip is the terminated program. The first step analyzes the if statement,
in this case picks the true branch, and updates the path condition accordingly
with the conjunct x < 0. The second step analyzes the assignment x:= − x and

1 Symbolic execution may seem to be a trivial exercise for this simple program, but
note that, as programs grow, it is highly effective in several areas of program analysis.
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updates the substitution accordingly. Hence, we have (pabs, σ0,⊤)
∗
⇝ (Skip, σ, ϕ)

where σ and ϕ are as above, and ∗
⇝ is a reflexive-transitive closure.

Suppose now that we have analyzed two programs p and q and obtained

(p, σ0,⊤)
∗
⇝ (Skip, σp, ϕp) and (q, σ0,⊤)

∗
⇝ (Skip, σq, ϕq)

It is not straightforward from the usual small-step symbolic operational seman-
tics how these two traces compose to the sequenced program p # q. This is because
the second execution does not continue from the configuration where the first
one left off; it used the usual initial configuration. One would expect to obtain a
symbolic trace

(p # q, σ0,⊤)
∗
⇝ (Skip, σ, ϕ)

where σ is σp within σq (syntactically), meaning σq after σp when interpreted as
functions. Regarding the path condition, one will expect to obtain ϕ = ϕp∧σp ϕq
(i.e., σp applied to all the variables occuring in ϕq), since executing p yields ϕp,
and executing q yields ϕq, but this time we started from σp instead of σ0.

Contribution. These and similar facts regarding compositionality of symbolic ex-
ecution traces are not easily proven using small-step transition systems. In this
paper, we introduce denotational semantics for symbolic execution to support
such compositional reasoning. Historically, denotational semantics have been
very effective for compositional reasoning, enabling swift and potent reasoning
about programs. Our experience in reasoning about symbolic execution for, e.g.,
concurrent or probabilistic programs [19], has shown us that this novel view of
symbolic execution is fruitful and, for some proofs, even necessary. Example 6 in
Section 4 illustrates how compositionality of sequencing in symbolic execution
can be applied using our denotational semantics.

This new denotational semantics for symbolic execution formalizes the ideas
described above: symbolic substitutions σ are interpreted as functions |σ| on the
initial state space, and the collection of path conditions ϕ are interpreted as a
partition of the initial state space where execution terminates. The denotational
semantics (presented in Definition 1) then selects the right partition ϕi of the ini-
tial state space, and picks the corresponding function |σi|. This selection process
is informally denoted by

⊕
in the pictorial representation of the denotational

semantics in Figure 1 (right).
To introduce this new semantics, we use the toy language While, presented

in Section 2, which supports unbounded loops. We describe its concrete deno-
tational semantics as a recursively defined function. After that, in Section 3, we
introduce our main contribution: a denotational semantics for symbolic execu-
tion. This semantics corresponds to the concrete semantics given in Section 2, as
stated in Theorem 1. This result, which is simply a very graceful identity of func-
tions, trickles down to correctness and completeness of the transition systems
implementing concrete and symbolic execution.

In Section 4, we present symbolic execution in two equivalent ways: first,
as done by De Boer and Bonsangue [2], we extract traces—finite lists of as-
signments and Boolean assertions—from programs, and define the subsitutions
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Fig. 1: Pictorial representations of denotational semantics (left concrete, right
symbolic execution). V is the value space; X the set of variables

and path conditions on these traces. Every trace constitutes a part of the de-
notational semantics presented in Section 3, as stated in Theorem 2. Second,
the substitutions and path conditions can be directly generated by a transi-
tion system—this is more in line with implementation practice. We provide a
proof of correspondence between these two approaches to symbolic execution in
Proposition 1. Most results up until Section 4 have been mechanized2 in the
Coq theorem prover [7]—they are labeled with the symbol . In Section 5, we
discuss a straightforward extension of our work to procedure calls, with support
for mutual recursion.

2 The Language While

e ∈ E ::= x
| op(e1, . . . , en)

p ∈ P ::= Skip
| x:= e
| p # p
| if b p p
| while b p

In the language While, programs p are gen-
erated by means of assignments x:= e of
expressions e to variables x (free of side-
effects), sequencing, conditional branching
and unbounded loops. Expressions e ∈ E are
generated by operators op over the variables
x ∈ X . Zero-arity operators can be consid-
ered constants (in Q, for example). There is
a distinct subset BE ⊆ E of Boolean expres-
sions b ∈ BE that are used for branching and loops. There are at least the
following three distinguished operators: the constant truth ⊤ ∈ BE, the unary
operator ¬ for negation, and the binary operator ∧ for conjunction.

Concrete semantics. Variables x ∈ X take values in a value space V. To evaluate
Boolean expressions b ∈ BE, we assume there is a distinguished truth value
1 ∈ V. A (concrete) program state is a valuation v : X → V, or v ∈ VX that
assigns a value to each program variable. The updated valuation v[y 7→ a] (some
a ∈ V) denotes the valuation v′ for which v′(x) = v(x) if x ̸= y and v′(y) = a.
2 The mechanized theory is available at https://doi.org/10.5281/zenodo.8096802.

https://doi.org/10.5281/zenodo.8096802
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Expressions e are functions |e| : VX → V such that |x|(v) = v(x), and evalu-
ated recursively. That is, |op(e1, . . . , en)|(v) = op(|e1|(v), . . . , |en|(v)), where op
denotes the interpretation of the operator. The Boolean expressions b ∈ BE of
branching and iteration conditions are interpreted as an indicator function. That
is, v satisfies b (by definition), written v ⊨ b, if and only if |b|(v) = 1. Boolean ex-
pressions b may thus be interpreted as subsets |b| ⊆ VX of the state space, where
v ∈ |b| iff |b|(v) = 1. The Boolean expression ⊤ is defined as |⊤| = VX . Negation
is interpreted as set complement in VX and conjunction is set intersection. We
sometimes write e or b in lieu of |e| or |b|.

The semantics of programs p ∈ P are partial functions fp : VX ⇀ VX defined
inductively as:

fp : v 7→



v if p = Skip
v[x 7→ e(v)] if p = x:= e
(fp2 ◦ fp1)(v) if p = p1 # p2
fp1

(v) if p = if b p1 p2 and v ⊨ b
fp2

(v) if p = if b p1 p2 and v ̸⊨ b
fmq (v) if p = while b q, where m := min{j ∈ N : f jq (v) ̸⊨ b}

Here, fm denotes m-fold iterated applications of f (and identity for m = 0).
Partiality of a function arises when while loops diverge: there may not exist
j ∈ N such that f jq (v) ̸∈ b. If p is undefined for input v, we write fp(v)↑. On the
other hand, if p is defined for v, we write fp(v)↓.

The definition of the partial function for the while case is equivalent to a
least fixed point construction using total functions, extending the codomain with
undefinedness (⊥). The partial order of functions is pointwise, and the relation
on VX ∪ {⊥} is the identity unioned with {⊥ ≤ v | v ∈ VX }.

Example 1. Consider the program pabs from Section 1, and let V = Z and X =
{x}, so VX = Z. We have, e.g., fpabs : −2 7→ 2 and fpabs : 42 7→ 42.

3 Symbolic Execution Semantics

We now turn to the central definition in this work. The denotational semantics
for symbolic execution is defined using the subset Fp ⊆ (VX → VX ) × P(VX ),
defined inductively below over the structure of p. The semantics of a program p
will then be a piecewise definition of pairs (F,B) ∈ Fp. We therefore refer to an
element (F,B) ∈ Fp as a piece of p; F is the piece behavior and B is the piece
precondition. Every piece corresponds to a symbolic execution, as we will show
later.

– For inaction, the state remains unaltered and there is no restriction on the
precondition:

FSkip := {(v 7→ v,VX )}
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– An assignment has no restriction on the precondition, but the state is up-
dated according to the assignment:

Fx:= e := {(v 7→ v[x 7→ e(v)],VX )}

– When sequencing two programs p and q, range over all pairs of executions and
compose them. The first precondition should be satisfied and, after executing
the first component, the second precondition should be satisfied:

Fp # q := {(F2 ◦ F1, B1 ∩ F−1
1 [B2]) : (F1, B1) ∈ Fp, (F2, B2) ∈ Fq}

For later use, we will also denote this structure by Fq ⊙ Fp.
– The two branches of an if statement are put together in a union of sets—the

precondition is updated accordingly (−∁ denotes complement):

Fif b p q := {(F,B ∩ b ) : (F,B) ∈ Fp} ∪ {(F,B ∩ b∁) : (F,B) ∈ Fq}

– In a while statement, the disjoint union is for every possible number of
iterations m. For m = 0, the behavior is that of Skip, v 7→ v, and the pre-
condition is the negation of the Boolean formula. Every next number m+ 1
of loop iterations takes all possible executions of m iterations, pre-composes
all possible additional iterations, and updates the preconditions accordingly:

Fwhile b p :=

∞⋃
m=0

(Ωb,p)
m{(v 7→ v, b∁)},

where (Ωb,p)
m denotes m applications of the mapping Ωb,p from (VX →

VX )×P(VX ) to itself that pre-composes an additional iteration of the loop:

Ωb,p : F 7→ {(F ◦ Fp, b ∩Bp ∩ F−1
p [B]) : (F,B) ∈ F, (Fp, Bp) ∈ Fp}

Example 2. For the program pabs from Section 1, with VX = Z, we have Fpabs =
{(F1, B1), (F2, B2)}, where F1 : x 7→ −x and B1 = Z<0; F2 : x 7→ x and B2 = N.

The preconditions form a subpartition of the input space; they may not cover
the whole input space due to non-termination:

Lemma 1 (Pairwise Disjoint Preconditions). Let (F,B), (F ′, B′) ∈ Fp. If
B ∩B′ ̸= ∅ then (F,B) = (F ′, B′).

Proof (Sketch). By induction on the structure of p. The base cases vacuously
hold because the Fp are singletons. The inductive steps are mechanically verified.

The lemma justifies the following definition, where a unique (F,B), if it exists,
is picked:

Definition 1 (Denotational Semantics of Symbolic Execution). Let p
be a program. The symbolic semantics of p is the partial function Fp : VX ⇀ VX

defined by

Fp : v 7→

{
F (v) if (F,B) ∈ Fp s.t. v ∈ B

undefined otherwise
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With this semantics, correctness and completeness of symbolic execution with
respect to concrete execution are encapsulated in one elegant identity:

Theorem 1 (Concrete Correspondence ). For all p, fp = Fp.

4 Symbolic Execution

The semantics described in Section 3 is a denotational semantics for symbolic
execution systems, such as the one described by De Boer and Bonsangue [2].
We will provide a detailed proof of this in the sequel, by defining traces through
a program and showing that each (F,B) ∈ Fp corresponds to a trace. Every
such trace corresponds to a final substitution and path condition obtained from
symbolic execution.

Traces form a subclass of programs that are free of branching and loops. The
syntax of traces is generated by the following grammar:

T ∋ t ::= ( x:= e | b )∗

They are finite lists of assignments and Boolean assertions.
Traces are extracted from a program p through a nondeterministic transition

relation −→⊆ (P×T)× (P×T). The following symbolic transition rules imple-
ment the extraction of traces; we write · to attach an element at the end of the
list (and later also overload it to denote concatenation of traces, and furthermore
for deconstruction):

(if b p1 p2, t) −→ (p1, t · b) (x:= e, t) −→ (Skip, t · x:= e)
(if b p1 p2, t) −→ (p2, t · ¬b) (Skip # p, t) −→ (p, t)

(while b p, t) −→ (p # while b p, t · b) (p, t) −→ (p′, t′)

(while b p, t) −→ (Skip, t · ¬b) (p # q, t) −→ (p′ # q, t′)

Fig. 2: Inductive transition rules for trace extraction

The reflexive-transitive closure ∗−−→, starting from the empty trace ε, produces
all finite traces through a program p:

Tp := {t ∈ T : (p, ε)
∗−−→ (Skip, t)}.

The unfolding of while loops produces infinite traces (not considered in Tp). The
system is progressive; the program Skip is the only one that cannot make a
transition, and is considered the terminated program. Nondeterminism arises
only from the outgoing transitions from if and while statements.

Example 3. The program pabs from Section 1 has two traces: (x < 0) · (x:= −x)
and ¬(x < 0).
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If (p, s) ∗−−→ (q, u) then s is a prefix of u, i.e., u = s · t for some trace t. Moreover,
(p, s)

∗−−→ (q, s · t) if and only if (p, ε)
∗−−→ (q, t). Sequencing of programs is

concatenation of traces: u ∈ Tp # q if and only if there are s ∈ Tp and t ∈ Tq such
that u = s · t.

4.1 Final Substitutions

Below we will show how to extract substitutions from traces. A (symbolic) sub-
stitution is a map σ : X → E from variables to expressions over variables.
Expressions e ∈ E should be interpreted symbolically ; the denotation |e| will
always be made explicit from now on.

The updated substitution σ[x 7→ e] for some e ∈ E maps x 7→ e and leaves
every other variable y unchanged: y 7→ σ y for y ̸= x. A substitution σ can be nat-
urally extended to expressions e ∈ E by σ op(e1, . . . , en) := op(σ e1, . . . , σ em).
The identity, or initial substitution {x 7→ x}x∈X is denoted σ0.

Semantically, expression evaluation, as in |e| : VX → V, extends naturally to
symbolic substitutions σ. In fact, |σ|, given a concrete state v ∈ VX , provides
the evaluations of the expressions associated to the variables by the substitution.
That is,

|σ| : VX → VX , v 7→ (x 7→ |σ x|(v)) (1)

In other words, |σ| is a concrete state transformer. Note that we overload the no-
tation | · | here: on the left, it interprets a substitution; on the right, it interprets
an expression.

We have |σ0|(v) = v for all v ∈ VX , which corresponds to the behavior
of Skip. Induction over expressions (not unexpectedly) shows that evaluating
expressions after the semantic effect of a substitution is denotationally the same
as performing the substitution within the expression:

(|e| ◦ |σ|)(v) = |σ e|(v) (2)

for every expression e ∈ E and every v ∈ VX . This holds in particular for Boolean
expressions b ∈ BE, so that, for v ∈ VX , it holds that |σ|(v) ⊨ b if and only if
v ⊨ σ b, and so

|σ b| = |σ|−1
[
|b|
]

(3)

Behaviors of traces are extracted as a symbolic substitution as follows:

Definition 2 (Trace Substitution). The function Sub : T → EX → EX is
defined inductively over the structure of traces t ∈ T as follows:

Sub(ε, σ) = σ
Sub(x:= e · t, σ) = Sub(t, σ[x 7→ σ e])

Sub(b · t, σ) = Sub(t, σ)

The substitution of a trace t, denoted Sub(t), is defined to be Sub(t, σ0).
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In this definition, the notation Sub is overloaded: a trace and a substitution
define a new substitution, but if only a trace is specified, the substitution is
taken to be the initial one, σ0. If t ∈ Tp (meaning (p, ε)

∗−−→ (Skip, t)), the
substitution Sub(t) is called a final substitution of p. Final substitutions Sub(t)
of a program p are thus interpreted as functions |Sub(t)| that transform inputs
according to the trace t through p.

Example 4. The final substitution of the trace t = (x < 0) · (x:= − x) ∈ Tpabs is

Sub(t) = Sub((x < 0) · (x:= − x), σ0) = Sub(x:= − x, σ0) = Sub(ε, σ0[x 7→ −x])

and this is just x 7→ −x. Note the distinction in font typesetting between this
substitution and the function F1 in Example 2. The substitution here is really
the syntactic object x 7→ −x whose denotation is F1. This distinction is crucial
for understanding symbolic execution from a denotational perspective.

Concatenation of traces is composition of the substitutions:

Lemma 2 (Composition of Substitutions ). For all traces s, t ∈ T:
|Sub(s · t)| = |Sub(t)| ◦ |Sub(s)| as functions.

Proof. We have Sub(s·t, σ) = Sub(t, Sub(s, σ)) by induction on s. Also |Sub(s, σ)| =
|Sub(s, σ0)| ◦ |σ|, where the interesting inductive step is

|Sub(x:= e · s, σ)| = |Sub(s, σ[x 7→ σ e])|
IH
= |Sub(s)| ◦ |σ[x 7→ σ e]|
∗
= |Sub(s)| ◦ |Sub(x:= e)| ◦ |σ|
IH
= |Sub(s,Sub(x:= e))| ◦ |σ|
= |Sub(x:= e · s)| ◦ |σ|

where, at (*), one uses |Sub(x:= e)| ◦ |σ| = |σ[x 7→ σ e]|. Indeed, for y ̸= x and
arbitrary input v, both sides reduce to |σ y|(v), and for y = x, where x is the
variable used in the assignment, the left-hand side reduces to |e|(|σ|(v)); the
right-hand side to |σ e|(v)—these are equal as mentioned (2). Now

|Sub(s · t, σ0)| = |Sub(t,Sub(s, σ0))| = |Sub(t, σ0)| ◦ |Sub(s, σ0)|,

which was to be shown.

4.2 Path Conditions

Given a program p and a final substitution Sub(t) of some trace t ∈ Tp, how do
we know for which inputs p behaves like |Sub(t)|? To answer this question, we
extract a precondition from the Boolean assertions in the trace. This precondition
is called the path condition in symbolic execution, and represents the unique part
of the input space that triggers p to behave like Sub(t). The Boolean conditions
have to be taken under appropriate substitutions; this makes their definition
somewhat intricate.
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Definition 3 (Trace Path Condition). The function PC : T → EX → E is
defined inductively over the structure of traces t ∈ T as follows:

PC(ε, σ) = ⊤
PC(x:= e · t, σ) = PC(t, σ[x 7→ σ e])

PC(b · t, σ) = σ b ∧ PC(t, σ)

The path condition of a trace t, denoted PC(t), is defined to be PC(t, σ0).

The notation PC is again overloaded: if only a trace is provided, the substitution
is taken to be the initial one. Interestingly, PC treats assignments in the same
way as Sub. Whereas Sub ignores Boolean assertions, PC uses them to generate
the Boolean precondition. Being a Boolean expression, the path condition has
an interpretation (denoted | · |) as a subset of the initial state space VX .
Example 5. Suppose now that pabs is preceded by an assignment x:= x+2, so let
qabs = x:= x+ 2 # pabs. This qabs has a trace t = (x:= x+2) · (x < 0) · (x:= − x)
in Tqabs . Its path condition is

PC(t, σ0) = PC((x < 0) · (x:= − x), σ0[x 7→ x+ 2])
= (x+ 2 < 0) ∧ PC(x:= − x, (x 7→ x+ 2))

and this is (x+ 2 < 0) ∧ ⊤.
Similar to substitutions (Lemma 2), path conditions can be composed (back-
wards) when traces are sequenced:

Lemma 3 (Backward-Composition of Path Conditions ). For all
traces s, t ∈ T: |PC(s · t)| = |PC(s)| ∩ F−1

[
|PC(t)|

]
where F = |Sub(s)|.

Proof. By induction on s, for every substitution σ, PC(s · t, σ) ≡ PC(s, σ) ∧
PC(t,Sub(s, σ)), where ≡ denotes the equivalence b ≡ b′ defined by |b| = |b′|.
Syntactic equality fails due to extra truth conjuncts in the base case. By induc-
tion on t, one also shows that |PC(t, σ)| = |σ|−1

[
|PC(t)|

]
, where one crucially

uses the fact (3) that |σ b| = |σ|−1
[
|b|
]

for all b. Now

|PC(s · t, σ0)| = |PC(s, σ0) ∧ PC(t,Sub(s, σ0))| = |PC(s)| ∩ |Sub(s)|−1
[
|PC(t)|

]
A trace t ∈ Tp is feasible if |PC(t)| ≠ ∅.

Theorem 2 (Trace Correspondence ). Let p be a program. There is a
one-to-one correspondence between feasible traces t ∈ Tp and pieces (F,B) ∈ Fp

with B ̸= ∅.
Proof (Sketch). The bijection is Φp : Tp → Fp, t 7→ (|Sub(t)|, |PC(t)|). For all
p, there are three things to show: well-definedness, surjectivity, and injectivity.
Well-definedness here means (|Sub(t)|, |PC(t)|) ∈ Fp for t ∈ Tp. These three
things are proven by induction on the structure of p.

Unfeasible traces are not considered in the correspondence, because they have
no semantic contribution to the program. They are moreover semantically hard
to identify, because one is forced to reason about the nature of F . On the other
hand, two pieces (F,B), (F ′, B′) for feasible traces can easily be distinguished
by their path conditions, since they have to be disjoint (Lemma 1).
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(if b p1 p2, σ, ϕ) ⇝ (p1, σ, ϕ ∧ σ b) (x:= e, σ, ϕ) ⇝ (Skip, σ[x 7→ σ e], ϕ)
(if b p1 p2, σ, ϕ) ⇝ (p2, σ, ϕ ∧ ¬σ b) (Skip # p, σ, ϕ) ⇝ (p, σ, ϕ)

(while b p, σ, ϕ) ⇝ (p # while b p, σ, ϕ ∧ σ b) (p, σ, ϕ)⇝ (p′, σ′, ϕ′)

(while b p, σ, ϕ) ⇝ (Skip, σ, ϕ ∧ ¬σ b) (p # q, σ, ϕ)⇝ (p′ # q, σ′, ϕ′)

Fig. 3: Inductive transition rules for direct symbolic execution

4.3 Direct Symbolic Execution

We have extracted traces from a program and defined the final substitutions and
path conditions for them. Instead, we could have extracted these directly, as is
done in practice. For the rules of a transition system that does exactly this, see
Figure 3. Again, ∗

⇝ denotes the transitive closure of ⇝. Note that every rule
here has a corresponding rule in Figure 2, and a simple analysis will show that
both systems produce the same results:

Proposition 1 (Symbolic Execution via Traces ). Let p be a program.

– If (p, ε) ∗−−→ (p′, t) then (p, σ0,⊤)
∗
⇝ (p′, Sub(t), ϕ) where |ϕ| = |PC(t)|.

– If (p, σ0,⊤)
∗
⇝ (p′, σ, ϕ) then there is a trace t such that (p, ε)

∗−−→ (p′, t)
with Sub(t) = σ and |PC(t)| = |ϕ|.

This proposition holds in particular for p′ = Skip, yielding a correspondence
between Tp and pairs of final substitutions and path conditions obtained from
direct symbolic execution.

Proof (Sketch). By induction on the length of the transition chains. The in-
ductive step consists of a case analysis of all single-step transitions, which is a
straightforward unfolding of definitions.

The following are immediate corollaries of Theorems 1 and 2 and the above
proposition.

Corollary 1 (Correctness ). If (p, σ0,⊤)
∗
⇝ (Skip, σ, ϕ) then fp(v) =

|σ|(v) for all v such that v ⊨ ϕ.

Corollary 2 (Completeness ). If fp(v)↓ then there is a symbolic execution
(p, σ0,⊤)

∗
⇝ (Skip, σ, ϕ) such that v ⊨ ϕ which is unique in this property.

Example 6. Consider the program qabs from Example 5. The program pabs has
the two terminating symbolic executions (x 7→ −x, x < 0) and (σ0, x ≥ 0), whose
denotations are respectively (α : x 7→ −x,Z<0) and (idZ : x 7→ x,Z≥0). The
assignment x:= x + 2 has one symbolic execution (x 7→ x + 2,⊤) with denota-
tion (β : x 7→ x + 2,Z). The denotational semantics immediately says that the
sequence qabs = x:= x+ 2 # pabs has two symbolic executions with denotations

(α ◦ β, Z ∩ β−1[Z<0]) = (x 7→ −(x+ 2), Z<−2),
(id ◦ β, Z ∩ β−1[Z≥0]) = (x 7→ x+ 2, Z≥−2),



12 E. Voogd et al.

This example illustrates a more general potential of denotational semantics for
symbolic execution. Indeed, consider again the two symbolic executions

(p, σ0,⊤)
∗
⇝ (Skip, σp, ϕp) and (q, σ0,⊤)

∗
⇝ (Skip, σq, ϕq)

from Section 1. Then, using the denotational semantics of symbolic executions,
it follows naturally that (p # q, σ0,⊤)

∗
⇝ (Skip, σ, ϕ) for some (σ, ϕ) with

|σ| = |σq| ◦ |σp| and |ϕ| = |ϕp| ∩ |σp|−1[|ϕq|]

That is, σ is denotationally equivalent to σp within σq – formally {x 7→ σp (σq x)}
– and ϕ is denotationally equivalent to ϕp ∧ σp ϕq.

5 Extension to Procedure Calls

In this section we extend While with procedure calls. Let P, Q, . . . range over
procedure names and extend the syntax of program statements with

p ::= . . . | P(
⇀
e )

Here,
⇀
e denotes a finite list e1, . . . , en of expressions that are passed as argu-

ments. They are evaluated to a list of values written |⇀e |(v), accordingly. For a
finite ordered set of variables U = {u1, . . . , un}, write U:=⇀

e for the sequence of
assignments u1:= e1 # . . . # un:= en. Its semantics v 7→ v[U 7→ |⇀e |(v)] is clear.

It is assumed that procedures are always declared; a procedure declaration
P :: p binds the procedure name P to the program p. A structured program
[P :: p]∗ p is then a list of procedure declarations followed by a single main pro-
gram statement. For notational simplicity, we assume that the names of declared
procedures in a structured program are distinct and let every local variable in
a procedure be a parameter. Moreover, one finite set U = {u1, . . . , un} of local
variables is used for all procedures. Then, for a procedure declaration P :: p,
p contains variables from X and U . The main function only uses variables in
X—the set of global variables. X is disjoint from U . Every procedure call al-
ways passes n—the size of U—arguments

⇀
e for the parameters. We use void

procedures without return values; these can be encoded using a global return
variable.

5.1 Concrete Semantics

A parameter k is used to track the recursion depth. Following the terminology
of Owens et al. [15], we refer to this k as the clock. The clock is only instanti-
ated by the main function and carried accross different procedures, allowing for
arbitrarily long chains of nested procedure calls and even mutual recursion.

Let Y be an infinite set of variables used to substitute the local variables
U , and let Y be disjoint from X . For a procedure call P(

⇀
e ) with clock value k,

there is always a finite set Yk ⊆ Y of fresh variables available. We substitute
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Yk for the local variables U in the body p of a procedure P to avoid overwriting
local variables in calls from lower depths. This is written p[U/Yk]. A state during
procedure calls is an evaluation w ∈ VX∪Y . Write w = (v, u), where v : X → V
is the global component and u : Y → V contains the local states.

The semantics gp,k : VX∪Y ⇀ VX∪Y of procedure statements p with clock
value k ∈ N is defined inductively over k and p as:

gp,k : w 7→


...

gq[U/Yk−1],k−1(w[Yk−1 7→ |⇀e |(w)]) if p = P(
⇀
e ), k > 0, and P :: q

undefined if p = P(
⇀
e ) and k = 0

The semantics of all other cases is the same as in the concrete semantics of
Section 2, with the exception that the clock value k is passed around; it is never
altered except at procedure calls. At a procedure call, the local state is prepared,
i.e., w is updated with Yk−1 7→ |⇀e |(w), and Yk−1 substitutes the set U of local
variables occuring in q, which is the body of the procedure labeled P. For this
reason, we have either x ∈ X or x ∈ Yk for all variables x occuring in assignments
and Boolean expressions in the definitions at clock value k, since q only contains
variables from X and U . Hence, expressions in a local environment at clock value
k are over X ∪ Yk and can be evaluated accordingly.

We let the semantics of the main program follow that of Section 2, extended
to procedure calls as follows: if p = P(

⇀
e ) and P :: q is a declaration then

fp(v) := v′, where (v′, u′) = gq[U/Yk],k(v, u0[Yk 7→ |⇀e |(v)]),

Here, k is the minimum clock value such that the right-hand side is defined, and
u0 ∈ VY is some initialized local state; e.g., u0(y) = 1 for all y ∈ Y. To take
the minimum clock value k such that the computation is defined is an approach
similar to while loops, where we chose the minimum integer such that the state
violated the loop guard. Like before, this integer may not exist.

If a clock value does exist, one can choose any sufficiently large one:

Lemma 4. Let p be a statement and w ∈ VX∪Y .

– If gp,k(w)↑ then for all j < k: gp,j(w[Yj 7→ Yk])↑.
– If gp,k(w)↓ then for all ℓ > k and x ∈ X : gp,ℓ(w[Yℓ 7→ Yk])(x) = gp,k(w)(x).

The proof is by induction over the clock value ℓ, with base case k + 1, and
induction over p.

5.2 Symbolic Semantics

The denotational semantics for symbolic execution of procedure call statements
is presented in Figure 4. The definition follows Section 3 for general statements,
with the exception that a parameter k for recursion depth is passed around. For
sequencing, recall the notation ⊙ introduced in Section 3. The while case is an
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p Gp,k

Skip {(idVX∪Y ,VX∪Y)}

x:= e {(w 7→ w[x 7→ |e|(w)],VX∪Y)}

q # r Gr,k ⊙Gq,k

if b q r {(G,B ∩ |b|) : (G,B) ∈ Gq,k} ∪ {(G,B ∩ |b|∁) : (G,B) ∈ Gr,k}

while b q
⋃∞

m=0(Ωb,q,k)
m{(idVX∪Y , |b|∁)}

P(
⇀
e )

{
Gq[U/Yk−1],k−1 ⊙GYk−1:=

⇀
e ,0

if k > 0 where P :: q

{(idVX∪Y , ∅)} if k = 0

Fig. 4: Denotational semantics for symbolic execution with procedure calls

infinite union of m-fold applications of the operator Ωb,q,k, which is the same as
Ωb,q as introduced in Section 3, but uses Gq,k instead of Fq.

In case k = 0, the function becomes undefined at a procedure call. This is
reflected in the fact that the piece precondition is set to the emptyset.

The semantics of the main program statement is extended to procedure calls
in a way similar to while loops. For a procedure declaration P :: p, we define

FP(
⇀
e ) :=

∞⋃
k=0

Gp,k ⊙GYk:=
⇀
e ,0

Since the resulting global state is independent of the choice of k, Lemma 1 still
holds and Definition 1 is still justified.

5.3 Symbolic Execution Traces

To extract symbolic traces we simply add the rule

(P(
⇀
e ), t) −→ (p[U/Yk], t)

for declarations P :: p, where Yk is the fresh set of variables that we may assume
to correspond to the k-th recursive call in the denotational semantics of symbolic
execution and the concrete semantics. Theorems 1 and 2 still hold for While
extended with procedure calls.

6 Related Work

We have drawn inspiration from earlier formal descriptions of symbolic execu-
tion [2], where de Boer and Bonsangue proved correctness and completeness
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of symbolic executions with respect to an operational-style semantics modeling
concrete execution. Whereas their proofs work directly by induction on the exe-
cution chains, it is interesting to note that correctness and completeness in our
setting arise as straightforward corollaries of the correspondence between the
denotational and concrete semantics. Moreover, de Boer and Bonsangue used
substitutions to define evaluation after substitution; we have semanticized this
by interpreting substitutions as mathematical functions on the state space VX .
Although crucial to our work, this semantics of substitutions is far from unex-
pected, as substitutions are syntactic objects describing mathematical functions.
However, we feel this fact is easily overlooked when reasoning about symbolic
execution. Defining a denotational semantics for symbolic execution amends this.

De Boer and Bonsangue [2] described two ways of obtaining the final sym-
bolic substitutions and path conditions. These are exactly the two methods we
described in Section 4. Proving that they are equivalent (Proposition 1) could
not be done syntactically: the conjuncts appearing in the corresponding path
conditions are different, but equivalent. Having a denotational semantics here
was essential for the proof.

Kneuper [12] gives a denotational semantics of symbolic execution based on
sets of sequences of symbolic states and a function extending these sequences.
Steinhöfel [17, Ch. 3] describes a more general approach based on concretization
of symbolic states. A similar approach is taken by Porncharoenwase et al. [16]
who describe symbolic execution of a Scheme dialect through big-step semantics.
Whereas the present work defines symbolic semantics for a language and relates
them to concrete semantics, these works describe semantics for the exploration
of symbolic states.

Owens et al. [15] mechanize what they call a functional big-step semantics
for a toy language called FOR, which is similar to ours, but has for loops instead
of while loops, and models assignments as side-effects of expressions. Their func-
tional big-step semantics is essentially identical to our concrete semantics, and
we have drawn inspiration from their work for our proof mechanizations in Coq,
but our work is the first to approach symbolic execution from a denotational
perspective.

Nakata and Uustalu [14] explored four different trace-based coinductive op-
erational semantics for the While language: big-step and small-step, functional
and relational—all of them for concrete execution, whereas we include symbolic.
In the terminology of [14, 15], the present work could have been titled: Func-
tional Big-Step Semantics for Symbolic Execution. We deemed “denotational”
more appropriate, as the purpose of our work is to elucidate the denotation of
the syntactic objects generated in symbolic execution, and to enable composi-
tional reasoning; this has historically been the use of denotational semantics in
formal methods.

7 Conclusions and Future Work

We have defined a denotational semantics for symbolic execution as a function
defined piecewise on a partition of the input space. Each part is the interpretation
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of the path condition in symbolic execution, and the piecewise definition on
this part is the corresponding symbolic substitution, interpreted as a function
on the input space. The correspondence between this denotational semantics
and a concrete semantics (Theorem 1), which is a simple identity of functions,
has correctness (or coverage) and completeness (or precision) of the symbolic
semantics as immediate corollaries, as formulated in Corollaries 1 and 2. Having
this denotational semantics allows for compositional reasoning about symbolic
executions, which can be particularly unintuitive for the path condition.

These results have been mechanized in the theorem prover Coq. The proofs
are all constructive; we have used the constructive definite description axiom
(consistent but not constructively provable) to assume we can find the minimum
integer regarding while loops and recursive procedure calls. This assumption is
not surprising or unrealistic, as symbolic execution in practice deals with finite
traces only. A reason to consider infinite symbolic executions (which we aim for
in future work by using a stream semantics) is to allow arbitrarily long but finite
symbolic executions.

The denotational semantics extends easily to more language constructs, such
as procedures (Section 5). Other work [19] illustrates the use of a denotational
semantics for proof techniques involving probabilistic language constructs such
as sampling and observe statements. A denotational semantics for such language
constructs are straightforward extensions of the work presented here.

A highly interesting extension of the work in this paper is to incorporate par-
allelization; compositional correctness and completeness of a small-step symbolic
semantics for parallel programs has recently been mechanized in [11]. In a denota-
tional setting, parallelization can be addressed by means of a trace semantics and
corresponding coinductive techniques (see, e.g., [18]); furthermore, concurrency
is very context-sensitive, which makes assigning a denotational (or functional
big-step) semantics challenging. In future work we plan to study a trace-based
denotational semantics of symbolic execution, allowing parallelization as well
as non-termination. We further consider describing a language-independent ap-
proach to symbolic execution using coalgebras. This has previously been studied
coinductively [13] (but without coalgebras). Finally, having both an operational
and a denotational semantics, a natural follow-up question is: can we show a
correspondence between our denotational semantics and an axiomatic semantics
for symbolic execution (e.g., in the style of the rules of the KeY verification
system [1, Chap. 3])? We believe such a correspondance could be used to enrich
verification techniques based on symbolic execution.
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