
193

Formal Specification and Testing
for Reinforcement Learning

MAHSA VARSHOSAZ, IT University of Copenhagen, Denmark

MOHSEN GHAFFARI, IT University of Copenhagen, Denmark

EINAR BROCH JOHNSEN, University of Oslo, Norway

ANDRZEJ WĄSOWSKI, IT University of Copenhagen, Denmark

The development process for reinforcement learning applications is still exploratory rather than systematic.

This exploratory nature reduces reuse of specifications between applications and increases the chances of intro-

ducing programming errors. This paper takes a step towards systematizing the development of reinforcement

learning applications. We introduce a formal specification of reinforcement learning problems and algorithms,

with a particular focus on temporal difference methods and their definitions in backup diagrams. We further

develop a test harness for a large class of reinforcement learning applications based on temporal difference learn-

ing, including SARSA and Q-learning. The entire development is rooted in functional programming methods;

startingwith pure specifications and denotational semantics, endingwith property-based testing and using com-

positional interpreters for a domain-specific term language as a test oracle for concrete implementations. We

demonstrate the usefulness of this testing method on a number of examples, and evaluate with mutation testing.

We show that our test suite is effective in killing mutants (90% mutants killed for 75% of subject agents). More

importantly, almost half of all mutants are killed by generic write-once-use-everywhere tests that apply to any

reinforcement learning problem modeled using our library, without any additional effort from the programmer.

CCS Concepts: • Theory of computation→ Program specifications; • Software and its engineering→

Software testing and debugging.

Additional Key Words and Phrases: specification-based testing, reinforcement learning, Scala

ACM Reference Format:

Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski. 2023. Formal Specification

and Testing for Reinforcement Learning. Proc. ACM Program. Lang. 7, ICFP, Article 193 (August 2023), 34 pages.

h�ps://doi.org/10.1145/3607835

1 INTRODUCTION

“Applications of reinforcement learning are still far from routine and typically require as much art
as science” (Sutton and Barto [2018]). The development process for reinforcement learning (RL)
applications is exploratory rather than systematic, which reduces reuse between applications and
increases the chances of introducing errors into particular implementations, lowering trustworthi-
ness and effectiveness. This is especially important in areas where reinforcement learning is used
to control physical devices (e.g., embedded or cyber-physical systems, and robots). Techniques and
tools for systematic quality assurance of reinforcement learning applications are rare in the field.

Authors’ addresses: Mahsa Varshosaz, IT University of Copenhagen, Copenhagen, Denmark,mahv@itu.dk; Mohsen Ghaffari,

IT University of Copenhagen, Copenhagen, Denmark,mohg@itu.dk; Einar Broch Johnsen, University of Oslo, Oslo, Norway,

einarj@ifi.uio.no; Andrzej Wąsowski, IT University of Copenhagen, Copenhagen, Denmark, wasowski@itu.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART193

h�ps://doi.org/10.1145/3607835

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3607835
https://doi.org/10.1145/3607835


193:2 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

Reinforcement learning is a method of machine learning, in which an agent experiments interac-
tivelywith an environment, receiving rewards for these interactions. Themost popular learning algo-
rithms aremodel-free, as they do not need a complete model of the environment but learn from sam-
pling executions. The goal of a learning algorithm is to find an optimal behavior policy for the agent
whichmaximizes long-term expected reward. Reinforcement learning research often focuses on eval-
uating the quality of obtained policies. However, the results of even the most carefully designed eval-
uation experiments have little value, unless the evaluated methods are implemented correctly. Our
long-term goal is to make the development and test of reinforcement learning applications more sys-
tematic and the outcomes more trustworthy by enabling easily accessible automatic testing. In this
paper, we take a step towards a direct formal specification of correctness for reinforcement learning
problems (agents) and the learning algorithms themselves, as opposed to the policies that they output.

We focus on temporal difference (TD) reinforcement learning methods [Sutton 1988], a large and
well-established class of model-free methods. The majority of reinforcement-learning algorithms
in use are TD algorithms. The TD algorithms update an estimate of a state action value function
using a number of sampling steps and an estimate (bootstrapping). The temporal difference in the
name refers to the fact that an update for a state-and-action expected reward is performed not
immediately but after one or more execution steps. As we focus on the correctness of the algorithm
and the agent, we settle for simple representations of value estimation—discrete tables. However,
the core structure of our specification appears relevant for approximating methods.

We perform a domain analysis of the TD algorithms domain, leading to a formal specification. We
characterize commonalities and differences between different reinforcement learning problems and
between TD algorithms. We pay special attention to the update step in the algorithms, commonly
described using so-called backup diagrams [Sutton 1988]. Our domain analysis formally defines bdl,
or a back-up diagram language—a compositional, domain-specific language for describing updates
in reinforcement learning. An interpreter for bdl, formalized in a denotational style, serves as a
specification of correctness for updates in individual TD algorithms. A compositional denotational
definition of this interpreter is what allows us to characterize many TD algorithms at once.

The obtained specification may be used for testing and verification (after embedding in a suitable
formal system). We use testing to demonstrate and evaluate it here. We implement &-Learning,
SARSA, and Expected SARSA along with a number of case studies extracted from text books and
papers. We add a number of tests derived from the formal modeling of agents and implement the
bdl interpreter to serve as an oracle in property-based tests in the style of Quickcheck [Claessen
and Hughes 2000]. Using an interpreter as an oracle for testing a concrete implementation is a tech-
nique well-known to compiler engineers, but rarely used outside this community. Our applicative
strongly-typed implementation of these algorithms in Scala 3 is concise and traceable to the formal
definitions in the paper. All code and tests are available online.
The test harness can be imposed on different algorithms and can be extended with properties

specific for an agent. We try it on three algorithms and nine agents. We experience that the frame-
work can carry the implementation of various kinds of problems, and that the cost of customizing
the tests (especially the cost of providing custom generators for property-based tests of agents) is
not high. Furthermore, an experiment based on mutation testing [DeMillo et al. 1978] demonstrates
that the test harness kills a vast majority of programs with randomly injected faults. Crucially,
about half of all mutants for each problem are killed by generic tests that are written once and reused
for all new agents, just by invocation. No additional effort from the programmers implementing
new agents is required.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:3

Reinforcement
Learning Algorithm

Dynamics T

Control Policy c
Value Function &

update

®�
<®E®�

Δ

reward

®E = 0

Fig. 1. Example: A car moves with velocity ®E towards a fixed obstacle at distance Δ, learning how to brake.

The control policy chooses a deceleration with which to brake. The agent receives a reward based on the

location where stopped and updates the policy

We continue with a motivating example in Sect. 2. The technical contributions are:

• A formal specification of key elements of reinforcement learning problems and TD algorithms,
including a detailed, self-contained, fully-formal definition of the update step (Sect. 4). The
specification is probabilistic, applicative, compositional, and executable. We are not aware
of any comparably detailed formal specification of reinforcement learning to date.
• A translation of the above specification into a test harness (Sect. 5), implemented (Sect. 6) follow-
ing the paradigm of property-based testing. The test harness includes a general interpreter
of bdl terms—formal models of updates for TD learning algorithms. It is used as an oracle.
To our best knowledge this is the first property-based test suite for reinforcement learning.
• An evaluation of the test harness on SARSA and Expected SARSA for several agents using
mutation testing (Sect. 7). The evaluation shows that the test harness is able to kill half of
the generated mutants “for free,” i.e. without any customization of tests for new agents.

We discuss limitations (Sect. 8) and related work (Sect. 9), and conclude in Sect. 10.

2 MOTIVATING EXAMPLE: AN AGENT AND A LEARNING ALGORITHM

Consider a moving car that needs to stop before reaching a static obstacle (Fig. 1). We want to apply
RL techniques to this problem and teach the car’s controller to avoid a collision with the obstacle.
Hence, we formulate a reinforcement learning problem to which we can apply a RL algorithm.

In our problem formulation, the car controller (the agent) interacts with the road and the obstacle
(the dynamic environment) to learn the control policy from experience. The states describe the
possible positions and velocities of the car, and the actions the possible changes in velocity. The
transition function then computes the effect of an action on a state. The goal is to avoid collision
with the obstacle. We need to formulate a reward function reflecting this goal! Clearly, hitting the
obstacle should give a negative reward; for other states and actions we might want to penalize
unnecessarily sharp braking actions. How can we check that our transition and reward functions
fit our intended reinforcement learning problem?

In this paper, we give a formal definition for a class of reinforcement learning problems, for which
we implement a test harness using property-based testing. A good test suite that ensures the basic
properties of RL problems, can significantly accelerate the task definition process. In fact, there are
many potential pitfalls in defining such reinforcement learning problems. Some tests reflect implicit
assumptions about the class of RL problems whereas others are specific to a particular RL problem.
An example of the generic case is a test expressing that a transition from a so-called observable
state (i.e., a state known to the reinforcement learning algorithm) will lead to another observable
state. Such domain properties reflect real development problems in debugging RL implementations,
based on our experience and on discussions with RL developers, and testing for simple properties
helps eliminate the main bugs fast. An example of a specific problem property is, for our braking car

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:4 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

example, that the car cannot move backwards by braking. Problem-specific tests are needed to check
that the transition and reward functions properly capture the characteristics of the problem domain.
Once the problem has been defined, we can apply a reinforcement learning algorithm to it

and obtain a policy. The car should learn to halt before the obstacle and to avoid unnecessary
sharp braking. Throughout the learning process, the car repeatedly starts from different states
(i.e., positions and velocities), selects different actions (i.e., values of deceleration) and observes the
resulting reward and change of state. Sometimes the car stops before the obstacle, sometimes it
crashes. A reinforcement learning algorithm estimates the long-term effect of taking an action in
a specific state. The estimate is updated by considering new rewards observed from the agent’s
interactions with the environment. This update step constitutes the core of such RL algorithms; the
details of how and when to perform the update vary depending on the specific algorithm.
One example of a RL algorithm is SARSA (Fig. 2). The algorithm considers episodes that are

sequences of states (8 and actions �8 that can be selected in those states, leading to a final state. A
value function& assigns a long-term reward estimation to state–action pairs. SARSA is an on-policy
learning algorithm because the policy depends on & when it selects an action in a given state. The
rate by which learning affects & is given by U , while W defines the long-term reward discount.

Even though the standard presentation of SARSA (Fig. 2) makes an impression of an imperative
program, a programmer would quickly notice that one cannot implement it without much additional
knowledge. For instance, the meaning of “observe” and “reward” in Line 3 requires understanding
what is an agent, what operations it supports, and with what semantics. The link between Y and c in
l. 4 is not explicit. The policy c , mapping states to optimal actions, needs knowing in which state to
select�C+1. Also value function& needs to be involved, as it defines which action is the best (so c and
& are dependent). All these problems could be fixed in Fig. 2 by refining the pseudo code, but they get
difficult to fix for more advanced temporal difference algorithms, for which the update equation in
Line 5 considers multiple states and actions at different times. The monolithic presentation no longer
scales. Without a formal compositional specification, it is not only hard to implement the algorithms,
but even harder to say whether the implementation is correct. Finally, it is non-obvious that the
program is probabilistic and that several identifiers and expressions represent random variables.

As TD learning algorithms follow a common structure, we can capture this structure in a language
and build a probabilistic interpreter for it to serve as a specification and an oracle. A run of this inter-
preter given a term defines the update of a particular TD algorithm. The term describing the SARSA
update (l. 5) is sampleW UpdateU sample, and a denotational semantics precisely defines its meaning.
In this paper, we formalise TD learning algorithms and build a test harness for them. We first

define properties that should apply generally to the considered class of TD algorithms. An example
of such a property, is that the action selected in any state is distributed according to the specified
policy and&-table, which we check with a statistical test. Similarly, we test the update of the&-table,
using our interpreter as an oracle. An erroneous update will typically not crash, but produce a wrong
value; a broken update step might go unnoticed for a long time, only manifesting itself in subpar
results from the learning process. Our test suite facilitates the detection of such subpar behavior.

3 PRELIMINARIES

We follow the notation of Sutton and Barto [2018] and conventions of lambda-calculus; e.g., we omit
parentheses around function arguments and write 5 G instead of 5 (G). Sets and types are boldfaced.
A probability distribution over a finite set A is a function PrA ∈ A→ [0; 1] that assigns some

probability mass to each element 0 ∈ A, and that satisfies the usual axioms of probability. We write
pmf A for the set of all probability mass functions (or distributions) over the set A. If A is continuous,
we write pdf A for the set of all probability density functions PrA ∈ A→ R+ ∪ {0} over A. Since the
co-domains of functions in this paper will often be such probability mass or density functions, we

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:5

1: Initialize (C , select action �C using the current policy c (Y-greedy)
2: while (C is not final do
3: Execute �C , observe the next state (C+1 and reward 'C+1
4: Select next action �C+1 using the Y-greedy policy derived from &

5: & ((C , �C ) ← & ((C , �C ) + U ('C+1 + W& ((C+1, �C+1) −& ((C , �C ))
6: (C ← (C+1, �C ← �C+1

Fig. 2. A standard impure presentation of the popular SARSA algorithm following the style adopted in the

literature [Su�on and Barto 2018]. The pseudocode shows one learning episode, until the agent reaches a final

state. Normally a large number of episodes is run, updating the same global &-table. The most characteristic

part of SARSA is the update rule in Line 5. It uses the current value & ((C+1, �C+1) as an approximation of the

future long-run reward. The action �C+1 is selected probabilistically according to the current policy.

parenthesize expressions that return distributions, to emphasize this; e.g., if 5 G ~ returns a distribu-
tion over/ ∋ I, we write (5 G ~) I for the probability (or density) assigned to I by the function 5 G ~.

A probability mass function PrA and a function 5 : A→ pmf B induce a probability distribution
over the set B following the chain rule (by picking a value 0 ∈ A according to PrA, applying 5 to 0,
then picking a value in B according to the obtained distribution).

(PrA »= 5 ) ∈ pmf B (PrA »= 5 ) 1 =

∑

0∈A

PrA 0 · (5 0) 1 (1)

Some readers might find it useful to know that the left-associative composition operator »= between
a distribution and an into-distribution function is an instance of a monadic bind [Ramsey and
Pfeffer 2002]. If PrA is a pdf and 5 : A→ pdf B is measurable, we similarly define:

(PrA »= 5 ) ∈ pdf B (PrA »= 5 ) 1 =

∫

0∈A

PrA 0 · (5 0) 1 (2)

The integral (technically, the measure) is used to formally describe the behavior of a RL system.
Our implementation replaces the computation of probability measures with estimation by sampling
(so the source domains are also discrete in any given run).

Given two functions 5 ∈ A → pmf B and 6 ∈ B → pmf C their Kleisli composition 5 »=»6

is the unique function from A → pmf C given below, Eq. (3). The Kleisli composition “flattens”
(multiplies) nested probability distributions during function composition.

5 »=»6 = _0.5 0 »=6 (3)

Given a constant G ∈ X, we write Det G for the unique deterministic distribution such that
(Det G) G ′ = 1 iff G = G ′ and zero otherwise (the Dirac distribution).
From the reinforcement learning and testing perspective, it does not matter whether one per-

forms statistical tests following the Bayesian or the frequentist tradition [Gelman and Shalizi
2013]. Somewhat arbitrarily we make the Bayesian choice [Gelman et al. 2013; Kruschke 2014].
Given a prior distribution with parameter \ over a random variable - , and given a number of
observations X of values drawn from - , a Bayesian analysis rests on computing or estimating
a posterior belief distribution on \ given the observations. One typically uses Bayes’ theorem:
Pr(\ | X) ≂ Pr(X | \ ) · Pr(\ ), where Pr(X | \ ) is known as the likelihood function. The likelihood is
typically easy to formulate as it is generative: for each value of \ it can give a probability of gener-
ating X . In the context of testing probabilistic programs, the likelihood will be given by the program
semantics. Once the posterior distribution is established, one queries it for probabilities of relevant
facts: for instance what is the belief that \ ≥ 0.9. In general, the posterior can be an arbitrarily
complex function, but if the prior is specifically selected for the likelihood (a conjugate prior), a

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:6 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

kind of closure is obtained: the prior and the posterior have the same format. For conjugate priors,
often an easy syntactic rule exists for updating the prior given the observations. We exploit such
in this paper for Bernoulli and Gaussian priors to write simple, but computationally efficient tests.

4 A FORMAL SPECIFICATION OF REINFORCEMENT LEARNING

In reinforcement learning, an agent interacts with an environment in order to learn its behavior by
trial-and-error. The agent’s aim is to find a policy that maximizes a measure of reward [Kaelbling
et al. 1996]. A reinforcement learning problem defines the agent’s state space, dynamics (transition
relation), and the rewards. The problem is handed over to a learning algorithm to search for
the optimal policy, given the problem. The first key technical development of this paper is to
formalize both the RL problems and the RL algorithms in order to allow reason and testing about
the correctness of learning processes.

4.1 Reinforcement Learning Problems (Agents)

Definition 4.1. A Reinforcement Learning Problem is represented by a tuple (State, State0,Action,
State,O,T,R, F ) where:

r1: State is a possibly infinite set of states of the environment and the agent combined,

r2: State0 ∈ pdf State is a density function defining probability for initial states,
r3: Action is a finite set of actions that an agent can take,
r4: State is a finite set of observable states,
r5: O ∈ State → State is a total observation function,
r6: T ∈ State → Action→ pdf State is the transition probability function,

r7: R ∈ State → Action→ R is the reward function, and
r8: F ∈ State→ {0, 1} is a predicate defining which observable states are final for a training

episode. Initial states are not final, i.e., if State0 (() > 0 then not F (O ().

The agent perceives the world through a discrete observation function O (r5), mapping the possibly

continuous state space State of the environment (r1) to a finite state space State of the learning
algorithm (r4). For the rest of the paper, it is a useful to remember that the identifiers with a line
over refer to the actual state space of the environment, while those without refer to the state space

abstraction that the agent can observe (the observable state space). The reward function R ( �

defines the reward received by the agent (r7) when arriving at state ( after taking the action�. The

transition function T defines a distribution of successor states T ( � given a source state ( and
an action�, see r6. The function T captures the stochastic environment behavior (e.g., noise) by
returning a distribution. Its values are density functions, to account for the continuous state of the
environment. Generally, T defines a partially observable Markov Decision Process (MDP) with
rewards and the composition T »=»O projects it onto a finite state MDP.

Given a reinforcement learning problem, a run is a sequence (0�0 '1 · · · (C−1�C−1'C · · ·, where all

transitions have non-zero probability: (T (8 �8 ) (8+1 > 0 and '8+1=R (8+1�8 . Each state (8 in a run
marks a discrete time epoch in which the system performs the action �8 and receives a reward '8+1.

Definition 4.2. A RL problem is episodic iff every run from an initial state eventually reaches

some final state ( , so F (O ()=1, see r8 in Def. 4.1. Otherwise the problem is non-episodic.

Example 4.3. To exemplify the definitions, we instantiate Def. 4.1 for the car example of Fig. 1.

r1: The set of states of the environment is State = [0.0, 15.0] × [0.0, 10.0], where [0.0, 15.0] is
the interval of possible positions and [0.0, 10.0] is the interval of possible velocities. For a

state ( ∈ State, we write (.? for its position and (.E for its velocity. See Fig. 3.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:7

position→
v
el
o
ci
ty
→

(0,0)

(15,10)

(15,0)

(0,10)

Fig. 3. The state space for the breaking car example of Fig. 1. Each state is a pair of numbers representing the

position of the car and its forward velocity. The environment state space is the entire gray rectangle. The

black bullet points represent the observable states. The observation function O maps the interior of each of

the small squares (including its bo�om and le� edges) to the observable state in its bo�om-le� corner.

r2: The car can start in any state with equal probability, so State0 is a uniform distribution over

the gray rectangle in Fig. 3: State0 = Uniform (State).
r3: The set of actions is Action = {−10.0,−5.0,−2.5,−0.5,−0.05,−0.01,−0.001} represents pos-

sible deceleration (negative acceleration) rates corresponding to increasingly gentle braking.
r4: The set of observable states is State = {0.0, 5.0, 10.0, 15.0} × {0.0, 5.0, 10.0}, so even though

the environment admits infinitely many position–velocity combinations, the agent can only
observe 12 pairs, represented as black points in Fig. 3.

r5: The observation function discretizes each car state by bringing each of its components to
the largest multiple of five smaller than the value (in Fig. 3 each square to is discretized to
its bottom-left corner):

O ( = ( where (.? = 5 ·
⌊
(.?/5

⌋
and (.E = 5 ·

⌊
(.E/5

⌋
.

r6: The transition function T selects the next state given a predecessor state (C and an action

�C . In this example, the successor state (C+1 is calculated deterministically based on the car
dynamics (assuming that the car moves for a time step X):

(C+1.? = (C .? + (C .EX +�CX
2/ 2 and (C+1.E = (C .E +�CX .

Since the successor state is computed deterministically we get T (C �C = Det ((C+1), a Dirac
distribution over successor states.

r7: The reward for reaching a state (C+1 after taking the action �C is

R (C+1 �C = −100 if (C+1.? ≥ 10 and R (C+1 �C = �C otherwise.

The model assumes that the obstacle is found at position 10 (the rightmost edge in Fig. 3). The
first case penalizes a crash. The second case (no crash) says that a sharper deceleration results
in a lower reward; the reward is proportional to the action value in this case, to penalize
violently abrupt braking.

r8: The braking car problem is episodic. The car is in a final state if either it has come to a full
stop or it has crashed, so F ( is true if and only if (.E = 0.0 | | (.? ≥ 10. □

A policy for an agent defines its behavior at any state. It maps observed states to actions that an
agent takes in those states. Policies are derived from richer value functions estimating the ultimate
reward of an execution started by each action in a state,& ∈ State×Action→ R. We let Q denote
the set of all value functions. A policy then becomes a probability function that, given a value

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:8 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

function, represents the distribution of plausible actions in each state.

c ∈ Q→ State→ pmf Action (4)

A greedy policy returns the action maximizing expected reward for a given state deterministically
(with probability one). A greedy policy is not effective for learning, as it may follow globally
sub-optimal actions, especially at an early stage of learning. A popular policy in RL algorithms is
the Y-greedy policy that forces the agent to try random actions with small probability Y ∈ [0, 1]
and use the locally best action otherwise:

(c &C (C )�C =

{
1 − Y + Y · |Action|−1 �C = argmax�&C ((C , �)

Y · |Action|−1 otherwise
(5)

Solving a RL problem means finding the policy that maximizes the expected reward over many
episodes. For non-episodic tasks a discounted expected reward over an infinite run is maximized.

4.2 Temporal Difference Learning Algorithms

We will now summarize the update methods of RL algorithms following the style adopted in the
literature of the field. We will rectify the shortcomings of this style in later sections.
In implementations, the value function is often represented as a table with a value for each

state-action pair, a so-called &-table. (In deep reinforcement learning, it is approximated using a
neural network, but we are not concerned with this here, as we are formalising the core structure of
the algorithms.) Learning happens by experimentation: an agent tries an action, receives a reward,
and updates the &-table entry for that action. How precisely an update is made is the very essence
of each reinforcement learning algorithm. A large class subsuming most common designs are the
temporal-difference (TD) algorithms, which update the value function after accumulating the reward
over a (possibly singleton) sequence of actions. Given a state (C and action �C , the general update
rule for a TD prediction method is (written as an imperative assignment, as commonly practiced
in the literature of the field):

& ((C , �C ) ← & ((C , �C ) + U · (�C −& ((C , �C )) . (6)

The new state-action value estimation is the old estimate & ((C , �C ) corrected by its error against
the new estimate �C , discounted by a coefficient U . The return �C is the newly obtained expected
reward value. Its calculation varies, depending on the specific TD method used. The TD error value
U (�C −& ((C , �C )) represents the difference between the new estimate and the old estimate of the
expected reward, where U ∈ [0, 1] is the learning rate defining the trade-off between learning and
remembering. If U = 1 then the old estimate is entirely forgotten and the new estimate is adopted.
If U = 0 the new estimate is ignored: no learning happens. Other values of U control the speed with
which the new experiences influence the current policy. Concrete update rules for different TD
algorithms are instances of the general rule given in Eq. (6) with different returns �C .

(C ,�C

(C+1

'C+1

�C+1

Example 4.4. The popular SARSA algorithm [Rummery and Niranjan 1994] is a
TD algorithm. The pseudocode is shown in Fig. 2 (Sect. 2). Given a&-table and the
learning rate U , it performs the following steps for a prescribed number of episodes.
The second but last line, performs the update. The term 'C+1+W& ((C+1, �C+1) defines
the return�C in this case, where W ∈ [0, 1] is the so-called discount factor, weighing
immediate rewards vs future rewards. □

Reinforcement learning researchers often visualize the calculation of the return
in a so called backup diagram. The diagram for SARSA is shown to the right. The top arrow means

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:9

that the reward 'C+1 is obtained first by sampling the environment using action �C from state (C .
The second arrow means that the action �C+1 is sampled from the policy and its current value
estimate in & ((C+1, �C+1) is used to compute the return and update & ((C , �C ). In general, a backup
diagram is a stylized list of steps, where all but last interact with the environment, while the last one
uses a prior estimate. The proliferation of backup diagrams in conference presentations, lectures,
and teaching materials on reinforcement learning is testimony to the pivotal role of the update and
its structure for understanding the RL algorithms.

(C ,�C

(C+1

'C+1

�C+1

Example 4.5. The Expected SARSA algorithm [Van Seijen et al. 2009] follows
the same steps as SARSA (Example 4.4) just with a different update rule. It uses an
estimate for all possible actions in the second step instead of the single best action
chosen by the current policy c . The summation below computes an expectation
over all actions in the next step discounted by factor W . A backup diagram for
the Expected SARSA update rule is shown to the right. Note that the second step
differs from SARSA, reflecting the use of expectation instead of following the current policy greedily.

& ((C , �C ) ← & ((C , �C ) + U ('C+1 + W
∑
0
c (0 |(C+1)& ((C+1, 0) −& ((C , �C )) . □

SARSA and Expected SARSA are on-policy algorithms as they improve the same policy that it is
following to select subsequent actions (a decision making policy). In other algorithms, the updated
policy and the followed policy might differ (off-policy learning).

Example 4.6. &-learning is a popular and effective learning algorithm similar to SARSA [Watkins
1989]. Its update equation is the same as that of SARSA and Expected SARSA if the updated policy c
is greedy (Y = 0) [De Asis et al. 2018].&-learning can be seen as an off-policy version of SARSA, that
allows choosing actions using an Y-greedy policy (Y > 0), but performing an update using an estima-
tion based on a greedy policy (Y = 0). However, in the scope of this paper, where we focus on seman-
tics of the update procedure, both algorithms have the same specification. The difference between
&-learning and SARSA manifests when multiple updates are composed iteratively (see Sect. 8). □

In all the above algorithms the update rule is similar and the main difference is in the calculation of
the return. The update is based on a single step (= = 1), the received return, and an estimation of the
value for the state-action pair for the next step in the&-table. The entries in the table serve as a proxy
for the remaining achievable long-term reward. All these algorithms can be generalized to perform
an update after = > 1 steps, however the imperative non-compositional presentation gets very un-
wieldy. For this reason, we postpone the generalization to the formal compositional definition below.

4.3 Formalizing Temporal Difference Reinforcement Learning Algorithms

Despite the mathematical notation, the standard presentation of these algorithms in the literature
remains relatively informal and hides many intricacies. Crucially, in this style, the update equations
get more and more complex, eventually spanning several lines for the most complex methods in the
classic textbook of Sutton and Barto [2018]. Even though the temporal difference algorithms share
semantic similarity, the monolithic presentation makes it difficult to appreciate and exploit this sim-
ilarity in formal reasoning and testing. This not only makes the reinforcement learning algorithms
difficult to implement, but also hinders formal reasoning about and testing of desirable behaviors.
Let us point out a few challenges concretely. For example, 'C+1 above is the immediate reward

when an agent transitions to a state as a result of taking an action. This reward should be calculated
using the model of the agent and the environment, so the functions T , O, and R in our formalization
of the RL problems, but this is not visible in the standard presentation. Similarly, �C+1 denotes an

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:10 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

action selected using the policyc , but the standard presentation does not relate �C+1 and c in any
way. This relation is non-trivial; at runtime, the policy is not fixed, as it depends on the &-table,
which is regularly updated. In some reinforcement learning algorithms the policy also undergoes
temporal changes, for instance, the exploration ratio Y is decreased over time. Which version of
the policy c should select �C+1? Similarly, the action selection depends on the current state but you
cannot see this in the equation. Finally, while it appears that �C+1 is a concrete value, semantically
it stands for a random variable, as the functions c and T are stochastic. This is the case for most
of the elements in the algorithm, including states (C and rewards 'C . An additional complication
is that for TD algorithms looking beyond one step ahead, the update uses values from past time
epochs (past iterations of the loop).

Obviously, a test or a correctness proof has to specify these time dependencies, values, and proba-
bility distributions explicitly and precisely. Instead of hiding meanings in variable names and indices,
one needs a specification robust to alpha-renaming that makes dependencies explicit. For this reason
we will now formalize the calculation of the return for a large class of TD algorithms. It is possible to
handle many languages simultaneously, by defining a small term language to formally specify them,
and defining the semantics of the update rule as an interpreter for this term language. Our term
language for update rules is inspired by the backup diagrams. If RL researchers find them important
and informative, they must convey important information from the domain expertise perspective.
Unfortunately, the diagrams themselves are quite informal, not clearly compositional, and lack
details. To address these issues we propose a textual syntax generated by the following grammar.

est ::= sampleW | expectationW

bdl ::= est+ UpdateU (sample | expectation) . (7)

An est term, corresponding to a single segment in a backup diagram, represents an estimation
step parametrized by a discount factor W ∈ [0, 1]. It estimates state-action values by sampling
(sampleW ) or by averaging (expectationW ) state-action-value estimates over all possible actions
in a state. A bdl term, corresponding to an entire diagram, combines a non-empty sequence of
estimation steps (est+) with a final update—the last segment in each diagram. UpdateU should be
seen as infix operator parametrized by a learning rate U ∈ [0, 1], one for a sampling update and
one for an expectation update.

Example 4.7. Table 1 lists backup diagrams (first column), their bdl abstract syntax (second
column), and Sutton-and-Barto-style return calculations for five examples of temporal difference
algorithms (third column); only the first one was discussed above. The bdl expression for 1-step
SARSA is: sampleW UpdateU sample. As shown in Example 4.4, the update step includes updating
the &-value of a state-action pair ((C , �C ) using the reward and the &-value of the state-action pair
((C+1, �C+1) resulting from one time policy sampling. Similarly, for the 2-step SARSA, the diagrams
represent two sampling steps composed with a sampling update: sampleW sampleW UpdateU sample.
In contrast, the update in the last step of =-step Expected SARSA is calculated by taking an
expectation of values for all possible actions instead of using the value for the sampled action. In
the third column, �C :C+= and c (0 |B) are notations adopted by Sutton and Barto [2018] to denote,
respectively, the n-step return, from time step t to t+n, and the probability of taking action 0 in
state B following policy c . □

We can now specify the update step of the TD algorithms compositionally by giving formal seman-
tics to elements of a bdl term. We map each basic element type to a function. The semantics of an
entire backup diagram (and thus of an update) is given by a function composition. This style can
be directly implemented in a functional programming language and used, for instance, for testing.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:11

Table 1. Examples: A representation of updates in TD learning as a backup diagram, a bdl term, and a return

calculation (�C in Eq. (6)) a�er Su�on and Barto [2018]. The index) denotes the final time step in an episode.

Diagram BDL (abstract syntax) Return (�C :C+=) in Update formulae [Su�on and Barto 2018]

1-step SARSA

sampleW

UpdateU sample 'C+1 + W&C ((C+1, �C+1)

2-step SARSA

sampleW sampleW

UpdateU sample 'C+1 + W'C+2 + W
2&C+1 ((C+2, �C+2)

n-step SARSA

(sampleW )=

UpdateU sample





'C+1 + W'C+2 + · · · + W
=−1'C+=

+W=&C+=−1 ((C+=, �C+=) if =≥ 1 ∧ C <) −=

'C+1 + W'C+2 + W
2'C+3 · · · +

W)−C−1') otherwise

n-step expected SARSA

(sampleW )=

UpdateU expectation





'C+1 + W'C+2 + · · · + W
=−1'C+=

+ W=
∑
0
c (0 |(C+1)&C+=−1 ((C+1, 0) if C <) −=

'C+1 + W'C+2 + W
2'C+3 · · ·

+ W)−C−1') otherwise

n-step tree backup

(expectationW )=

UpdateU expectation





'C+1 + W
∑

0≠�C+1

c (0 |(C+1)&C+=−1 ((C+1, 0)

+ Wc (�C+1 |(C+1)�C+1:C+= if C <) ∧ =≥ 2

'C+1 + W
∑
0
c (0 |(C+1)&C ((C+1, 0) if = = 1

') if C = ) − 1

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:12 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

Even more interestingly, an interpreter for bdl terms can be implemented in functional style and
used for testing updates of direct implementations of TD algorithms.

An estimation step, say sampleW, is based on a current table &C ∈Q, a source state (C ∈State, an
action �C ∈Action that the system decided to perform, a return value �:C ∈R from the preceding
estimation steps, and a discount factor WC ∈ [0, 1] for this and subsequent steps. It runs a step of
the environment T and returns the reached successor state, the obtained reward value, and the
action to perform in the next step. To make estimation steps compositional, the current discount
factor, which can depend on the step, and the cumulative discounted reward up to this step (current
return) are included as a part of the semantic domain. Since the environment may contain stochastic
behavior and the action selection may be probabilistic (as we use Y-greedy policies), the semantics
of an estimation step is actually a multivariate probability distribution over target states, actions,
returns, and discount factors, resulting in the following semantic domain.

[[ · ]]est ∈ Q→ State × Action × R × R→ pmf (State × Action × R × R) (8)

The semantic function for a sampling estimation step is:

[[sampleW ]]est &C =_((C , �C ,�:C , WC ) . T (C �C »= (run the system in state (C executing action �C )

_(C+1 . Det
(
R (C+1 �C

)
»= (reward 'C+1 for the action and the resulting state)

_'C+1 . Det
(
O (C+1

)
»= (observe discrete state (C+1 reached)

_(C+1 . c &C (C+1 »= (select the next action �C+1 following policy c )

_�C+1 . Det (�:C + WC'C+1) »= (discount accumulated return by WC and add 'C+1)

_�:C+1 . Det
(
WC · W

)
»= (accumulate the discount factor)

_WC+1 . Det
(
(C+1, �C+1,�:C+1, WC+1

)
(9)

First, the step function is applied to the environment state (C and action �C . This results in a

distribution over successor states, and we bind a successor to (C+1. The reward is computed deter-

ministically for a pair of successor state (C+1 and the performed action �C , the result bound to 'C+1.
The observable target state (C+1 is obtained using a deterministic functionO, and the next action
is selected on policy c obtaining a non-trivial distribution again. At this point, we compute the
return by adding the prior return �:C with the discounted reward. Finally, the discount factor is

updated by this step’s discount rate W . In the last line all the four elements, i.e., next state (C+1, next
action �C+1, return �:C+1, and discount factor WC+1 to be used in the next step, are returned.

An advantage of this presentation is that it makes it explicit where the values of (C+1,�C+1, and'C+1
come from, which steps are deterministic, and which result in proper random variables (those not
generated by Det). The first four function applications in Eq. (9), show how these values are obtained.

The semantics of an expectation step is defined similarly below. The differences between sampling
and expectations are highlighted in blue—the expectation step uses an expected value of the
estimated return instead of a sample reward when calculating the return.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:13

[[expectationW ]]est&C =

_((C , �C ,�:C , WC ) . T (C �C »= (run the system step)

_(C+1 . Det
(
R (C+1 �C

)
»= (calculate reward)

_'C+1 . Det(O (C+1) »= (perform observation)

_(C+1 . c &C (C+1 »= (select next action)

_�C+1 . Det
(
�:C + WC

[
'C+1 +

∑

�≠�C+1

(c &C (C+1)� ·&C ((C+1, �)
] )
»= (update return with expected reward)

_�:C+1 . Det
(
WC · W · (c &C (C+1)�C+1

)
»= (discount weighed by prob. of �C+1)

_WC+1 . Det
(
(C+1, �C+1,�:C+1, WC+1

)
(10)

The next return�:C+1 in Eq. (10) is computed as a sum of current return�:C , the discounted immediate
reward 'C+1 obtained by taking action �C , and the expected return from alternative actions which
are not selected as next action. This expectation is also discounted. The next discount factor is
computed by multiplying the current discount factor with the constant discount factor for the step
and the probability of taking the next action �C+1. This calculation of discount factor is common
for algorithms such as =-step tree backup [Sutton and Barto 2018].
The estimation steps can be composed into larger sequences of the same type.

[[est1 · · · est: ]]est+ ∈ Q→ State × Action × R × R→ pmf (State × Action × R × R) (11)

The composition is computed using the standard Kleisli composition:

[[est1 · · · est: ]]est+ &C =

_((C , �C ,�:C , WC ) . [[est1]]est (&C ) ((C , �C ,�:C , WC ) »= (the 1. estimation step)

_((C+1, �C+1,�:C+1, WC+1). [[est2]]est (&C ) ((C+1, �C+1,�:C+1, WC+1) »= (composed with the 2. estimation)

...

_((C+:−1, �C+:−1,�:C+:−1, WC+:−1). (composed with the :th estimation)

[[est: ]]est (&C ) ((C+:−1, �C+:−1,�:C+:−1, WC+:−1) (12)

The same can be stated compactly using the Kleisli composition of functions:

[[est1 · · · est: ]]est+ &C = [[est1]]est &C »=» [[est2]]est &C »=» · · · »=» [[est: ]]est &C . (13)

From the functional programming perspective, the above may appear an obvious step, but we
are not aware of a similar observation in the reinforcement learning literature, where the update
procedures for each algorithm tend to be presented monolithically and implemented from scratch,
obscuring the common structure of TD algorithms. This also means that in a correctness proof, it
is difficult to generalize from properties of a single estimate step to the entire composed update.
Finally, we define the meaning of an update step, which performs a sequence of estimation

steps, given an initial state and action, estimates the value of a final action in the sequence (in
the right-hand-side operand) using the &-table, and finally performs an update of the respective
entry of the table. After an update the agent lands in a new target state and has chosen the next
action (for on-policy algorithms). The type of the semantics reflects this: we start with a &-table,
a state and an action, and land (with some stochastic disturbance) in a new &-table, state, and a

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:14 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

subsequent action to execute.

[[est: UpdateU (sample | expectation)]]bdl ∈ Q × State × Action→ pmf (Q × State × Action)
(14)

Let us define this function, for the case of the sampling update first.

[[est: UpdateU sample]]bdl =

_(&C , (C , �C ) . [[est
: ]]est+ (&C ) ((C , �C , 0, 1) »= (execute the estimation steps)

_((C+: , �C+: ,�C :C+: , WC+: ) . Det
(
O (C ,O (C+:

)
»= (observe initial & final state)

_((C , (C+: ). Det (�C :C+: + WC+:&C ((C+: , �C+: )) »= (return based on �C+: )

_�C :C+:+1 . Det (&C [((C , �C ) ↦→ &C ((C , �C ) + U [�C :C+:+1 −&C ((C , �C )]) »= (update)

_&C+1 . Det
(
&C+1, (C+: , �C+:

)
(15)

The notation &C [G ↦→ ~] in the penultimate line means a table entry substitution. It denotes a new
&-table, obtained from &C by replacing the entry at position G to contain the value ~. All other
entries remain unchanged. The first line of the above semantics executes all the estimation steps of
the algorithm (if any), then establishes what is the observable initial and target states, and uses the
&-table entry of the target state to update the entry for the initial state–action pair.

An update with an expectation estimate is defined similarly below in Eq. (16). The highlighted
difference is in the computation of the return�C :C+:+1. In Eq. (15), the discounted estimated&C value
for the last pair of state and action ((C+: , �C+: ) is added in the update. In Eq. (16), a discounted
expectation over the &C values over all actions in the next state (C+: is used instead. The discount
factor uses the accumulated update and the local contribution (cf. Eqs. (9) and (10)).

[[est: UpdateU expectation]]bdl =

_(&C , (C , �C ) . [[est
: ]]est+ (&C ) ((C , �C , 0, 1) »= (execute the estimation steps)

_((C+: , �C+: ,�C :C+: , WC+: ) . Det
(
O (C ,O (C+:

)
»= (observe initial & final state)

_((C , (C+: ). Det (�C :C+: + WC+:
∑
� (c (C+: �)&C ((C+: , �)) »= (expected return)

_�C :C+:+1 . Det (&C [((C , �C ) ↦→ &C ((C , �C ) + U [�C :C+:+1 −&C ((C , �C )]) »= (update)

_&C+1 . Det
(
&C+1, (C+: , �C+:

)
(16)

The above functions provide compositional specifications for backup diagrams and for TD updates.
As the Kleisli composition is associative, the above semantics is insensitive to the order of compos-
ing the functions. Since the above definitions are self-contained (all dependencies are explicit in the
function constructions), they eliminate ambiguities seen in typical descriptions and can support
automatic test of and formal reasoning about implementations. For example:

Theorem 4.8. For a greedy policy c (with Y = 0) SARSA and Expected SARSA perform updates in
the same manner, i.e., [[sampleW UpdateU sample]]bdl = [[sampleW UpdateU expectation]]bdl.

Proof. The action �C+: in Eq. (15) is always bound to the action with the highest entry in the
&-table, as the policy c is greedy and it assigns probability 1 to the highest value action (cf. Eq. (9)).
The return calculation in Eq. (15) returns the value in the &-table discounted by WC+: . Similarly, as
c is greedy, it is a Dirac distribution, so in the return calculation in Eq. (16), it will have value 1
for exactly one action � which is the action with the highest entry of & ((C+: , �). Consequently,
� = �C+: and the sum in Eq. (16) collapses to the same term as in Eq. (9). Ultimately, the proof rests
on the fact that the mean and the mode of a Dirac-distributed random variable are the same. □

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:15

Recall that the update of &-Learning, corresponds to an update of these algorithms if the policy c

is greedy. Consequently, we can use the same specification to test the update in the &-learning
implementations. Without a formal specification it would be hard to make a similar statement.

5 SPECIFICATION-BASED TESTING OF REINFORCEMENT LEARNING

The presented properties can be used as a start of a formal verification project for an RL application.
However, verification can quickly become intricate with specifics of the chosen learning algorithm.
As we want to maintain a broad focus on many algorithms, while keeping the paper accessible and
(relatively) short, we turn to automated testing for demonstration of our specification.We use the for-
mal definitions in Sect. 4 to derive tests. Our long-term goal is to build a parameterized test harness
and a method to write testable properties, to broadly lay the grounds for automating testing for RL.
The tests are organized in two main categories: the tests of problem definitions and the tests of

algorithms. Problem tests check consistency properties of the agent and environment model, and
of their interaction. We further distinguish between the specific problem tests, relevant only for
a specific RL problem, and generic tests for problem definitions—the properties that should hold
in general for all RL problem definitions. The algorithm tests check whether the learning algorithm
behaves according to its design specification. In the following, we first focus on generic problem
tests and then move to problem-specific and algorithm tests. Even though they are practically
important, we devote less attention to the specific problem properties, as these are not reusable
for larger groups of users. Their discussion quickly gets lost in the intricacies of a specific problem.
In contrast, the generic problem properties and the tests of algorithms benefit more users directly,
and can be pre-implemented in a library. We demonstrate deriving a selection of tests.
All tests below are described as abstract universal properties, basically logical statements. This

way we minimize pollution by details of the programming language and style. We discuss how to
concretize them as executable code in Sect. 6.

5.1 Testing Reinforcement Learning Problems (Agents)

Generic Problem Properties. These properties should hold for all implementations of RL problems.
They are derived from the formal definition of a reinforcement learning problems in Sect. 4.1.
We begin with the totality of the observation function O (Def. 4.1, requirement r5), a classic case
of a domain constraint. The observation function O links the environment and the agent with
the state space of the learning algorithm—as the algorithm only ’sees’ and ’learns’ about the ob-
servable states. The function O should be total in the sense that every system state should have
a translation to an observable state; otherwise some system trajectories will lead to crashes or
unexpected runs of the learning algorithm. Note that for most applications the domain constraints
are not automatically enforced by the type system, as often only subsets of a type’s values are legal
(say the set of positive floats as opposed to all floats). Typically, these subsets are not tracked by
the type system, thus it is natural to resort to testing. 1

∀( ∈ State . O ( ∈ State , (17)

∀(0 ∈ State . State0 (0 > 0→ O (0 ∈ State . (18)

Equation (17) is testable if we can generate elements of State and check membership in State. In
discrete RL, observable state spaces are finite and relatively small, so the latter is easily achieved by

1In a strongly typed programming language totality of functions can be reflected in types. Unfortunately, pragmatics often

prevents it. The environment states and observations are generated by a physical system, or a simulator, which may be

implemented in another programming language than the learning algorithms or the test harness. For instance, in some of

our Scala-based projects we use Java implementations of the environment to leverage the existing infrastructure.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:16 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

enumerating the observable states. However, in the case of approximate learning, specifically in con-
tinuous state spaces, employing a membership predicate becomes more practical and feasible. That
is, finding a proper observable state space is not straightforward and requires approximating based
on the environment model or problem. This requirement also applies to initial system states, which
follows by combining r2 and r5. When testing it is useful to specify this requirement separately, to

ensure that the property is tested on the initial states. See Eq. (18); recall that State0 is a probability
density function. The precondition that a density is positive ensures that the state is attainable.

We further require that the initial state is not final. Equation (19) tests the interaction of the pmf

State0 (requirement r2) and the predicate F (requirement r8):

∀(0 ∈ State . State0 (0 > 0 → ¬F (O (0) . (19)

For the transition function T , a domain constraint is obtained by combining requirements r5, r6
and r2 in Eq. (20). Together with the properties above, the totality of observation leads to a closure
property—starting in an observable state, we end in an observable state:

∀(C , (C+1 ∈ State.∀� ∈ Action. (T (C �C ) (C+1 > 0 → O (C+1 ∈ State . (20)

For episodic agents (Def. 4.2), we also test termination. Termination is difficult to establish by testing,
but a random exploration strategy with a timeout is effective for simple RL problems. We implement
it as a generic problem property with a timeout parameter (measured in discrete time epochs) in the
model of episodic problems. This way different agents can be tested against different time horizons.

Some properties emerge from the composition of an algorithm and the problem definition, so one
needs to involve both components (sections 4.1 and 4.3) in testing. One such example is a key prop-
erty for reinforcement learning—convergence. Its violation can be caused by errors in the learning
implementation, but also by overly liberal reward functions, a part of the problem definition. While
convergence is not testable generally,2 some special cases can be tested. In the context of a finite im-
plementation we can test whether the accumulated reward values are representable in the range of
double numbers (no overflow errors). An overflow of reward estimation during learning is effectively
a sign of divergence. A test for overflow of rewards can be constructed by performing iterations of up-
dates from various initial&-tables. Given a learning algorithmD and a natural number of iterations=

∀&C ∈ Q. ∀(C ∈ State. ∀�C ∈ Action.

∀& ∈ Q. [([[D]]bdl)
= (&C , (C , �C )]& > 0

→ ∀( ∈ State. ∀� ∈ Action. & ((,�) is in the floating point range, (21)

where the =-times iteration composition of [[D]]bdl is defined using Kleisli-composition (an iteration
with monadic bind). The property states that if a &-table & is reachable via = iterations of the
learning loop from an initial configuration (@C , (C , �C ), all values stored in its cells should be in the
floating point range. The floating point range test can be implemented by tracking overflow ex-
ceptions or by checking the &-table entries for NaN and infinity, depending on the programming
language used. Also the range of the generated&-tables (the first quantifier) needs to be reasonable
(as in regularized, realistic), to avoid values very close to the overflow/underflow limit. What is
realistic range of reward values is problem-dependent.

The domain properties listed above, although very simple, constitute real development problems
in debugging RL implementations. When implementing applications we often encountered these
errors and other RL developers confirmed this to us anecdotally. Such simple tests are able to capture
and help diagnose many confusions in practice. It appears that testing for simple properties helps

2Convergence is also hard to prove in a formal system, and even otherwise—the convergence of deep reinforcement learning

remains an open problem [Sutton and Barto 2018].

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:17

to eliminate the main bugs fast. This is in contrast to complex properties of the algorithm, discussed
in Sect. 5.2, which tend to cause fewer problems in practice. Algorithms are typically implemented
well, and are run (and thus debugged) many times by many users, but problem formulations are
new for every RL task one undertakes and thus prone to new bugs. A good test suite ensuring their
basic properties significantly accelerates the task definition process.

Specific Problem Properties. These tests capture idiosyncratic properties of the problem domain;
they cannot be formulated without a concrete problem. We include a few cases for our running
example to complete the picture, starting with the physics of braking. Equation (22) states that
the car’s position never becomes negative, Eq. (23) expresses that a stopped car cannot be moved
by braking , and Eq. (24) states that a forward-moving car cannot move backward by braking. All
three properties reflect actual bugs experienced by us in our first model of physics for this example:

∀(1, (2 ∈ State.∀� ∈ Action. (T (1 �) (2 ≥ 0 → (2 .? ≥ 0 (22)

∀(1, (2 ∈ State.∀� ∈ Action. [(1.E = 0 ∧ (T (1 �) (2 > 0] → (1.? = (2.? (23)

∀(1, (2 ∈ State.∀� ∈ Action. [(1 .E > 0 ∧ (T (1 �) (2 > 0] → (2.? ≥ (1.? (24)

The next two tests capture basic intuitions about rewards. Equation (25) says that the further the
car is from the obstacle the larger the reward; it is then easier to brake in time, if the velocities
are the same. Equation (26) states that lower velocity should yield higher rewards, as it is easier
to stop by braking from lower velocities, if in the same position.

∀(1, (2 ∈State .∀�∈Action. (1 .? ≤(2.? ∧ (1 .E =(2.E → R (1� ≥ R (2� (25)

∀(1, (2 ∈State .∀�∈Action. (1 .? =(2.? ∧ (1 .E ≤(2.E → R (1� ≥ R (2� (26)

In summary, problem-specific tests are needed to check that the transition function and the reward
function capture the domain characteristics and problem objectives.

5.2 Testing Reinforcement Learning Algorithms

The specification in Sect. 4.3 enables us to derive correctness tests for the learning algorithms.
We start with algorithm-independent properties that apply widely to TD learning methods. The
simplest tests enforce domain constraints on initialization and update steps. Let &0 be the initial
value of a &-table. We test whether &0 is defined for all state action pairs in Eq. (27) and that all
entries are initialized to zero—a common choice—in Eq. (28).

dom &0 = State × Action , (27)

∀(0 ∈ State. ∀�0 ∈ Action. &0 ((0, �0) = 0.0 . (28)

We establish a domain property for the policy used to select actions. Below, c represents some
implementation of a policy; we enforce adherence to the specification of Eq. (4).

∀&C ∈ Q. ∀(C ∈ State. ∀�C ∈ Action. [(c &C (C ) �C > 0] → �C ∈ Action . (29)

While ensuring domain constraints is relevant, the essence of each policy lies in its probabilistic
behavior. In an on-policy Y-greedy learning algorithm (the class considered in this paper), the policy
selects a random action with probability Y and otherwise it greedily follows the highest-value action.
This requirement can be cast as a probability distribution test. For every state (C , the selected action
�C should be distributed according to the distribution c &C (C . In Eq. (30), we derive a Boolean
random variable that tracks selecting the highest value action. We check whether this random

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:18 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

variable is distributed according to a Bernoulli distribution with a parameter derived from Eq. (5).

∀&C ∈ Q. ∀(C ∈ State.

[
(c &C (C ) »= (_�C . �C ≠argmax

�

&C ((C , �))

]
∼Bern

(
Y ·
|Action| − 1

|Action|

)
(30)

In practice during testing, the policy is not available as a symbolic representation of a distribution,
but as a sampling algorithm. Therefore, testing the above law requires a statistical test. In our test
harness for reinforcement learning, we perform a Bayesian test here. We use a weak prior (a Beta
distribution) which encodes that the actual parameter of the Bernoulli distribution is essentially
unknown. We collect a sample of executions of the policy and estimate the posterior belief in
this parameter given the outcomes of these executions, whether the maximum value action or
another action has been selected. This can be calculated analytically for a Beta prior using the
conjugate update rule for a Bernoulli likelihood [Kruschke 2014]. We check whether in the obtained
posterior distribution over values concentrates 0.94 of the probability mass in a small credible
interval containing Y · (1 − |Action|−1 |) (also known as a high density interval [Kruschke 2014]).
As argued in the previous section, the &-table update is the key element of reinforcement

learning—an update is the defining piece of logic for every reinforcement learning algorithm.
Second, updates are executed with high frequency. A learning procedure often involves hundreds of
thousands of episodes, with many epochs per episode, each epoch containing an update. Third, the
success criterion for an update is not easily observable: An update would typically not crash, but
“just” produce a wrong floating point number. For this reason, a broken update step can remain unno-
ticed for a long time, only manifesting in hard to explain subpar results from learning, for instance
a slower convergence or higher variance (instability)—both very hard to assess. Consequently, a
thorough testing of the update step appears prudent.

The specification of an update defines a function that, given a &-table &C , a system state (C , and
an action �C , returns a multivariate density function over successor &-tables, target states, and
subsequent actions (cf. Sect. 4.3). Let update denote the implementation of the update function and
[[D]] the prescribed semantics of this function for the algorithm under test (cf. Sect. 4.3, Eqs. (15)
and (16)). The following requirement states that the implementation and the specification produce
the same multivariate distribution:

∀&C ∈Q. ∀(C ∈State . ∀�C ∈Action. update (&C , (C , �C )= [[D]]bdl (&C , (C , �C ) , (31)

where update stands for the implementation of the update function for the concrete learning
algorithm. Two aspects of Eq. (31) warrant further discussion: first, how is the equality established
(recall that this is an equality on multivariate distributions), second, how the specification [[D]]bdl
is concretely provided to the test. We handle these points in order.

First, an update produces a multivariate distribution over target states, next actions, and&-tables.
Out of the three components, the target state selection belongs to specific problem tests (Sect. 5.1),
the next-action selection follows the policy (see Eq. (30)). Let us focus on the marginal representing

the change in the &-table entry &C (O (C , �C ), as the most interesting here. We derive the two
random variables representing this update using the implementation and the specification.

∀&C ∈ Q. ∀(C ∈ State . ∀�C ∈ Action.
[
update (&C , (C , �C ) »=6

]
=

[
[[D]]bdl (&C , (C , �C ) »=6

]

where 6 = _(&C+1, (C+1, �C+1). &C+1 (O (C , �C ) . (32)

Then we test statistically whether the two distributions agree. Assuming that the updates are
normally distributed, allows us to compare the two samples with a simple Gaussian model. This test
can be implemented in many ways. We perform a Bayesian belief propagation again. We generate

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:19

a statistical sample of update results from both the implementation and the specification, compute
their point-wise difference, and derive a posterior for the difference using an uninformative normal
prior (a conjugate). Then we check whether the posterior for the difference is concentrated around
zero with high probability (credibility interval 0.94) [Kruschke 2014].

To perform this test we need the specification D. We use three strategies in our library to provide
this specification. We list them in the order of increasing trustworthiness. First, we can directly
implement a specification as a function in a functional language, directly following the equations of
Sect. 4.3 instantiated for a concrete algorithm D, and using a sampling-based implementation of
the probability monad (we use our own implementation here). This approach might be useful if
testing an implementation in a different style, say a Python implementation. When testing a purely
functional implementation of a reinforcement learning algorithm, we end up testing essentially
the same code against itself, as the specification and implementation are identical. Second, we can
use an implementation of the update function of another algorithm. For instance, as discussed in
Sect. 4, we can test &-learning using an update function of SARSA, and a greedy policy c . Testing
implementations against each other is a well established tradition—this here is a special case of
differential testing for an expected update value.
The third strategy is the most interesting one from the programming language perspective. It

is crucial that the equations in Sect. 4.3 are executable, given a sampling implementation of the
probability monad. We can thus implement an interpreter for bdl terms, which given a particular
specification term, performs the update accordingly following the model of the update. This allows
using the interpreter to test many TD algorithms, the same way as, for example, interpreters are
used to test compilers and partial evaluators (where interpreted code is also serving as an oracle
for a concrete specialized code). We show fragments of our interpreter in Sect. 6.

6 IMPLEMENTATION

We implemented the above test harness in Scala, and used it to test implementations of SARSA,
&-Learning, and Expected SARSA, along with several example reinforcement learning problems
extracted from text books and research papers. The entire project is about 2.3K lines of purely
functional Scala 3 code using the Cats and ScalaCheck libraries;3 including the algorithms, all
example problems, and tests. Our infrastructure is extensible, it facilitates modular development of
reinforcement applications, and continuous testing during the development. Many tests are reusable
and can be instantiated for new algorithms and problems. The project is open source and available4.

We follow the property-based testing (PBT) methodology of Claessen and Hughes [2000] to bridge
from the formal specification world to the concrete applications. This methodology is useful both for
testing and for development of formal specifications, as it facilitates static type checking and immedi-
ate randomized execution of formal properties. This way obvious, and even some non-obvious, speci-
fication errors can be detected automatically. At the same time the specifications can be used as tests.

In PBT, program properties are written as executable predicates over input data. Testing a property
involves generating inputs automatically, evaluating a predicate on the inputs, and checking
whether it holds on all the inputs. For each input data variable we need a test case generator.
These are typically associated with the types in PBT, at least in strongly typed languages. The PBT
testing libraries provide generators for standard types, and since generators are compositional, it is
relatively cheap to add custom ones, as we also show below. PBT testing libraries are available for
most mainstream programming languages.

3h�ps://typelevel.org/cats/
4h�ps://github.com/itu-square/symsim

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.

https://typelevel.org/cats/
https://github.com/itu-square/symsim


193:20 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

1 forAll { (s_t: State) => // ∀ s_t ∈ State

2 forAll { (a_t: Action) => // ∀ a_t ∈ Action

3 for s_t1 <- agent.step (s_t) (a_t) // s_t1 ← sample(T s_t a_t)

4 d1 = agent.observe (s_t1) // d1 ← O s_t1

5 yield observableStates.contains (d1) // d1 ∈ State

6 } }

Fig. 4. Testing that a state which can be reached by a step can also be correctly observed (a domain constraint).

The comments in the right column relate the test to Eq. (20)

1 val positions = Gen.choose[Double] (0.0, 10.0)

2 val velocities = Gen.choose[Double] (0.0,10.0)

3 val actions = Gen.oneOf (Car.instances.enumAction.membersAscending)

4 forAll (velocities, positions, actions) { (v, p, a) => // ∀ S_1 = (v,p) ∈ State. ∀A ∈ Action

5 for s_2 <- Car.step (CarState (v, p)) (a) // S_2 ← sample(T S_1 A)

6 yield (v > 0 ==> s_2.p >= p) // v > 0 implies S_2.p ≥ S_1.p

7 }

Fig. 5. A car shall not move backwards by braking. The comments in the rightmost column trace to Eq. (24)

1 forAll { (q: Q, a_t: Action) =>

2 val trials = for s_t <- agent.initialize

3 a_t1 <- chooseAction (q) (agent.discretize (s_t))

4 yield a_t1 != bestAction (q) (agent.discretize (s_t))

5 val successes = trials.take (episodes).count { _ == true }

6 val failures = episodes - successes

7 val cdfEpsilon = Beta (2 + successes, 2 + failures).cdf (epsilon)

8 cdfEpsilon >= 0.94

9 }

Fig. 6. An Y-greedy on-policy action choice follows the best action greedily with probability below Y, cf. Eq. (30)

We now demonstrate how the properties of Sect. 5 can be tested. Let us begin with the basic
domain constraint that if a state can be reached, its observation is a valid observable state, as defined
in Eq. (20) (a generic problem property). The test is shown in Fig. 4. Notice that the implementation
is very close to the logical description of the property—the comments make the link explicit. The
biggest difference is that instead of quantifying over (C+1 and checking whether it is reachable with
positive density, we sample the value of (C+1 from the successor state distribution—if the sample
is obtained, we are guaranteed that its density was positive. Notably, in an implementation of the
test, the logical quantifiers (forAll) are implemented as samplers of test data. Instead of proving
the property, the framework evaluates it on several hundreds of input cases.

To support generation of test cases in properties like the one of Fig. 4, the test harness requires
that the problem definition includes generators for actions and states. Below we show the default
generator for the states of the braking car example using ScalaCheck:

1 val genCarState: Gen[CarState] = for

2 v <- Gen.choose (0.0, Double.MaxValue)

3 p <- Gen.choose (0.0, Double.MaxValue)

4 yield CarState (v, p)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:21

Figure 5 shows an example of a specific problem test for our running example—checking whether
the braking car does not go backwards while moving, as specified in Eq. (24). In this example, we use
custom generators (defined in lines 1–3) to control the domains of states, velocities, and actions to
come from some specific ranges. The actual property derives a Boolean random variable representing
test success like before, except that we also use the ScalaCheck pre-condition operator ==>.
Finally, Fig. 6 shows a simple implementation of the learning algorithm property specified in

Eq. (30), checking that when following an Y-greedy policy, a random action is selected with prob-
ability Y with high belief. In this test, random &-tables are generated using our custom generator
(not shown). As we cannot compare distributions directly, we derive a Boolean random variable
trials, true whenever an action has not been selected greedily. We count the number of successes in
a sample and calculate a posterior for the bias parameter (l. 7). Line 8 checks whether this posterior
has almost all values below Y (probability mass 0.94).5

Finally, the test of the update distribution of Eq. (32) follows a similar statistical design. Here the
more interesting aspect is how the update oracle is provided—as mentioned before this can be done
by interpreting our term language. Figure 7 shows all the sampling cases of our bdl interpreter, imple-
menting the semantic rules of Sect. 4.3. The listing has four parts: the bdl abstract syntax implementa-
tion (lines 1–7), an estimation step definition (lines 8–18), a sequential Kleisli composition ofmultiple
estimation steps (lines 19–23), and finally a definition of an update step (lines 24–34). The reader can
convince themselves that the interpreter indeed follows closely and formally the definitions of the
algorithms, and it is fairly easy to establish a one-to-one correspondence (in our implementation the
transition T and reward R are combined in a single call, e.g. in Line 13). A small term in the bdl ab-
stract syntax can be provided to the interpreter to simulate an update of any TD learning algorithm.
A similar interpreter can be naturally implemented in any functional programming language.

7 EXPERIMENTAL EVALUATION

We now assess the applicability of the specification and evaluate the effectiveness of the resulting
test harness. We discuss how these tests can be reused and as a result reduce the cost of testing in
such setups. In particular we address the following research questions:

RQ1 Is the specification general enough to accommodate diverse reinforcement learning problems?
RQ2 How effective is the test harness in finding bugs in reinforcement learning problems?
RQ3 To what extent can generic problem properties be used to reduce the cost of testing for

reinforcement learning problems?

To answer RQ1, we implement a range of small and medium-sized case studies (first 5 columns in
Tbl. 2). We give a brief description of each case study in the following. (Our code and case studies
for the experiments in this section are open source and publicly available [Varshosaz et al. 2023])

Case studies. The Unit Agent is the smallest problem in the collection, featuring a single state
and a constant reward. We have defined and implemented it to facilitate testing and debugging
of learning on a minimal case. Braking Car is the running example of this paper [Vardhan and
Sztipanovits 2021]. The somewhat similar Golf learns what club and force to use to hit the target in
a minimum number of rounds. The Mountain Car aims to learn how to obtain enough momentum
to move up a steep climb [Moore 1990]. Maze requires an agent to find a safe path to a goal location
in a 2D maze [Russell and Norvig 2016]. Windy Grid is similar, but includes randomized dislocation
of the agent (a wind) [Sutton and Barto 2018]. Cliff walking is another example in which the goal of
the agent is to move from a point in a map to another without walking into a cliff area [Sutton and

5For a Bayesian statistics afficionado, we remark that this test would be better done using a proper region-of-practical-

equivalance (ROPE) for Y [Kruschke 2014], but we use a simpler test here to avoid longer discussions of statistics.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:22 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

1 // BDL abstract syntax cf. Eq. (7) p. 10

2 enum Est:

3 case Sample (gamma: Double)

4 case Expectation (gamma: Double)

5 enum Upd:

6 case SampleU, ExpectationU

7 case class Update (est: List[Est], alpha: Double, update: Upd)

8 // Semantics of a sampling estimation step cf. Eq. (9) p. 12

9 def sem (est: Est) (q_t: Q) (s_t: State, a_t: Action, g_t: Double, gamma_t: Double)

10 : Randomized[(State, Action, Double, Double)] = est match

11 case Sample (gamma) =>

12 for (s_tt, r_tt) <- agent.step (s_t) (a_t)

13 os_tt = agent.observe (s_tt)

14 a_tt <- vf.chooseAction (epsilon) (q_t) (os_tt)

15 g_tt = g_t + gamma_t * r_tt

16 gamma_tt = gamma_t * gamma

17 yield (s_tt, a_tt, g_tt, gamma_tt)

18 case Expectation (gamma) => ...

19 // Kleisli composition of mutliple estimation steps cf. Eq. (13) p. 13

20 def sem (ests: List[Est]) (q_t: Q) (s_t: State, a_t: Action, g_t: Double, gamma_t: Double)

21 : Randomized[(State, Action, Double, Double)] =

22 ests.foldM (s_t, a_t, g_t, gamma_t)

23 { case ((s_t, a_t, g_t, gamma_t), e) => sem (e) (q_t) (s_t, a_t, g_t, gamma_t) }

24 // Semantics of a sampling update cf. Eq. (15) p. 14

25 def learningEpoch (bdl: Update, q_t: Q, s_t: State, a_t: Action): Randomized[(Q,State,Action)] =

26 bdl.update match

27 case SampleU =>

28 for (s_tk, a_tk, g_tk, gamma_tk) <- sem (bdl.est) (q_t) (s_t, a_t, 0.0, 1.0)

29 (os_t, os_tk) = (agent.observe (s_t), agent.observe (s_tk))

30 g_tkk = g_tk + gamma_tk * q_t (os_tk, a_tk)

31 q_tt_value = q_t (os_t, a_t) + bdl.alpha * (g_tkk - q_t (os_t, a_t))

32 q_tt = q_t.updated (os_t, a_t, q_tt_value)

33 yield (q_tt, s_tk, a_tk)

34 case ExpectationU => ...

Fig. 7. The abstract syntax and interpreter for BDL (only the sampling parts; the expectation parts differ

minimally as shown in the equations in Sect. 4.3). Given a term representing an update of a particular rein-

forcement learning algorithm, this interpreter serves as a probabilistic correctness oracle for testing updates.

Barto 2018]. The :-arm bandit represents a class of state-less agents which admit : actions [Sutton
and Barto 2018]. Pumping is a larger industrial case study developed together with a public utility
company operating pumping stations for drinking water. The controller must satisfy the public
water consumption while the water table does not run dry or get polluted. The pumping case has
a larger state space with 92160 observable states.

In response toRQ1, we note that the types implementing the concepts of our formal specification
facilitate reinforcement learning problems of various scale. The framework allows for learning
policies by running different learning algorithms and test the applications. Each application has
a test suite and generic tests can be reused between applications. In total, all these case studies
required as little as 68 lines of code for the generator implementations. Thus the generators are

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:23

Table 2. Experiment results. ∗K-arm bandit is the class of stateless randomized problems. Unit agent was used

in testing learning algorithms but it has no tests itself and was unmutated as it represents an artificial problem.

state space size episodic gen. size test cases mutants time mutation

agent continuous observable [LOC] [#] killed survived invalid [s] score [%]

Pumping R×R×R×R 92160 ✓ 17 31 43 16 0 1787 73

Mountain Car R×R 121 × 11 20 24 7 1 34 77

Braking Car R×R 12 ✓ 9 17 25 0 2 43 100

Windy Grid - 70 ✓ 6 17 7 0 1 31 100

Cliff Walking - 38 ✓ 6 13 31 1 0 5 97

Simple Maze - 12 ✓ 7 15 26 2 0 8 93

Golf - 10 ✓ 6 12 9 1 0 7 90

K-arm Bandit* - 2 ✓ 3 5 2 0 4 7 100

Unit Agent - 1 ✓ 3 - - - - - -

not hard or expensive to develop. This highlights the advantage of using the types provided by
the specification that enables reuse in implementing reinforcement learning problems.

To answer RQ2 and RQ3, we evaluate the adequacy and the effectiveness of the test suite, using
mutation testing [DeMillo et al. 1978; Hamlet 1977]. During mutation testing, variants of a program,
calledmutants, are generated by applying syntactic changes, a class of fault injections. The objective
of mutation testing is to measure the ability of a test suite in distinguishing between the output
of the original program and its mutants. The program output is often defined as the observable
return values, thrown exceptions and program crashes (in the context of unit testing). An outcome
of mutation testing is a mutation score that represents the ability of the test suite to discriminate
between mutants and the correct code [Papadakis et al. 2019]. In the following we explain how the
experiments are designed and discuss the results.

Experiment design. We generate mutants of reinforcement learning algorithms, agents and en-
vironments using Stryker,6 a mutation testing tool that supports several programming languages.
Stryker4s is the version of the tool for Scala. We use it to inject faults in the implementation of
the reinforcement learning problem and run tests. Stryker supports syntactic transformation rules,
mutators, for boolean literals, conditional expressions, equality operator, logical operator, method
expressions, regex and string literals. For each mutant Stryker reports a result: survived, means that
all tests passed, killed means that at least one test failed, timeout means that the tests have not
terminated before timeout, and no coverage means the mutation was not detected by tests—no test
failed. Besides these, Stryker also reports invalid mutants e.g., mutants causing runtime errors.
Stryker computes a mutation score as:

mutation score =
#killed + #timout

#valid × 100
(33)

Mutators for arithmetic operations are not supported by Stryker for Scala, so it does not generate
mutants of reinforcement learning algorithms (other mutators do not change the code as their target
operations do not exist in the algorithm). This is a limitation applied conservatively for Scala as
arithmetic operators are function calls and, depending on the code, mutating these operators can lead
to mutants that are stillborn (i.e., syntactically illegal). To mitigate for this weakness, we manually
(using a script) mutate our implementations of reinforcement learning algorithms following the

6h�ps://stryker-mutator.io/

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.

https://stryker-mutator.io/


193:24 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

strategy used by Stryker’s arithmetic mutators for other languages. In general, these changes are
among the common changes applied by arithmetic mutators [Papadakis et al. 2019]: swapping plus
for minus or vice-versa (<1) and swapping division for multiplication or vice versa (<2).

Execution and results. We generate mutants for all case studies described in Tbl. 2, except for the
unit agent which is not a real agent but rather an algebraic construct used to test the algorithms
(it has a singleton state and a singleton policy space). We use Stryker4s version 0.14.3, which is the
latest available version that supports Scala 3. The mutants of the reinforcement learning algorithms
are generated semi-automatically using a Python script which applies arithmetic mutators to
inject faults in the implementation (other mutators are not applicable for these implementations
as explained above). To answer RQ2, we run Stryker on each of the case studies individually 10
times. The experiments are performed on a Macbook Pro with 2,3 GHz Quad-Core Intel Core i5
processor and 16 GB RAM.

The results can be found in the six right-most columns of Tbl. 2. The test cases column shows the
total number of tests that are run against each mutant. This number includes six generic problem
tests (laws) that should hold for all agents. The time reported in the table is the average of the time
for Stryker running tests on mutated files in 10 experiment runs. As the mutation score can change
due to the randomisation in tests, we report the lowest mutation score in case of changes between
runs (only in two cases the mutation score changed between runs).
In response to RQ2, we note that the results of evaluation show that in 75% of the cases the

mutation score is above 90%. One of the common reasons for surviving mutants is lack of tests
for extreme values which is due to the limitation of test data generators. Additionally, there are
mutants, for example in the pump case, that are result of applying changes in a function in which the
outcome is conditionally selected from overlapping intervals. Hence, writing tests that distinguish
changes in the conditions is not feasible.

To address RQ3, we re-run the experiments excluding the tests specific to the agents and using
only generic tests. These tests express properties (laws) that should hold for any reinforcement
learning problem, specifically agent and algorithm in this framework. The results of performing mu-
tation testing using generic problem tests are presented in Fig. 8. In this figure the number of killed
and survived mutants are depicted (the number of invalid mutants remain the same as in Tbl. 2).

To answer RQ3, we note that the results in Fig. 8 (right) show that in all cases except for pump
example the mutation score is above 48%. We observe that mutants are detected by tests that
perform sanity checks on the output of the functions responsible for discretizing (observing) the
state space and identifying when an agent is in a final state. The results show that these tests can
be effective in finding a subset of bugs and providing them can give an advantage to the developer
to avoid rewriting the tests which reduces the cost of testing as a result.
Figure 8 (left) illustrates the results of performing mutation testing for SARSA and Expected

SARSA algorithms. For each algorithm seven tests (laws) are executed. In SARSA algorithm, five
faults are injected including three by<1 and two by<2 mutations. All mutants with<1 changes
are killed by tests that are generated based on the specification of SARSA algorithm as explained in
Sect. 5. The mutants with<2 changes are stillborn and are caught by the Scala type checker due to
a type mismatch introduced by the change. In Expected SARSA algorithm, six faults are injected
including three by<1 and three by<2. Similarly the three mutants with<1 changes are killed
and the three mutants with<2 changes are caught by the Scala type checker. As an additional
observation in relation to RQ3, we note that in this case all valid mutants are killed by the tests
designed for the learning algorithms while the stillborn mutants are caught by Scala type checker.
Hence, considering the valid mutants, a full detection of bugs is achieved by the tests designed for

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:25

Fig. 8. Mutation results with generic tests for SARSA/Expected SARSA (le�) and case studies (right).

testing TD algorithms. These test cases can be parameterized and reused between algorithms and
as a result can contribute to reducing the cost of testing the reinforcement learning setups.

8 DISCUSSION

Supporting Other Reinforcement Learning Methods. We focused on testing on-policy TD learning,
and exploited an equivalence of updates to test also &-learning, which is an off-policy algorithm.
In general, specifying off-policy learning requires a refinement of bdl semantics to support two
policies simultaneously. There are no technical obstacles to it, besides maintaining the simplicity of
exposition. In Eqs. (9), (10), (15) and (16), one needs to distinguish the policy c used for estimation
in the final update from the one that is used to select the next action for execution. Presently, the
same policy is used for both. We do intend to implement this in our Scala harness soon.

Support forMonte Carlo methods and dynamic programming can be added rather directly. Monte
Carlo methods are very similar to =-step TD methods (Tbl. 1). The main difference is that the update
only happens at the end of an episode, i.e., when a terminal state is reached. At this point the
actual return is known and the state action values can be updated. The sequencing of estimations
for episodic systems is a special case of the sequencing of estimations introduced in Eq. (15). To
describe the termination of episodes in a final state, without a pre-specified number of steps, a
Kleene-star-like variant of the update equation could be introduced in bdl. We sketch its definition
below. Note that the update-until-termination does not require the final prediction step, as all
rewards are known until a termination of a run.

[[est Update ∗ ]]bdl (0 �0 �C WC =

_
(
&C , (C , �C

)
. if F (O (C ) (at the end of the episode?)

then Det
(
&C [((0, �0) ↦→ �C ] , (C , �C

)
(update and stop if in final)

else [[est]]est (&C ) ((C , �C ,�C , WC ) »= (execute the estimation step)

_((C+1, �C+1,�C :C+1, WC+1) . Det
(
O (C+1

)
»= (observe the resulting state)

_(C+1 . [[est Update ∗ ]]bdl (0 �0 �C :C+1 WC+1 (&C , (C+1, �C+1) (iterate again) (34)

Here, the state (0 is the origin state of the Monte Carlo update (initially the same as O (C ), and�0 is
the initial action (same as the first �C ). The values of �C and WC , the initial accumulated reward and
the initial compounded discount factors, should be initialized to zero and one, respectively. The
essential difference from Eq. (15) is found in the first three lines. We check whether the agent has
arrived at a final state and terminate with an update, if so. Otherwise we iterate again, maintaining

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:26 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

the current accumulated reward and discount factor. The above can be defined as the least fixed
point of a Scott-continuous operator (the core of the equation above) in a suitable domain. These are
standard steps though, so we omit the details, in favour of a program-like recursive presentation.
For dynamic-programming-based methods (DP), the learner requires an explicit probabilistic

model of the environment. Hence, in the update rules one should use an MDP model instead
of sampling to obtain the successor states, rewards and their probabilities. The DP algorithms
commonly use a state value function + ∈ State→ R, instead of a &-table. A state value function
represents the total amount of reward that an agent can accumulate over the episodes starting in that
state. The value of each state is updated iteratively, by accumulating the immediate reward and value
of all possible successor states, i.e., the states that are reachable in one step. To formalize this, the
same structure of the equations can be kept, but with a unary (not binary) value function. Moreover,
one can eliminate the probability monad, as the dynamic programming update is deterministic (or
uses Dirac distributions if maintaining the same structure with probabilistic algorithms is desirable).
Testing the TD(_) algorithm requires modeling eligibility traces [Sutton and Barto 2018] in the

bdl semantics and the interpreter. The eligibility traces are a mechanism which allows to execute
multiple TD-updates simultaneously, similarly to pipe-lining in CPUs. Once eligibility traces are
handled in the bdl interpreter it will graduate from being a test oracle to being a general TD learning
algorithm, parameterized by an updated specification, which is interesting for future work.

It is also interesting to generalize to different value function representations, to allow approximate
learning with neural networks. As bdl abstracts from the representation of the Q-table, a neural
network can in principle be used; structurally the specification should not change much. For
example Actor-critic methods still follow the pattern of TD(0), SARSA, and Q-Learning [Sutton
and Barto 2018]. As action selection is already probabilistic in our model (Y-exploration), for
continuous actions we just need to switch from sampling a discrete distribution to a continuous
one. The challenge lies in formalizing gradient-based updates on neural networks, which are much
more sophisticated than simple assignments to a table cell, and require non-trivial further work;
similarly for popular newer policy iteration methods like PPO [Schulman et al. 2017]. To address
this limitation, we plan to investigate using methods taken from the differentiable programming
languages field in the future.

Software Testing with Statistics. As machine learning gains popularity, we face more and more
programs with probabilistic correctness requirements that have to be tested statistically. Rein-
forcement learning is one such example. This requires development of new experience in software
testing. The tests we used are certainly simple, even simplistic, as we prioritized efficiency and
simplicity over strength. Assuming conjugate priors is too strong in general [McElreath 2020].
Monte-Carlo posterior estimation is a possible alternative—unfortunately this would slow the tests
down by several orders of magnitude. The performance problem is exacerbated, if more precise
tests are used. We tested for equivalence of expectations, but the variance is also relevant for
reinforcement learning, especially that learning algorithms may agree on the expectation but differ
on variance. Comparing variance would help to kill mutants that maintain the same expectation
at the cost of slower convergence, which manifests in a higher variance of reward estimations.
Unfortunately, it is computationally much harder to estimate variance as precisely as the mean. In
general, the credibility (strength) of statistical tests correlates with their computational cost. More
samples are required for stronger conclusions.
Statistical tests are by their very nature flaky [Luo et al. 2014]. They can fail occasionally,

disturbing continuous integration, or mutation scoring like in our experiments (mutation runs the
tests many times, increasing the chance of failure occurring). There is an inherent tension between
flakiness of tests and their ability to kill mutants and to detect bugs. One can set weaker thresholds

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:27

for credibility of a test, which will make it fail less or practically never, but it will also make it
accept larger deviations from the spec and miss more bugs. One can strengthen the test to kill more
mutants, but this will increase the frequency at which the test will fail randomly on the correct
code. This trade-off makes it very difficult to set the hyper parameters (thresholds) for statistical
tests. We have done this by trial-and-error, but more systematic methods are needed.

9 RELATED WORK

A large body of recent work studies the use of RL and deep RL to improve testing processes. Such
techniques [Liu et al. 2022; Romdhana et al. 2022; Su et al. 2022; Tufano et al. 2022; Türker et al. 2021;
Zhang et al. 2021; Zheng et al. 2021] are applied for testing a variety of systems (e.g., video games,
web applications, and cyber physical systems). In contrast, we are concerned with the opposite
problem—applying testing to reinforcement learning.

Many authors focus on testing Machine Learning (ML) algorithms broadly. For example, optimiz-
ing stochastic regression tests in ML projects [Dutta et al. 2021], augmenting a deep learning test
set to increase its mutation score [Riccio et al. 2021], testing bias in ML software [Chakraborty et al.
2021], pointwise robustness in deep neural networks [Wu et al. 2020], concolic testing for deep neu-
ral networks [Sun et al. 2018], formally verifying safety properties of deep reinforcement learning
system [Ivanov et al. 2020]. The present paper does not contribute to testing neural networks (even
if they are a representation of value functions used in RL) but addresses testing the correctness
of RL problems and algorithm implementations by providing specifications for their basic blocks.
In the field of RL, a key topic of focus in prior work is the reliability assessment of a trained

agent. Adversarial ML is used to understand the behavior of models and algorithms in the presence
of failure inducing contexts and behaviors. Huang et al. investigate impact of the effectiveness of
adversarial examples on a deep RL algorithm [Huang et al. 2017]. Lin et al. introduce strategically
timed attacks on RL agents [Lin et al. 2017]. Amirloo et al. propose to guide adversarial sampling by
a predictor trained along with the agent to predict the probability of failure [Abolfathi et al. 2021].
Vardhan and Sztipanovits use a generative model to find failure scenarios [Vardhan and Sztipanovits
2021]. Ruderman et al. study the worst-case analysis to detect the directions in which agents may
have failed to generalize while learning the policy [Ruderman et al. 2019]. To overcome the small
adversarial perturbations on the agent’s inputs, Oikarinen et al. propose to train RL agents with
improved robustness against ;? -norm bounded adversarial attacks [Oikarinen et al. 2021]. In this
line of work, the focus is on optimality and generality of the obtained policies. However, they side
step the problem of correctness of the RL implementations used to learn the policies. In contrast,
we follow a modular testing strategy, not unlike unit testing, for low-level properties of individual
elements in RL applications, hoping that this exposes problems early and close to their origins.
Furthermore, this way we also hope to inspire work on formal verification of RL, as properties
follow the style more often used in verification.
Another line of work, surveyed by García and Fernández [2015], addresses the synthesis and

update of models that preserve safety properties by either modifying the optimality criterion
or the exploration process. In particular, safety properties can be ensured for RL algorithms by
incorporating a shielding mechanism that prevents the algorithm from taking actions that could lead
to unsafe outcomes, by means of techniques such as control barrier functions [Alshiekh et al. 2018],
logically constrained learning [Hasanbeig et al. 2018] and safe permissive schedulers [Junges et al.
2016]. Justified speculative control proves the shields safe by means of deductive verification [Fulton
and Platzer 2018, 2019]. Jansen et al. consider probabilistic shielding to ensure the safety of RL
agents [Jansen et al. 2020]. Tappler et al. combine automata learning and shielding into amethod that
enables RL agents to acquire a model of the environment and enforces safety constraints [Tappler
et al. 2022b]. Although both shielding and testing are concerned with the correctness of RL, shielding

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:28 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

techniques are complementary to testing: they aim at enforcing correctness by constraining the
learning process rather than at exposing bugs. Whereas shielding techniques mainly focus on
constraining the actions of reinforcement learning problems, our work addresses property-based
testing both for reinforcement learning problems and for the learning algorithms themselves.
Other software engineering methods have been applied to test and verify RL agents, including

black-box fuzzing [Pang et al. 2022], search-based testing [Tappler et al. 2022a], mutation testing [Lu
et al. 2021], deductive reasoning [Déletang et al. 2021], using machine learning models and genetic
algorithms to test policies [Zolfagharian et al. 2023]. Alur et al. have studied the formal specifications
of RL tasks [Jothimurugan et al. 2019] and of multi-agent RL problems [Jothimurugan et al. 2022],
transforming task specifications in RL [Alur et al. 2022], RL algorithms in abstract decision processes
[Jothimurugan et al. 2021b], and compositional RL from logical specifications [Jothimurugan et al.
2021a] are other cases that software engineering to RL. In contrast, our work is concerned with
providing a direct formal specification of correctness for RL problems and algorithms themselves, as
opposed to the policies that they output. We develop a property-based test harness for all elements
of a RL problem and algorithm. We are not aware of similar formal definitions of RL problems that
are precise and self-contained and nor of prior uses of property-based testing for RL.

10 CONCLUSION

We have presented a formal specification of the different components of reinforcement learning,
targeting temporal difference methods. The formalization enables us to derive an associated test
harness, reusable across a large class of reinforcement learning applications based on &-learning,
SARSA, etc. Somewhat unusually for the reinforcement learning context, the testing harness embeds
an interpreter of formal models for update equations as an oracle (a practice well recognized in
programming language engineering). The test harness has been evaluated on several algorithms and
agents using mutation testing, showing good baseline effectiveness. Our implementations (including
all algorithms, laws, case study examples, and test scripts) is available as an open source project.

Formal verification and testing of learning algorithms is a fast growing research field. As specifica-
tion is the first step towards verification, this paper may help researchers working on verification of
probabilistic programs to tackle reinforcement learning. We also hope that the presentation of tests
in Sections 5 and 6 can serve as a tutorial on how and what to test when developing a RL system.

ACKNOWLEDGMENTS

Partially funded by DIREC (Digital Research Centre Denmark), a collaboration between the eight
Danish universities and the Alexandra Institute supported by the Innovation Fund Denmark.

DATA AVAILABILITY STATEMENT

The experiment data and the scripts to reproduce them are available at Varshosaz et al. [2023].
The implementation of symsim and its test suite are an open source project available at h�ps:
//github.com/itu-square/symsim.

A APPENDIX

In order to facilitate translating our specification to formal verification systems and to other testing
frameworks, we include an integrated definition below.

A.1 A Formal Specification of Reinforcement Learning

A.1.1 Reinforcement Learning Problems. In the following we add the definitions for formalising a
reinforcement learning problem.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.

https://github.com/itu-square/symsim
https://github.com/itu-square/symsim


Formal Specification and Testing for Reinforcement Learning 193:29

Definition A.1. A Reinforcement Learning Problem is represented by a tuple (State, State0,
Action, State,O,T,R, F ) where:

r1: State is a possibly infinite set of states of the environment and the agent combined,

r2: State0 ∈ pdf State is a density function defining probability for initial states,
r3: Action is a finite set of actions that an agent can take,
r4: State is a finite set of observable states,
r5: O ∈ State → State is a total observation function,
r6: T ∈ State → Action→ pdf State is the transition probability function,

r7: R ∈ State → Action→ R is the reward function, and
r8: F ∈ State→ {0, 1} is a predicate defining which observable states are final for a training

episode. Initial states are not final, i.e., if State0 (() > 0 then not F (O ().

Definition A.2. A RL problem is episodic iff every run from an initial state eventually reaches

some final state ( , so F (O ()=1. Otherwise the problem is non-episodic.

Policy c is a probability function that, given a value function, represents the distribution of
plausible actions in each state.

c ∈ Q→ State→ pmf Action (RL 3)

Action selection based on an Y-greedy algorithm is defined as:

(c &C (C )�C =

{
1 − Y + Y · |Action|−1 �C = argmax�& ((C , �)

Y · |Action|−1 otherwise
(RL 4)

A.1.2 Temporal Difference Learning Algorithms. The general update rule for a TD prediction
method is:

& ((C , �C ) ← & ((C , �C ) + U (�C −& ((C , �C )) . (RL 5)

A.1.3 Formalising Temporal Difference Algorithms. The proposed abstract syntax for backup dia-
grams is generated by the following grammar:

est ::= sampleW | expectationW

bdl ::= est+ UpdateU (sample | expectation) . (RL 6)

The semantic domain of an estimation step is:

[[ · ]]est ∈ Q→ State × Action × R × R→ pmf (State × Action × R × R) (RL 7)

The semantic function for a sampling estimation step is:

[[sampleW ]]est &C =

_((C , �C ,�:C , WC ). T (C �C »=

_(C+1. Det
(
R (C+1 �C

)
»=

_'C+1. Det
(
O (C+1

)
»=

_(C+1 . c &C (C+1 »=

_�C+1 . Det (�:C + WC'C+1) »=

_�:C+1. Det
(
WC · W

)
»=

_WC+1. Det
(
(C+1, �C+1,�:C+1, WC+1

)
(RL 8)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:30 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

The semantic function for an expectation estimation step is:

[[expectationW ]]est &C =

_((C , �C ,�:C , WC ). T (C �C »=

_(C+1. Det
(
R (C+1 �C

)
»=

_'C+1. Det(O (C+1) »=

_(C+1 . c &C (C+1 »=

_�C+1 . Det
(
�:C + WC

[
'C+1 +

∑
�≠�C+1

(c & (C+1)� ·& ((C+1, �)
] )

»=

_�:C+1. Det
(
WC · W · (c & (C+1)�C+1

)
»=

_WC+1. Det
(
(C+1, �C+1,�:C+1, WC+1

)
(RL 9)

The semantic domain for a sequence of composed estimation steps:

[[est1 · · · est: ]]est+ ∈ Q→ State × Action × R × R→ pmf (State × Action × R × R) (RL 10)

The semantics of composed estimation steps is defined as:

[[est1 · · · est: ]]est+ &C =

_((C , �C ,�:C , WC ). [[est1]]est (&C ) ((C , �C ,�:C , WC ) »=

_((C+1, �C+1,�:C+1, WC+1). [[est2]]est (&C ) ((C+1, �C+1,�:C+1, WC+1) »=

...

_((C+:−1, �C+:−1,�:C+:−1, WC+:−1).

[[est: ]]est (&C ) ((C+:−1, �C+:−1,�:C+:−1, WC+:−1) (RL 11)

The compact version of the above composition is:

[[est1 · · · est: ]]est+ &C = [[est1]]est &C »=» [[est2]]est &C »=» · · · »=» [[est: ]]est &C (RL 12)

The semantic domain of an update step is:

[[est: UpdateU (sample | expectation)]]bdl ∈ Q × State × Action→ pmf (Q × State × Action)
(RL 13)

The semantic function for an update step finalized with a sample is:

[[est: UpdateU sample]]bdl =

_(&C , (C , �C ). [[est
: ]]est+ (&C ) ((C , �C , 0, 1) »=

_((C+: , �C+: ,�C :C+: , WC+: ). Det
(
O (C ,O (C+:

)
»=

_((C , (C+: ). Det (�C :C+: + WC+: ·& ((C+: , �C+: )) »=

_�C :C+:+1 . Det (&C ((C , �C ) ↦→ & ((C , �C ) + U [�C :C+:+1 −& ((C , �C )]) »=

_&C+1. Det(&C+1, (C+: , �C+: ) (RL 14)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



Formal Specification and Testing for Reinforcement Learning 193:31

The semantic function for an update step finalized with an expectation is:

[[est: UpdateU expectation]]bdl =

_(&C , (C , �C ). [[est
: ]]est+ (&C ) ((C , �C , 0, 1) »=

_((C+: , �C+: ,�C :C+: , WC+: ). Det
(
O (C ,O (C+:

)
»=

_((C , (C+: ). Det (�C :C+: + WC+:
∑

� (c (C+:+1�) ·&C ((C+: , �)) »=

_�C :C+:+1 . Det (&C ((C , �C ) ↦→ &C ((C , �C ) + U [�C :C+:+1 −&C ((C , �C )]) »=

_&C+1 . Det(&C+1, (C+: , �C+: ) (RL 15)

A.2 Selected Tests for Reinforcement Learning

A.2.1 Testing RL Problems. Every system state should have a translation into an observable state.

∀( ∈ State . O ( ∈ State , (RL 16)

∀(0 ∈ State. State0 (0 > 0→ O (0 ∈ State . (RL 17)

An initial state is never a final state:

∀(0 ∈ State . State0 (0 > 0→ ¬F (O (0) . (RL 18)

Starting in an observable state, taking an action, an agent ends in an observable state.

∀(C ∈ State . ∀�C ∈ Action. O (T (C �C ) ∈ State (RL 19)

A.2.2 Testing RL Algorithms. An initial&-table&0 is defined for all state action pairs and all entries
are initialized to zero.

dom &0 = State × Action (RL 20)

∀(0 ∈ State. ∀�0 ∈ Action. &0 ((0, �0) = 0.0 (RL 21)

A policy c includes valid actions.

∀&C ∈ Q. ∀(C ∈ State. ∀�C ∈ Action. [(c &C (C ) �C > 0] → �C ∈ Action (RL 22)

The probability distribution test for the Y-greedy algorithm.

∀&C ∈ Q. ∀(C ∈ State.
[
(c &C (C ) »= (_�C . �C ≠argmax

�

&C ((C , �))

]
=Bern

(
Y ·
|Action| − 1

|Action|

)
(RL 23)

The implementation and the specification produce the same multivariate distribution.

∀&C ∈ Q. ∀(C ∈ State . ∀�C ∈ Action.

update (&C , (C , �C ) = [[D]]bdl (&C , (C , �C ) (RL 24)

The updates are normally distributed as they are affected by the noise in many executions of the
agent.

∀&C ∈ Q. ∀(C ∈ State . ∀�C ∈ Action.
[
update (&C , (C , �C ) »=6

]
=

[
[[D]]bdl (&C , (C , �C ) »=6

]

where 6 = _(&C+1, (C+1, �C+1). &C+1 (O (C , �C ) (RL 25)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.



193:32 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

REFERENCES

Elmira Amirloo Abolfathi, Jun Luo, Peyman Yadmellat, and Kasra Rezaee. 2021. CoachNet: An Adversarial Sampling

Approach for Reinforcement Learning. In NeurIPS2019 Workshop on Safety and Robustness in Decision Making. arXiv.

h�ps://doi.org/10.48550/ARXIV.2101.02649

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and Ufuk Topcu. 2018. Safe

reinforcement learning via shielding. In Proc. AAAI Conference on Artificial Intelligence, Vol. 32. AAAI Press. h�ps:

//doi.org/10.1609/aaai.v32i1.11797

Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. 2022. A Framework for Transforming Specifications

in Reinforcement Learning. In Principles of Systems Design: Essays Dedicated to Thomas A. Henzinger on the Occasion of

His 60th Birthday (Lecture Notes in Computer Science, Vol. 13660), Jean-François Raskin, Krishnendu Chatterjee, Laurent

Doyen, and Rupak Majumdar (Eds.). Springer. h�ps://doi.org/10.1007/978-3-031-22337-2_29

Joymallya Chakraborty, Suvodeep Majumder, and TimMenzies. 2021. Bias in Machine Learning Software: Why? How?What

to Do?. In Proc. 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (Athens, Greece) (ESEC/FSE 2021). ACM Press, 429––440. h�ps://doi.org/10.1145/3468264.3468537

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs.

In 5th ACM SIGPLAN International Conference on Functional Programming (ICFP’00). ACM Press, 268–279. h�ps:

//doi.org/10.1145/357766.351266

Kristopher De Asis, J. Fernando Hernandez-Garcia, G. Zacharias Holland, and Richard S. Sutton. 2018. Multi-Step Reinforce-

ment Learning: A Unifying Algorithm. In Proc. 32nd AAAI Conference on Artificial Intelligence and Thirtieth Innovative

Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial

Intelligence (AAAI’18/IAAI’18/EAAI’18). AAAI Press, Article 354, 8 pages. h�ps://doi.org/10.1609/aaai.v32i1.11631

Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. 1978. Hints on test data selection: Help for the practicing

programmer. Computer 11, 4 (1978), 34–41. h�ps://doi.org/doi:10.1109/C-M.1978.218136

Saikat Dutta, Jeeva Selvam, Aryaman Jain, and Sasa Misailovic. 2021. TERA: Optimizing Stochastic Regression Tests in

Machine Learning Projects. In Proc. 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual,

Denmark) (ISSTA 2021). ACM Press, 413––426. h�ps://doi.org/10.1145/3460319.3464844

Grégoire Déletang, Jordi Grau-Moya, Miljan Martic, Tim Genewein, Tom McGrath, Vladimir Mikulik, Markus Kunesch,

Shane Legg, and Pedro A. Ortega. 2021. Causal Analysis of Agent Behavior for AI Safety. arXiv. h�ps://doi.org/10.48550/

ARXIV.2103.03938

Nathan Fulton and André Platzer. 2018. Safe Reinforcement Learning via Formal Methods: Toward Safe Control Through

Proof and Learning. In Proc. Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), Sheila A. McIlraith and

Kilian Q. Weinberger (Eds.). AAAI Press, 6485–6492. h�ps://doi.org/10.1609/aaai.v32i1.12107

Nathan Fulton and André Platzer. 2019. Verifiably safe off-model reinforcement learning. In Proc. 25th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2019) (Lecture Notes in Computer

Science, Vol. 11427). Springer, 413–430. h�ps://doi.org/10.1007/978-3-030-17462-0_28

Javier García and Fernando Fernández. 2015. A comprehensive survey on safe reinforcement learning. J. Mach. Learn. Res.

16 (2015), 1437–1480. h�ps://dl.acm.org/doi/10.5555/2789272.2886795

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. 2013. Bayesian data analysis.

CRC press.

Andrew Gelman and Cosma Rohilla Shalizi. 2013. Philosophy and the practice of Bayesian statistics. Brit. J. Math. Statist.

Psych. 66, 1 (2013), 8–38. h�ps://doi.org/10.1111/j.2044-8317.2011.02037.x

Richard G. Hamlet. 1977. Testing Programs with the Aid of a Compiler. IEEE Transactions on Software Engineering 3, 4

(1977), 279–290. h�ps://doi.org/10.1109/TSE.1977.231145

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2018. Logically-Correct Reinforcement Learning.

CoRR abs/1801.08099 (2018). arXiv:1801.08099 h�p://arxiv.org/abs/1801.08099

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. 2017. Adversarial Attacks on Neural Network

Policies. arXiv. h�ps://doi.org/10.48550/ARXIV.1702.02284

Radoslav Ivanov, Taylor J Carpenter, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee. 2020. Case study: verifying

the safety of an autonomous racing car with a neural network controller. In Proc. 23rd International Conference on Hybrid

Systems: Computation and Control. 1–7. h�ps://doi.org/10.1145/3365365.3382216

Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick Bloem. 2020. Safe Reinforcement Learning

Using Probabilistic Shields. In Proc. 31st International Conference on Concurrency Theory (CONCUR 2020) (LIPIcs, Vol. 171),

Igor Konnov and Laura Kovács (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 3:1–3:16. h�ps://doi.org/10.

4230/LIPIcs.CONCUR.2020.3

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. 2019. A Composable Specification Language for Reinforcement

Learning Tasks. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.

https://doi.org/10.48550/ARXIV.2101.02649
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.1007/978-3-031-22337-2_29
https://doi.org/10.1145/3468264.3468537
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://doi.org/10.1609/aaai.v32i1.11631
https://doi.org/doi: 10.1109/C-M.1978.218136
https://doi.org/10.1145/3460319.3464844
https://doi.org/10.48550/ARXIV.2103.03938
https://doi.org/10.48550/ARXIV.2103.03938
https://doi.org/10.1609/aaai.v32i1.12107
https://doi.org/10.1007/978-3-030-17462-0_28
https://dl.acm.org/doi/10.5555/2789272.2886795
https://doi.org/10.1111/j.2044-8317.2011.02037.x
https://doi.org/10.1109/TSE.1977.231145
https://arxiv.org/abs/1801.08099
http://arxiv.org/abs/1801.08099
https://doi.org/10.48550/ARXIV.1702.02284
https://doi.org/10.1145/3365365.3382216
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3


Formal Specification and Testing for Reinforcement Learning 193:33

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. 2021a. Compositional Reinforcement Learning from

Logical Specifications. In Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.

Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 10026–10039.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. 2022. Specification-Guided Learning of Nash

Equilibria with High Social Welfare. In Proc. 34th International Conference on Computer Aided Verification (CAV 2022)

(Lecture Notes in Computer Science, Vol. 13372), Sharon Shoham and Yakir Vizel (Eds.). Springer, 343–363. h�ps:

//doi.org/10.1007/978-3-031-13188-2_17

Kishor Jothimurugan, Osbert Bastani, and Rajeev Alur. 2021b. Abstract Value Iteration for Hierarchical Reinforcement

Learning. In Proc. 24th International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning

Research, Vol. 130), Arindam Banerjee and Kenji Fukumizu (Eds.). PMLR, 1162–1170.

Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-Pieter Katoen. 2016. Safety-Constrained Reinforce-

ment Learning for MDPs. In Proc. 22nd International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS 2016) (Lecture Notes in Computer Science, Vol. 9636), Marsha Chechik and Jean-François Raskin (Eds.).

Springer, 130–146. h�ps://doi.org/10.1007/978-3-662-49674-9_8

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. 1996. Reinforcement Learning: A Survey. J. Artif. Intell.

Res. 4 (1996), 237–285. h�ps://doi.org/10.1613/jair.301

John Kruschke. 2014. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. 2017. Tactics of Adversarial

Attack on Deep Reinforcement Learning Agents. In Proc. 26th International Joint Conference on Artificial Intelligence

(IJCAI’17). AAAI Press, 3756–3762. h�ps://doi.org/10.24963/ijcai.2017/525

Junrui Liu, Yanju Chen, Bryan Tan, Isil Dillig, and Yu Feng. 2022. Learning Contract Invariants Using Reinforcement

Learning. In Proc. 37th IEEE/ACM International Conference on Automated Software Engineering, (ASE 2022). ACM Press,

63:1–63:11. h�ps://doi.org/10.1145/3551349.3556962

Yuteng Lu, Weidi Sun, and Meng Sun. 2021. Mutation Testing of Reinforcement Learning Systems. In Proc. 7th International

Symposium on Dependable Software Engineering: Theories, Tools, and Applications (SETTA 2021) (Lecture Notes in Computer

Science, Vol. 13071), Shengchao Qin, Jim Woodcock, and Wenhui Zhang (Eds.). Springer, 143–160. h�ps://doi.org/10.

1007/978-3-030-91265-9_8

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An empirical analysis of flaky tests. In Proc. 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE-22), Shing-Chi Cheung, Alessandro

Orso, and Margaret-Anne D. Storey (Eds.). ACM Press, 643–653. h�ps://doi.org/10.1145/2635868.2635920

Richard McElreath. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (2nd ed.). CRC Press.

Andrew W. Moore. 1990. Efficient memory-based learning for robot control. Ph.D. Thesis, University of Cambridge.

Tuomas Oikarinen, Wang Zhang, Alexandre Megretski, Luca Daniel, and Tsui-Wei Weng. 2021. Robust Deep Reinforcement

Learning through Adversarial Loss. In Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,

Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, 26156–26167.

Qi Pang, Yuanyuan Yuan, and Shu Wang. 2022. MDPFuzz: Testing Models Solving Markov Decision Processes. In Proc.

31st ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2022). ACM Press, 378–390. h�ps:

//doi.org/10.1145/3533767.3534388

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. 2019. Chapter Six - Mutation Testing

Advances: An Analysis and Survey. Advances in Computers, Vol. 112. Elsevier, 275–378. h�ps://doi.org/10.1016/bs.

adcom.2018.03.015

Norman Ramsey and Avi Pfeffer. 2002. Stochastic lambda calculus and monads of probability distributions. In Proc. 29th

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2002), John Launchbury and John C. Mitchell

(Eds.). ACM Press, 154–165. h�ps://doi.org/10.1145/503272.503288

Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepMetis: Augmenting a Deep Learning

Test Set to Increase its Mutation Score. In 36th IEEE/ACM International Conference on Automated Software Engineering

(ASE 2021). 355–367. h�ps://doi.org/10.1109/ASE51524.2021.9678764

Andrea Romdhana, Mariano Ceccato, Alessio Merlo, and Paolo Tonella. 2022. IFRIT: Focused Testing through Deep

Reinforcement Learning. In 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). 24–34. h�ps:

//doi.org/10.1109/ICST53961.2022.00013

Avraham Ruderman, Richard Everett, Bristy Sikder, Hubert Soyer, Jonathan Uesato, Ananya Kumar, Charlie Beattie, and

Pushmeet Kohli. 2019. Uncovering Surprising Behaviors in Reinforcement Learning via Worst-case Analysis. In Safe

Machine Learning workshop at ICLR 2019.

G. A. Rummery andM. Niranjan. 1994. On-line Q-learning Using Connectionist Systems. Technical Report CUED/F-INFENF/TR

(1994). h�ps://cir.nii.ac.jp/crid/1573668924277769344

Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: A modern approach. Pearson Education Limited.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.

https://doi.org/10.1007/978-3-031-13188-2_17
https://doi.org/10.1007/978-3-031-13188-2_17
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1613/jair.301
https://doi.org/10.24963/ijcai.2017/525
https://doi.org/10.1145/3551349.3556962
https://doi.org/10.1007/978-3-030-91265-9_8
https://doi.org/10.1007/978-3-030-91265-9_8
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/3533767.3534388
https://doi.org/10.1145/3533767.3534388
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1145/503272.503288
https://doi.org/10.1109/ASE51524.2021.9678764
https://doi.org/10.1109/ICST53961.2022.00013
https://doi.org/10.1109/ICST53961.2022.00013
https://cir.nii.ac.jp/crid/1573668924277769344


193:34 Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wąsowski

John Schulman, Filip Wolski, Pra fulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal Policy Optimization

Algorithms. ArXiv abs/1707.06347 (2017). h�ps://doi.org/10.48550/arXiv.1707.06347

Jianzhong Su, Hong-Ning Dai, Lingjun Zhao, Zibin Zheng, and Xiapu Luo. 2022. Effectively Generating Vulnerable

Transaction Sequences in Smart Contracts with Reinforcement Learning-guided Fuzzing. In Proc. 37th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2022). ACM Press, 36:1–36:12. h�ps://doi.org/10.1145/

3551349.3560429

Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic testing for

deep neural networks. In Proc. 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE 2018).

109–119. h�ps://doi.org/10.1145/3238147.3238172

Richard S. Sutton. 1988. Learning to Predict by the Methods of Temporal Differences. Mach. Learn. 3, 1 (1988), 9–44.

h�ps://doi.org/10.1023/A:1022633531479

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction (2nd ed.). The MIT Press.

Martin Tappler, Filip Cano Córdoba, Bernhard K. Aichernig, and Bettina Könighofer. 2022a. Search-Based Testing of

Reinforcement Learning. In Proc. Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22), Lud De

Raedt (Ed.). International Joint Conferences on Artificial Intelligence Organization, 503–510. h�ps://doi.org/10.24963/

ijcai.2022/72

Martin Tappler, Stefan Pranger, Bettina Könighofer, Edi Muskardin, Roderick Bloem, and Kim G. Larsen. 2022b. Automata

Learning Meets Shielding. In Proc. 11th International Symposium on Leveraging Applications of Formal Methods, Verification

and Validation. Verification Principles (ISoLA 2022) (Lecture Notes in Computer Science, Vol. 13701), Tiziana Margaria and

Bernhard Steffen (Eds.). Springer, 335–359. h�ps://doi.org/10.1007/978-3-031-19849-6_20

Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco Oliveto, and Gabriele Bavota. 2022. Using

Reinforcement Learning for Load Testing of Video Games. In Proc. IEEE/ACM 44th International Conference on Software

Engineering (ICSE 2022). ACM Press. h�ps://doi.org/10.1145/3510003.3510625

Uraz Cengiz Türker, Robert M. Hierons, Mohammad Reza Mousavi, and Ivan Y. Tyukin. 2021. Efficient state synchronisation

in model-based testing through reinforcement learning. In Proc. 36th IEEE/ACM International Conference on Automated

Software Engineering (ASE 2021). 368–380. h�ps://doi.org/10.1109/ASE51524.2021.9678566

Harm Van Seijen, Hado Van Hasselt, Shimon Whiteson, and Marco Wiering. 2009. A theoretical and empirical analysis of

Expected SARSA. In Proc. Symposium on Adaptive Dynamic Programming and Reinforcement Learning. IEEE, 177–184.

h�ps://doi.org/10.1109/ADPRL.2009.4927542

Harsh Vardhan and Janos Sztipanovits. 2021. Rare Event Failure Test Case Generation in Learning-Enabled-Controllers. In

2021 6th International Conference on Machine Learning Technologies (Jeju Island, Republic of Korea) (ICMLT 2021). ACM

Press, 34–40. h�ps://doi.org/10.1145/3468891.3468897

Mahsa Varshosaz, Mohsen Ghaffari, Einar Broch Johnsen, and Andrzej Wasowski. 2023. Formal Specification and Testing for

Reinforcement Learning (Supplementary Material). h�ps://doi.org/10.5281/zenodo.8083298

Christopher John Cornish Hellaby Watkins. 1989. Learning from delayed rewards. (1989).

Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. 2020. A game-based approximate

verification of deep neural networks with provable guarantees. Theor. Comput. Sci. 807 (2020), 298–329. h�ps://doi.org/

10.1016/j.tcs.2019.05.046

Shaohua Zhang, Shuang Liu, Jun Sun, Yuqi Chen, Wenzhi Huang, Jinyi Liu, Jian Liu, and Jianye Hao. 2021. FIGCPS:

Effective Failure-inducing Input Generation for Cyber-Physical Systems with Deep Reinforcement Learning. In 2021

36th IEEE/ACM International Conference on Automated Software Engineering (ASE). 555–567. h�ps://doi.org/10.1109/

ASE51524.2021.9678832

Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu. 2021. Automatic Web Testing Using Curiosity-

Driven Reinforcement Learning. In Proc. IEEE/ACM 43rd International Conference on Software Engineering (ICSE 2021).

ACM Press, 423–435. h�ps://doi.org/10.1109/ICSE43902.2021.00048

Amirhossein Zolfagharian, Manel Abdellatif, Lionel C. Briand, Mojtaba Bagherzadeh, and Ramesh S. 2023. A Search-Based

Testing Approach for Deep Reinforcement Learning Agents. IEEE Transactions on Software Engineering (2023), 1–22.

h�ps://doi.org/10.1109/TSE.2023.3269804 To appear.

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 193. Publication date: August 2023.

https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1145/3551349.3560429
https://doi.org/10.1145/3551349.3560429
https://doi.org/10.1145/3238147.3238172
https://doi.org/10.1023/A:1022633531479
https://doi.org/10.24963/ijcai.2022/72
https://doi.org/10.24963/ijcai.2022/72
https://doi.org/10.1007/978-3-031-19849-6_20
https://doi.org/10.1145/3510003.3510625
https://doi.org/10.1109/ASE51524.2021.9678566
https://doi.org/10.1109/ADPRL.2009.4927542
https://doi.org/10.1145/3468891.3468897
https://doi.org/10.5281/zenodo.8083298
https://doi.org/10.1016/j.tcs.2019.05.046
https://doi.org/10.1016/j.tcs.2019.05.046
https://doi.org/10.1109/ASE51524.2021.9678832
https://doi.org/10.1109/ASE51524.2021.9678832
https://doi.org/10.1109/ICSE43902.2021.00048
https://doi.org/10.1109/TSE.2023.3269804

	Abstract
	1 Introduction
	2 Motivating Example: An Agent and a Learning Algorithm
	3 Preliminaries
	4 A Formal Specification of Reinforcement Learning
	4.1 Reinforcement Learning Problems (Agents)
	4.2 Temporal Difference Learning Algorithms
	4.3 Formalizing Temporal Difference Reinforcement Learning Algorithms

	5 Specification-based Testing of Reinforcement Learning
	5.1 Testing Reinforcement Learning Problems (Agents)
	5.2 Testing Reinforcement Learning Algorithms

	6 Implementation
	7 Experimental Evaluation
	8 Discussion
	9 Related Work
	10 Conclusion
	A Appendix
	A.1 A Formal Specification of Reinforcement Learning
	A.2 Selected Tests for Reinforcement Learning

	References

