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Abstract
Partial Order Reduction (POR) and Symbolic Execution (SE) are two fundamental abstraction
techniques in program analysis. SE is particularly useful as a state abstraction technique for sequential
programs, while POR addresses equivalent interleavings in the execution of concurrent programs.
Recently, several promising connections between these two approaches have been investigated, which
result in symbolic partial order reduction: partial order reduction of symbolically executed programs.
In this work, we provide compositional notions of completeness and correctness for symbolic partial
order reduction. We formalize completeness and correctness for (1) abstraction over program states
and (2) trace equivalence, such that the abstraction gives rise to a complete and correct SE, the trace
equivalence gives rise to a complete and correct POR, and their combination results in complete
and correct symbolic partial order reduction. We develop our results for a core parallel imperative
programming language and mechanize the proofs in Coq.
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1 Introduction

Program analyses rely on representing the possible reachable states and traces of a program
run efficiently and are commonly accompanied by a correctness theorem (all representable
states and traces are reachable) and possibly a completeness theorem (all reachable states
and traces are represented). Explicitly listing all states or traces leads to the “state space
explosion”, as even for simple programs, the number of possible program states may grow so
fast that examining them all explicitly becomes infeasible.

One source of this growth is the domain of data — the number of possible values is very
large, even for a single integer. Symbolic execution [7, 18, 19] (SE) mitigates this problem by
representing values symbolically, thus covering many possible concrete states at once. SE is
utilized to great effect in program analysis [3]. Another source of growth is concurrency, as
the number of possible interleavings grows exponentially. Partial Order Reduction (POR)
is a technique for tackling this explosion by taking advantage of the fact that independent
events can be reordered without affecting the final result [16].

The combined use of both POR and SE has recently begun to be investigated [6, 29],
called symbolic partial order reduction (SPOR). Notions of correctness and completeness are
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2 Compositional Symbolic POR

available for both SE and POR, but how these notions can be composed to obtain correctness
and completeness of SPOR remains an open challenge. In this paper, we tackle this challenge
and give a compositional notion of correctness and completeness for SPOR, based on the
abstraction and equivalence notions that define SE and POR. To formulate such a theory we
use trace-based semantics. Trace semantics is both expressive [24, 32] and compositional [11],
and allows a natural formulation of partial order reduction [6].

concrete semantics concrete POR

symbolic semantics symbolic POR

(1)

(2)

Figure 1 State of the art and our contribution

State of the Art

Figure 1 shows the available correctness and completeness results for SE and for POR. Each
corner denotes a program semantics, and the arrows denote correctness and completeness.
First, let us examine the left side of the square, which is concerned with SE.

The left edge of Figure 1, labeled (1), is provided by de Boer and Bonsangue [5], who
define symbolic and concrete semantics for several minimal imperative languages to formulate
and prove notions of correctness and completeness for SE. However, their work is limited to
a sequential setting. The proof is based on using a suitable abstraction between concrete and
symbolic states, that defines the SE.

The bottom edge of Figure 1, labeled (2), is studied by de Boer et al. [6], who formulate
partial order reduction for symbolic execution with explicit threads using a syntactic notion
of interference freedom and implement this approach in the rewriting logic framework
Maude [10]. Their results are not connected to the concrete semantics. The result is based
on an equivalence relation between symbolic traces, that defines the SPOR, but does not
use an explicit abstraction between states. We discuss further, related results on symbolic
execution in Sec. 6.

The top of Figure 1 concerns POR [1,13, 16, 26] for concrete executions, where numerous
implementations are available. The correctness of such a reduction corresponds to the top
edge of Figure 1, though it is not usually presented in terms of an equivalence relation as
proposed by de Boer et al. Results directly of SPOR are given by Schemmel et al. [29], who
apply (dynamic) partial order reduction to symbolic execution using “unfolding” to explore
paths. This shows that POR is applicable directly to SE, but does not discuss a generic
notion of state abstraction and trace equivalence.

While all four corners of Figure 1 are well established, and several edges have been
explored, there exists no general formalization of the properties for state abstraction and
trace equivalence needed for a uniform and compositional treatment of different POR
algorithms and SE techniques. Hence, the present work unifies notions of correctness and
completeness for symbolic execution and partial order reduction, and fills in the remaining
(black) edges of Figure 1. By compositional completeness and correctness, we mean that the
diagonal follows automatically from the other edges of the figure.
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Approach

To fill the gap we formulate concrete and symbolic trace semantics for a small imperative
language with parallel composition and show that these semantics enjoy a bisimulation
relationship. We then formulate partial order reduction in terms of an equivalence relation on
traces, and show that this also leads to a bisimulation of reduced and non-reduced semantics.
These bisimulations extend to correctness and completeness results, and compose naturally
to semantics with both symbolic execution and partial order reduction.

The results are obtained in a framework extending the work of de Boer et al. and are
centered around the notions of state abstraction and trace equivalence. Following de Boer et
al., state abstraction is given by transforming concrete states according to symbolic states,
and a concrete state is abstracted if it can be obtained by some symbolic transformation.
Trace equivalence defines an equivalence relation on sequences of events which allows for
partial order reduction. In particular, it suffices to explore one trace per equivalence class.

Both symbolic and concrete states are implemented by total functions of variable names
with generic properties. To reduce the number of rules and allow for elegant parallel
composition the semantics are given by a reduction system in the style of Felleisen and
Hieb [12] with contexts formalized as functions on statements and an inductive relation [21].
The full semantics are obtained by stepwise transitive closure, which allows for proofs by
induction and case analysis of the final step.

Contributions

Our contribution is threefold.
1. We unify and fill in the remaining edges in the above diagram. In particular we give

correctness and completeness relations for concrete partial order reduction, directly relate
partial order reduction in the symbolic and concrete case, and compose the results to
relate concrete semantics to reduced symbolic semantics.

2. Correctness and completeness for both symbolic execution and partial order reduction
are formulated in a parametric fashion, allowing for different implementations of both,
providing they fulfill certain conditions.

3. Finally, the entire development is mechanized in Coq [4,33]. This lends credence to the
results and allows for extensions and further work in a systematic manner.

Structure

Section 2 introduces basic notions for symbolic execution with trace semantics for a basic
imperative language with parallel composition. Then both concrete and symbolic seman-
tics are given as reduction systems with contexts to handle both sequential and parallel
composition. Finally we formulate and prove correctness and completeness of the symbolic
semantics with respect to the concrete semantics. Section 3 introduces a notion of trace
equivalence that connects correctness and completeness to partial order reduction, which is
used in Section 4 to define independence of events in a semantic manner. We then define new
PO-reduced semantics for both symbolic and concrete cases, and show that they bisimulate
their non-reduced counterparts. Finally, Section 5 connects previous results and shows that
bisimulation carries through POR to fill in the upper right half of the diagram. Section 6
and 7 give further related work and concludes.
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e :: = n
∣∣ x

∣∣ e1 + e2 arith. expr.
b :: = true

∣∣ false
∣∣ ¬b

∣∣ b1 ∧ b2
∣∣ e1 ≤ e2 bool. expr.

s :: = x := e
∣∣ s1 ; s2

∣∣ s1 || s2
∣∣ if b {s1}{s2}

∣∣ while b {s}
∣∣ skip statements

Figure 2 Grammar for expressions and statements

2 Symbolic Trace Semantics

In this section we introduce the basic notions of our framework. In particular, we define a
small imperative language with parallel composition and formulate symbolic and concrete
trace semantics for it. We relate the two semantics by a bisimulation defining both trace
completeness and trace correctness.

2.1 Basic Notions
For the basic setup we assume a set of program variables Var , a set of arithmetic expressions
Aexpr and a set of Boolean expressions Bexpr . Our basic programming language is an
imperative language with (side effect free) assignment, conditional branching, iteration and
both sequential and parallel composition.

▶ Definition 2.1 (Syntax). The sets of arithmetic expressions Aexpr , Boolean expressions
Bexpr , and statements Stmt are defined by the grammar in Figure 2, where we let x range
over Var , n over N, b over Bexpr , e over Aexpr and s over statements.

Before we define the semantics, we require a notion of store to express program state. We
distinguish between symbolic stores, for symbolic execution, and concrete stores, for concrete
execution.

▶ Definition 2.2 (Symbolic Store). A symbolic store σ is a substitution, i.e., a map from
Var to Aexpr denoted by σ.

We take equality of substitutions to be extensional, that is σ = σ′ if σ(x) = σ′(x) for all
x. An update to a substitution is denoted by σ[x := e]. A substitution can be recursively
applied to a Boolean or arithmetic expression, resulting in a new expression. We denote such
an application by eσ.

▶ Definition 2.3 (Concrete Store). A concrete store V is a valuation, i.e., a map from Var
to N denoted by V .

Like substitutions, valuations can be updated (denoted V [x := n]) and a valuation can be
used to evaluate an expression. This evaluation is denoted V (e) and results in a natural
number for arithmetic expressions and a Boolean for Boolean expressions. For a Boolean
expression b, we say V is a model of b if V (b) = true and denote this by V |= b. The
definitions of substitution and evaluation are standard and given in the auxiliary material.

2.2 Trace Semantics
Based on the notion of symbolic and concrete stores, we now give the symbolic and concrete
semantics. Both semantics are based on traces, i.e., sequences of events. Events are
assignments or guards in the symbolic case, or just assignments in the concrete case.

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Expr.v#L10
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Parallel.v#L23
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▶ Definition 2.4 (Symbolic Trace). A symbolic trace is a sequence of conditions or symbolic
assignments defined by the grammar

τS ::= [ ]
∣∣ τS :: (x := e)

∣∣ τS :: b

▶ Definition 2.5 (Concrete Trace). A concrete trace is a sequence of concrete assignments
defined by the grammar

τC ::= [ ]
∣∣ τC :: (x := e)

In both cases [ ] denotes the empty trace and we write the trace [ ] :: x :: y :: z . . . simply as
[x, y, z . . .]. The concatenation of τ and τ ′ is denoted by τ · τ ′. The trace syntax is shared
between symbolic and concrete traces, but the difference will be clear from context.

We represent the current program state as a pair of a statement (the program remaining
to be executed) and the trace generated so far. Evaluating expressions requires to evaluate
the expression in the last substitution or valuation of the trace. To do so, we extract this
final substitution or valuation from a trace and an initial substitution or valuation by folding
over the trace. In the case of a symbolic trace, the result is a symbolic substitution, while a
concrete trace results in a concrete valuation.

▶ Definition 2.6 (Final Substitution ). Given an initial substitution σ, the final substitution
of a trace τS is denoted τS ⇓σ and inductively defined by

[ ] ⇓σ = σ

τS ::b ⇓σ = τS ⇓σ

τS :: (x := e) ⇓σ = σ′[x := (eσ′)] where σ′ = τS ⇓σ

When σ = id we omit it and write τS ⇓

▶ Definition 2.7 (Final Valuation ). Given an initial valuation V , the final valuation of a
trace τC is denoted τC ⇓V and inductively defined by

[ ] ⇓V = V

τC :: (x := e) ⇓V = V ′[x := V ′(e)] where V ′ = τC ⇓V

Semantics can then be given by a simple reduction relation on atomic statements (Figure 3),
which extends to the full language by s/c-in-context. The symbolic (resp. concrete)
relation works on pairs of statements and symbolic (resp. concrete) traces to extend them
with appropriate events.

▶ Definition 2.8 (Symbolic and Concrete Semantics). The symbolic semantics → between two
symbolic configurations is given on the left of Fig. 3. The concrete semantics ⇒ between two
concrete configurations is given on the right of Fig. 3.

Both semantics are straightforward, we point out three details. First, the main difference is
that the rules with branching (∗-if-t, ∗-if-f, ∗-while-t, ∗-while-f) are non-deterministic
and add an event in the symbolic case, but are deterministic in the concrete case.

Second, in order to concisely deal with both sequential and parallel composition, we use
contexts [12]. A context C represents a statement with a “hole” (□) in it and is generated by
the grammar:

C ::= □
∣∣ (C ; s)

∣∣ (C || s)
∣∣ (s || C)

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L113
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L137
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s-asgn
(x := e, τ)⇝ (skip, τ :: (x := e)) (x := e, τ)⇝⇝⇝V (skip, τ :: (x := e))

c-asgn

s-if-t
(if b {s1}{s2}, τ)⇝ (s1, τ :: b)

τ ⇓V (b) = true
(if b {s1}{s2}, τ)⇝⇝⇝V (s1, τ)

c-if-t

s-if-f
(if b {s1}{s2}, τ)⇝ (s2, τ :: ¬b)

τ ⇓V (b) = false
(if b {s1}{s2}, τ)⇝⇝⇝V (s2, τ)

c-if-f

s-while-t
(while b {s}, τ)⇝ (s ; while b {s}, τ :: b)

τ ⇓V (b) = true
(while b {s}, τ)⇝⇝⇝V (s ; while b {s}, τ)

c-while-t

s-while-f
(while b {s}, τ)⇝ (skip, τ :: ¬b)

τ ⇓V (b) = false
(while b {s}, τ)⇝⇝⇝V (skip, τ)

c-while-f

s-seq
(skip ; s, τ)⇝ (s, τ) (skip ; s, τ)⇝⇝⇝V (s, τ)

c-seq

s-par
(skip || skip, τ)⇝ (skip, τ) (skip || skip, τ)⇝⇝⇝V (skip, τ)

c-par

s-in-context
(s, τ)⇝ (s′, τ ′)

(C[s], τ) → (C[s′], τ ′)
(s, τ)⇝⇝⇝V (s′, τ ′)

(C[s], τ) ⇒V (C[s′], τ ′)
c-in-context

Figure 3 Reduction rules for symbolic and concrete semantics

Intuitively, the statement we are interested in may occur on its own, sequentially before some
other statement, or on either side of a parallel operator. By C[s] we denote the statement s

in the hole in context C.
Finally, we point out that we model termination by reduction to skip.

▶ Example 2.9. Consider the program s = y := 1 || x := 3 || if X ≤ 1 {Y := 2} {Y := 3}.
We will show that (s, [ ]) →∗ (skip, [x := 3, y := 1, x > 1, y := 3]). In other words that
[x := 3, y := 1, x > 1, y := 3] is one possible trace of the program.

First apply s-in-context with C = y := 1 || □ || if X ≤ 1 {Y := 2} {Y := 3} and s-asgn
to obtain

(s, [ ]) → (y := 1 || skip || if X ≤ 1 {Y := 2} {Y := 3}, [x := 3])

The second assignment is similar, followed by s-if-f in the context skip || skip || □ to obtain

(skip || skip || if X ≤ 1 {Y := 2} {Y := 3}, [x := 3, y := 1])
→ (skip || skip || Y := 3, [x := 3, y := 1, x > 1])

After the last assignment, the superfluous skips are dispensed with by s-par and putting
the steps in sequence gives the desired

(s, [ ]) →∗ (skip, [x := 2, y := x, z := x])

Note that we could choose to apply the contexts in a different order, resulting in five
other potential traces.

2.3 Correctness and Completeness
The value of symbolic execution comes from its ability to simultaneously capture many
possible concrete execution paths. However, not all of these paths will be feasible for all initial
valuations. The feasibility of any particular symbolic trace depends on its path condition —
a conjunction of guards that allow execution to follow down this particular path — which is
computed in a similar fashion to final substitutions.

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L48
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L70
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PORExamples.v#L42
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▶ Definition 2.10 (Path Condition ). The path condition of a symbolic trace τS is denoted
pc(τS) and defined by

pc([ ]) = true
pc(τS ::b) = pc(τS) ∧ b(τS ⇓)

pc(τS :: (x := e)) = pc(τS)

Because it is a conjunction of terms, once a path condition becomes false, it cannot
become true again. The following lemma captures the contrapositive: a model of a trace’s
path condition is also a model of any prefix’s path condition.

▶ Lemma 2.11 (Path Condition Monotonicity ). If V |= pc(τ :: ev), then V |= pc(τ)

To relate the symbolic and concrete traces we define a notion of abstraction based on the
correctness and completeness relations of de Boer and Bonsangue.

▶ Definition 2.12 (Trace abstraction [5] ). Given an initial valuation V , a symbolic trace
τS and a concrete trace τC we say τS V -abstracts τC if V |= pc(τS) and τC ⇓V = V ◦ τS ⇓

The steps of the symbolic and concrete systems correspond very closely. Every concrete
step corresponds to a symbolic step whose path condition is satisfiable, and every symbolic
step with a satisfiable path condition corresponds to a concrete step. In both cases the
resulting final states are related by simple composition. This relationship is formalized in
the following bisimulation result.

▶ Theorem 2.13 (Bisimulation ). For any initial valuation V and initial traces τ0, τ ′
0 such

that τ0 V -abstracts τ ′
0:

if there is a concrete step (s, τ0) ⇒V (s′, τ), then there exists a symbolic step (s, τ ′
0) → (s′, τ ′)

such that τ ′ V -abstracts τ , and
if there is a symbolic step (s, τ ′

0) → (s′, τ ′) and V |= pc(τ ′), then there exists a concrete
step (s, τ0) ⇒V (s′, τ) such that τ ⇓V = V ◦ τ ′ ⇓

By induction over the transitive closure and Lemma 2.11 we obtain correctness and
completeness results. Intuitively, correctness means that each symbolic execution whose path
condition is satisfied by some initial valuation V corresponds to a concrete execution with
the same initial valuation. Additionally its trace abstracts the concrete trace in the sense
that the final concrete state is the concretization of V by the final symbolic state. In other
words the subset of states described by its path condition contains V , and there is a concrete
execution corresponding to the transformation described by its final symbolic state.

▶ Corollary 2.14 (Trace Correctness ). If (s, τS) →∗ (s′, τ ′
S), τS V -abstracts τC , and

V |= pc(τ ′
S), then there exists a concrete trace τ ′

C such that (s, τC) ⇒∗
V (s′, τ ′

C) and
τ ′

C ⇓V = τC ⇓V ◦(τ ′
S ⇓).

Completeness captures the opposite relationship: every concrete execution has a symbolic
counterpart. Furthermore the symbolic trace recovers the concrete state, and its path
condition is satisfied by the initial valuation.

▶ Corollary 2.15 (Trace Completeness ). If (s, τC) ⇒∗
V (s′, τ ′

C) and τS V -abstracts τC , there
exists τ ′

S such that (s, τS) →∗ (s′, τ ′
S) and τ ′

S V -abstracts τ ′
C .

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L127
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L87
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/Traces.v#L150
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L192
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L204
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/TraceSemantics.v#L224
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3 Trace Equivalence

In this section we introduce a notion of trace equivalence which will be used to formulate
partial order reduction in Section 4. Intuitively two traces should be equivalent if execution
could continue from either one, i.e., if partial order reduction would prune away one of them.

This is surely the case when their final states are the same. In the symbolic case their
path conditions must also be equivalent. Additionally, we do not want to equate traces
describing observably different behavior, so equivalent traces must contain the same events.
These considerations motivate the following definition.

▶ Definition 3.1 (Symbolic Trace Equivalence ). Symbolic traces τ and τ ′ are equivalent
(denoted τ ∼ τ ′) if

τ ′ is a permutation of τ ,
τ ⇓σ= τ ′ ⇓σ for all initial substitutions σ, and
V |= pc(τ) ⇐⇒ V |= pc(τ ′) for all valuations V

▶ Definition 3.2 (Concrete Trace Equivalence ). Concrete traces τ and τ ′ are equivalent
(denoted τ ≃ τ ′) if

τ ′ is a permutation of τ ,
τ ⇓V = τ ′ ⇓V for all initial valuations V

▶ Example 3.3. Let τ1 = [y := x, z := x] and τ2 = [z := x, y := x]. It is both the case
that τ1 ∼ τ2 and τ1 ≃ τ2.1 They evidently contain the same events and have the same
(trivially true) path condition. Any initial substitution σ results in a final substitution

σ′(v) =
{

x, v ∈ {y, z}
σ(v), otherwise

and any initial valuation V results in V ′(v) =
{

V (x), v ∈ {y, z}
V (v), otherwise

Clearly, trace equivalence defines an equivalence relation. Furthermore it allows continued
execution in the following sense: given a statement s and a trace τ , we can replace τ with
an equivalent trace τ ′, such that the next execution step will result in two different, but
equivalent traces.

▶ Lemma 3.4 ( ). For equivalent traces τ ∼ τ ′, if (s, τ) → (s′, τ1) then there exists τ2 such
that (s, τ ′) → (s′, τ2) and τ1 ∼ τ2.

This lemma also holds for concrete traces with concrete equivalence and reduction system
and underlies partial order reduction in both cases.

Crucially, the properties of trace equivalence ensure that it preserves abstraction. The
following theorem shows that the notion of V-abstraction carries through trace equivalence,
which will allow us to connect it with partial order reduction in the sequel.

▶ Theorem 3.5 (Abstraction Congruence ). For equivalent symbolic traces τS ∼ τ ′
S and

concrete traces τC ≃ τ ′
C , if τS V -abstracts τC then τ ′

S V -abstracts τ ′
C

▶ Example 3.6. Continuing Example 3.3, the symbolic trace τ1 V -abstracts the concrete
trace τ1 for every V , and so τ1 also V -abstracts the equivalent concrete trace τ2.

In fact, every symbolic trace V -abstracts itself viewed as a concrete trace for any V .

1 Recall that symbolic traces are also concrete traces if they contain no branching events (guards).

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L21
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L153
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L61
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L284
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3.1 Example: Interference Freedom
The reordering of independent events is the core of many POR approaches. In practice true
independence is prohibitively expensive to compute, so some over-approximation is used.
Interference freedom is a syntactic over-approximation of independence of events. We show
that reordering interference free events is an instance of our notion of trace equivalence.

Interference freedom between ev1 and ev2 means that ev1 does not read or write a variable
written by ev2 and vice versa. Formally:

▶ Definition 3.7 (Interference Freedom). Let ev be either a Boolean expression b or an
assignment (x := e). R(ev) denotes the set of variables read by ev, ie. all the variables in b

or e. W (ev) denotes the set of variables written by ev, ie. x. Then ev1, ev2 are interference
free iff

W (ev1) ∩ W (ev2) = R(ev1) ∩ W (ev2) = R(ev2) ∩ W (ev1) = ∅

Denote the interference freedom of ev1 and ev2 by ev1 ⋄ ev2

Interference freedom is an independence relation in the sense that if ev1 ⋄ ev2, then the
final state of [ev1, ev2] is equal to that of [ev2, ev1]. The reason is that interference freedom
allows for “simultaneous” updates without worrying about the order of operations in the
assignment case, and the variables involved in a Boolean expression can not be changed in
the guard case.

On the other hand, interference freedom is an over-approximation which is perhaps most
easily seen by events like (x := x) and (x ≤ 3). Clearly they are semantically independent
since the value of x does not change, but they are not interference free.

Equipped with a concrete independence relation we can construct new traces by reordering
adjacent independent events. Such a reordering is captured by the equivalence define above
in the sense that it results in an equivalent trace.

▶ Theorem 3.8 (Interference free reordering is a trace equivalence ). Let ∼IF be the smallest
equivalence relation on symbolic traces such that τ · [ev1, ev2] · τ ′ ∼IF τ · [ev2, ev1] · τ ′ for all
τ, τ ′ and ev1 ⋄ ev2.

The equivalence relation ∼IF is contained in ∼.

The analogous result holds for concrete traces and ≃ .
This example shows that a POR scheme based on reordering of independent events is

captured by trace equivalence.

4 Correctness and Completeness for Symbolic Partial Order Reduction

We formulate POR in the present setting through the use of trace equivalence (defined above)
and use it to define new PO-reduced reduction systems. These new systems bisimulate the
non-reduced systems of Section 2, leading directly to correctness and completeness results.

At its core, partial order reduction works by observing that some events commute in
the execution of a parallel program. These events can be reordered without affecting the
final result, and so it it not necessary to explore every interleaving. The reduction is often
formulated in terms of an (in)dependence relation that determines which events may be
reordered. Such a relation must make sure that independent steps leave the system in
equivalent states, regardless of the order they are performed in.

An independence relation lifts to an equivalence relation on traces by permuting adjacent
independent events. POR approaches then employ some algorithm to compute the equivalence

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/InterferenceFreedom.v#L144
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/InterferenceFreedom.v#L270
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classes of such a relation and avoid exploring traces in the same class. In practice it is difficult
to compute the independence of events, so a sound over-approximation is used instead.

We instead take a more high-level approach. Considering trace equivalence to be a
fundamental semantic building block, we develop our POR semantics parametric in this
notion. This gives us an abstract notion, independent of the specific algorithm for POR.

To take advantage of partial order reduction, we define new transition systems.

▶ Definition 4.1 (POR Semantics). The transition rules for symbolic POR are:

τ0 ∼ τ ′
0 (s, τ0)⇝ (s′, τ)

(s, τ ′
0)⇝P OR (s′, τ)

(s, τ)⇝P OR (s′, τ ′)
(C[s], τ) →P OR (C[s′], τ ′)

And the transition rules for concrete POR are:

τ0 ≃ τ ′
0 (s, τ0)⇝⇝⇝V (s′, τ)

(s, τ ′
0)⇝⇝⇝P OR,V (s′, τ)

(s, τ)⇝⇝⇝P OR,V (s′, τ ′)
(C[s], τ) ⇒P OR,V (C[s′], τ ′)

This new reduction relation includes the steps of the symbolic case but requires only that
the initial trace is equivalent in the sense defined in Section 3. Crucially, given a class of
equivalent traces we may choose only one of them to continue execution. This is the source
of reduction. Note that it is possible for (s, τ ′

0) to be unreachable in the original semantics,
however the following completeness and correctness results ensure that this does not affect
the final result. This approach most closely resembles sleep sets [15, 17] which keeps track of
equivalent traces that do not need to be explored.

▶ Example 4.2. Consider again the program from Example 2.9 and note that (y := 1)
and (x := 3) are independent assignments. In the middle of some computation we are left
with skip || skip || if x ≤ 1 {Y := 2}{Y := 3} and the trace [x := 3, y := 1]. However, we
have previously explored a computation from the state

(skip || skip || if x ≤ 1 {Y := 2}{Y := 3}, [y := 1, x := 3])

Now the POR semantics let us replace the equivalent traces and use this computation instead.

In order to utilize POR, we need to know that the reduced traces still model our programs’
behavior. It should not throw away any important traces, nor should it invent new ones by
taking unsound equivalence classes. Formally, we want the POR semantics to bisimulate
their non-reduced counterpart up to trace equivalence.

▶ Theorem 4.3 (POR bisimulation ). For equivalent initial traces τ0 ∼ τ ′
0:

If (s, τ0) →P OR (s′, τ) then there exists (s, τ ′
0) → (s′, τ ′) such that τ ∼ τ ′, and

If (s, τ0) → (s′, τ) then there exists (s, τ ′
0) →P OR (s′, τ ′) such that τ ∼ τ ′

For equivalent initial traces τ0 ≃ τ ′
0 and initial valuation V :

If (s, τ0) ⇒P OR,V (s′, τ) then there exists (s, τ ′
0) ⇒V (s′, τ ′) such that τ ≃ τ ′, and

If (s, τ0) ⇒V (s′, τ) then there exists (s, τ ′
0) ⇒P OR,V (s′, τ ′) such that τ ≃ τ ′

From these bisimulation results, correctness and completeness follow by induction. Cor-
rectness captures the intuition that every PO-reduced execution corresponds to a non-reduced
execution with equivalent final traces. This means that partial order reduction is precise in
the sense that it does not introduce new traces with different final states.

Completeness is the opposite relationship: every direct execution has a corresponding
reduced execution with equivalent traces. Since equivalent traces result in the same final
state, completeness means that we do not lose any possible states when performing partial
order reduction.

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L86
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L215
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PORExamples.v#L89
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L95
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L223
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(s, [ ]) ⇒∗
V (s′, τC) (s, [ ]) ⇒∗

P OR,V (s′, τ ′
C)

(s, [ ]) →∗ (s′, τS) (s, [ ]) →∗
P OR (s′, τ ′

S)

T heorem 4.3

T heorem 5.4
T heorem 5.1T heorem 2.13

T heorem 4.3

τC ≃ τ ′
C τS ∼ τ ′

S τS V -abstracts τC τ ′
S V -abstracts τ ′

C τ ′
S V -abstracts τC

Figure 4 Overview of the correctness and completeness results

▶ Corollary 4.4 (Correctness and Completeness). For two equivalent symbolic traces τ0 ∼ τ ′
0:

Completeness If (s, τ0) →∗
P OR (s′, τ) then there exists (s, τ ′

0) →∗ (s′, τ ′) with τ ∼ τ ′

Correctness If (s, τ0) →∗ (s′, τ) then there exists (s, τ ′
0) →∗

P OR (s′, τ ′) with τ ∼ τ ′

For two equivalent concrete traces τ0 ≃ τ ′
0 and initial valuation V :

Completeness If (s, τ0) ⇒∗
P OR,V (s′, τ) then there exists (s, τ ′

0) ⇒∗
V (s′, τ ′) with τ ≃ τ ′

Correctness If (s, τ0) ⇒∗
V (s′, τ) then there exists (s, τ ′

0) ⇒∗
P OR,V (s′, τ ′) with τ ≃ τ ′

5 Composition of SE and POR

In this section we show that the bisimulation results of Section 2 and 4 compose naturally.
We use this composition to fill in the remaining edges of Fig. 1, resulting in Fig. 4. This leads
to the main result: a bisimulation relation between direct concrete semantics and symbolic
POR semantics. Importantly, this allows reasoning about program analysis using both SE
and POR with the symbolic trace abstracting the concrete trace.

The results are parametric in abstraction and trace equivalence in the following sense.
Any equivalence relation on traces which is contained in ours — that is, whose equivalent
traces have equivalent final states and path conditions — can be used to perform partial order
reduction. Additionally, any symbolic abstraction satisfying Theorem 3.5 can be used for the
symbolic execution. The result is a complete and correct symbolic partial order reduction
where completeness and correctness follows from the respective completeness and correctness
results of SE and POR semantics.

First we relate symbolic and concrete POR by combining Theorem 2.13 and Theorem 4.3.

▶ Theorem 5.1 (POR-POR Bisimulation ). For initial traces τS , τC such that τS V -abstracts
τC :

If (s, τC) ⇒P OR,V (s′, τ ′
C), then there exists (s, τS) →P OR (s′, τ ′

S) such that τ ′
S V -

abstracts τ ′
C

If (s, τS) →P OR (s′, τ ′
S) and V |= pc(τ ′

S), then there exists (s, τC) ⇒P OR,V (s′, τ ′
C) and

τ ′
C ⇓V = V ◦ (τ ′

S ⇓)

From this bisimulation, correctness and completeness relations are obtained by induction.
These results are analogous to the direct relationships in Section 2, which shows that the
correctness and completeness of symbolic execution is maintained through partial order
reduction. In particular we may work with representatives of an equivalence class of traces
rather than one single trace — which may greatly reduce the state space — and then perform
symbolic execution in this new setting.

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L133
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L116
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L262
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L245
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L293
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▶ Corollary 5.2 (Trace POR Correctness ). If (s, τS) →∗
P OR (s′, τ ′

S), τS V -abstracts τC ,
and V |= pc(τ ′

S), then there exists a concrete trace τ ′
C s.t (s, τC) ⇒∗

P OR,V (s′, τ ′
C) and

τ ′
C ⇓V = τC ⇓V ◦(τ ′

S ⇓)

▶ Corollary 5.3 (Trace POR Completeness ). If (s, τC) ⇒∗
P OR,V (s′, τ ′

C) and τS V -abstracts
τC , there exist τ ′

S s.t (s, τS) →∗
P OR (s′, τ ′

S) and τ ′
S V -abstracts τ ′

C .

We are now ready to state our main result, filling in the diagonal and connecting
concrete semantics directly to PO-reduced symbolic semantics. Formally, Theorem 2.13 and
Theorem 4.3 can be combined to obtain bisimulation of the basic concrete semantics and
PO-reduced symbolic semantics.

▶ Theorem 5.4 (Total Bisimulation ). For initial traces τS , τC such that τS V -abstracts τC :
If (s, τC) ⇒V (s′, τ ′

C), then there exists (s, τS) →P OR (s′, τ ′
S) such that τ ′

S V -abstracts τ ′
C

If (s, τS) →P OR (s′, τ ′
S) and V |= pc(τ ′

S), then there exists (s, τC) ⇒V (s′, τ ′
C) and

τ ′
C ⇓V = V ◦ (τ ′

S ⇓)

▶ Corollary 5.5 (Total Correctness ). If (s, τ0) →∗
P OR (s′, τ), τ0 V -abstracts τ ′

0 and V |= pc(τ),
then there exists τ ′ such that (s, τ ′

0) ⇒∗
V (s′, τ ′) and τ V -abstracts τ ′.

▶ Corollary 5.6 (Total Completeness ). If (s, τ0) ⇒∗
V (s′, τ) and τ ′

0 V -abstracts τ0, there
exist τ ′ s.t (s, τ ′

0) →∗
P OR (s′, τ ′) and τ ′ V -abstracts τ .

Figure 4 shows all four reduction systems — symbolic and concrete, with and without
POR. Each double arrow denotes a notion of bisimulation, and we obtain the properties
shown: both symbolic and concrete traces are equivalent across POR, and V -abstraction is
maintained across the symbolic/concrete divide as well as their composition. Additionally we
show the relationships between the four traces — the symbolic traces abstract their concrete
counterparts, and the POR traces are equivalent — although by Theorem 3.5 it suffices to
know the equivalences and one of the abstractions.

5.1 Discussion
The bisimulations compose naturally. As an example, consider Theorem 5.4 which is obtained
by composing the symbolic/concrete bisimulation of Theorem 2.13 and the direct/reduced
bisimulation of Theorem 4.3. Starting with a concrete execution with trace τC we first obtain
a symbolic execution with trace τS such that τS V-abstracts τC . Then the POR-bisimulation
of Theorem 4.3 gives a symbolic POR-computation with an equivalent trace τS . Since trace
equivalence is a congruence for abstraction (Theorem 3.5) and τC is equivalent to itself, this
final trace also abstracts τC .

The ease of this composition is not unexpected, since both abstraction and trace equiva-
lence were explicitly formulated to preserve the relevant parts of the program state. The result
is that any partial order reduction which picks equivalent traces in this sense preserves the
correctness and completeness properties of the symbolic execution. Explicitly, if the notion
of trace equivalence is contained in ours and the symbolic abstraction can be transported
along this equivalence in the sense of Theorem 3.5 then the techniques can be composed.

5.2 Mechanization
In this section we cover some of the details of the mechanization in Coq.

The basic building blocks of program state are simple. Both substitutions and valuations
are implemented as total maps from strings, parameterized by a result type. Updates,

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L335
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L362
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L387
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L481
https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/PartialOrderReduction.v#L440
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notation and several useful lemmas about maps can be proven generically and the notation
mirrors that of Pierce et al. [25]. Similarly traces are an inductive type, parametric in the
type of events. In essence they are lists, but extended to the right for convenience, with the
expected operations and properties.

Trace equivalence is defined as a relation. Then we show necessary properties of this
relation, in particular Lemma 3.4 and Theorem 3.5 which are used in proofs. Additionally, we
implement an equivalence by permuting independent events and show that it satisfies the same
properties if the independence relation does. This part is parametric in the independence
relation and serves as an example of a POR relation. The example at the end of Section 3 is
an instance with interference freedom as the independence relation .

Expressions (both arithmetic and Boolean) and statements are inductive types. As an
example, the type of statements is given by:

Inductive Stmt : Type :=
| SAsgn (x:Var) (e:Aexpr)
| SPar (s1 s2:Stmt)
| SIf (b:Bexpr) (s1 s2:Stmt)
...

To give semantics to this language, we define a head reduction relation and a type of
contexts. The head reduction describes the single step reductions for each atomic and how it
transforms the current trace. For example an assignment reduces to skip and appends the
assignment to the current trace. Here <{_}> encloses language statements and Asgn__S x e
represents the symbolic event (x := e).

Variant head_red__S: (trace__S * Stmt) → (trace__S * Stmt) → Prop :=
| head_red_asgn__S: ∀t x e,

head_red__S (t, <{ x := e }>) (t :: Asgn__S x e, SSkip)
...

Note that Variant is a version of Inductive that does not include recursive constructors.
Contexts are implemented as functions Stmt → Stmt along with an inductive relation

is_context: (Stmt → Stmt) → Prop — an approach inspired by Xavier Leroy [21]. This
approach allows us to define transition relation semantics parametric in both the type of
contexts and the head reduction relation. The following generalizes the ∗-in-context rules
for any type of state X. In our case, X will be a type of traces, but note that X appears on the
left — this makes the rule amenable to states represented by product types due to the way
parentheses associate.

Variant context_red
(is_cont: (Stmt → Stmt) → Prop) (head_red: relation (X * Stmt))
: relation (X * Stmt) :=

| ctx_red_intro: ∀C x x’ s s’,
head_red (x, s) (x’, s’) → is_context C →
context_red is_cont head_red (x, C s) (x’, C s’).

Having used context_red with the appropriate is_context and head_red we obtain the full
transition relation by stepwise reflexive-transitive closure to the right (clos_refl_trans_n1)
from the Relations library.

The proofs are performed in two steps. Induction on the transition relation leaves us
with either a reflexive step or an induction hypothesis and some sequence followed by a
step. Then unfolding and dependent destruction (from Program.Equality) can be used on the
step to unpack ctx_red_intro and split on the head reduction rule while remembering the
ultimate and penultimate traces.

https://github.com/Aqissiaq/symex-formally-formalized/blob/CONCUR23/InterferenceFreedom.v#L135
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6 Related Work

We focus on a simple formal model that permits reasoning about symbolic execution and
partial order reduction. De Boer and Bonsangue [5] lay the foundations of our work — a
symbolic execution model based on transition systems and symbolic substitutions which
may be composed with concrete valuations. They do not consider parallelism, but do apply
their model to languages with other features including recursive function calls and dynamic
object creation. They also explore a kind of trace semantics for the latter extension, but it
differs from the semantics considered herein. Extending the current work with more language
features, including procedure calls and synchronization tools would be interesting.

SymPaths [6] explores the use of POR for SE in a manner very similar to ours, but
does not explicitly compose the correctness and completeness of SE and POR, nor treat
the relationship to partial order reduction in the non-symbolic case. Additionally, their
treatment of trace equivalence focuses on one specific independence relation while we take a
more abstract view.

Other formal approaches to symbolic execution have also been considered in the literature.
Steinhöfel [31] focuses on the semantics of the SE system and uses a concretization function to
relate sets of symbolic and concrete states. The Gillian platform [14,23] and related work [28]
uses separation logic to construct a SE system that is parametric in the target memory model.
Rosu et al. [22,27,30] develop reachability logic to present symbolic execution parameterized
by the semantics of the target language. These all present alternative approaches to the left
edge of Figure 4.

There are also other approaches to partial order reduction. In particular, dynamic or
stateless POR (DPOR) [1, 13, 16, 26] avoids exploring equivalent future traces by identifying
backtracking points. Additionally the unfolding approach explores partial orders more directly
as a tree-like event structure [26]. Unfolding has been fruitfully combined with symbolic
execution in practice [29].

7 Conclusion

POR and SE are fundamental abstraction techniques in program analysis. SE is particu-
larly useful as a state abstraction technique for sequential programs, while POR addresses
equivalent interleavings in the execution of concurrent programs. In this paper, we study
the foundations of both techniques based on transition systems and trace semantics, in the
context of a core imperative language with parallelism. The formalization provides a unified
view of concrete and symbolic semantics with and without partial order reduction. We
further formalize correctness and completeness relations for both POR and SE, and compose
these relations to study how SE and POR can be combined while preserving correctness
and completeness. Our work shows that the framework of correctness and completeness
relations between symbolic and concrete transition systems, introduced by de Boer and
Bonsangue, extends to parallelism and trace semantics, and provides a natural setting to
study formalizations of abstraction techniques for SE, such as POR.

In addition, our formal development of correctness and completeness relations of SE and
POR has been fully mechanized using Coq2. We believe the mechanization of this framework
in Coq can be useful to the community to study further formalizations of abstraction

2 Provided as supplementary material at https://github.com/Aqissiaq/symex-formally-formalized
and https://zenodo.org/record/8070170

https://github.com/Aqissiaq/symex-formally-formalized
https://zenodo.org/record/8070170
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techniques for symbolic execution and their correctness. In particular, in future work, we
plan to extend the framework developed in this paper to understand relations between
concrete SE frameworks typically used for software testing [9], such as Klee [8], in which
states are described using symbolic stores as in this paper, and abstract SE frameworks
typically used for deductive verification, such as KeY [2], in which states are described using
predicates.
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