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Abstract. The servitization of business is moving industry to business
models driven by customer demand. Customer satisfaction is connected
with financial rewards, forcing companies to investigate in their users’
experience. User journeys describe how users manoeuvre through a ser-
vice. Today, user journeys are typically modelled graphically, and lack
formalization and analysis support. This paper proposes to formalize user
journeys as weighted games between the user and the service provider.
We further propose a data-driven construction of such games, derived
from system logs using process mining techniques. As user journeys may
contain cycles, we bound the number of iterations in each cycle and de-
velop an algorithm to unfold user journeys into acyclic weighted games.
These can be model checked using Uppaal Stratego to uncover poten-
tial challenges in how a company interacts with its users and to derive
company strategies to guide users better in their journeys. Our analy-
sis pipeline was evaluated on an industrial case study; it revealed design
challenges within the studied service and could be used to derive suitable
recommendations for improvement.

Keywords: User journeys · Data-driven model construction · Games ·
Model checking · UPPAAL.

1 Introduction

The servitisation of business [37], a concept of creating added value to products
by offering services, is a major practice embraced by most (if not all) successful
companies. Such companies are interested in the analysis of their services, which
until now has mostly focused on the managerial perspective, where the service is
analysed with respect to the companies’ view. Recent tendencies are shifting the
focus from the company’s view to the end-users view, where a positive experience
and impression that a user has while engaging in the service, has shown to have
a positive impact on the financial reward of a company [17]. Thus, companies
aim to analyse and improve their services, based on their users’ satisfaction.
⋆ This work is part of the Smart Journey Mining project, funded by the Research
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User journeys (also called customer journeys) analyse services from the user
perspective [30]: A user journey is inherently a goal-oriented process, because
humans engage in a service with a goal in mind. The user moves through the
journey by engaging in so-called touchpoints, which are either actions performed
by the user or a communication event between the user and a service provider.
We here assume that users only engage in one touchpoint of a service at a time.

Tools are currently lacking the analysis of user journeys [21], which hinders
their operational use. User journey diagrams are usually generated by hand,
and the user perspective is derived from interviews with experts and users,
e.g. [20,30]. This process has been highly successful, discovering points of failure
in the studied services and, as a result, providing advice to companies on how to
improve their services. However, this manual process is best suited for relatively
small services and a restricted number of users. For services with thousands of
users, journey diagrams need to be automatically generated and analysed.

This paper proposes a formalization of user journeys as weighted games [12]
between users and a service provider, and a method to derive these games from
process logs. Our aim is to use these games to analyse services and to suggest
service improvements such that service providers always have a strategy to guide
their users towards a desired goal. We capture the user perspective of services
by means of so-called gas. The term is inspired by blockchain technology such
as Ethereum, where gas refers to the cost necessary to perform a transaction on
the network. In our work, the gas quantitatively reflects how moves in the user
journey contribute to the users reaching their goal. Consequently, the moves in
the derived games are weighted and accumulated into the gas of the journeys,
which allows to compare and analyse journeys using model checkers such as
Uppaal Stratego [15] or PRISM-games [13], and to give strategic recommen-
dations to service providers. In short, our contributions are: (1) a formalization
of user journeys as weighted games; (2) a pipeline to automatically derive and
model check weighted games; and (3) an industrial case study that evaluates the
feasibility of our approach.

Related Work: We discuss related work with respect to the modelling of user
journeys and the use of data-driven techniques to discover user journeys. We
are not aware of prior work that uses automatic verification methods to check
properties for user journeys.

User journeys aim to improve service design by describing how users interact
with services [16, 36]. Modelling notations for user journeys aim to support the
so-called blueprinting [11], i.e., to create an anticipated model of a service. There
are various notations to create diagrams for user journeys [5, 14, 19, 24, 29, 30];
these diagrams are mostly handmade but some digital support exists; for exam-
ple, a semantic lifting into ontologies has been used to visualize fixed aspects
of a model [24]: the data sent, the communication channels and devices used,
etc. Berendes et al. propose in [5] the high street journey modelling language
(HSJML) tailored to journeys in shopping streets. Razo-Zapata et al. propose
the VIVA modelling language with focus on interactions [29]. In contrast, our
work aims to use data-driven techniques [2] to automatically discover user jour-
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ney diagrams and formal methods to automatically check properties of user
journeys and derive recommendations for improving the service under analysis.

The Customer Journey Modelling Language (CJML) [18, 20] captures the
end-users point of view. CJML distinguishes planned and actual user journeys,
which represent the journey as planned as part of the service design and as
perceived by the user, respectively. Our work is part of a project [21] on tool
support for data-driven user journey modelling in CJML. Whereas previous work
on CJML manually quantifies user experience collected through user feedback
questionnaires, our work aims to capture the journeys as perceived by the user
in a data-driven manner, based on system logs.

Data-driven techniques for process discovery allow us to discover user jour-
neys. Harbich et al. [22] use mixtures of Markov models to derive user journey
maps. Bernard et al. [8, 10] study process mining [2] for user journeys, such
as hierarchical clustering to explore large numbers of journeys [7] and process
discovery techniques to generate user journey maps at different levels of granu-
larity [9]. Terragni and Hassani [33] apply process mining to user journey web
logs to build process models, and improve the results by clustering journeys. This
work has been integrated with a recommender system to suggest service actions
that maximize key performance indicators [34], e.g., how often the product page
is visited. In our work we propose a data-driven method to discover models of
user centric journeys with multiple actors, building on on existing techniques.

Outline: Section 2 introduces foundational definitions needed for weighted games
and the model checking suite Uppaal that we use for analysis. The formal
model for user journeys is introduced in Sects. 3–5 and model checked in Sect. 6.
Section 7 discusses the implementation, Sect. 8 evaluates our approach in terms
of an industrial case study and Sect. 9 concludes the paper.

2 Preliminaries

We briefly summarise the formal notations and tools that we build on for the
proposed user journey pipeline to analyse a service.

A transition system [28] is a tuple S = ⟨Γ,A,E, s0, T ⟩ with a set Γ of states,
a set A of actions (or labels), a transition relation E ⊆ Γ × A × Γ , an initial
state s0 ∈ Γ and a set T ⊆ Γ of final states. A weighted transition system [35]
S = ⟨S,w⟩ extends the transition system S with a weight function w : E → R
that assigns weights to transitions.

Weighted games [12] are obtained from weighted transition systems by parti-
tioning the actions A into controllable actions Ac, and uncontrollable actions Au,
where only actions in Ac can be controlled by the analyser, while actions in Au

are nondeterministically decided by an adversarial environment. When analysing
games, we look for a strategy that guarantees a desired outcome, i.e. winning
the game by reaching a certain state. The strategy is given by a partial function
Γ → Actc ∪ {λ} that decides on the action of the controller in a given state
(here, λ denotes the “wait” action, letting the adversary move).
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Log Directly Follows Graph Game

Fig. 1: Creation of the Journey Model.

Uppaal Tiga [4] can be used to analyse reachability and safety proper-
ties for games expressed using (timed) transition systems, extending the model
checker Uppaal [25]. Uppaal Tiga checks whether there is a strategy under
which the behaviour satisfies a control objective, denoted control: P for a prop-
erty P . Property P is expressed in computational tree logic [3], an extension of
propositional logic that is used to express properties along paths in a transition
system. Recall that computational tree logic state properties ϕ can be decided
in a single state; while reachability properties E <>ϕ express that the formula
ϕ is satisfiable in some reachable state in a transition system; safety properties
E []ϕ express that the formula ϕ is always satisfied in all the states of some
path in a transition system and A []ϕ expresses that ϕ is always satisfied in
all the states of all paths of a transition system. Similarly, liveness properties
A <>ϕ express that the formula ϕ will eventually be satisfied in all the paths in
a transition system and the formula ϕ -->ψ expresses that satisfying formula ϕ
leads to satisfying formula ψ.

Uppaal Stratego [15] can be used to analyse and refine a strategy gen-
erated by Uppaal Tiga with respect to a quantitative attribute like weights.
Uppaal Stratego is a statistical model checker [27]; it extends Uppaal for
stochastic priced timed games and combines simulations with hypothesis testing
until statistical evidence can be deduced.

3 From User Logs to Games

To capture the user perspective in games that model user journeys, user actions
(representing communication initiated by the user) can be seen as controllable
and the service provider’s actions as uncontrollable. However, from an analytical
perspective, it is more interesting to treat user actions as uncontrollable and the
service provider’s actions as controllable. The service provider is expected to have
suitable reactions for all possible user interactions. Ideally, the service provider
should not rely on the user to make the journey pleasant. By treating user actions
as uncontrollable, we can expose the worst behaviour of the service provider, and
thereby strengthen the user-centric perspective promoted by journey diagrams.
Games for user journeys are then defined as follows:

Definition 1 (User journey games). A user journey game is a weighted game
⟨Γ,Ac, Au, E, s0, T, Ts, w⟩, where

– Γ are states that represent the touchpoints of the user journey,
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– Ac and Au are disjoint sets of actions respectively initiated by the service
provider and the user,

– E ⊆ Γ ×Ac ∪Au × Γ are the possible actions at the different touchpoints,
– s0 ∈ Γ is an initial state,
– T ⊆ Γ are the final states of the game,
– Ts ⊆ T are the final states in which the game is successful, and
– w : E → R specifies the weight associated with the different transitions.

The process of deriving such user journey games from user logs is illustrated
in Fig. 1. In Step 1, we go from logs to a user journey model, expressed as a
directly follows graph (DFG), and in Step 2, the DFG is extended to a game.
The derivation of weights for the transitions is discussed in Sect. 4.

Step 1. We use a directly follows graph (DFG) as an underlying process model to
capture the order of events in an event log; a DFG is well-suited as the process
model provided that users only engage in one touchpoint at a time. DFGs are
derived from event logs by means of process discovery [2]. An event log L is a
multi-set of journeys. A journey J = ⟨a0, . . . , an⟩ is a finite and ordered sequence
of events ai from a universe A. We construct the DFG of an event log L as a
transition system S = ⟨Γ,A,E, s0, T ⟩ where the states Γ capture the event
universe, Γ ⊆ A ∪ {s0} ∪ T. Every sequence of events is altered to start in the
start state s0 and to end in a dedicated final state t ∈ T . The set of actions A is
the union of the event universe and the final states, A = A ∪ T. The transition
relation E includes a triple (ai, ai+1, ai+1) if ai is directly followed by ai+1 in
some J ∈ L; we can traverse from state ai to state ai+1 by performing the action
ai+1. Here reaching a state in S is interpreted as the corresponding event in L
has already been performed. By construction, the DFG S obtained from log L
can replay every observed journey in L. However S may capture more journeys
than those present in L, since for example S may contain transitions with loops.

Step 2. The DFG is now transformed into a game. Observe that the DFG cap-
tures the temporal ordering of events but it does not directly differentiate the
messages sent by the user to the service provider from those sent by the service
provider to the user. For simplicity, let us assume that this information is either
part of the events in the logs or known in advance from domain knowledge con-
cerning the event universe. The mined DFG can then be extended into a game
by annotating the actions that are (un)controllable.

4 Capturing User Feedback in User Journey Games

We now extend the games derived from system logs into weighted games by
defining a gas function reflecting user feedback. We develop a gas function that
is automatically calculated and applied to the transitions of the game, depending
on the traversal and entropy that is present in the corresponding event log.
Informally, the gas function captures how much “steam” the consumer has left
to continue the journey. Less steam means that the user is more likely to abort
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the journey and more steam means that the user is more likely to complete the
journey successfully. Assuming that the service provider attempts to provide the
best possible service, its goal is to maximize gas in a journey. The adversarial
user aims for the weaknesses in the journey and therefore minimizes the gas.
Formally, the weight function w : E → R maps the transitions E of a game
to weights, represented as reals. Given a log L and its corresponding game, we
compute the weight for every transition e ∈ E.

Since user journeys are inherently goal-oriented, we distinguish successful
and unsuccessful journeys; the journeys that reach the goal are called successful
and the remaining journeys are considered to be unsuccessful. This is captured
by a function majority : E × L → {−1, 1} that maps every transition e ∈ E
to {−1, 1}, depending on whether the action in the transition appears in the
majority of journeys in L that are unsuccessful or successful, respectively. Ties
arbitrarily return −1 or 1.

Many actions might be part of both successful and unsuccessful journeys.
For this reason, we use Shannon’s notion of entropy [32]. Intuitively, if an action
is always present in unsuccessful journeys and never in successful ones, there is
certainty in this transition. The entropy is low, since we understand the context
in which this transition occurs. In contrast, actions involved in both successful
and unsuccessful journeys have high entropy. The entropy is calculated using

1. the number of occurrences of an event in the transitions of successful journeys
within the event log L, denoted #pos

L e, and the number of transitions in
unsuccessful ones, denoted #neg

L e; and
2. the total number of occurrences of the event in L, denoted #Le.

The entropy H of transition e given the event log L is now defined as

H(e, L) = −
#pos

L e

#Le
· log2(

#pos
L e

#Le
)−

#neg
L e

#Le
· log2(

#neg
L e

#Le
) .

The weight function w that computes the weights of the transitions can now
be defined in terms of the entropy function, inspired by decision tree learning [31].
Given an event log L, the weight of a transition e is given by

w(e) = ((1−H(e, L)) ·majority(e, L)− C) ·M .

The constant C represents an aversion bias and is learned from the training set.
It is used to model a basic aversion against continuous interactions. The sign
of a transition depends on its majority. If the transition is mostly traversed on
successful journeys, it is positive. Otherwise, it is negative. The inverse entropy
factor quantifies the uncertainty of transitions. The constant M scales the energy
weight to integer sizes (our implementation currently requires integer values, see
Sect. 7).

The gas of a journey quantitatively reflects the history of that journey, al-
lowing us to not only compare the weights of transitions but also to compare
(partial) journeys. The gas G of a journey J = ⟨a0, . . . , an⟩ with transitions
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Algorithm 1 k-bounded loop unrolling
Input: Weighted Game S = ⟨Γ,Ac, Au, E, s0, T, Ts, w⟩, constant k ∈ N+

Output: Acyclic Weighted Game S′ = ⟨Γ ′, Ac, Au, E
′, s0, T

′, Ts, w
′⟩

1: Initialize S′ = ⟨∅, A′
c, A

′
u, ∅, s0, T ′, Ts, w⟩ and queue Q = [s0]

2: C ← {c | c is simple cycle in S}
3: while not empty(Q) do
4: state s← first(Q)
5: for t ∈ {t | (s, t) ∈ E} do
6: hist ← push(history(s), t)
7: allSmaller ← True
8: canTraverse ← False
9: if repetitions(c, hist) ≥ k for all cycle c ∈ C then

10: allSmaller ← False
11: if !allSmaller then
12: P ← allSimplePaths(S, t, T )
13: for path p ∈ P do ▷ check whether cycle might be partially traversed
14: hist′ ← merge(hist, p)
15: if repetitions(c, hist′) ≤ k for all cycle c ∈ C then
16: canTraverse ← True ▷ cycle can be partially traversed
17: if allSmaller ∨ canTraverse then
18: state t′ copy of t with history hist
19: push(Q, t′)
20: addTransition((s, t′), S′) ▷ Copies weight to w′ and actor to A′

c, A
′
u

21: return S′

e0, . . . en−1 is defined as the sum of the weights along the traversed transitions:

G(J) :=

n−1∑
i=0

w(ei) .

5 Finite Unrolling of Games

The generated weighted games may contain loops, which capture unrealistic jour-
neys (since no user endures indefinitely in a service) and hinder model checking.
Therefore, the weighted games with loops are transformed into acyclic weighted
games using a breadth-first search loop unrolling strategy bounded in the num-
ber of iterations per loop. The transformation is implemented in an algorithm
that preserves the original decision structure and adds no additional final states.

The algorithm for k-bounded loop unrolling (shown in Algorithm 1) returns
an acyclic weighted game, where each loop is traversed at most k times. The
unrolling algorithm utilizes a breadth-first search from the initial state s0 in
combination with a loop counting to build an acyclic weighted game. In the al-
gorithm, the state s denotes the current state that is being traversed. To traverse
the paths in the weighted game, we use a queue Q to store the states that need
to be traversed, a set C containing all the cycles in the graph (where each cycle
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is a sequence of states), and the function allSimplePaths(S, s, T ) that returns
all paths in the weighted game S from s to any final state t ∈ T . The extended
graph is stored in the acyclic game S′. A state in a cycle can be traversed if it
has been visited less than k times (see Lines 9–10). The function repetitions
checks the number of traversals. If the counter for one cycle is k, the algorithm
checks whether the cycle can be partially traversed (see Lines 11–16).

Partial traversals guarantee that we reach a final state without closing an-
other loop. The partial traversal does not increase the count of another cycle to
k+ 1 (Lines 14–16). Every state stores its history (a sequence of visited states),
which can be retrieved using the function history. Line 14 increases the cur-
rent history by including a (partial) path through the loop. This check iterates
through all paths from the current state to any final state. If state t can be
traversed, it is added to the acyclic game (Lines 17–20). A copy t′ of t is added
to the queue Q, the transition (s, t′), its weight and actor are added to S′ using
the function addTransition. The resulting weighted game can be reduced. All
states outside a cycle can be merged into the same state. This can either be done
after unrolling the whole game or on the fly while unrolling.

1

2

3

4 5

(a) Cyclic Game

(b) Acyclic Game

Fig. 2: Unrolling Example.

Example. Figure 2 illustrates the
unrolling algorithm (for simplicity,
we ignore transition weights and do
not distinguish controllable and un-
controllable actions in the example).
Starting from the cyclic weighted
game in Fig. 2a, the algorithm with
k = 1 generates the acyclic weighted
game in Fig. 2b. The input contains
two loops: C = {[2, 3], [2, 4, 3]}. Start-
ing at state 1, we can traverse two
neighbour states which both are part
of the cycles. Thus, both transitions
are inserted to S′, and Q is up-
dated to [2, 3]. Continuing with state
2, all reachable transitions are again
inserted as the corresponding cycles
have not been fully traversed. Names
of copies of the states that are already
present once in the graph are incre-
mented (the first occurrence of state
3 is called 3, the second 3.1, the third,
3.2, etc.) The algorithm continues un-
til the first loop 2, 3, 2 is closed. In
this case, it is not possible to traverse
again to state 3 without closing the
loop [2, 3]. Only state 4 and its cor-
responding loop can be traversed (see
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Fig. 2b, left branch). As result of the state reduction, all final states are merged
into one (removing the copies originally introduced by the algorithm).

Properties. The unrolling algorithm preserves the decision structure of the initial
weighted game. By construction, acyclic weighted games do not traverse cycles in
the initial game k+1 times. Loops can be traversed partially to ensure that every
final state in the acyclic weighted game is also a final state in the initial weighted
game. Only unreachable states are excluded in the acyclic game. No further
final states or “dead ends” are introduced. The algorithm also preserves the local
decisions between controllable and uncontrollable actions, so the strategies found
on the unrolled weighted game carry over to the initial weighted game.

6 Model Checking User Journeys

In this section we describe how to model check properties for user journeys
and generate strategies to improve user journeys, using acyclic weighted games.
The analysis of a weighted game gives formal insights into the performance of
a service. We introduce generic properties that capture the user’s point of view
on a user journey. The analysis in this paper uses the Stratego extension
for Uppaal [15], which supports non-deterministic priced games and stochastic
model checking. Stratego allows to model check reachability properties within
a finite number of steps, when following a strategy (therefore the need for acyclic
games). Stratego constructs a strategy that satisfies a property P , so that the
controller can not be defeated by the non-deterministic environment. We detail
some strategies and properties of interest for games derived from user journeys.

Guiding users to a target state. A company needs a suitable plan of (controllable)
actions for all possible (uncontrollable) actions of their users when guiding them
through a service. In Uppaal Stratego we define the following strategy:

strategy goPos = control: A<> Journey.finPos .

Model checking this property returns true if and only if there exists a company-
strategy goPos such that the positive target state finPos, indicating that the
journey is successful, is eventually reached in all paths. The corresponding strat-
egy (given as a pseudo-code) can be produced with the Uppaal Tiga command-
line tool verifytga. If the verification fails, the company should be advised to
simplify their service and offer more support to avoid unsuccessful user journeys.

Analysing user feedback. We can use the gas function and a liveness property to
analyse the desired accumulated feedback at the end of successful user journeys:

Journey.finPos --> gas > 0 under goPos .

This property checks that in general users have balancing experiences within
their journeys, when the company follows the goPos strategy.
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We can also check the feedback levels along the journey. The following prop-
erty checks that a user never falls below a defined constant feedback C:

control: A[] gas > C under goPos .

Fluctuations in the feedback level of users can be revealed using simulations.
Uppaal uses an implicit model for the passage of time to guarantee termination
of statistical queries and simulations, using an upper time bound T, as specified
in [15]. The following query simulates X runs through the system using the goPos
strategy, where each run has T as a time bound:

simulate X [t<=T]{Journey.finPos, gas} under goPos .

The time bound is set to a value that guarantees all runs to reach a final state.

Analysing the trajectory of user journeys. Reaching a final state in a journey
with a positive feedback does not ensure a satisfying journey. The user might
still visit every pitfall along the way. To provide a pleasant journey, a company is
among others interested in minimising the expected number of steps. A strategy
minimising the number of steps is refined as follows:

strategy goPosFast = minE(steps) [t<=T] :
<> Journey.finPos under goPos .

This strategy can additionally be used to examine the expected lower bound of
gas within a journey and the expected maximum value of accumulated gas at
the end of a journey (denoted by finalGas):

E[t<=T; X] (min: gas) under goPosFast ,
E[t<=T; X] (max: finalGas) under goPosFast .

These values are computed with a time bound of T and over X runs.

7 Implementing the Pipeline to Analyse User Journeys

This section describes the implementation of the analysis pipeline detailed in
Sects. 3–6. We focus on the implementation decisions made along the pipeline
to facilitate the analysis. The pipeline is implemented in Python. The input to
the pipeline are user logs of a service provided by a company and the output is a
Uppaal model, which can be model checked by either the proposed properties in
Sect. 6 or by other custom made properties using Uppaal Stratego. A source
repository for our work on user journey games is available online [1].

We first mine the DFG from user logs and then remove transitions that
were rarely traversed, to simplify the graph and make it robust. Leemans et
al. describe two ways to build a robust DFG [26]: One can (1) remove either
transitions from the graph or (2) remove journeys from the log and rebuild the
graph. We used the first approach with a traversal threshold of three in this pa-
per, since removing journeys requires larger datasets. This modification ensures
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that the model only contains relevant journeys. We then enrich the graph with
knowledge indicating which actions are controllable and uncontrollable. Since
companies want to understand why on-boarded users reach their goal or quit in
the middle of a journey, we decided to add to the model final states representing
a positive endpoint, finPos, and a negative one, finNeg, respectively.

We generate a weighted transition system by computing a weight for each
transition, as discussed in Sect. 4. The factor M scales the weights to integer
sizes, required by Uppaal’s model checker. However, given that we simplify the
DFGs, the log contains journeys that are not re-playable in the graph. Com-
puting the gas of such journeys corresponds to the alignment problem [23, 26].
The alignment procedure consists of either allowing additional steps in the log
without counterparts in the model or allowing steps in the model without steps
in the log. Since the simplification of DFGs omits steps in the model, it was here
sufficient to use the information given in the trace, without inferring further
model steps. Optimal alignments can also be used to compute the gas.

As a final step, we unroll the weighted game with cycles, as described in
Sect. 5, to obtain an acyclic weighted game, which is the output of the trans-
formation and the input to Uppaal for further analysis. Bounded constraints in
the properties are introduced to the unrolled model to ensure termination. The
analysis described in Sect. 6 is implemented and evaluated.

8 Evaluating the Analysis Pipeline

In this section we evaluate the implemented pipeline described in Sect. 7 in an
industrial case study from the company GrepS. The full details of the case study
are given in the accompanying artefact.1

8.1 Context

GrepS is a company that provides analysis and measurement of programming
skills for the Java programming language. The service is research based [6]. Typi-
cal customers are organisations hiring or training software developers. The users
of the service are developers who receive a request from a customer organization
to complete a skill analysis within a specific time frame, typically 1–2 weeks.

The service consists of a sign-up phase followed by a phase where the user
solves programming tasks in an authentic programming environment, which in-
cludes an instructional task and a practice task. Finally, the service analyses the
user’s skills and requests the user to share the skill report with the customer.

The customer pays GrepS for each skill report it receives. In a successful use
of the service, a user successfully completes three phases: (1) sign up, (2) solve all
programming tasks, and (3) review and share the skill report with the customer.
In an unsuccessful use of the service, the user permanently stops using the service
or does not want to share the skill report with GrepS’ customer.
1 An artefact for the implementation and evaluation of the analysis pipeline in this

paper is available: https://doi.org/10.5281/zenodo.6962413.

https://doi.org/10.5281/zenodo.6962413
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strategy goPos = control: A<> Journey.finPos True
Journey.finPos --> e > 0 under goPos False
control: A[] gas > -41 under goPos True
E[t<=100; 500] (max: steps) under goPos 28.5
E[t<=100; 500] (min: gas) under goPos -26.7
E[t<=100; 500] (max: finalGas) under goPos 60

strategy goPosFast = minE(steps) [t<=100] : <> Journey.finPos under goPos True
E[t<=100; 500] (max: steps) under goPosFast 20.9
E[t<=100; 500] (min: gas) under goPosFast -20.1
E[t<=100; 500] (max: finalGas) under goPosFast 35

Fig. 4: Analysis of the weighed game generated from the user logs of GrepS.

Timestamp · · · Metadata
5245944 · · · Registered
5780525 · · · Registered
6104714 · · · Activated
6104714 · · · Logged in: Web page...

...
...

Fig. 3: Extract of GrepS’ user logs.

Anonymised user logs were pro-
vided by GrepS in the form of tab-
ular data. The logs contain events
with various fields; only the fields
Timestamp, that gives the order
of events, and Metadata, contain-
ing meta-information on the kind
of event, were used to generate the
weighted game. An extract of the data is shown in Fig. 3. For our purposes,
only the order of the events was of interest, as given by the Timestamp.

The validation of the analysis pipeline includes observations of the weighted
game and the model checking of the properties as outlined in Sect. 6, the results
are summarised in Fig. 4. The analysis results were used to provide recommenda-
tions for GrepS to improve their service. These recommendations were validated
by the third author, a long-term employee of the company who has experience
in handling feedback from both users and customers.

8.2 Observations in the Weighted Game

The generated cyclic user journey game, which still contains loops, is shown
with events (or touchpoints) T and weighted transitions in Fig. 5. In the fig-
ure, the transition thickness indicates how often a transition was traversed and
dashed lines represent uncontrollable transitions. Positive (negative) transitions
are green (respectively, red). Transitions traversed three times or less were re-
moved from the graph.

The derived weights already allow us to make some interesting observa-
tions. The weighted game shows negative weights (about −1 to −2) through
Phase 1 (T0–T5), up until the practice task has been completed (T12) in Phase 2
(T6–T20). After that, the weights are positive (about +1 to +5) and increase
steadily for each new task. Phase 3 (T21–T26) also has positive weights through
the user journey; here, a developer logs back into the web system after having
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completed all tasks (T19), waits for the report to be ready (T21), and finally
approves the sharing of the report with GrepS’ customer (T26).

Fig. 5: The weighted game
using GrepS’ event logs.

Phase 1 shows two negative weights for some
users that involve more touchpoints than what the
planned journey entails: (1) T4 captures an error
where a virtual computer does not spin up cor-
rectly thereby requiring the user to contact sup-
port; (2) there are a cyclical negative weights be-
tween T6–T8 where a user starts receiving instruc-
tions for Phase 2, but stops and then returns to
the system again at a later time. Phase 3 also
has negative weights due to deviations from the
planned journey, for example when the user does
not login after the report is available (T24).

The figure also shows a strong negative weight
(of −22) when a user does not submit the prac-
tice task in T11, resulting in a negative outcome,
a transition to finNeg. Seen from a user perspec-
tive, Fig. 6 shows the four touchpoints where most
users stop using the service: 18% of all users quit
after finishing the practice task (T10), which is
twice that of users who stop after the first (T12,
9%) and second task (T14, 9%); 12% of the users
do not want to share their report (T25). The blue
line shows how many users remain using the ser-
vice in percent after each of the four touchpoints.

8.3 Model Checking the Case Study

The accumulated feedback along the paths of the
journey supports the observations on unsuccessful
journeys (Sect. 8.2). Figure 7 shows 10 simulations
with the goPos and goPosFast strategies; the lines
show the amount of gas (accumulated feedback)
along the journey. We here used k = 1 for the
unrolling. For all simulations, the gas has an initial
dip with a steep increase afterwards. The results
in Fig. 4 support the observations in Sect. 8.2.
Observe that the goPos strategy cannot prevent
the gas from falling below 0; in fact, it can fall as
low as −41 along the journey with an expected
minimum of −26.7.

Depending on the application context, multiple factors can contribute to
an optimised journey. The strategy goPosFast was introduced in Sect. 6 as a
refinement of goPos. It searches for an optimal strategy towards a successful final
state, while minimising the expected number of steps. The lower part of Fig. 4
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Fig. 6: Events in unsuccessful journeys. Fig. 7: Uppaal simulations.

evaluates the queries under goPosFast. The simulations of the refined strategy,
in Fig. 7, shows a smaller dip than with the goPos strategy. It improves the
expected minimum feedback by 6.6 units and reduces the expected length of the
journey by seven steps. The expected maximum final feedback is also reduced
from 60 to 35.

8.4 Recommendations from the Observations and Analysis

From the company’s perspective, several key takeaways have been identified from
the weighted game, the simulations, and the model checking of properties:

– The instructional task and practice tasks during Phase 2 should be integrated
into a single task that is more motivating for the user to complete.

– Users that disconnect from the service for several days after having pro-
gressed to the instructional, practice, or first task should be prompted to
continue by, e.g., automatically sending a motivational email.

– The sign-up process should be simplified if possible.

The weighted game detects challenges early in Phase 2; in fact this is reassuring
for our analysis, as prior work at GrepS has reported that the users struggle more
during the first three tasks [6]. However, a question that arises from our analysis
of the derived user journey game is whether good user support during deviations
from the planned journey may result in better overall satisfaction than if the
planned journey had no deviations. It seems plausible that unplanned journeys
that involve technical problems result in less motivated users who are less likely
to successfully complete the journey. However, interactions with support may
also result in additional service to the user that may result in positive weights
in the overall game.

In summary, the case study demonstrates that the analysis of games derived
from system logs can be used to discover weaknesses in designed user journeys,
and to improve and optimise these journeys. For the concrete case study, the
company needs to implement additional actions in their service, which will im-
prove user satisfaction and reduce costs in terms of resources.
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9 Conclusions and Future Work

This paper proposes a novel analysis pipeline to gain insights into user journeys.
We presented a method for the data-driven generation of formal models to anal-
yse user journeys, using weighted games. To the best of our knowledge, this is the
first automatic analysis pipeline using formal methods in the context of service
science and user journeys. The paper proposes a method to automatically anal-
yse derived models and thereby gain insights into the user journeys in a service,
where all decisions and recommendations can be reasoned and explained. The
model is not subject to human inference but is generically built from user logs.

The derived model preserves a user-centric point of view. We mine a directly
follows graph from user logs, and extend this graph to a game by considering
the actions of the user as uncontrollable and those of the service provider as
controllable. Weights are introduced to the game by a gas function which maps
transitions in the game to numerical values (in the real domain). Cycles in the
derived graph are unrolled to generate an acyclic weighted game. The unrolling
algorithm preserves weights, actions and final states from the initial graph. The
resulting acyclic weighted game can be analysed with respect to properties ex-
pressed as Uppaal Stratego queries using the Uppaal model checker.

The proposed analysis pipeline was evaluated on an industrial case study
and revealed challenges to the planned user journey of the service provider. The
analysis of the derived game demonstrated that users’ experiences fall in their
accumulated feedback during the initial phases of the service. Our recommenda-
tions were reviewed and approved by an expert on user feedback in the company.

The work presented here opens many interesting possibilities for further work.
Our work so far has assumed that users and service providers have perfect knowl-
edge of each other’s possible actions, such that the analysis could be done with
the Stratego extension for Uppaal [15]. Generally, knowledge about planned
user journeys varies between services and between users. We plan to explore
imperfect information games, where, e.g., knowledge about user actions is not
completely known. In this setting, the analysis could be based on probabilistic
priced games, using the model checker PRISM-games [13].

Furthermore, the current analysis is restricted to strategies for unrolled mod-
els, which give insights from a k-bounded loop unrolling but does not generalise
for unseen values > k. We would like to generate strategies for the initial model
and not only for the unrolled model. We plan to integrate our work with exist-
ing modelling languages for user journeys in the service science domain, such as
CJML [18, 20], to automate the analysis of user journey models that are man-
ually reviewed today, and to provide feedback from our analysis in the visual
language of these models. We are currently investigating the scalability of the
proposed method on system logs for user journeys that are significantly larger
than the case study considered here.
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