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Abstract. Digital twin applications use digital artefacts to twin phys-
ical systems. The purpose is to continuously mirror the structure and
behavior of the physical system, such that users can analyse the physical
system by means of the digital twin. However, the physical system might
change over time. In this case, the digital twin’s ensemble of digital arte-
facts needs to be reconfigured to correctly twin the physical system again.
This paper considers a digital twin infrastructure combining MAPE-K
feedback loops and semantic reflection to automatically ensure that the
digital artefacts correctly twin the physical system; i.e., the resulting
system is twinned-by-construction. We consider the monitoring of both
structural and temporal correctness properties for digital twin, including
the time delay required by reconfiguration, and the capture of execution
traces to reflect digital threads in the digital twin framework.

1 Introduction

Digital twins are a major innovation driver for the digitisation of key industries.
Digital twin applications use digital artefacts to continuously mirror a physical
system, such that users can analyse the physical system by means of the digital
twin. At their core, they describe applications where a physical system, the
physical twin (PT), is mirrored structurally and behaviourally by some digital
system, the digital twin (DT); this mirroring turns the DT into a live replica of
the PT. It is crucial that the PT and the DT interact with each other; i.e., data
flows between them in both directions such that the DT can detect changes in
the PT and perform actions. The physical system might change over time. In
this case, the digital twin’s ensemble of digital artefacts needs to be reconfigured
to correctly twin the physical system again. Over its liftetime, the DT can then
be seen as a trace of different configurations of digital artefacts, reflecting the
changes to the PT. In this paper, we consider DTs that explicitly mirror changes
to the PT in the digital system, enabling the user to access the digital thread of
a physical asset.

In this paper, we discuss the reconfiguration of digital twins from the per-
spective of X-by-construction (XbC) approaches and self-adaptive systems, and
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how these reconfigurations can be monitored. We say that a physical system is
twinned by a digital system if the digital system has the same structure and
behavior as the physical system. Static digital twins, i.e., twins that mirror a
structure that does not change over time, are twinned-by-construction if the ini-
tialisation of the digital system ensures this twinning property. However, when
the PT evolves over time, self-adaptation at runtime will play a crucial role in
not only keeping the DT running, but also to re-establish its twinning property.

To illustrate these interactions between a self-adaptive DT and the PT, we
consider an architecture for digital twins based on MAPE-K feedback loops [1,2,3]
(Monitor, Analyse, Plan, and Execute based on Knowledge), a well-known method
to organize autonomous systems. We distinguish between two different MAPE-K
feedback loops for the digital twin units and the digital twin infrastructure in
a digital twin application, where a DT unit is a digital artefact, for example,
a simulator that mirrors exactly one part of the physical system, and the DT
infrastructure orchestrates an ensemble of DT units.

One of the MAPE-K feedback loops uses the DT infrastructure to make
sure that the DT units indeed jointly mirror the PT. Twinning-by-construction
(TbC) ensures that the DT infrastructure connects the DT units in such a way
that the DT mirrors the structure of the PT. If the physical system changes
over time, the DT infrastructure needs to adapt and re-twin the digital system
and re-establish the structural and behavioural correspondence between PT and
DT. The DT infrastructure also realizes other features of the application, e.g.,
the above-mentioned data flow, the user interfaces, and analysis support over
the DT such as the exploration of speculative scenarios, which again can be
realised via a second MAPE-K feedback loop that only focuses on the behavioural
correspondence between PT and DT.

This paper mainly focuses on the structural correspondence between the PT
and the DT, as shown in Fig. 1, and discusses the connection between the concept
of twinned-by-construction and self-adaptation at runtime by combining MAPE-
K feedback loops with semantically lifted programs [4], and runtime monitoring
of properties for self-adaptive systems. Semantically lifted programs combine
knowledge graphs and object-oriented programming languages by enabling the
program to semantically reflect on itself as a knowledge graph. For digital twin
applications, we implement the DT units by means of functional mock-up units
(FMUs) [5,6] and use ontology-based asset models to connect the state of the
DT and the PT [7] (see Fig.1). Knowledge graphs enable a uniform treatment
of the DT infrastructure (via semantic reflection) and a physical system (via the
asset model). Users can send queries to both the asset model and the DT.

Furthermore, we consider trace-based TbC for digital twin applications. Cor-
rect twinning captures the property that the current structure of the DT corre-
sponds to the current structure of the PT, as it is expressed in the asset model.
Trace-based TbC strengthens this notion of correctness by requiring that the
execution trace of the DT must also mirror the (execution) trace of the PT.
Based on this constraint, information concerning physical twin units that are
no longer present in the current configuration of the PT, but were previously



Twinning-by-Construction 3

Physical 
Twin
(PT)

Asset 
Model

represented 
by twinned by 

Data

Commands

User
Query

Digital 
Twin
(DT)

Fig. 1. High-level description of a digital twin architecture: the asset model serves as
an interface for structural changes between digital twin (DT) and physical system (PS).
Knowledge graphs enable uniform access to both DT and asset model.

present, can be found in the trace of the DT. Consequently, information can
be retrieved about DT units corresponding to PT units that no longer exist.
Trace-based TbC connects digital twins to the concept of digital threads (see,
e.g., [8,9]), which has not been explored so far for DTs using ontologies and asset
models.

Contributions and Structure. Our main contributions are (1) a detailed discus-
sion that establishes a conceptual link between digital twins, X-by-construction
and self-adaptation at runtime, and (2) an extension of semantical lifting that
connects the digital thread with asset models. We introduce the notion of twinned-
by-construction in Sec. 2 and the role of self-adaptation at runtime in Sec. 3.
Sec. 4 broadens the discussion to digital threads for semantically lifted programs.
We discuss related work and conclude the paper in Sec. 5 and Sec. 6

2 Twinned-by-Construction Systems

In this section we discuss twinned-by-construction (TbC) for static digital twins,
and the role played by knowledge graphs. We introduce the basics by example
and refrain from giving a formal introduction of the technology stack. For a
summary of the use of knowledge graphs in digital twins and asset models, we
refer to [7]; for a general introduction, we refer to [10].

Asset Model. An asset model serves as an interface between a physical and a
digital system. It is a database (or a file) containing an organized description of
the composition and properties of assets. An asset model is useful in a digital
twin context because it can provide the twin with static configuration data for
the digital twin units. The DT infrastructure is responsible for the updates and
synchronization between the asset model and the DT. We assume here that the
asset model is expressed as, or can be converted into, a knowledge graph.
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Example 1. Consider a digital twin that, for some building construction, is twin-
ning the structure of the walls. The building has two walls at the moment: one is
left of the other one. As a knowledge graph, this is expressed using the following
triples in RDF [11]:

as:InProd rdfs:subClassOf as:Asset.
as:Wall rdfs:subClassOf as:Asset.
as:w1 a as:Wall. as:w2 a as:Wall.
as:w1 a as:InProd. as:w2 a as:InProd.
as:w1 as:leftOf as:w2.

Each RDF triple consists of three nodes, where in the example each node is
either a name of the form prefix:name, or the symbol a expressing that the
first node belongs to the third node, which must be a class. In the example,
the first two lines define three classes, the class of all assets (as:Asset), and
its subclasses of all walls (as:Wall) and all assets which are actively used in
production as:InProd. Lines 3-4 define two objects as:w1 and as:w2 which are
walls used in production. The last line defined that as:w1 is left of as:w2. The
order between the triples listed in the asset model does not matter.

Twinned-by-Construction. If the physical system does not change, the DT
can be statically checked to ensure that it correctly mirrors the structure of the
PT by statically comparing the asset model with the structure described in the
DT infrastructure. Since the core principle of the digital twin is the structural
mirroring, the asset model can be used as a guideline to construct the digital
twin. In this case, we say that the digital twin is twinned-by-construction and
the task of establishing the structural connection between PT and DT using an
asset model is twinning-by-construction.

Figure 2 shows the structure of a correctly twinned system with two physical
twin units (e.g., two walls Asset 1 and Asset 2), their two descriptions in the
asset model (e.g., w1 and w2 in the RDF given above) and two digital twin units
DTU 1 and DTU 2 (e.g., two wall simulators): Any DT unit twins some part of
the asset model, which in turn represents a PT unit. The DT unit and the PT
unit are directly connected by data flowing between them. The correct twinning
is established over all DT and PT units, as the interconnections in the physical
system must also be mirrored in the digital one. For Example 1, this would be
that the wall simulators are connected according to the asset:leftOf guideline.

Given a fixed asset model, an existing DT infrastructure, and a mapping from
asset classes to DT units, one can easily define the corresponding structure in
the digital twin: first, for each class of the asset define a class in the application
with the same spatial information and the used simulation unit. Second, for
each object in the asset model create an object of the corresponding class, and
replicate the spatial information. We elide the details of this construction, which
is the current way to write digital twins, but point out that such systems are
already TbC.
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Fig. 2. Structure of a digital twin for two assets (Asset 1 and Asset 2) as PT units.

The Role of Knowledge Graphs. Knowledge graphs (KGs) are the estab-
lished technique to formalize domain knowledge and add semantics (w.r.t. a
domain) to data. In particular, they provide a uniform way to represent, query
and reason about data. In the TbC approach, their role is twofold:

Uniform Structure Representation. The asset model can be a knowledge
graph,3 and the information required for twinning can be accessed using
standard KG technologies. The DT infrastructure can be translated into a
knowledge graph, using semantical lifting [4], that maps program states to
KGs, meaning that the information about the structure of the DT has the
same format and representation as the structure of the PT.

Uniform Data Access. Starting from the uniform representation of structure,
both the user and the DT infrastructure itself can query and reason about
the combined structure of DT and PT. The user can access the digital twin,
e.g., its simulation results, in terms of the asset model. The DT infrastruc-
ture can detect structural drift between DT and PT, i.e., if the structural
correspondence does not hold when querying over both structures.

3 Twinning-by-Construction and Temporal Properties

In the previous section we discussed how a given asset model, describing the state
of a physical system, can be used to construct a digital system that is TbC. Now,
we turn our attention to self-adaptation. Self-adaptation is triggered when we
observe a deviation of the DT unit with respect to the PT unit and when there
are changes in the asset model. When constructing self-adaptive systems in the
context of digital twins, it is important to consider a library of reusable DT units,
support for a self-adaptation process that takes into consideration requirements
for the reconstruction, and support for reasoning, analysis, and tuning during the

3 This approach is taken by several on-going projects, e.g., the READi project [12].
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reconstruction process [13]. This can be realised following the MAPE-K feedback
loop schema [1,2,3] with four activities: Monitor, Analyse, Plan, and Execute,
over a shared Knowledge.

In addition, we consider properties for both behavioural and structural re-
lations to the assets. The reason for considering these additional properties is
that while the physical systems change, the DT infrastructure must preserve
the twinning property by reconfiguring the structure between the corresponding
DT units within a time bound. This structural reconfiguration, which we call
re-twinning, poses additional temporal constraints on the physical and digital
systems in that twinning must be ensured at a certain speed. We now detail
these different activities.

MAPE-K Schema for Data Streams. Self-adaptation is needed when we
observe model drift, i.e., a deviation between a DT unit and its PT unit. In this
context, the monitor step collects data streams from the physical and digital
system. The analysis step can use temporal properties to express expectations
on the data stream that are needed for the model in the digital twin to work,
e.g, using runtime monitoring (see Fig. 5, top right monitor). In our building
example, one may have a restriction that the moisture of the wall is never higher
than 1%. If the sensors report a moisture value beyond this threshold, the system
triggers an error. During the analysis step, one can also use a hyperproperty [14]
and compare the data output from the physical system with the data output
from the digital system to detect if the difference is above a threshold to trigger
an error.

The planning step can use model search techniques to find the best parame-
ters for the DT unit to adjust the observed output deviation from the PT unit,
and the execute step will reconfigure the relevant DT units by resetting their pa-
rameters. This is a major application scenario for digital shadows,4 which detect
anomalies not only by analysing the data stream, but by the relation of data
stream and the digital twin unit.

MAPE-K Schema for Structural Self-Adaptation. The connection of dig-
ital twin and asset model must also be maintained. As shown in Fig. 3, the
self-adaptation process must detect structural changes in the asset, and trigger
reconfiguration of the digital system such that the temporal TbC properties that
were established initially holds again, as initially discussed in [7].

Example 2. Continuing with Example 1, we consider the situation that a third
wall as:w3 is added to the building under construction and, consequently, to the
asset model. In the knowledge base, the following triples are added:

as:w3 a as:Wall. as:w3 a as:InProd. as:w2 as:leftOf as:w3.

4 A digital shadow is a digital twin with unidirectional data flow: the DT does not
send commands back to the PT [15].
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Fig. 3. Structural self-adaptation of a DT following a MAPE-K feedback loop.

Twinning uses the asset model, which is formalized as a knowledge base, to
ensure that all assets that are to be twinned are indeed represented by some
DT units and that the DT units are correctly connected (i.e., according to the
PT). Additionally, TbC ensures that no DT units without a PT equivalent exist
in the DT. It is application-specific what assets are modelled and how the DT
infrastructure repairs its state – thus, it is not possible to generate a generic DT
infrastructure fully automatically from an asset model.

However, in the monitor step we can formulate the condition that the DT
is twinning the PT correctly by posing the query that returns the mismatches:
(1) all assets not represented in the DT and (2) all objects not corresponding
to an existing asset in the PT. An example of such a query is shown below.
It assumes that the DT infrastructure can be seen as a knowledge base, where
all its DT units are represented as instances of a class dti:DTUnit, and that
each DT unit is connected to the asset it twins via the dti:twins property.
The following SPARQL [16] query retrieves all assets that occur in the physical
system but are not twinned:

SELECT ?x { ?x a as:InProd.
FILTER NOT EXISTS (?y a dti:DTUnit. ?y dti:twins ?x.)

}

The analysis step is in charge of understanding that the structure is mirrored
correctly, which can be expressed in our example simply by using as:leftOf.
We can similarly define a query that returns all DT units that are not respecting
the structure of the assets (shown in Fig. 4), where we assume that the structure
of the DT infrastructure that connects DT units is using an analogous property
dti:leftOf. We say that a system is simply twinned if both queries return an
empty set. A simply twinned system has one DT unit for each PT unit, and
all the DT units are correctly connected. Let SIMPLE be the conjunction of the
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SELECT ?dtu { ?dtu a dti:DTUnit. ?dtu dti:twins ?asset.
OPTIONAL(

?asset as:leftOf ?right.
FILTER NOT EXISTS (

?dtuRight a dti:DTUnit.
?dtu dti:leftOf ?dtuRight.
?dtuRight dti:twins ?right.
)

)
}

Fig. 4. A query to ensure that all twinned units are connected correctly. It returns the
set of DT units that are not mirroring the structure correctly.

two given queries. Observe that the SIMPLE query only works because there are
several sources of data for the knowledge base: the domain knowledge, the asset
model and the current state of the DT infrastructure.

The planning step identifies the DT units that must be created; in this case,
one DT unit for each member of the returned set in the queries, if non-empty.

The execution step creates the identified DT units and link them correctly to
the existing DT units according to the asset model. The execution step triggers
re-twinning, which is done according to the planning step.

Temporal Properties of the DT Infrastructure. It takes time to re-twin
and it may be crucial to ensure that re-twinning happens sufficiently fast. For
this reason, we also consider temporal properties of the DT infrastructure, which
are here represented using Metric Temporal Logic (MTL) [17,18], an extension
of LTL with intervals that is suited for online monitoring [19]. The syntax of a
MTL formula φ over state predicates p and intervals I5 is given by

φ ::= p | false | φ ∧ φ | ¬φ | φUI φ

and the abbreviations □I φ = falseUI φ, ♢I φ = ¬□I ¬φ, □φ = □[0,∞) φ. The
intuition for □I φ is that φ holds at all points in time in the interval I and the
intuition for ♢I φ is that φ holds at some point in the interval I.

A property expressing that if a system is out of sync, then it will be re-
twinned within n time units (as shown in Fig. 5), is expressed as follows:

n−Resync ≡ □
(
SIMPLE ̸ .= ∅ → ♢[0,n]SIMPLE

.
= ∅

)
.

Regulating the Rate of Re-Twinning. Twinning takes time. So one must
make sure that the asset model is not changing too fast. For example, if ev-
ery change in the physical system triggers re-twinning, then several connected
changes (e.g., changing several assets in one maintenance) should be submitted
5 We use discrete time with intervals of the form [n,m] or [n,∞), where n,m ∈ N.
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Fig. 5. Refined structure of the digital twin architecture after a change: an new DT
unit is added for the new asset and the twinning property must be re-established.

at once to the asset model. Formally, one demands that the distance between
any CHANGE is not less than m time units. The following formula expresses this
constraint:

m−Change ≡ □
(
CHANGE → ¬♢(0,m]CHANGE

)
.

In our reference architecture, changes in the asset model and the re-twinning
process can happen independently: m−Change monitors the asset model inter-
face and reports if the asset model is updated too often, while n−Resync monitors
the DT infrastructure itself, see Fig. 5.

The rate of change of the asset models, which captures the evolution of the
PT, should not be faster than the twinning speed, i.e., the speed of the DT
infrastructure that updates according to the changes in the asset model. Thus,
the property to be monitored is

TEMPm,n ≡ m > n ∧m−Change ∧ n−Resync .

4 The Digital Thread as a Temporal Property

So far, we have considered properties that relate the current state of a digital sys-
tem and the current state of the physical system, as well as temporal properties
that ensure that twinning happens at the correct frequency. This, however, does
not consider the so-called “digital thread”, which must take into account not only
the current state of the system, but also its trace of past actions. This requires
a specific notion of twinning for traces and has consequences for the structure of
the DT infrastructure: not all DT units are relevant for the twinning property
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of the current state, and the DT units for replaced or removed assets must be
handled differently. First, we describe an example of more involved changes in
the physical system.

Example 3. Continuing Example 1, the newly built third wall (as:w3 in the asset
model) is used to replace the second wall (as:w2 in the asset model), which is
removed in the process. Afterwards as:w3 is removed as well and as:w1 remains
as the sole wall. The total sequence of actions, the trace, in the physical system
is as follows:

1. build walls as:w1 and as:w2,
2. build wall as:w3,
3. replace as:w2 with as:w3, and
4. decommission as:w3.

The twinning actions in Steps 1 and 2 have been explained in Sec. 2 and 3.
Now we continue from Step 3. The following asset model reflects this change by
marking that the digital twin unit as:w2 as decommissioned, as:w3 as replacing
as:w2. It updates the information that that as:w1 is now directly left to as:w3:

as:w1 a as:Wall. as:w2 a as:Wall. as:w3 a as:Wall.
as:w1 a as:InProd. as:w2 a as:Decom. as:w3 a as:InProd.
as:w1 as:leftOf as:w3. as:w3 as:replaces as:w2.

The change on the asset model already realizes the digital thread. We can
query about what the PT has performed from the knowledge base. For example,
to retrieve the walls that as:w2 was next to, we can run the following query:

SELECT ?x {?x as:leftOf [as:replaces* as:w2]}

which gives us as:w1. The digital twin however, must keep the information about
the DT unit for as:w2 available as well. As we require that the DT infrastructure
represents every physical asset that was part of the asset model at some point in
a DT, it is guaranteed that such a DT unit existed, but it must still exist now
and be ignored for the twinning property of the current state – all assets which
are instances of the decommissioned class as:Decom must be ignored for it.6
Thus, we refine the DT infrastructure and introduce the digital twin graveyard,
see Fig. 6, a data structure where DT units of decommissioned, or otherwise
removed, assets are saved, but ignored for the twinning of the current state.

The refined structure is shown in Fig. 6: The DT infrastructure contains a DT
graveyard structure, where, compared to Fig. 5 one DT unit has been moved and
is, consequently ignored for the twinning property. Note that the corresponding
asset (Asset 1) has been removed from the physical system, but its asset model
(AM 1) remains. The moved DT unit is also disconnected from the other DT
units, while the asset model contains information about the old structure.

The digital thread is, thus, realised on the asset model (and possible con-
nected to the original designs, requirements, etc.) of the walls, and in the DT
6 This is already modelled in the SIMPLE query above.
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Fig. 6. Structure of the digital twin. The graveyard retains the DT units, which are
needed for the digital thread, but must be ignored for the twinned property.

infrastructure (using semantic reflection of the graveyard). However, there are
further events in the trace of the physical system that are not changing the struc-
ture. For example, if a wall is repainted, it is visible in the asset model, but does
not require a change in the DT. Similarly, changes in the DT infrastructure that
are not structural, such as behavioural reconfigurations, must be made available
to the user.

One can easily refine the asset model by recording more information about
the events, for example their time and data and additional, explicit information
when, how and why as:w3 was replaced. We refrain from giving a realistic ex-
ample using a full ontology based asset model like IMF [12], but illustrate the
additional information by performing the last step on our building example.

Example 4. Next, we remove wall as:w3 completely and we add information
about the removal. The asset model becomes the following (in terms of Fig. 6,
this is the complete asset model including AM1, AM2, and AM3, without general
declarations of the classes):

as:w1 a as:Wall. as:w2 a as:Wall. as:w3 a as:Wall.
as:w1 a as:InProd. as:w2 a as:Decom. as:w3 a as:Decom.
as:w1 as:leftOf as:w3. as:w3 as:replaces as:w2.
as:w3 as:observed as:ev1. as:w3 as:removedAt as:ev2.
as:ev1 a as:Observation. as:ev1 a as:WaterDamage".
as:ev1 as:at "2022-05-21.12:10:00"^^xsd:date.
as:ev2 a as:Removal. as:ev2 as:byCompany "Parken".
as:ev2 as:at "2022-05-22.12:00:00"^^xsd:date.

This marks as:w3 as decommissioned, but also records two events: as:ev1
records that there was some water damage at a specific date and as:ev2 records
that a removal was performed at a specific date by the company Parken. The
fourth line of the asset model connects the as:w3 with events as:ev1 and as:ev2.
The first event as:ev1, is not relevant for the structure of the DT infrastruc-
ture, yet may trigger a behavioural reconfiguration – our data stream monitor
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detects the violation of the moisture constraint, but the DT unit is not moved
to the graveyard. Yet, the information of the reconfiguration is available in the
knowledge graph of the DT infrastructure. For example, consider the following
reconfiguration:

dti:dtu1 dti:twins as:w3.
dti:dtu1 dti:reconfiguration dti:ev3.
dti:ev3 dti:at "2022-05-21.12:11:00"^^xsd:dateTime.
dti:ev3 dti:newParam "1"^^xsd:int.
dti:dtu1 dti:removal dti:ev4.
dti:ev4 dti:at "2022-05-22.12:01:00"^^xsd:dateTime.

Now, the user can run queries to investigate possible causes for a reconfig-
uration, or the consequences of some event. For example, the following query
returns all reconfigurations that happened on the date of a water damage:

SELECT ?reconf {
?asset as:observed ?ev. ?ev a as:WaterDamage.
?dtu dti:twins ?asset. ?dtu dti:reconfiguration ?reconf.
?ev as:at ?datetime. ?reconf dti:at ?datetime.}

A possible perspective is that we check whether an event on asset side has
been twinned. However, a reconfiguration can mirror different events (or changes
without events, due to model drift), so one cannot in general require a one-to-
one correspondence between events in the DT infrastructure and events in the
physical system.7

The above example shows the intricate interactions of asset models, traces,
the re-establishment of twinning properties and self-adaptation at runtime. We
now return to the expression of temporal properties and monitoring of twinning
process itself.

Monitoring Traces. As discussed, consistency of the updating speed is guar-
anteed: Formula TEMP expresses that every change in the asset model is mirrored
in time by the DT infrastructure and the digital twin is simply twinned again.
For example, it cannot be the case that the DT updates too slowly and could
not perform the addition of as:w3 in Step 2 in time so that actions in Steps 3
and 4 are not able to be realised.

A part of this is correctness w.r.t. simple twinning: Every physical unit (that
is correctly handled in the asset model) has a DT unit twinning it. While the
final state of the digital twin has the DT unit for as:w1, we know that the
DT has also created DT units for the other assets. Next, we discuss how we
formalize temporal simple twinning, which expresses simple twinning also for
decommissioned physical units. And give the following query TempSimple:
7 Note that while we require a one-to-one correspondence between PT and DT units

here, this is only a simplification for simple twinning, one can easily extend the
system to handle one-to-many twinning relations.
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SELECT ?x {
?x a dti:DTUnit.
FILTER NOT EXISTS(

?x dti:twins ?asset. ?asset a as:Decom.
?asset as:removedAt [a as:Removal; as:at ?datetime1].
?x dti:removal [a dti:Remove; dti:at ?datetime2].
FILTER (

microsec(?datetime2) - microsec(?datetime1) < 5*60*1000
)

)
}

If the system is correctly twinned with respect to removal/replacement of PT
and DT units, the query should return an empty set. So the query above returns
all DT units, excepts those which have a removal event within 5 minutes of the
removal of the corresponding asset they twin, i.e., we define 5 minutes as the time
limit for re-twinning. It is guaranteed that this holds if (1) TEMP holds and (2)
the DT infrastructure is implemented correctly. Thus, we monitor that the DT
infrastructure correctly implements the following temporal property, trace-based
TbC :

TEMPm,n ∧□
(
TempSimple ̸ .= ∅ → ♢[0,n]TempSimple

.
= ∅

)
.

5 Related Work

The connection of digital twins and asset models so far is mostly used for data
integration to handle the numerous heterogeneous data sources of the physical
twin. For example, Yan et al. [20] use knowledge bases (KBs) to integrate data
in manufacturing equipment, Banerjee et al. [21] use a similar approach to in-
teract with data from IoT sensors in industrial production lines, and Oakes et
al. [22] for drivetrains. Going one step further, Wascak et al. [23] aim to use as-
set models as part of this integration in their abstract digital twin architecture.
More abstractly, Kharlamov et al. [24] have investigated the use of KBs for data
integration in the context of the energy industry, and used this integrated data
to enable machine learning on data streams [25]. Lietaert et al. [26] use KBs
similarly to integrate data for machine learning approaches.

To the best of our knowledge, the use of KBs to handle structural drift of
the PT and its asset model is hitherto unexplored. Various methods exist to
detect parameter or model drift, both statistical, e.g. Woodcock et al. [27] and
formal, e.g. [28]. Multiple works have addressed formal modelling and verifica-
tion of self-adaptive systems to provide assurances [29] using MAPE-K feedback
loops. Various approaches, from very methodological such as ENTRUST [30]
to more concrete, using formal techniques, such as ActivFORMS [31] that uses
formal models at runtime in the form of timed automata. Recent works ex-
plore Petri nets to model self-adaptive systems, along with domain specific lan-
guage [32,33,34]. Arcaina et al. have developed Abstract State Machines [35,3]
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to model interactive MAPE-K loops. Formal verification of MAPE-K loops have
been also explored from the perspective of use cases. Feng et al. [36] adapts a
case study for DT engineering to verify MAPE-K feedback loops and Päßler et
al. [37] develops a formal model of Metacontrol [38] for the heating system of
a smart home that considers MAPE-K loops and self-adaptation using a black
box approach. Compared to the work presented in this paper, all the previous
approaches focuses on the behavioural aspect of self-adaptation, and not on the
structural aspect as discussed in this paper. To the best of our knowledge, we are
not aware of other approaches that take into account structural self-adaptation
and MAPE-K feedback loops.

6 Conclusion

This paper considers a digital twin infrastructure that combines MAPE-K feed-
back loops and semantic reflection. Whereas feedback loops can be used to real-
ize runtime self-adaptation for the digital twin, semantic reflection enables the
structure of the digital twin and of the asset to be uniformly represented in a
knowledge base. We show how the resulting knowledge base can be queried by
the digital twin application and reasoned over to detect misconfigurations that
violate digital twin correctness properties. Consequently, the feedback loops and
semantic reflection jointly ensure that the ensemble of digital artefacts is in-
deed always a correct twin, i.e., the combined digital artefacts are twinned-by-
construction.

In the paper, we consider the monitoring of both structural and temporal
correctness properties for digital twin reconfiguration, including that a structural
twin relation is established by the repair function, that the time delay required
by reconfiguration is within a given bound, and that the digital thread is reflected
in the digital twin framework. To this aim, the knowledge base is extended to
capture execution traces, such that the evolution of the physical and digital
systems can be compared by querying the knowledge base.

In our current work, the correctness property of twinning is specified as an
empty query result from a query on the knowledge base that combines the asset
model and the semantically reflected digital twin configuration.

In future work, we plan to investigate the feasability of our approach using
a bigger case study that will be evaluated the SMOL framework, which supports
both semantic reflection and digital artefacts embedded as FMUs. Furthermore,
we plan to investigate the static verification of query-based specifications of
programs with knowledge bases.
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