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Abstract—The General Data Protection Regulation (GDPR)
regulates the handling of personal data, including that personal
data may be collected and stored only with the data subject’s
consent, that data is used only for the explicit purposes for
which it is collected, and that is deleted after the purposes
are served. We propose a programming language called DPL
(Data Protection Language) with constructs for enforcing these
central GDPR requirements and provide the language’s runtime
operational semantics. DPL is designed so that GDPR violations
cannot occur: potential violations instead result in runtime
errors. Moreover, DPL provides constructs to perform privacy-
relevant checks, which enable programmers to avoid these errors.
Finally, we formalize DPL in Maude, yielding an environment for
program simulation, and verify our claims that DPL programs
cannot result in privacy violations.

Index Terms—GDPR enforcement, runtime checking

I. INTRODUCTION

The General Data Protection Regulation (the GDPR) [1]
regulates the processing of personal data and is now part of
European Union law. The GDPR mandates transparent data
processing, where data is collected with the data subject’s con-
sent and used only for the purposes for which it was collected.
Moreover, the GDPR requires the right to be forgotten, where
data must be deleted on request or after its purposes are served.
It is an open question how systems processing sensitive data
should be built to satisfy these requirements.

We approach this problem from a programming language
perspective: how can one design a language to prevent data-
protection violations? Conventional programming languages
do not support the features essential to enforce GDPR com-
pliance. For example, they lack an explicit representation of
purpose, and there is no control over data collection and usage
based on purposes and consent. The state-of-the-art generally
checks purpose-based privacy compliance in programs using
privacy labels and static information-flow analysis [2]–[4],
where the enforced policies are determined by policy labels
specified by the programmer at compile time. This has its
limitations. For example, users’ consent and deadlines for data
deletion cannot be expressed in policies. Moreover, tempo-
ral aspects cannot be handled when consent is dynamically
granted or revoked or retention deadlines are reached.

In this paper, we enforce GDPR requirements at runtime.
Our approach allows us to enforce richer policies than those
enforced statically. For example, we can express temporal
requirements on data deletion, and the data will be deleted

from the system when the deadline arrives. In contrast to
static approaches, our runtime approach is also more exact,
since users’ consent, given at runtime, determines for what
purposes their data can be used, and these purposes are added
to the policies. However, in contrast to static approaches, our
approach comes at the price of runtime overheads.

The GDPR requirements that we handle concern data usage
(see Section II-A), and we present language features to enforce
these requirements. Our focus is on object-oriented and
service-oriented languages, where objects are entities, method
calls are processes, which may use personal data, and return
values are the outputs of processes. The language involves the
following features: 1) Object databases with commands for
data storage and retrieval. 2) Interface encapsulation, which
enforces programming to interfaces and prevents remote
access to fields and methods. 3) Language constructs to build
and manipulate privacy policies including policy to create
privacy policies, opt-in for granting consent, and collect for
collecting data. The policies describe to whom data belongs,
for which purposes data can be used, and when data must be
deleted. 4) Runtime checking to ensure that processes only
access data as authorized by their privacy policies.

We define DPL, a data protection language enriched with the
above features. Additionally, DPL supports the users’ rights
to opt-out of policies or delete their data at any time. Table I
summarizes the GDPR requirements we handle, the object-
oriented (OO) features exploited in DPL, and our specific
extensions for privacy-related operations. While we present
DPL as a stand-alone language, our language features could
also be implemented as an extension of existing languages.
Its core is inspired by the concurrent active object language
ABS [5], which achieves encapsulation by typing objects by
interfaces (instead of classes). One could also use Java directly,
which supports encapsulation using the private modifier for
defining local methods and fields in classes, whereas methods
in interfaces are defined with the public modifier. We believe
that our approach could be carried out with other Java-like
languages such as Java 8 [6], Scala/Akka [7], [8], and ASP [9].

In DPL, interfaces represent purposes, and their declared
methods are the processes used to achieve the purpose. Per-
sonal data is collected after a user gives consent, and the
identity of the corresponding privacy policy is attached to the
data, which is then called sensitive data. DPL supports dy-
namic policy changes, where users grant or withdraw consent,
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GDPR requirements OO features Added features
consent opt-in, opt-out

purpose limitation interface encapsulation policy, collect
message passing runtime checking

storage limitation object model store, retrieve
objects’ databases

right to be forgotten delete
Table I

GDPR REQUIREMENTS AND ASSOCIATED FEATURES.

and hence the policy evolves over time. Moreover, policies
expire and are deleted from the system when deadlines arrive
or the user deletes her data. We define DPL’s runtime system
that tracks the flow of sensitive data and performs runtime
checking (see Section III-D). A process is allowed to access
sensitive data if its intended usage complies with the purpose
in the privacy policy, and the policy has not expired. In
DPL, the failure to comply to a policy will not result in a
privacy violation but rather a runtime error. Moreover, DPL
provides constructs to perform privacy-relevant checks so that
programmers can write programs that avoid actions that would
lead to policy violations rather than throwing runtime errors.

We formalize DPL’s operational semantics in rewriting
logic [10], which is supported by the Maude system [11].
This provides a prototype interpreter1 for executing DPL
programs. We also use Maude’s model checker to complement
our pen-and-paper proofs with model-checked examples that
support our claims.

In summary, our contributions are as follows. We define
DPL, an object-oriented language extended with features that
support data protection. We map the GDPR data usage require-
ments to our language, and define an executable formal model
for DPL, given by an SOS-style operational semantics. We
provide a pen-and-paper proof that DPL programs satisfy the
GDPR data usage requirements. DPL provides exact enforce-
ment of privacy policies, it is user-centric in that users’ consent
is reflected in policies, and it enforces richer policies than
those enforced by static approaches. We also formalize DPL in
rewriting logic, use Maude’s model-checker to verify our data
protection properties on concrete programs, and illustrate on
examples how privacy violations cannot occur. Overall, DPL
is the first programming language designed for developing
programs that comply to GPDR data usage requirements.

II. BACKGROUND

A. GDPR requirements

Our focus is on the following requirements, which are
central to the GDPR’s restrictions on data usage.
Purpose limitation: “[Personal data shall be] collected for
specified, explicit and legitimate purposes and not further pro-
cessed in a manner that is incompatible with those purposes”
[1, Article 5, Sec. 1 (b)]. Data is considered to be personal data
if it can be used, directly or indirectly, to identify a person [12].
To comply with this, the purposes for which personal data is

1The Maude model is available at https://github.com/maude-gdpr/maude.

collected must be made explicit, and the collected data must
be used only for those purposes.
Consent: Personal data is collected only if the data subject’s
consent is granted. In order to give consent, a data subject
should be aware of the identity of the controller and the
purpose of processes in which her data is used [1, Article 6].
Moreover, a data subject has the right to withdraw her
consent at any time [1, Article 7]. To comply with this, data
collection requires consent, and personal data must no longer
be processed after consent is withdrawn.
Storage limitation: “[Personal data shall be] kept in a form
which permits identification of data subjects for no longer than
is necessary for the purposes for which the personal data are
processed” [1, Article 5, Sec. 1 (e)]. To comply with this,
personal data shall be deleted after the purpose of processing
is fulfilled [13]. For example, a credit card number is collected
to make a purchase, and if a data subject consents, this infor-
mation can be stored for subsequent purchases. The storage
period shall be limited to a strict minimum, and a controller
shall establish time limits for data erasure [1, Rec. 39].
Right to be forgotten: “The data subject shall have the
right to [...] the erasure of personal data concerning him or
her [...] and the controller shall have the obligation to erase
personal data without undue delay [...]” [1, Article 17]. To
comply with this, data must be promptly deleted on request.

B. An example

To illustrate our methodology in subsequent sections, we use
an example taken from [13]. The example features an online
retailer whose core processes are:
Register customer: A customer provides her credit card
information, her e-mail, and her postal address.
Purchase: A registered customer purchases a product from
the retailer’s online shop using her registered credit card. This
process produces the customer’s order along with an invoice,
which is sent to her address.
Mass Marketing: A customer’s email or postal address is
used to send untargeted advertisements.
Targeted Marketing: A customer’s email or postal
address and her shopping history are used to send targeted
advertisements.

The GDPR requires consent statements for processes using
personal data. A consent statement describes what data is used
for which purposes. For example, the consent statement for
Mass Marketing is “we use your customer information (name
and email address) for mass marketing.”

C. System model

Our system model formalizes how distributed applications
process users’ personal data. It features users, objects, and
databases, where objects share data through message passing.
We assume that all communication is cryptographically pro-
tected, e.g., using TLS, and focus on data protection in this
distributed setting. Later we present DPL, which formalizes
these distributed systems and their behavior.
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Figure 1. The online-retailing example in our system model (after [13]).

Figure 1 shows the on-line retailing example in our system
model. In this example, the personal data is credit card
information, customer information, the order, and the user
profile. Circles represent objects with the names r, p, mm, and
tm and contain the name of the processes that use the personal
data. Dashed cylinders represent the objects’ databases. The
curved bidirectional arrow represents interaction with a user
to collect data over a user interface. For example, the method
register of the object r collects credit card information and
customer information from the user u and stores this data
in its database. Arrows from databases to objects represent
database data used by the objects’ methods. Arrows from
objects to databases represent that method results are stored
in the databases.

III. DPL: A CALCULUS FOR DATA PROTECTION

We now describe the principles behind DPL as well as
its syntax and semantics. The complete formalization of the
syntax and semantics in Maude, along with all auxiliary
functions and examples, can be found at https://github.com/
maude-gdpr/maude.

A. Language design principles

We now return to the GDPR requirements from Section
II-A and explain DPL’s design principles and language features
used to enforce the requirements.

In what follows, we will use the following notation. Let
x1, x2, ..., xn represent a sequence of n terms, where ε is
the empty sequence. We use the notation x to range over
sequences, possibly empty, and x1 to emphasize that the
sequence has at least one element. We write lists using “:”
and the empty list as []. We also employ standard list notation
and write a list like x1:(x2: []) as [x1, x2].

a) Purpose limitation: To enforce this requirement, the
purposes for which personal data are collected and used should
be made explicit. In DPL, instead of using interfaces, we
explicitly define purposes by a declaration purpose P{Sig1},
with P a name and Sig

1
the method signatures (the methods’

return types and parameters) required to achieve the purpose.
Moreover, encapsulation is achieved by typing objects by
purposes. Objects created from classes implementing purposes
provide methods to achieve the purposes. We assume that
programs are well-typed, which could be enforced by adapting
a standard type system for interfaces (e.g., [5]), that all
methods using personal data are declared in some purposes,

and that each purpose contains exactly the methods needed to
achieve it. For example, we can define the purpose Purchase
as follows.

purpose Purchase {
Order purchase(String credit, String customer);
Invoice invoice(Order order, String customer); ... }

We propose a mechanism that prevents personal data from
going to objects that implement no purpose, the wrong pur-
pose, or even the right purpose when it has not been consented
to by the data owner. First, we define contracts declaring
which object may use the methods associated with a purpose.
Afterwards, we define privacy policies, which are attached to
collected data and contain sets of contracts. Contracts can be
added to or removed from policies when a user opts in or
opts out, respectively. The contracts define the objects’ access
rights; i.e., if a contract belongs to a policy, then the associated
object can use the data.

Definition 1 (Contract). A contract is an expression
contract(P, e), where P is a purpose and e is an object that
belongs to a class implementing P .

For example, the expression contract(Purchase, p) defines
a contract for the Purchase declaration, where p is an object
of type Purchase. We say that an object’s contract complies to
a policy if the contract belongs to the runtime representation
of that policy, defined in the following.

Definition 2 (Privacy policy). A privacy policy is a runtime
element represented as a five-tuple (u, cp, cm, b, t), where u
is the identity of the user whose data is collected, cp is a set
of persistent contracts, cm is a set of mutable contracts that
are updated when opting in or out, b∈ {true, false} denotes
whether the collected data should be stored persistently, and
t∈N is a natural number representing a timestamp specifying
when the collected data should be deleted.

The terms u, cp, and cm in a privacy policy are initialized
when a user logs in, the policy is created, and the user gives
consent using opt-in statements, respectively. The Boolean b
and the timestamp t capture retention and deletion require-
ments, respectively. Time is an integral part of our model.
We will later specify a system clock that decrements the
timestamps in all policies; data deletion is triggered when
deadlines arrive.

We require a privacy policy for all personal data collected.
For example, since credit card and customer data are used for
different purposes, we define a new policy for each kind of
data. Note that a policy can be used for different types of data
if the data is used for the same purposes.

b) Consent: Here we explain how to write strings for
consent statements to accurately represent intended purposes.
In the declaration purpose P {Sig

1}, if the method parameters
in Sig

1
contain personal data such as credit card and customer

data, then the consent statements are “We use credit card data
for P ” and “We use customer data for P ”. Moreover, we
can use the identifier X of the entity that will use the data
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instead of “we” and extend the statement with our retention
and deletion policies. For example, the consent statement
for Purchase becomes: “X uses your credit card number for
purchasing, and your data is stored for one year” and similarly,
for customer data. There is a correspondence between the
consent statement and the contract of a purpose declaration.
A consent statement is used to collect a user’s consent, and
the corresponding contract is used to control objects’ access
to the user’s data.

c) Right to withdraw consent: In DPL, a contract can be
removed from a policy anytime, and the data associated with
that policy is no longer used for the withdrawn purpose. This
models the user action for withdrawing consent.

d) Storage limitation: In DPL, objects encapsulate their
states. An object state consists of a substitution for process-
local variables, mapping variables to data, a substitution for
fields, and a substitution for the object’s database. Local
variables are deleted after process termination, when a purpose
is served. We do not allow assigning sensitive data to fields
because fields store data as long as the object is alive, and all
of the object’s methods may have access to the fields.

Data must sometimes be stored for a time period captured
by a time value t. For data storage, we integrate databases
into DPL’s object model, where for simplicity, our databases
are just key-value stores. An object can store and retrieve data
in its database, and remote access to databases is prohibited.
In DPL, when the system clock advances, the timestamp of
every policy is decremented. When the timestamp reaches
one, the policy is deleted from the system, and data associated
with the policy is also deleted from databases. Note that
sensitive data in local variables can no longer be used since
the policy is deleted.

e) Right to be forgotten: In DPL, a policy can be
deleted anytime, and the data associated with that policy is
deleted from objects’ databases. This models a user action
for data deletion. Deletion is also triggered when deadlines
arrive. Handling these restrictions without undue delay is
nontrivial, as there can be race conditions involving the time
of (authorization) check and the time of use. For example,
after we check compliance, a method is authorized to use
data, but prior to its use, a deletion deadline may arrive or
consent may be withdrawn.

In DPL, errors will be thrown if expired data is used. But
race conditions between time-of-check and time-of-use mean
that user-provided checks are insufficient to prevent all errors
from arising. We observe though that such race-conditions
are generally not critical in practice since data protection is
not a hard real-time requirement. When data is deleted (or
alternatively consent is revoked) “undue delay” does not mean
that everything aborts and the data is instantly deleted, but
rather, as soon as reasonably possible, the system will no
longer process the data and it will be removed. When we
use the services of Google or Facebook, our expectations for
deletion are on the order of minutes or hours, not seconds.

To reflect this in DPL, we introduce compliance scopes
where compliance is checked and assumed to remain valid

B ::= Bool | Nat | String
T ::= B | PI | Policy | Contract | User | CStmt | Key

| Sensitive〈B,Policy〉
PI ::= purpose P{Sig

1}
PR ::= PI CL main{T x; s}
CL ::= class C(T x) implements P 1{T x; M

1}
Sig ::= T m(T x)

M ::= Sig {T x; s}
s ::= s; s | x := rhs | return e | skip | log-in()

| store(k, e) else {s} | opt-in(cs, cn, l) | log-out()
| if-comply(cn, e) {s} else {s′}
| if-consent(cn, l) {s} else {s′}
| retrieve(k, x) {s} else {s′} | collect(cn, l, x)

rhs ::= e | e.m(e) | new C(x) | policy(b, t)
d ::= contract(P, e) | cstmt(str) | key(u, str) | str | bool | nat
e ::= d | x | e op e

op ::= + | − | ...
Figure 2. DPL’s grammar; to simplify the presentation, let b range over
Boolean expressions, u users, cs consent statements, cn contracts, l policies,
P purposes, t timestamps, and k keys.

within the scope. Namely, within a scope, we allow a
finite number of program steps to proceed without checking
compliance since the compliance was checked when entering
the scope. The finite steps provide an abstract representation
of the temporal notion “without undue delay.” Of course,
we must avoid non-terminating processes as otherwise
compliance would not be checked for an arbitrary amount of
time. Hence loops and recursive calls are omitted from our
compliance scopes.

B. Syntax

We define DPL’s grammar in Fig. 2. The types T are base
types B, purposes PI, as well as types for policies, contracts,
users, consent statements (CStmt), keys, and sensitive data
with associated policies. A program PR includes purposes,
classes, and a main block. A class may implement one or
more purposes P

1
and has methods M

1
. A method signature

consists of a return type T , a method name m, and typed
parameters declarations T x. A method definition M consists
of a signature and a body with local variables and statements.
Statements s include sequential composition, assignment, and
privacy-specific constructs to be discussed shortly. There is
no surface syntax for directly constructing sensitive data; this
happens indirectly via collect-statements. Right-hand-side
expressions rhs include (pure) expressions e and method calls,
as well as object and policy creation expressions, which create
references at runtime. Although method calls e.m(e) and
return statements are standard, they can transfer sensitive data
between objects. Data d consists of contracts contract(P, e),
where P is a purpose and e an object implementing that
purpose, consent statements cstmt(str), constructed from
strings, and keys key(u, str), where u is a user and str a
string used as a tag to denote a particular attribute associated
with u, in addition to strings, Boolean values, and natural
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numbers. Expressions e consist of data d, variables x, and
operations op on e (e.g., logical and arithmetic operators).

DPL has the following non-assignable reserved variables:
the self reference this, the self contract cnThis, the caller ref-
erence caller, the caller’s contract cnCaller, and the reference
user for a logged-in user.

In DPL, data can be collected only within a session, which
starts with log-in() and ends with log-out(), and a user can
grant or deny consent using opt-in(cs, cn, l) statements. More-
over, data collection is not a primitive, but rather composed
from atomic statements such as:

log-in(); l := policy(b, t); opt-in(cs, cn, l);
if-consent(cn, l){ collect(cn, l, x) }; log-out();

Here, a user logs-in and a new privacy policy is created by
policy(b, t), which returns a unique policy identity, assigned
to l. Then, if the user gives consent to the consent statement
cs, the contract cn is added to the policy l. The condition
if-consent(cn, l) checks if consent has been granted for cn
in the policy l, in which case data is collected from the user
interface by collect(cn, l, x), under the contract cn; the policy
l is attached to the data, and the resulting sensitive data is
assigned to x. Note that we allow syntactic sugar where we
omit the else-branches when they are not needed.

The statement store(k, e) checks compliance for storage
and, when compliant, the data e is stored in the database,
with the key k. Otherwise, the data is not stored, and the
else-branch is executed. Conditional constructs enable the
programmer to make checks to ensure GDPR compliance.
These checks may be omitted, in which case the failure to
comply will result in a runtime error in DPL rather than a
privacy violation in non-DPL systems.

The statement if-comply(cn, e) checks that all elements in
the list e are GDPR compliant with respect to the contract cn
and if-consent(cn, l) checks that consent has been granted to
a contract cn under a policy l. The conditional constructs open
and close compliance scopes in the if-branch. The statement
retrieve(k, x) checks if the key k is in a database, in which
case data is retrieved and assigned to x. In all three of these
statements, if the check succeeds then the success branch (s)
is executed and otherwise the else branch (s′) is executed.

Note that to analyze the GDPR compliance of DPL pro-
grams in this paper, we capture the user actions for withdraw-
ing consent and data deletion directly in DPL’s operational
semantics, such that they may occur at any time, instead of
programming them explicitly in the program’s surface syntax.

C. Example

We illustrate how DPL provides the essential ingredients
needed to develop a GDPR compliant system, as discussed
in Section II-A, by implementing the online-retailing example
of Section II-B. Figure 3 presents the DPL code, focusing
on consent statements, contracts, and data collection. We
extend this code in Appendix D to show how DPL enforces
purpose limitation and storage limitation in remote objects
receiving sensitive data. User actions for data deletion and

1 purpose Purchase {
2 Order purchase(String credit, String customer); ... }
3 purpose MassMarketing{ String m-marketing(String customer);}
4 purpose Registration{ 〈String, Policy, Policy〉 register(...);
5 String getCredit(User u); String getCustomer(User u);}
6 // Definitions of classes Purchase−c, MMarketing−c, Order, ...
7 class Registration-c implements Registration () {
8 〈String, Policy, Policy〉 register(Contract cn1, CStmt cs1, CStmt cs2,
9 Contract cn2, CStmt cs3) {

10 String credit; String customer; Nat t; t := 31,536,000; // Seconds
11 log-in(); // binds a user identifier to the variable user
12 // Privacy policies for collected data items
13 Policy l1 := policy (true, t); Policy l2 := policy (true, t);
14 opt-in(cs1, cn1, l1); opt-in(cs2, cn1, l2); opt-in(cs3, cn2, l2);
15 // Data collection and storage
16 if-consent(cn1, l1) { collect(cn1, l1, credit);
17 store(key(user,‘‘credit’’), credit) };
18 if-consent(cn1, l2) { collect(cn1, l2, customer);
19 store(key(user,‘‘customer’’), customer) };
20 log-out();
21 return (〈user, l1, l2〉);
22 }
23 String getCredit(User u) { String credit;
24 retrieve(key(u,‘‘credit’’), credit) {
25 if-comply(cnCaller, credit){return(credit)} else { return(‘‘0’’)}
26 else { return(‘‘0’’)} }
27 String getCustomer(User u) { ... }
28 }
29 main{ String credit, customer;
30 User u; Policy l1; Policy l2; Purchase p := new Purchase-c();
31 MassMarketing mm := new MMarketing-c();
32 Registration r := new Registration-c();
33 // Consent statements and contracts
34 CStmt cs1 := cstmt(‘‘X uses your credit card number for
35 purchasing and your data is stored for one year.’’);
36 CStmt cs2 := cstmt(‘‘X uses your customer information for
37 purchasing and your data is stored for one year.’’);
38 CStmt cs3 := cstmt(‘‘X uses your customer data for
39 mass marketing.’’);
40 Contract cn1 := contract(Purchase, p);
41 Contract cn2 := contract(MassMarketing, mm);
42 // Call the register method for data collection
43 〈u, l1, l2〉 := r.register(cn1, cs1, cs2, cn2, cs3);
44 if-consent(cn1, l1) { credit := r.getCredit(u) };
45 if-consent(cn1, l2) { customer := r.getCustomer(u) };
46 if-comply(cn1, (credit, customer)) {
47 Order order := p.purchase(credit, customer) };
48 if-comply(cn2, customer) {mm.m-marketing(customer)} ... }

Figure 3. Online-retailing example in DPL.

for withdrawing consent may occur at any time, reflecting the
user’s right to be forgotten and right to withdraw consent.

Lines 1–5 define purposes for Purchase, MassMarketing,
and Registration. We omit the details of classes Purchase-
c, MMarketing-c, and Order, and focus on the class Register,
which implements data collection, and its register method (line
8). First, a user is logged-in and two privacy policies l1 and l2
are created, which both expire at a given time t (here one year,
written in seconds). The opt-in statements (line 14) let the user
grant (or deny) consent to the consent statements cs1, cs2, and
cs3, in which case the associated contracts are added to the
policies. Credit card and customer data are collected from the
user (lines 16 and 18), returning data credit and customer of
types Sensitive〈String,l1〉 and Sensitive〈String,l2〉, respectively.
Keys are constructed with the tags “credit” and “customer” and
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Cfg ::= {cfg}
cfg ::= ∅ | obj | msg | policy | class | error | cfg cfg
obj ::= o(a, p, db)

msg ::= m(v, o′, o, cn) | com(v, o) | n(process)
policy ::= l(u, cp, cm, b, t)
error ::= errorU(o, cn) | errorC(o, cn) | error(o)

p ::= process | idle
process ::= (σ, s@V )

v ::= o | l | d | sensitive(d, l)
s ::= m? | cScope(S) | cont(n) | . . .

Figure 4. The runtime elements, where S is a set of policy-contract pairs.

are used to store the sensitive data in the database (lines 17
and 19). The log-out() statement ends the registration, which
returns a tuple with the user identifier and the two policies.
(We go slightly beyond the defined syntax here by directly
returning a tuple instead of creating a result object.)

In the main block, remote calls initiate the processing of the
users’ data. The main block first creates objects r, p, and mm,
typed by purposes. Then consent statements (lines 34–39) and
contracts (lines 40–41) are defined. The consent statements and
contracts are passed to the method r.register (line 43), which
returns a user identifier and policies (for simplicity, we simul-
taneously assign to all three variables u, l1, and l2 instead
of going via a result object). Then, the methods r.getCredit
and r.getCustomer are called to retrieve the user’s credit card
and customer data, respectively (lines 44–45). Afterwards, the
purchase and m-marketing methods are called (lines 47–48).

The example uses conditional constructs to avoid runtime
errors. For example, in line 44, if-consent(cn1, l1) checks if
consent for Purchase is granted, in which case the method get-
Credit is called. In line 46, if-comply(cn1, (credit, customer))
checks if the contract cn1 complies to the privacy policies
of the variables credit and customer, which are passed as
parameters to the method purchase. Here, the method is only
called if the compliance check holds. In line 16, if consent is
not granted, data is neither collected nor stored. In line 25,
if-comply(cnCaller, credit) checks compliance with respect to
the caller’s contract before the return-statement; if compliance
fails, some default value “0” is sent instead of the credit card
number. Moreover, if retrieve(key(u,“credit”), credit) in line 24
fails, a default “0” is sent in line 26. We omit further error
handling in this example and do not test against these default
values, but remark that they play the role of ad hoc option-
types, suggesting ways to further enrich DPL.

D. Operational semantics

We define DPL’s operational semantics using multiset
rewriting [10]. Although DPL is presented as a single-threaded
system, multiple rewrite rules may be simultaneously enabled,
and the execution of a program gives rise to multiple transition
sequences (traces). For example, time can always advance,
consent be withdrawn, or data deletion be triggered. These
interleavings can give rise to race conditions between time-of-
check and time-of-use for GDPR compliance.

a) Runtime elements: DPL’s runtime syntax is shown
in Fig. 4. A global configuration Cfg is a bracketed multiset
of runtime elements: objects, messages, privacy policies, and
classes. An object o(a, p, db) has an identifier o, a substitution
a, which maps the object’s fields to values, an active process
p, which may be idle, and a database db, which maps keys
to data. A process combines a substitution σ, which maps
process-local variables to values, with a runtime statement
s@V , where s is a statement and V a compliance scope.

Messages represent process invocation, completion, and
suspension. In an invocation message m(v, o′, o, cn), m is
the name of the called method, v the actual parameters,
o′ the callee, o the caller, and cn the caller’s contract. A
completion message com(v,o) contains a result value v and
a receiver object o. In a suspension message n(process), n
is a name and process a suspended process. Policies were
already defined in Def. 2. Classes are simple look-up tables
for method definitions, and are omitted here. We use white
space to denote the composition of configurations and ∅ for the
empty configuration, which is the identity for the composition.

We consider three kinds of errors for a process executing
in an object o: errorU(o, cn) is a data usage error expressing
that data usage in o is not compliant with the contract cn;
errorC(o, cn) is a data collection error expressing that consent
associated with the contract cn is not granted; and error(o)
represents other errors.

Values v include identifiers o and l for objects and privacy
policies, data d, and sensitive data sensitive(d, l). We extend
the statements s of Fig. 2 as follows: m? blocks an object
after calling a method, cScope marks the end of a compliance
scope; and cont(n) schedules a suspended process n.

Substitutions bind fields, process-local variables, or keys to
values, respectively. Thus, a substitution θ is a finite map,
written [x1 7→ v1, . . . , xn 7→ vn]. We write θ(x) to lookup the
variable x in θ, and θ[x 7→v] to update θ with the binding [x 7→
v]. In the composition θ ◦ θ′, the bindings in θ′ shadow those
in θ, so θ ◦ θ′(x)= θ′(x) if x∈dom(θ′) and θ ◦ θ′(x)= θ(x)
otherwise. The notation θ|C denotes domain restriction of θ
to a set C of variables and [] denotes the empty substitution.

b) Compliance: At runtime, execution happens in the
context of compliance scopes. DPL features specific condition
constructs to interact with these scopes. The dynamic
checking of compliance is formalized by a predicate comply
that captures our notion of compliance between policies and
a contract, either by inspecting the compliance scope of
the executing process or by a direct dynamic check of the
configuration. Since the scope is only extended by performing
a compliance check, the scope introduces a delayed effect for
compliance checking in that execution may continue within
the scope even after consent has been withdrawn.

Let V be a compliance scope and ls a list of policies. The
comply predicate is defined inductively over a list of policies
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with an auxiliary predicate performing the runtime check:

comply([], cn, cfg, V ) = true
comply((l : ls), cn, cfg, V ) =
(〈l, cn〉∈V ∨ check(l, cn, cfg)) ∧ comply(ls, cn, cfg, V )

check(l, cn, cfg) =
{

cn ∈ (cp ∪ cm) if l(u, cp, cm, b, t) ∈ cfg
false otherwise

c) The transition system: DPL’s operational semantics
is defined using multiset rewrite rules [10], which define a
transition relation on configurations. Rewrite rules may be
conditional, and we present them as inference rules with
zero or more conditions as premises and a labelled transition
lhs l−→ rhs between patterns lhs and rhs as the conclusion. The
rule can be applied to a sub-multiset cfg of a configuration if
lhs matches cfg for some substitution θ and the premises hold.
The rule’s effect is to replace cfg in the global configuration
with rhs, to which the substitution θ is applied. Matching
is modulo associativity and commutativity in the multiset
and hence no structural rules are needed to reorder runtime
elements in configurations.

We present the rewrite system in three parts: rules for user
interaction, rules for storage, deletion and scopes, and rules
for the standard execution of statements. Our focus here is on
sensitive data; standard rules for non-sensitive data are given in
Appendix B. We have formalized the rewrite system in Maude
[11], and this formalization is further described in Appendix C.

The evaluation of expressions is formalized by a function
[[e]]θ from expressions e and substitutions θ to values. For
example, contract(P, e) evaluates to contract(P, o) where o
is an object reference. Evaluation is untyped: we assume that
programs are well-typed such that evaluation does not get
stuck and produces meaningful values. We also employ other
auxiliary functions, which are briefly explained the first time
they are referenced.

Article 20 of the GDPR states that the processing of data
shall not adversely affect the rights and freedoms of others.
Therefore, we disallow binary operations on two sensitive
data items where the policies belong to different users. For
simplicity, binary operations are also disallowed if the poli-
cies belong to the same user but different data types. This
avoids complications regarding the withdrawal of consent from
one policy. We leave open more permissive solutions, e.g.,
involving the intersection of (consented) purposes in policies,
as future work.

d) User interaction: Figure 5 presents rewrite rules in-
volving sessions, policies, consent, data collection, and data
deletion. Labels on the transition relation represent input data
from a user interface or a “tick” from an external clock. A
transition is unlabeled if no input is required.

Data can only be collected and contracts only added to a
privacy policy within a session. We first consider the effects
of log-in() on the active process of an object. If no user is
currently logged-in, the reserved variable user is bound to
the user identifier u in LOG-IN, starting a session. Otherwise,
ERROR-LOG-IN triggers an error. Rule LOG-OUT removes

user from the local variables, ending the session. If no user
is logged-in, ERROR-LOG-OUT triggers an error.

Rule POLICY creates a privacy policy with identifier l. The
predicate fresh(l) expresses that the name l is unique in the
global configuration. The persistent contracts are initialized
to the contracts of o and ob(main), and the set of mutable
contracts is initially empty. These sets reflect the policy for
data collection; only mutable contracts can be removed by the
user. If no user is logged-in, ERROR-POLICY triggers an error.

A user may grant consent to the policy for a given
contract. In OPT-IN, the user accepts a consent statement cs,
represented by the label “yes”, and the associated contract
cn is added to the mutable contracts cm of the policy l. If
no user is logged-in, the policy does not exist in cfg, or the
user denies consent, NO-OPT-IN formalizes that the opt-in
has no effect. Here, idExist(l, cfg) expresses that a policy
with identifier l is found in the configuration. To ensure the
correct application of this predicate, the rule pattern matches
over the global configuration. Note that NO-OPT-IN does not
throw an error; doing so would require defining sanity checks
for opt-in to avoid runtime errors. Instead, errors are triggered
in subsequent commands if they try to use data for purposes
associated to the missing contracts. In OPT-OUT, a mutable
contract cn is removed from the policy l.

Data can be collected from the user under a given contract.
In COLLECT, the user provides data d if the contract cn is
compliant with the policy l. The data is paired with the policy
and stored in the local substitution σ. In ERROR-COLLECT, a
data collection error is triggered when no user is logged-in or
the comply predicate is false.

Time advancing is captured by TICK. It applies to global
configurations and is always enabled to reflect that GDPR
compliance is independent of execution speed. The function
dec decrements each policy’s timestamp by one. When a
policy’s timestamp is one and TICK fires, dec deletes the
policy from cfg and associated sensitive data from the objects’
databases. Rule DELETE captures that a user can request
policy deletion at any time, and the policy is deleted from
the configuration. The function del deletes the data associated
with l from the objects’ databases. The functions dec and del
are formally defined in Appendix A.

e) Storage, deletion, and scopes: Figure 6 presents rules
for storage, retention, and conditional constructs. Sensitive
data is stored in the object’s database in STORE if the object’s
contract complies to the policy l and data storage is allowed
(i.e., b = true). Expired data can never be stored, so policy
compliance is checked in STORE regardless of the compliance
scope. Rule NO-STORE applies when policy compliance does
not hold or data storage is not allowed (the latter is captured
by the negated auxiliary predicate dataStorage(l, cfg)).

Data from the database can be fetched to local variables
in RETRIEVE, which selects the success branch s when the
object’s contract complies to the associated policy l. Otherwise
the else-branch is selected in NO-RETRIEVE. Data can never
be retrieved with an expired policy, which is reflected by the
empty scope in the comply predicate in NO-RETRIEVE. Note
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LOG-IN

user /∈ dom(σ)

o(a, (σ, (log-in(); s)@V ), db)
“u”−−→ o(a, (σ[user 7→u], s@V ), db)

ERROR-LOG-IN

user ∈ dom(σ)

o(a, (σ, (log-in(); s)@V ), db)
→ error(o)

POLICY

v1 = [[b]]a◦σ v2 = [[t]]a◦σ
user ∈ dom(σ) u = σ(user) fresh(l)

o(a, (σ, (x := policy(b, t); s)@V ), db)
→ o(a, (σ, x := l; s@V ),db)

l(u, {contract(main,ob(main)),
a(cnThis)}, ∅, v1, v2)

LOG-OUT

user ∈ dom(σ)

o(a, (σ, (log-out(); s)@V ), db)
→ o(a, (σ|dom(σ)\{user}, s@V ), db)

ERROR-LOG-OUT

user /∈ dom(σ)

o(a, (σ, (log-out(); s)@V ), db)
→ error(o)

ERROR-POLICY

user /∈ dom(σ)

o(a, (σ, (x := policy(b, t); s)@V ), db)
→ error(o)

OPT-IN

cs = [[e1]]a◦σ l = [[e3]]a◦σ
cn = [[e2]]a◦σ user ∈ dom(σ)

o(a, (σ, (opt-in(e1, e2, e3); s)@V ), db) l(u, cp, cm, b, t)
“yes”−−−→ o(a, (σ, s@V ), db) l(u, cp, cm ∪ {cn}, b, t)

NO-OPT-IN

l = [[e3]]a◦σ
user /∈dom(σ) ∨ ¬idExist(l, cfg) ∨ x = “no”

{o(a, (σ, (opt-in(e1, e2, e3); s)@V ), db) cfg}
x−→ {o(a, (σ, s@V ), db) cfg}

COLLECT

user ∈ dom(σ) cn = [[e1]]a◦σ l = [[e2]]a◦σ
sd = sensitive(d, l) (〈l, cn〉 ∈ V ∨ cn ∈ (cp ∪ cm))

o(a, (σ, (collect(e1, e2, x); s)@V ), db) l(u, cp, cm, b, t)
“d”−−→ o(a, (σ[x 7→ sd], s@V ), db) l(u, cp, cm, b, t)

ERROR-COLLECT

cn = [[e1]]a◦σ l = [[e2]]a◦σ
user /∈ dom(σ) ∨ ¬comply(l, cn, cfg, V )

{o(a, (σ, (collect(e1, e2, x); s)@V, db) cfg}
“d”−−→ {errorC(o, cn) cfg}

OPT-OUT

l(u, cp, {cn, cn}, b, t)
→ l(u, cp, {cn}, b, t)

TICK

{cfg} tick−−→ {dec(cfg)}
DELETE

{l(u, cp, cm, b, t) cfg} → {del(l, cfg)}

Figure 5. Rewrite rules for user interactions.

that an object storing data cannot retrieve the data if the policy
is deleted or consent is withdrawn.

Policy compliance is checked dynamically in IF-CONSENT.
If the contract cn complies to the policy l, the compliance
scope is extended and the if-branch is selected. Here, cScope
marks the scope’s end. Otherwise, the scope is unchanged and
the else-branch is selected in NO-CONSENT. Rule CLOSE-
SCOPE reduces the compliance scope at scope’s end.

Compliance between expressions and a contract is checked
in IF-COMPLY, where policies are extracted from the evaluated
expressions and added to the compliance scope and execu-
tion continues with the if-branch before closing the scope.
Otherwise, NO-COMPLY selects the else-branch. The function
policyIn(v) returns a list of policies from the sensitive data in
v and pairs(ls, cn) pairs each policy in the list of policies ls
with the contract cn and returns the set of policy-contract pairs.

f) Standard Rules: Figure 7 presents the rules for stan-
dard statements, augmented to dynamically check compliance.
Sensitive data can be assigned to local variables by ASSIGN-
LOCAL if compliance between the object’s contract and the

policy is guaranteed by the scope. Otherwise, ERROR-ASSIGN
triggers an error. Since sensitive data cannot be assigned
to fields (see Sec. III-A), ERROR-ASSIGN-FIELD triggers an
error. Object creation initialises an object with an empty
database in NEW, but triggers an error in ERROR-NEW if
the constructor’s actual parameters contain sensitive data. The
function atts(C, v, o) returns the initial substitution a for fields,
where the formal parameters are bound to v, the reserved
variable this to the identifier o, and the reserved variable cnThis
to contract(P, o), where P is the purpose implemented by C.

In CALL, method calls may only occur if the called
method’s actual parameter values are compliant with
the callee’s contract (accessed via an auxiliary function
contract(o′), where o′ is the callee). In this case, a message is
sent to the callee. This message includes the caller’s contract
a(cnThis), such that the callee can check compliance before
returning the method’s result to the caller. The caller is blocked
until it receives the result. Since the waiting time is unknown,
the compliance scope is emptied and data will need to be
rechecked once computation resumes. If the actual parameter
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STORE

sd = [[e]]a◦σ sd = sensitive(d, l)
cn = a(cnThis) cn ∈ (cp ∪ cm) b = true

o(a, (σ, (store(k, e) else{s}; s′)@V ), db) l(u, cp, cm, b, t)
→ o(a, (σ, s′@V ), db[k 7→ sd]) l(u, cp, cm, b, t)

NO-STORE

¬dataStorage(l, cfg) ∨ ¬comply(l, cn, cfg, ∅)
sensitive(d, l) = [[e]]a◦σ cn = a(cnThis)

{cfg o(a, (σ, (store(k, e) else{s}; s′)@V ), db)}
→ {cfg o(a, (σ, (s; s′)@V ), db)}

RETRIEVE

sd = db(k) sd = sensitive(d, l)
x ∈ dom(σ) cn = a(cnThis) cn∈(cp ∪ cm)

o(a,(σ, (retrieve(k, x){s} else{s′}; s′′)@V ),db)
l(u, cp, cm, b, t)

→ o(a, (σ[x 7→ sd], s; s′′@V ), db)
l(u, cp, cm, b, t)

NO-RETRIEVE

x /∈ dom(σ) ∨ k /∈ dom(db) ∨ cn = a(cnThis)
sensitive(d, l) = db(k) ¬comply(l, cn, cfg, ∅)

{cfg o(a,(σ, (retrieve(k, x){s} else{s′}; s′′)@V ),db)}
→ {cfg o(a, (σ, (s′; s′′)@V ), db)}

IF-CONSENT

cn = [[e1]]a◦σ l = [[e2]]a◦σ cn ∈ (cp ∪ cm)

o(a, (σ, (if-consent(e1, e2){s} else{s′}; s′′)@V ), db) l(u, cp, cm, b, t)
→ o(a, (σ, (s; cScope(〈l, cn〉); s′′)@V ∪ {〈l, cn〉}), db) l(u, cp, cm, b, t)

IF-COMPLY

v = [[e]]a◦σ ls = policyIn(v) comply(ls, cn, cfg, ∅) S = pairs(ls, cn)

{cfg o(a, (σ, (if-comply(cn, e){s} else{s′}; s′′)@V ), db)}
→ {cfg o(a, (σ, (s; cScope(S); s′′)@V ∪ S), db)}

NO-COMPLY

v = [[e]]a◦σ ls = policyIn(v) ¬comply(ls, cn, cfg, ∅)
{cfg o(a, (σ, (if-comply(cn, e){s}else{s′}; s′′)@V, db)}

→ {cfg o(a, (σ, (s′; s′′)@V ), db)}

CLOSE-SCOPE

o(a, (σ, (cScope(S); s)@V ), db)
→ o(a, (σ, s@V \S), db)

NO-CONSENT

¬comply(l, cn, cfg, ∅
cn = [[e1]]a◦σ l = [[e2]]a◦σ)

{cfg o(a, (σ, (if-consent(e1, e2){s}
else{s′}; s′′)@V ), db)}

→ {cfg o(a, (σ, (s′; s′′)@V ), db)}

Figure 6. Rewrite rules for data storage, deletion and scopes.

values are not compliant with the contract, ERROR-CALL
triggers a data usage error. The callee receives the message
in CALLEE-INVC. The function class(o) returns the class of
object o and bind(o, C,m, v, o′, cn) creates a new process
(σ, s@∅), where the reserved variable caller is bound to o′

in σ, the reserved variable cnCaller to the caller’s contract cn,
and the formal parameters to v. Moreover, s is the method
body of m in the class C and the compliance scope is empty.
Data may have expired and needs to be checked using the
appropriate conditional constructs in the method body.

Upon method completion with sensitive data as the return
value, RETURN sends a completion message to the caller if
the caller’s contract, which is stored in the callee’s local
variable cnCaller, complies with the policy l. Otherwise,
ERROR-RETURN triggers a data usage error. Observe that
the error can be avoided by testing the caller’s contract;
e.g., if-comply(cnCaller, e){return(e)}. The caller receives
the completion message and gets unblocked in GET-DATA.
The data might have expired before the message is received,
potentially triggering an error in subsequent statements.

Self calls are supported by SELF-CALL. (Observe that cyclic

call chains give rise to deadlock in our semantics; these could
be handled with scheduling messages by adapting the pattern
of SELF-CALL to blocked objects with incoming calls.) In
SELF-CALL, the compliance scope is emptied so the calling
process will need to recheck compliance when it resumes.
The new process, also with an empty compliance scope, ends
with a cont(n) statement and the old process is wrapped in a
scheduling message. These are matched to resume execution
in SELF-RETURN, provided that the object’s contract, found in
the field cnThis, complies with the policy. Otherwise, ERROR-
SELF-RETURN triggers a data usage error.

The initial state is derived from the main block
main{T x; s} by creating an object ob(main)([cnThis 7→
contract(main, ob(main))], ([], s@∅), []), with identity
ob(main) and contract contract(main, ob(main)). Note that this
contract must be added to created policies so that the ob(main)
object can access sensitive data. In the object, the local
substitution and the database are empty, and the active process
([], s@∅) corresponds to the activation of main’s statements s.
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ASSIGN-LOCAL

cn = a(cnThis) x ∈ dom(σ)

〈l, cn〉 ∈ V ∨ cn ∈ (cp ∪ cm)

sd = [[e]]a◦σ sd = sensitive(d, l)

o(a, (σ, (x := e; s)@V ), db)
l(u, cp, cm, b, t)→

o(a, (σ[x 7→sd], s@V ), db)
l(u, cp, cm, b, t)

ERROR-ASSIGN-FIELD

x ∈ dom(a)

sensitive(d, l) = [[e]]a◦σ

o(a, (σ, (x := e; s)@V ), db)
→ error(o)

ERROR-ASSIGN

x ∈ dom(σ) sensitive(d, l) = [[e]]a◦σ
cn = a(cnThis) ¬comply(l, cn, cfg, V )

{o(a, (σ, (x := e; s)@V ), db) cfg}
→ {errorU(o, cn) cfg}

NEW

d = [[e]]a◦σ a′ = atts(C, d, o′)
fresh(o′) contract(P, o′) = a′(cnThis)

o(a, (σ, (x := new C(e); s)@V ), db)→
o(a, (σ, (x := o′; s)@V ), db) o′(a′, idle, [])

ERROR-NEW

sd ∈ [[e]]a◦σ sd = sensitive(d, l)

o(a, (σ, (x := new C(e); s)@V ), db)
→ error(o)

CALL

o′ = [[e]]a◦σ v = [[e]]a◦σ cn = contract(o′)
ls = policyIn(v) comply(ls, cn, cfg, V )

{o(a, (σ, (x := e.m(e); s)@V ), db) cfg} →
{o(a, (σ, (x := m?; s)@∅), db) m(v, o′, o, a(cnThis)) cfg}

ERROR-CALL

o′ = [[e]]a◦σ v = [[e]]a◦σ cn = contract(o′)
ls = policyIn(v) ¬comply(ls, cn, cfg, V )

{o(a, (σ, (x := e.m(e); s)@V ), db) cfg}
→{errorU(o, cn) cfg}

RETURN

sd = [[e]]a◦σ sd = sensitive(d, l) o′ = σ(caller)
cn = σ(cnCaller) 〈l, cn〉 ∈ V ∨ cn ∈ (cp ∪ cm)

o(a, (σ, return e @V ), db) l(u, cp, cm, b, t)→
o(a, idle, db) l(u, cp, cm, b, t) com(sd, o′)

CALLEE-INVC

(σ, s@∅) = bind(o, C,m, v, o′, cn)
C = class(o) σ(caller) = o′ σ(cnCaller) = cn

{o(a, idle, db) m(v, o, o′, cn) cfg}
→ {o(a, (σ, s@∅), db) cfg}ERROR-RETURN

sensitive(d, l) = [[e]]a◦σ o′ = σ(caller)
cn = σ(cnCaller) ¬comply(l, cn, cfg, V )

{o(a, (σ, return e @V ), db) cfg} →
{errorU(o, cn) cfg}

SELF-CALL

o = [[e]]a◦σ v = [[e]]a◦σ
(σ′, s′@∅) = bind(o, C,m, v, o, a(cnThis))

fresh(n) ls = policyIn(v) comply(ls, a(cnThis), cfg)

{o(a, (σ, (x := e.m(e); s)@V ), db) cfg}→
{o(a, (σ′, (s′; cont(n))@∅), db) n(σ, (x := m?; s)@∅) cfg}

SELF-RETURN

a(cnThis)∈(cp ∪ cm)

o = σ(caller) v = [[e]]a◦σ

o(a, (σ, (return e; cont(n))@V ), db)
n(σ′, (x := m?; s)@V ′) l(u, b, cp, cm, t)→
o(a, (σ′[x 7→ v], s@V ′), db) l(u, b, cp, cm, t)

GET-DATA

o(a, (σ, (x := m?; s)@V ), db) com(v, o)

→ o(a, (σ[x 7→ v], s@V ), db)
ERROR-SELF-RETURN

¬comply(l, cn, cfg, V ) cn = a(cnThis)
sensitive(d, l) = [[e]]a◦σ o = σ(caller)

{o(a, (σ, (return e; cont(n))@V ), db) cfg}
→ {errorU(o, cn) cfg}

ERROR-SELF-CALL

¬comply(ls, a(cnThis), cfg, V )

o = [[e]]a◦σ v = [[e]]a◦σ ls = policyIn(v)

{o(a, (σ, (x := e.m(e); s)@V ), db) cfg}
→ {errorU(o, cn) cfg}

Figure 7. Rewrite rules for standard statements.

IV. CORRECTNESS

DPL’s operational semantics gives rise to a transition sys-
tem, where states are configurations and transitions correspond
to rule applications. There are infinitely many initial states
reflecting the starting configurations of infinitely many pro-
grams. Moreover, a program may give rise to a nonterminating
application of rules and, therefore, also infinitely many states.

We reason about this infinite state transition system and
prove that DPL programs cannot lead to GDPR violations with

respect to the requirements given in Section II-A. Namely, we
formalize properties that ensure purpose limitation, consent,
the right to withdraw consent, storage limitation, and the right
to be forgotten. Formal definitions and proofs are given in
Appendix A.

In our formalization, we define a trace as a sequence
of configuration and action pairs (cfg0, R0), (cfg1, R1), · · · ,
where an action is the name of the rule that is fired at the
configuration (i.e., cfgi → cfgi+1 by applying the rule Ri).
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Auxiliary formulas Explanation

use(o, 〈d, l〉, cn) the object o uses the data 〈d, l〉 for a
purpose associated with the contract cn

complyTo(l, cn) the policy l exists and
the contract cn complies to the policy

checked-scope(o, 〈l, cn〉) the pair 〈l, cn〉 is in o’s compliance scope
noExecIn(o) the current execution step is not in o

errorU(o, cn) a data usage error associated with the
contract cn occurred in the object o

errorC(o, cn) a data collection error in o when consent
associated with the contract cn is not granted

collect(o, cn, l) o is executing a collect(cn, l, x) statement
optedIn(l, cn) the contract cn is added to the policy l

optedOut(l, cn) the contract cn is removed from the policy l
expired(l) the policy l is deleted from the configuration

dbDel(l) sensitive data associated with the policy
l is deleted from databases

deleted(l) the policy l is deleted
Table II

EXPLANATION OF PREDICATES.

To formalize and reason about temporal properties of DPL
programs, we use linear temporal logic (LTL) [14], [15] with
the standard temporal operators: © (next), � (always), ♦
(sometime), and Until and W , which are the strong and weak
until operators respectively. The notation |= ϕ denotes that the
LTL property ϕ holds for all traces of our transition system.

Table II shows the state formulas we use and their informal
interpretation. Note that some of our definitions state that
predicates must eventually hold and for this to be the case
we require a fair transition system. Since the rules TICK,
DELETE, and OPT-OUT can fire infinitely often and at anytime,
we specify strong fairness for our transition system, where if a
rule is enabled infinitely often, then it fires infinitely often. We
express strong fairness for our transition system as follows.

fair = �♦enabled1 ⇒ �♦fired1 ∧ · · · ∧ �♦enabledi ⇒ �♦firedi.

In this formula, the index i ranges over the names of our
rules, enabledi is true (i.e., satisfied at a given point in a trace)
when the rule i is enabled namely, the premises of the rule
are true and the left-hand-side of the rule matches the current
configuration, and firei is true when the rule i is fired. We
shall assume strong fairness when proving all our properties.

The following property P formalizes purpose limitation,
where compliance is checked for any data usage. Namely,
an object cannot use data for a purpose that is not compliant
with the policy, and an error arises if the object attempts
a non-compliant usage. In DPL, the only statements using
data are assignments, calls, and return-statements. The use
formula is true if one of these three statements is the first
statement in the active process of an object. The property
P1 says that if whenever use is true, then checked-scope is
true (i.e., if compliance is checked prior to the usage in the
appropriate conditional construct), then a data usage error
never arises. Note that P1 holds regardless of whether the
complyTo formula is true or false. The property P2 says that
if data is used and the formulas complyTo and checked-scope
are false, then in the next step, execution does not continue in

the object until a data usage error arises or the user opts in.

P = P1 ∧ P2

P1 = ∀o, d, l, cn.
�(use(o, 〈d, l〉, cn)⇒ checked-scope(o, 〈l, cn〉))
⇒ �¬errorU(o, cn)

P2 = ∀o, d, l, cn.
�((use(o, 〈d, l〉, cn) ∧ ¬complyTo(l, cn)
∧ ¬checked-scope(o, 〈l, cn〉))
⇒©(noExecIn(o) Until (errorU(o, cn) ∨ optedIn(l, cn))))

Theorem IV.1 (Purpose limitation). The property P holds
for all traces of our transition system.

The proof of this theorem and all theorems in this section
can be found in Appendix A.

The following property C formalizes that data is collected
only if consent has been granted. The formula collect is true
if there is a collect(cn, l, x) statement in the active process
of an object as the first statement. The property C1 says that
if collect(cn, l, x) is always in a conditional construct that
checks compliance between a policy l and a contract cn,
then a data collection error never arises. The property C2

says that when collecting data, if the formulas complyTo and
checked-scope are false, then in the next step, execution does
not continue in the object until a data collection error arises
or the user opts in.

C = C1 ∧ C2

C1 = ∀o, l, cn.
�(collect(o, l, cn)⇒ checked-scope(o, 〈l, cn〉))
⇒ �¬errorC(o, cn)

C2 = ∀o, l, cn.
�((collect(o, l, cn) ∧
¬complyTo(l, cn) ∧ ¬checked-scope(o, 〈l, cn〉))
⇒©(noExecIn(o) Until (errorC(o, cn) ∨ optedIn(l, cn))))

Theorem IV.2 (Consent). The property C holds for all traces
of our transition system.

The following property W formalizes the right to
withdraw consent: A user can withdraw consent, and the
corresponding purpose is removed from the policy, which
prevents subsequently using the data for that purpose. The
formula optedOut(l, cn) is true when the contract cn is
removed from the policy l. The formula optedIn(l, cn) is true
when the contract cn is added to the policy l. The property
W says that when optedOut(l, cn) is true, then compliance
with respect to the policy and the contract remains false until
optedIn(l, cn) is true (if it ever becomes true, hence we use
LTL’s weak-until operator).

W = ∀l, cn.
�(optedOut(l, cn)⇒ (¬complyTo(l, cn) W optedIn(l, cn)))

Theorem IV.3 (Right to withdraw consent). The property W
holds for all traces of our transition system.

The following property S formalizes storage limitation:
Data is deleted from the objects’ databases when the deadline
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for data deletion arrives. It says that if the formula expired(l)
is true (due to policy expiration or the DELETE rule), then data
with that policy is deleted from the objects’ databases. In the
rules TICK and DELETE, policy deletion and data deletion are
specified using functions and equations. Thus when a policy
is deleted, its data is deleted in the same state as well.

S = ∀l. �(expired(l)⇒ dbDel(l))

Theorem IV.4 (Storage limitation). The property S holds for
all traces of our transition system.

The following property F formalizes the right to be
forgotten: A user can request to delete her data, and the data
is then deleted from the objects’ databases. The predicate
deleted(l) is true when the policy l is deleted by the rule
DELETE. The property F says that when a policy is deleted,
the formula expired is true for that policy. Moreover, by
Theorem IV.4, data with that policy is deleted from databases.

F = ∀l. �(deleted(l)⇒ expired(l))

Theorem IV.5 (Right to be forgotten). The property F holds
for all traces of our transition system.

As mentioned, attempted GDPR violations do not succeed;
they instead produce runtime errors. These errors can be
systematically avoided by the following hygienic measures,
which amount to good GDPR practice: i) all methods that use
personal data are specified in the corresponding purpose dec-
larations; ii) for each purpose declaration, the corresponding
consent statement and contract are specified; iii) the pattern
in Section III-B is used for data collection, which requires a
logged-in user, a privacy policy for the user, opt-in options, and
the appropriate if-consent construct prior to data collection;
and iv) the construct if-comply(cn, e) is used prior to the
commands that use sensitive data in e. That these hygienic
measures are sufficient follows by careful inspection of the
rules, and we also confirm this for concrete programs by
model checking hygienic and non-hygienic programs (see
Appendix C for some examples).

V. MAUDE FORMALIZATION

We have formalized DPL’s operational semantics in
Maude [11]. This yields a prototype environment for simulat-
ing DPL programs and thereby provides us some confidence
in our rules. Maude supports multiset rewriting logic, which
we use to model the non-deterministic behavior of our system,
where enabled rules can be interleaved at any point after each
rewrite. We use a user object to non-deterministically give
“yes” or “no” input to opt-in statements.

Our Maude formalization provides a prototype verification
environment for DPL programs. It can be used to check all
our properties on finite-state programs, such as the program
given in Fig. 3. (Technically, the programs may be infinite
state, e.g., involve data from unbounded domains, provided
only finitely many states are reachable.) We also validate
statements about “hygienic programs” given in Section IV.
We check P1, C1, W , S , and F for the hygienic program

given in Fig. 3, where all the usage constructs are protected
with conditional constructs. Maude verifies that errors never
arise and all specified properties hold. We checked the
properties P2 and C2 concerning programs raising errors on
the program where different combinations of the conditional
constructs are removed. Maude verifies that the corresponding
errors arise and the properties hold. We present our results
with Maude in Appendix C.

VI. RELATED WORK

Purpose-based access control mechanisms [16], [17] have
been proposed to control access to data in databases based on
intended purpose information associated with the data. Users
must state their access purposes when requesting data and
can access the data if their stated purposes comply with the
data’s intended purpose. Both kinds of purposes are organized
hierarchically, and compliance is defined based on a partial-
order relation. In contrast, we enforce GDPR requirements
using programming language constructs and runtime checks.
In DPL, intended purposes are added to policies when users
give consent, and policies can change over time when data
subjects consent to new purposes or withdraw their consent.

Privacy by Design (PbD) [18] is a framework that intro-
duces principles that should be considered when designing a
system architecture. Schneider [19] explains that since a model
specification can be very different from the implementation,
PbD, by itself, cannot in general guarantee privacy unless
it also encompasses the implementation. We believe that
languages like DPL have an important role to play in building
privacy-by-design systems as DPL directly supports many of
the principles espoused there. For example, it is a proactive
approach that provides privacy by default.

Another design-oriented approach is [13], where GDPR
compliance is checked at the design level. Business processes
represent one or more purposes, and formal models of inter-
process communication identify data collection and data usage
points [13]. In order to identify purposes and data usage points,
we build on the approach proposed in [13]. However, instead
of business processes, the methods that implement a process
are grouped together in a purpose declaration. Moreover, we
provide language support for policy enforcement, whereas
[13] only supports data protection through audits.

Researchers have used information-flow analysis [20], [21]
to check privacy policy compliance in programs. There, types
are annotated with privacy policy labels, and a notion of policy
compliance is defined. We also track the flow of sensitive
data, where left-hand-side expressions get the policy identity
of right-hand-expressions. We expand upon the most closely
related work here in the following.

In [22], the authors propose a decentralized label model
for Jif to enforce role-based access control in programs. Jif
principals represent entities with specific roles, which have
a hierarchical structure. Program variables are annotated with
policy labels, where a label contains the principal that owns
the data and a set of readers who can read the data. Jif’s
type checking enforces information-flow control and protects
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principals’ privacy. Moreover, a principal may declassify
the label of the data that it owns. Declassification of roles
requires runtime checking to determine whether a process is
authorized to declassify data. However, most of a program
can be certified statically with no overhead. In contrast, we
enforce richer data protection policies, as required by the
GDPR, such as the necessity of providing consent, the right
to withdraw consent, purpose limitation, storage limitation,
and the right to be forgotten. GDPR temporal requirements,
where users can withdraw consent or data is automatically
deleted when deadlines arrive cannot be enforced statically.
In DPL, we enforce these requirements by runtime checking.

In [3], the authors enforce purpose-based and storage-
based restrictions in Jif. Jif’s principals represent purposes,
ordered hierarchically. Data is annotated with the principal
that owns the data, representing the purpose for which the
data is collected. Methods that are needed for a purpose
are annotated with the corresponding principal. By means of
Jif’s type checking, compile-time errors arise if data is used
for non-compliant purposes. Similarly, for enforcing retention
restrictions, Jif’s principals represent retention labels. In [3],
storage restrictions are limited to retention labels (in the sense
of P3P), intended purposes are fixed, and access purposes
are associated by the programmer. In DPL, users’ consent
determines the intended purposes in policies, and access
purposes are automatically associated with created objects.
Moreover, in DPL, instead of policies themselves, references
to policies are attached to data, and thus if a policy changes
due to the user actions or the passage of time, then this change
is automatically enforced on any usage or storage of data with
the policy reference. In addition, this requires less storage
overhead at runtime and we can also enforce deletion policies.

In [4], the authors propose a static approach to check privacy
policy compliance in Bing, where privacy policies are specified
in LEGALEASE, and GROK maps data types in a code
to policies and tracks the flow of information. By taking a
static approach, there are no runtime overheads. However, their
approach cannot be used to enforce the GDPR requirements
such as consent, the right to withdraw consent, the right to be
forgotten, and temporal requirements for data deletion, where
a runtime approach would be required.

VII. CONCLUSION

We have presented DPL, a programming language designed
for data protection with provable guarantees. DPL and our
Maude-based simulation environment are prototypical and
allow us to simulate programs and experiment with our new
language features. Our initial experience supports the thesis
that custom language support can play an important role in
building systems meeting strict data protection requirements
like those of the GDPR.

Our work constitutes a first significant step in building a
robust, usable language with formal GDPR guarantees. This
work could be strenghtened in several ways, which suggest
interesting directions for future work: (1) Large-scale case
studies are needed to better assess the language’s usability

and further evaluate the runtime overheads involved. (2) For
stronger correctness results, our pen-and-paper proofs (in
Appendix A) could be further formalized in a theorem prover
such as Coq or Isabelle. (3) A type and effect system for
DPL could be used to enforce the correct use of scopes,
with an associated type preservation theorem. This would
make programming in DPL easier by eliminating runtime
errors for well-typed programs. We have also highlighted
other possibilities for future work in this paper’s body. This
includes defining fine-grained compliance scopes in programs,
developing a more permissive solution for binary and general
operations on data items with different policies, and, finally,
building real language support.
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APPENDIX

A. Proofs

We prove that the properties in Section IV hold for all
strongly fair runs of our transition system. To define the
fairness and some of our formulas, we must track the current
rule that is executed and the object’s identity that the rule is
applied to. We define a trace τ as a sequence of tuples, such as
τ = (cfg0, R0, Id0), (cfg1, R1, Id1), · · · , that in addition to the
configuration cfg and the rule label R, also tracks the identity
Id of the object, which can be an object’s identity or other,
when the rules TICK, DELETE, and OPT-OUT are fired. We
define formulas on a state denoted by φ(cfg), or on tuples,
denoted by φ(cfg, R, Id) as needed. We formalize the formulas
in Table II as follows.
use(o, sensitive(d, l), cn)(cfg) = ∃a, σ, x, e, e′, e,m, s, s′, V, db, o′.

o(a, (σ, (s; s′)@V ), db) ∈ cfg ∧
(s = x := e ∧ sensitive(d, l) = [[e]]a◦σ ∧ cn = a(cnThis)) ∨
(s = return(e) ∧ sensitive(d, l) = [[e]]a◦σ ∧ o′ = σ(caller)
∧ cn = σ(cnCaller)) ∨

(s = return(e) ∧ sensitive(d, l) = [[e]]a◦σ ∧ o = σ(caller)
∧ cn = σ(cnThis)) ∨

(s = x := e′.m(e) ∧ sensitive(d, l) ∈ [[e]]a◦σ ∧ o′ = [[e′]]a◦σ

∧ cn = contract(o’)) ∨
(s = x := e′.m(e) ∧ sensitive(d, l) ∈ [[e]]a◦σ ∧ o = [[e′]]a◦σ

∧ cn = a(cnThis))
(1)

complyTo(l, cn)(cfg) = ∃u, cp, cm, b, t.
l(u, cp, cm, b, t) ∈ cfg ∧ cn ∈ (cp ∪ cm)

(2)

checked-scope(o, 〈l, cn〉)(cfg) = ∃a, σ, s, V, db.
o(a, (σ, s@V ), db) ∈ cfg ∧ 〈l, cn〉 ∈ V

(3)

errorU(o, cn)(cfg) = errorU(o, cn) ∈ cfg
errorC(o, cn)(cfg) = errorC(o, cn) ∈ cfg

(4)

collect(o, l, cn)(cfg) = ∃a, σ, e1, e2, e3, s, s′, V, db.

o(a, (σ, (s; s′)@V ), db) ∈ cfg ∧
s = collect(e1, e2, e3) ∧ cn = [[e1]]a◦σ ∧ l = [[e2]]a◦σ

(5)

optedOut(l, cn)(cfg, R, Id) = ∃u, b, cp, cm, t.
l(u, b, cp, cm, t) ∈ cfg ∧ R = OPT-OUT(l) ∧ cn /∈ cm

(6)

optedIn(l, cn)(cfg, R, Id) = ∃u, b, cp, cm, t.
l(u, b, cp, cm, t) ∈ cfg ∧ R = OPT-IN(l) ∧ cn ∈ cm

(7)

expired(l)(cfg) = ∃u, b, cp, cm, t. l(u, b, cp, cm, t) /∈ cfg (8)

dbDel(l)(cfg) = ∃o, a, p, db, d.

o(a, p, db) ∈ cfg ∧ sensitive(d, l) /∈ db
(9)

deleted(l)(cfg, R, Id) = R = DELETE(l) (10)

noExecIn(o)(cfg, R, Id) = Id 6= o (11)

In the following, we prove the properties in Section IV.
The initial state of the program CL PI main{T x; s} is a
multiset including the object ob(main), the classes CL, and
the purposes PI, where cfg0 = {CL PI ob(main)([cnThis 7→
contract(main, ob(main))], ([], s@∅), [])}.

P = P1 ∧ P2

P1 = ∀o, d, l, cn.
�(use(o, sensitive(d, l), cn)⇒ checked-scope(o, 〈l, cn〉))
⇒ �¬errorU(o, cn)

P2 = ∀o, d, l, cn.
�((use(o, sensitive(d, l), cn) ∧ ¬complyTo(l, cn)
∧ ¬checked-scope(o, 〈l, cn〉))
⇒©(noExecIn(o) Until (errorU(o, cn) ∨ optedIn(l, cn))))

Theorem A.1 (Purpose limitation). The property P holds for
all traces of our transition system.

Proof. First, we prove P1 using a proof by contradiction. Let
τ be a fair trace. The premise of P1 says that in every state
in τ , for all o, d, l, and cn, whenever use(o, sensitive(d, l), cn)
holds, then checked-scope(o, 〈l, cn〉) holds. To achieve a
contradiction, assume that errorU(o, cn) holds in a reachable
state in τ and consider the first such state cfg′ that it holds.
This cannot be the initial state in τ (per definition) so there
must be a transition from a predecessor state cfg to cfg′

adding errorU(o, cn) to the configuration. The only rules that
could have added errorU(o, cn) are the following:
• ERROR-ASSIGN: In o(a, (σ, (x := e; s)@V ), db), let

sensitive(d, l) = [[e]]a◦σ and cn = a(cnThis). Since the
current program statement in cfg is an assignment, then
use(o, sensitive(d, l), cn) holds in this state. Therefore,
checked-scope(o, 〈l, cn〉) holds in cfg, and hence also
〈l, cn〉 ∈ V . Thus, in the rule ERROR-ASSIGN, the premise
comply holds, and this rule cannot fire in cfg. Thus,
errorU(o, cn) does not hold in cfg′.

• ERROR-CALL: In o(a, (σ, (x := e.m(e); s)@V ), db), let
o′ = [[e]]a◦σ , sensitive(d, l)∈ [[e]]a◦σ , and cn = contract(o′).
Since the current program statement in cfg is a call, then
use(o, sensitive(d, l), cn) holds in this state. The rest of this
case is identical to the ERROR-ASSIGN case.

• ERROR-SELF-CALL: In o(a, (σ, (x := e.m(e); s)@V ), db)},
let o = [[e]]a◦σ , sensitive(d, l) ∈ [[e]]a◦σ , and cn = a(cnThis).
Since the current program statement in cfg is a self-call,
then use(o, sensitive(d, l), cn) holds in this state. The rest
of this case is identical to the ERROR-ASSIGN case.

• ERROR-RETURN: In o(a, (σ, return e@V ), db), let
sensitive(d, l) = [[e]]a◦σ , o′ = σ(caller), and
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cn = σ(cnCaller). Since the current program statement in
cfg is a return, then use(o, sensitive(d, l), cn) holds. The
rest of this case is identical to the ERROR-ASSIGN case.

• ERROR-SELF-RETURN: In
o(a, (σ, (return e; cont(n))@V ), db) n(σ′, (x :=
m?; s)@∅), let sensitive(d, l) = [[e]]a◦σ , o = σ(caller), and
cn = a(cnThis). Since the current program statement in cfg
is a self return, then use(o, sensitive(d, l), cn) holds. The
rest of this case is identical to the ERROR-ASSIGN case.

In all these cases, we conclude that ¬errorU(o, cn) holds, so
P1 holds.

Next, we prove P2. Given a fair trace τ , consider
any reachable state cfg where the premise of P2 holds,
i.e., for some o, d, l, and cn, use(o, sensitive(d, l), cn),
¬checked-scope(o, 〈l, cn〉), and ¬complyTo(l, cn) hold. Let
cfg′ be the next state in τ . We show that there exists a state
cfg′′ after cfg′ where errorU(o, cn) ∨ optedIn(l, cn) holds,
and noExecIn(o) holds for all states from cfg′ up to (but not
necessarily including) cfg′′.

For the rest of the proof, we use the fact that noExecIn(o)
holds when enabled rules not involving the object o fire. There
are four such kinds of rules: 1) TICK, 2) DELETE, 3) OPT-OUT,
and 4) all enabled rules that apply to other objects than o.

Now, since use(o, sensitive(d, l), cn) holds in cfg, there are
five possible program statements that can execute within o.
These correspond to the five disjunctions in the definition of
use (Equation 1). We consider the Assignment case below and
four other cases for Call, Self-Call, Return, and Self-Return
are analogous.

For the assignment case, consider how execution can
progress after an assignment, from the next state cfg′. Either a
program statement in the object o fires, or one of the four kinds
of rules fire not involving o. This yields the following two
cases: 1) The only enabled rule involving o is ERROR-ASSIGN,
which produces a state cfg′′ where errorU(o, cn) holds. 2)
For the other four kinds of rules that can be enabled, as
discussed previously, (i) for all of these rules, ERROR-ASSIGN
remains enabled except (ii) when the rule OPT-IN, enabled
in another object o′, fires and thereby adds the contract cn
to the policy l. If 2(i) holds, then noExecIn(o) holds in the
successor state. We can only repeat this case finitely often
since ERROR-ASSIGN remains enabled, and by fairness, it
must eventually fire, leading to state cfg′′ where errorU(o, cn)
holds. If 2(ii) applies (to any successor state), we then reach a
state cfg′′ where optedIn(l, cn) holds. We conclude that from
cfg′ onwards, noExecIn(o) holds until we reach cfg′′ when
either errorU(o, cn) or optedIn(l, cn) holds. This establishes
©(noExecIn(o) Until (errorU(o, cn) ∨ optedIn(l, cn))).

C = C1 ∧ C2

C1 = ∀o, l, cn.

�(collect(o, l, cn)⇒ checked-scope(o, 〈l, cn〉))
⇒ �¬errorC(o, cn)

C2 = ∀o, l, cn.

�((collect(o, l, cn) ∧
¬complyTo(l, cn) ∧ ¬checked-scope(o, 〈l, cn〉))
⇒©(noExecIn(o) Until (errorC(o, cn) ∨ optedIn(l, cn))))

Theorem A.2 (Consent). The property C holds for all traces
of our transition system.

Proof. The proof of C1 is analogous to our previous proof of
P1. Namely, we prove C1 using a proof by contradiction. Let
τ be a fair trace. The premise of C1 says that in every state
in τ , for all o, l, and cn, whenever collect(o,l,cn) holds, then
checked-scope holds. To achieve a contradiction, assume that
errorC(o, cn) holds in a reachable state in τ and consider the
first such state cfg′ that it holds. This cannot be the initial state
in τ (per definition) so there must be a transition from the
predecessor state cfg to cfg′ adding errorC(o, cn) to the config-
uration. The only rule that could have added errorC(o, cn) is
ERROR-COLLECT. In o(a, (σ, (collect(e1, e2, e3); s)@V ), db),
let cn = [[e1]]a◦σ and l = [[e2]]a◦σ . Since the current program
statement in cfg is collect(e1, e2, e3), then collect(o, l, cn)
holds. Therefore, checked-scope(o, 〈l, cn〉) holds in cfg, and
hence also 〈l, cn〉 ∈ V . Thus, in the rule ERROR-COLLECT,
the premise comply holds and this rule cannot fire in cfg.
Thus, errorC(o, cn) does not hold in cfg′, so C1 holds.

The proof of C2 is analogous to our proof of P2. In particu-
lar, given a fair trace τ , consider any reachable state cfg, where
the premise of C2 holds, i.e., for some o, l, and cn, the formulas
collect(o,l,cn), ¬complyTo(l, cn), and ¬checked-scope hold.
Let cfg′ be the next state in τ . We show that there exists a
state cfg′′ after cfg′ where errorC(o, cn) ∨ optedIn(l, cn)
holds, and noExecIn(o) holds for all states from cfg′ up to
(but not necessarily including) cfg′′.

As with the previous proof of P2, we will use the fact
that noExecIn(o) holds when enabled rules not involving the
object o fire. There are four such kinds of rules: 1) TICK, 2)
DELETE, 3) OPT-OUT, and 4) all enabled rules that apply to
other objects than o.

Since collect(o,l,cn) holds in cfg, there is only one possible
program statement that can execute according to the definition
of collect in Equation 5, which is collect(cn, l, x). Now
consider how execution can progress from the next state cfg′.
Either a program statement in the object o fires, or one of the
four kinds of rules fire not involving o. This yields the follow-
ing two cases: 1) The only enabled rule involving o is ERROR-
COLLECT, which produces a state cfg′′ where errorC(o, cn)
holds. 2) For the other four kinds of rules that can be enabled,
as discussed previously, (i) for all of these rules, ERROR-
COLLECT remains enabled except (ii) when the rule OPT-IN,
enabled in another object o′, fires and thereby adds the contract
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cn to the policy l. If 2(i) holds, then noExecIn(o) holds in the
successor state. We can only repeat this case finitely often
since ERROR-COLLECT remains enabled, and by fairness, it
must eventually fire, leading to state cfg′′ where errorC(o, cn)
holds. If 2(ii) applies (to any successor state), we then reach a
state cfg′′ where optedIn(l, cn) holds. We conclude that from
cfg′ onwards, noExecIn(o) holds until we reach cfg′′ when
either errorC(o, cn) or optedIn(l, cn) holds. This establishes
©(noExecIn(o) Until (errorC(o, cn) ∨ optedIn(l, cn))).

W = ∀l, cn.
�(optedOut(l, cn)⇒ (¬complyTo(l, cn) W optedIn(l, cn)))

Theorem A.3 (Right to withdraw consent). The property W
holds for all traces of our transition system.

Proof. Given a fair trace τ , consider any reachable state cfg
where optedOut(l, cn) holds, i.e., according to the definition
optedOut (in Equation 6), the rule OPT-OUT has been fired
and the contract cn does not belong to the policy l. We show
that if there exists a state cfg′ in τ , where optedIn(l, cn)
holds, then ¬complyTo(l, cn) holds from cfg up to cfg′. More-
over, if optedIn(l, cn) never holds in any state in τ , then
¬complyTo(l, cn) holds forever from cfg onwards.

Since optedOut(l, cn) holds in cfg, the contract cn does not
belong to the policy l, thus the formula ¬complyTo(l,cn) also
holds in cfg. Note that ¬complyTo(l, cn) is invariant over all
the rules except OPT-IN. So either 1) the rule OPT-IN eventually
fires yielding a state cfg′ where optedIn(l, cn) holds, and
¬complyTo(l, cn) holds from cfg up to this point, or 2) OPT-IN
never fires and then ¬complyTo(l, cn) continuously holds from
cfg.

For deletion, we formalize the auxiliary functions dec
and del (in Section III-D) in the following. The function
delData(db, l) deletes sensitive data associated with the policy
l from the database db, which is a substitution. Equations are
applied in order, top-down.

dec(l(u,cp,cm,b,t) cfg) = l(u, cp, cm, b, t− 1) dec(cfg) if t > 1

dec(l(u,cp,cm,b,1) cfg) = dec(del(l, cfg))
dec(cfg) = cfg

(12)

del(l,o(a,p,db) cfg) = o(a, p, delData(db, l)) del(l,cfg)
del(l, cfg) = cfg

delData([sensitive(d, l′), v], l) = delData([v], l) if l = l′

delData([sensitive(d, l′), v], l) =

[sensitive(d, l′), delData([v], l)] if l 6= l′

delData([], l) = []

(13)

S = ∀l. �(expired(l)⇒ dbDel(l))

Theorem A.4 (Storage limitation). The property S holds for
all traces of our transition system.

Proof. Given a fair trace τ , consider any reachable state
cfg where expired(l) holds by Equation 8, a policy l does
not exist in the state cfg. We show that dbDel(l) also holds
in cfg, where data with the policy l is deleted from all

objects’ databases. Note that the state cfg cannot be the
initial state because in the initial state there is no policy. In
the predecessor state of cfg, the only rules that could have
deleted a policy l, yielding expired(l) in cfg, are the following:

• Tick: The TICK rule was applied and the timestamp of the
policy was one. In this case, the dec function (in Equation
12), deletes the policy, where expired(l) holds in cfg, and
the function del (in Equation 13) deletes sensitive data
associated with the policy l from databases, so that dbDel(l)
holds in cfg. Hence, S holds.

• Delete: The rule DELETE was applied. In this case, the
policy is deleted, where expired(l) holds in cfg, and the
function del deletes sensitive data associated with the policy
l in databases, so that dbDel(l) holds in cfg. Hence, S holds.

F = ∀l. �(deleted(l)⇒ expired(l))

Theorem A.5 (Right to be forgotten). The property F holds
for all traces of our transition system.

Proof. In a fair trace τ , consider any reachable state cfg where
deleted(l) holds by Equation 10, the rule DELETE was applied
to a policy l. We show that expired(l) also holds in cfg, and by
Theorem A.4 data with that policy is deleted from databases.
Note that the state cfg cannot be the initial state because in
the initial state there is no policy. Since deleted(l) holds in
cfg, then in the predecessor state of cfg, the rule DELETE was
applied, which deletes the policy, yielding expired(l) in cfg,
so F holds.

B. Rewrite rules for non-sensitive data

Figure 8 shows the rewrite rules for non-sensitive data,
omitted from Sect. III-D. These rules mirror their non-starred
counterparts for sensitive data, but without compliance checks.
Rule STORE* stores non-sensitive data d in the database,
ASSIGN-LOCAL* assigns non-sensitive data d to local vari-
ables, ASSIGN-FIELD* assigns non-sensitive data d to fields,
and RETURN* returns non-sensitive data d to the caller.

C. Maude formalization

a) Maude model: We specify DPL’s operational seman-
tics in Maude, which gives us a prototype environment for
program simulation and verification.

In our Maude model, a program is written in a main block
with a multiset of classes: main{L, SL} cfg, where L is an
initial state (substitution), SL is a list of statements, and cfg
specifies the classes. An object is represented as

〈 O : C | Att: S, Pr: (L, SL), Lcnt: N, Db: DB 〉

consisting of the object name O, the class name C, attributes S,
the active process (L, SL) with local variables L and statements
SL, a counter for creating unique identities N, and the database
DB. The counter is a technical device, omitted from the pre-
vious sections, used to create fresh identifiers, corresponding
to the use of the fresh predicate in the operational semantics.

16



STORE*
d = [[e]]a◦σ

o(a, (σ, (store(k, e) else{s}; s′)@V ), db)
→ o(a, (σ, s′@V ), db[k 7→d])

ASSIGN-LOCAL*
x ∈ dom(a) d = [[e]]a◦σ

o(a, (σ, (x := e; s)@V ), db)
→ o(a, (σ[x 7→ d], s@V ), db)

ASSIGN-FIELD*
x ∈ dom(a) d = [[e]]a◦σ

o(a, (σ, (x := e; s)@V ), db)→
o(a[x 7→ d], (σ, s@V ), db)

RETURN*
d = [[e]]a◦σ o′ = σ(caller)

o(a, (σ, return e @V ), db)→
o(a, idle, db) com(d, o′)

SELF-RETURN*
o = σ(caller) d = [[e]]a◦σ

o(a, (σ, (return e; cont(n))@V ), db)
n(σ′, (x := m?; s)@V ′)→
o(a, (σ′[x 7→ d], (s)@V ′), db)

Figure 8. Rewrite rules for operations on non-sensitive data.

For simplicity, class names represent purposes, and an object
created from a class C gets the purpose C.

A policy is represented as

PL 〈 U, Cp, Cm, B, T 〉

where PL is the policy identity, U is a user identity, Cp is a
set of persistent contracts, Cm is a set of mutable contracts,
B is true if data is allowed to be stored persistently, and T is
the timestamp.

For opt-in options, we assign a user object to consent
to or deny an opt-in option. The user object sends the
message optInMsg(true, ’contract, ’policy) to consent and
optInMsg(false, ’contract, ’policy) to deny consent. In
Maude’s syntax, a name is represented by ’name. Input data
for data collection is given in the collect command; i.e.,
collect(int(1), ’contract, ’policy, ’x ), where int(1) is the input
data, and the function int(1) creates data of type Integer.
Moreover, a userId is given in the command logIn(str(’u)),
where the function str() creates data of type String.

The rules TICK, DELETE, and OPT-OUT can be interleaved
at any point in the program reflecting clock ticks and user
actions. To specify fairness and some of the formulas in Table
II, we add the element ruleLabel(Id, R) to the configuration,
where Id is the identity of the current object that is executing,
and R is the current rule’s label that is fired. When a rule fires,
the parameters of ruleLabel change accordingly.

b) A rewrite rule example: Here, we present the for-
malization of the DELETE rule in Maude. Note that in this
paper, we omit the ruleLabel(Id, R) from the rules, where Id
is the identity of the object that is executing, and R is an event
constructed from a rule label and possibly parameters. In our
Maude model, ruleLabel(Id, R) is added to all the rules. In
the following, when the rule delete fires, Id changes to Other,
which is a constant of type Identity, and R to delete(PL) of type
Event. Note that if an object O is executing, then Id changes
to O, which is also of type Identity.

rl [delete] :
{ PL 〈 U, Cp, Cm, B, T 〉 ruleLabel(Id, R) Cfg }
=>

{ del(PL, ruleLabel(Other, delete(PL)) Cfg) } .

c) Model checking results for programs: We define the
LTL formulas in Section IV in Maude and use Maude’s model
checker to verify the GDPR properties that we previously
formalized on the online retailer example in Fig. 3.

Hygienic programs: We verify the properties P1, C1, W ,
S , and F on the (hygienic) online retailer program. Maude
verifies that errors cannot occur and returns true for each of
these properties.

Non-hygienic programs: To check the properties
concerning programs giving rise to errors, we model check
different scenarios for non-hygienic programs for Fig.3.
Namely, we remove different combinations of the statements
to systematically check the necessity of the all conditions for
hygienic programs given in Section IV.

The scenarios are as follows: i) For the Purchase purpose,
we do not define the consent statements cs1 and cs2 and
the contract cn1. Therefore, in the register method, credit
card data and customer data are collected with the Mass-
Marketing’s consent statement and contract (cs3, cn2). Maude
throws a data usage error when the method p. purchase(credit,
customer) is called. To avoid this error, the if-comply(cn1,
(credit, customer)) is required (line 45). ii) The pattern for data
collection, in Section III-B, is not followed. In this case, we
check two scenarios: 1) We skip the log-in() (line 11). Maude
throws an error when creating a policy (line 13). 2) We remove
the if-consent in line 16, to check that the appropriate error
arises when collecting data for the Purchase purpose. Maude
verifies that a data collection error arises. We check the consent
property C2 for the credit data with the policy l1 with respect
to the Purchase contract. Maude verifies the property C2. iii)
We remove the if-comply for the call mm.m-marketing (line
47), and check P2. Maude verifies that the appropriate error
arises when making the call m-marketing. Note that we check
the purpose limitation property P2 on the customer data with
respect to the ’MassMarketing contract.

Here, we present Maude’s model checker results for a
non-hygienic variant of the program in Fig.3, where the if-
consent in line 16 and the if-comply for the call mm.m-
marketing (line 47) are removed. In the following commands,
init is the initial configuration built from the program’s main
block. The term sensitive(str(’mail), policy(2)) is sensitive data
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associated with the customer data and the policy policy(2). The
term contract(str(’MassMarketing), ob(’MassMarketing0)) is
the contract for the object MassMarketing0. The term con-
tract(str(’Purchase), ob(’Purchase0)) is the contract for the
object Purchase0. The term policy(1) is the policy for the
credit data. In the following, Maude verifies the properties
P , C , W , S , and F , respectively:

red modelCheck(init, purposeLimitationconf
(init, sensitive(str(’mail), policy(2)),

contract(str(’MassMarketing), ob(’MassMarketing0)))) .
result Bool: true

red modelCheck(init, consentconf(init,
policy(1), contract(str(’Purchase), ob(’Purchase0)))) .

result Bool: true

red modelCheck(init, withdraw(init,
contract(str(’Purchase), ob(’Purchase0)), policy(1))) .

result Bool: true

red modelCheck(init, storageLimitationconf(init, policy(2))) .
result Bool: true

red modelCheck(init, forget(init, policy(2))) .
result Bool: true

D. Case study extension

We expand on the example from Section III-C and show
that DPL prevents illegal data usage and storage in objects
receiving sensitive data. These objects can only store or
process sensitive data if their contracts comply with the policy,
i.e., if consent for the object’s purpose is given. When a user
withdraws consent or requests data deletion, the corresponding
policy changes. Thus, prior to any data usage, conditional
constructs are needed to avoid errors. Moreover, objects cannot
illegally send sensitive data to other objects since errors occur.

We present the classes Purchase-c and MMarketing-c.
The corresponding objects p and mm receive the credit and
customer data. In class Purchase-c, the method purchase
stores the customer data if storage is allowed and the
user’s consent for the Purchase purpose is given. In line
7, the object’s contract is checked for compliance, then
data processing continues; otherwise, the default value “0”
is returned. In line 11, the caller’s contract is checked
for compliance before returning the method result. In the
class MMarketing-c, we create a new object tm for targeted
marketing and try to illegally send customer data to this object
via a method call (line 28). The call triggers an error since

tm’s contract is not defined and does not comply with the
customer’s policy. Moreover, if we define the corresponding
contract/consent statement, we still need a session and the
user’s consent to add the contract to the policy. In line 34, the
m-marketing method checks if the object’s contract complies
with the policy, then continues processing the data. A message
with the given text is sent to the customer and a copy of the
message is returned to the caller, which is our main object.

Similarly, we run Maude’s model checker for the program
in Fig. 9, and Maude verifies all the properties in Section IV.

1 class Purchase-c implements Purchase() {
2 Order purchase(String credit, String customer){
3 user = ... // Make user accounts for data storage
4 // Store data if storage is allowed, otherwise skip:
5 store(key(user, ‘‘customer’’), customer) else { skip; }
6 // Check if data usage is allowed:
7 if-comply(cnThis, credit, customer){
8 ...
9 Order order=...

10 // Check if the caller is allowed to receive the result
11 if-comply(cnCaller, order) { return(order); }
12 else{ return 0; }
13 } // End of if-comply(cnThis, credit, customer)
14 else {return 0; }
15 }// End of the purchase method
16 } // End of class
17
18
19 purpose TargetedMarketing {
20 String targetedMarketing(String customer){...}}
21
22 class TargetedMarketing-c implements TargetedMarketing() {...}
23
24 class MMarketing-c implements MassMarketing() {
25 TargetedMarketing-c tm = new TargetedMarketing-c();
26 String m-marketing(String customer){
27 // Let us send data illegally to tm
28 tm.targetedMarketing(customer); // This results in an error
29
30 user = ... // Create user accounts for data storage
31 // Store data if storage is allowed, otherwise skip
32 store(key(user, ‘‘customer’’), customer) else { skip; }
33
34 if-comply(cnThis, customer){ // Self-sanity check
35 String text=...
36 ... // Send MassMarketing text to the customer
37 return text;
38 } // End of if-comply
39 else {return 0; }
40 } // End of m-marketing method
41 } // End of class

Figure 9. Extension of the online-retailing example in DPL from Fig. 3.
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