
Digital Twins for Autonomic Cloud Application
Management

Geir Horn, Rudolf Schlatte, and Einar Broch Johnsen

Abstract Cloud applications are distributed in nature, and it is challenging to or-
chestrate an application across different Cloud providers and for the different capa-
bilities along the Cloud continuum, from the centralized data centers to the edge of
the network. Furthermore, optimal dynamic reconfiguration of an application often
takes more time than available at runtime. The approach presented in this paper uses
a concurrent simulation model of the application that is continuously updated with
real-time monitoring data, optimizing, and validating deployment reconfiguration
decisions prior to enacting them for the running applications. This enables proactive
decisions to be taken for a future time point, thereby allowing ample time for the
reconfiguration actions, as well as realistic Bayesian estimation of the application’s
time variate operational parameters for the optimization process.

1 Introduction

A Cloud application is intrinsically a set of components distributed over different lo-
cations and infrastructures, hence it becomes challenging to maintain the application
performance and stability over time as it may require constant attention of dedicated
DevOps engineers. This challenge is not new and Autonomic Computing has been
proposed as a solution [17]. The core concept is the Monitor, Analyse, Plan, Ex-
ecute — with Knowledge (MAPE-K) [14] feedback loop continuously monitoring
essential application metrics, and then plan and adapt the application to the appli-
cation’s current execution context. The concept has been used to build application
management platforms for mobile computing [9], ubiquitous computing [11], and
Cross-Cloud computing [12].

Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, 0316 Oslo, Norway
e-mail: Geir.Horn@mn.uio.no, e-mail: rudi@ifi.uio.no,
e-mail: einarj@ifi.uio.no

1

Geir.Horn@mn.uio.no
rudi@ifi.uio.no
einarj@ifi.uio.no

2 Geir Horn, Rudolf Schlatte, and Einar Broch Johnsen

A rational decision is in psychology and economy understood as the choice max-
imizing the utility of the decision maker [10]. Autonomic computing approaches
therefore assume that the DevOp engineer’s decisions can be replaced by a util-
ity function that balances the different concerns and trade-offs implicit in the de-
cision [18]. However, research has shown that it is hard for a DevOps engineer to
formulate the utility function [8]. This barrier may be even higher as the number of
configuration choices increases when the application can be deployed on heteroge-
neous computers that may be severely restricted in capacity, or when it is possible to
deploy the application components in variants targeting different hardware acceler-
ators like Graphics Processing Units (GPUs), Tensor Processing Units (TPUs), and
Field-Programmable Gate Arrays (FPGAs).

An alternative to model the utility is to simulate the candidate deployments and
pick the one that best satisfies the high-level goals and intentions of the DevOps en-
gineer. This approach resembles Data Farming, i.e., simulation experiments where
the model parameters are varied across the simulations to compare the simulation
output with measurements from the real system, thereby identifying the unknown
underlying system parameters [13]. Data farming has been used similarly to make
better decisions by complementing and improving the quality of the data mining of
the observed ’big data’ [24]. However, autonomic Cloud application management
based on the MAPE-K loop continuously monitors the operational parameters of
the application and its execution context. This allows the simulation model to be
causally connected with the real word through the measurements. Hence, the model
becomes a Digital Twin (DT) [4] of the running application. Instead of executing
multiple simulations to identify unknown system parameters, as one would do for
data farming, the novelty here is to execute multiple simulations for various recon-
figuration options using the DT model as a part of making optimized decisions for
the application configuration for the application’s current execution context.

The optimized autonomic Cloud application management and the concept of a
DT are discussed in Section 2 as a background to understand the problem and its
complexity. A prerequisite for the proposed DT approach to work is that the ex-
ecutable modelling language used to implement the DT is accurately represent-
ing the salient application characteristics. The Abstract Behavioral Specification
(ABS) [15] language fulfils the DT requirements, and Section 3 introduces the ABS
language and a generic ABS model for Cloud applications. Section 4 briefly dis-
cusses the context of our proposed solution, and Section 5 concludes the paper.

2 The Cloud Application and its Digital Twin

2.1 Cloud Application Modelling

Cloud computing is first and foremost a business model where the infrastructure
necessary to execute an application will be rented on demand. Permanently renting

Digital Twins for Autonomic Cloud Application Management 3

resources will in the long run be more costly than owning the resources, and hence
this implies that Cloud computing is for applications that are infrequently needed,
or to cover intermittent peak loads of permanently running applications. It is not
necessary to manage automatically short-lived applications. Hence, the type of ap-
plications considered here are the ones that are running for a significant time with
variable resource needs over the execution time and where the resources needed
permanently should be owned by the application owner with the variable needs for
resources covered by rented resources offered by the Cloud providers.

A Cloud application is therefore a distributed application: It is minimally divided
between the part running on the private infrastructures and a variable part running
in the Cloud. The application can be seen as an orchestration of software compo-
nents, where the term component is understood as an abstraction for an application
building block [20]. The application components can be either software modules,
applications, or packages; web services or Cloud platform functions; or data sources
or sinks.

Any computing system is fundamentally about data transformation. This prop-
erty transfers to the individual application components. Each component collects
some input data, does some manipulation of the data, and produces some form of
output data. These three phases can be seen as conducted in a strict sequence, and
each phase has a starting time and a duration. This simple data flow delay model
is illustrated in Figure 1. It is assumed that the autonomic application management
system monitors four metrics for each component: The component’s start time and
the duration of the three phases. Note that this fundamental view also applies for
stream data processing modules where the module’s functionality should be further
refined into component functions processing a part of the data input flow producing
a part of the output flow. Finally, the three phases are also valid irrespective of the
programming paradigm and philosophy used to create the component.

Data Data
in out

Computation
Data
source

Queue
Data
sink

Queue

Fig. 1 The simple data flow model where there are intrinsic stochastic delays in each component
caused by data input, dI , data computation, dc, and data output, dO . Each component has individ-
ual probability distributions for these delays. Delays in the virtual work queues are included in the
downstream component’s input delay.

Hence, without lack of generality the application can be modelled as a set of
components, each fulfilling the three phases of the data transformation. The time
taken in each of the three phases will consequently depend on the data location and
data size, and on the vertical scalability parameters like the number of cores given to
a component or the amount of memory it has. In addition, it is necessary to model
the data flow of the application since the input data for a component comes from
one or more other computing components or data sources, and the output data flows

4 Geir Horn, Rudolf Schlatte, and Einar Broch Johnsen

into other computing components or data sinks. This is illustrated in Figure 2. Hori-
zontal scalability, i.e. how many instances there are of a particular component type,
will affect the overall application completion time, the makespan, but the number
of components will not affect how long it takes one component to finish its data
transformation phases. There are already many options for describing this topology
model of the application covering the type of components, the application’s data
flow, the components’ computational requirements and constraints, their scalability
constraints, and the application’s DevOps engineers’ deployment and operational
goals [6].

Source Sink

Fig. 2 Data flows where data is split on multiple instances of a component type, here C3, require
policies P on the upstream components deciding how the data is forwarded to the instances of the
downstream component type(s). Popular policies are round-robin, random, or broadcast where the
same data goes to all downstream instances.

Assuming that such a domain specific model of the managed application is avail-
able, it can be converted automatically into a DT simulation model representing the
three fundamental phases of computation for each component, and the component’s
output-to-input connectivity. In general, all duration parameters are stochastic. In
the best case, the DevOp engineers may have an idea for the prior duration time
distributions to be included in the domain specific model. Otherwise, one may as-
sume some standard distributions, typically Gaussian for their analytic tractability
and well understood use in non-linear regression [23]. It is however difficult for the
application’s DevOp engineers to know the parameters for these duration distribu-
tions. For instance the duration of the computation phase will depend on data size
and possibly also on the content of the data, and so it is hard to estimate the mean
duration and the variance of the computation time a priori.

The DT component model will therefore maintain secondary probability distri-
butions for the parameters of the duration distributions used in its three execution
phases. These secondary distributions may better be defined by the application’s
DevOp engineers. The parameters of these secondary prior distributions will be
recursively refined based on the monitored metric values from the running appli-
cation using the Markov Chain Monte Carlo (MCMC) method, and in the case no
prior secondary distribution is given it can be estimated from available monitoring
information using an empirical Bayes approach [7].

The scalability parameters of a DT component will be set by the optimizer of
the autonomic application management platform. Some of these vertical scalability
parameters will directly affect the performance of the component, e.g., the number
of cores or the amount of memory or the use of a hardware accelerator. Changing the

Digital Twins for Autonomic Cloud Application Management 5

component performance will directly affect the secondary distributions. Thus, the
DT component model will maintain and update one set of secondary distributions
per hardware configuration option available for the component.

The location of the components will affect the parameters for the two communi-
cation phases of the component model. Consider a computing component reading
data from a data component. In this case the duration of the data input phase will be
shorter if the data component is located in same region of the same Cloud provider
as the computing component. The minimum duration will be when both components
are located in the same data centre, but there is no way for the application manage-
ment to control the Cloud provider’s allocation of loads to its data centres within a
given region. Hence, even for the same region of the same Cloud provider the mean
duration of the data input phase will be a random variate, and this variation may be
orthogonal to the variation caused by the size of the data set exchanged. Thus, the
DT model should also maintain and update location specific secondary distributions
for the parameters of the communication delay distributions.

2.2 Digital Twins

A DT is a digital replica of an underlying system, often called the Phyiscal Twin
(PT) [26]. The DT is connected to its PT in real-time through continuous data
streams such as sensor measurements at different locations and by other ways of
collecting data. This turns the DT into a live replica of the PT, with the purpose of
providing insights into its behaviour, and clearly distinguishes a DT from, e.g., a
standard simulation model.

A DT is commonly seen as an architecture with three layers: the data layer
with, e.g., Computer Aided Design (CAD) drawings and sensor data, an informa-
tion layer, which turns these raw data into structured data, and an insight layer,
which applies different analysis and visualization techniques to the structured data.
The analysis techniques of the insight layer can be classified as follows: The DT
is typically able to compute an approximation of how the PT acts in a given sce-
nario (simulation or “what-happened” scenarios), or to estimate how the PT will
behave in the future based on historical and current data (prediction or “what-may-
happen” scenarios). By configuring the parameters of the different models, the DT
may analyse the consequence of different options on future behaviour (prescription
or “what-if” scenarios).

In the context of Cloud application management, we aim for a DT which can offer
prescription. The data layer of the DT will initially consist of information about the
configuration of the heterogeneous Cloud environment in which the application will
execute, the resource profile of different locations such as bandwidth, memory and
processing capacity, and the data flow topology of the application. The DT will
continuously add information to the data layer about the software components to
be orchestrated, including the duration of executing the different phases of the data
transformation associated with a software component on a given location in the

6 Geir Horn, Rudolf Schlatte, and Einar Broch Johnsen

various Cloud environments. Thus, the main technology needed to implement the
data layer of a digital twin is a solution for timed data streams, such as a time-series
data base.

The information layer will assimilate data from the data layer into a model which
combines the application topology with the current configuration of the heteroge-
neous Cloud environment, transforming recorded or default durations to location-
independent execution costs and gradually improving the precision of costs by learn-
ing from previous executions of the application workflow. Thus, the information
layer combines information about the application topology and the resources pro-
vided at different locations in the current configuration of the Cloud environment.
A challenge in the construction of DTs is to find a representation at the informa-
tion layer which supports the required level of analysis. For a DT supporting Cloud
application management, we propose to represent the information layer as an exe-
cutable model in which different deployment decisions may be easily expressed and
efficiently explored through simulation. The model should have a formal semantics
which makes it transparent for the Cloud application management how to configure
the parameters and understand the results from the executable model. This turns the
DT into a tool for optimized Cloud application management.

2.3 Optimized Cloud Application Management

Each application component, C ∈ C, has a set of requirement attributes, AC . These
typically specifies the resource necessary for the component to perform as expected.
Thus, a requirement attribute can be the number of cores useful for the component
ranging from a minimum number to a maximum number, or it can be the amount
of memory, or the Cloud providers that can be used, or the geographic location of
the hosting data centre, or the number of copies or instances of the component the
application can successfully exploit. The requirement attributes can be continuous
or discrete. Each value of a requirement attribute value, aC,i, is taken from the at-
tribute’s domain, aC,i ∈ AC,i, for all the requirement attributes i = 1, . . . |AC |.

A configuration of a component is an assignment of values to all its requirement
attributes. The different ways a component C can be configured is its variability
space, which is the Cartesian product of its attribute domains, VC = AC,1 × · · · ×
AC,|AC |. The configuration of the Cloud application is a flattened vector, c, of the
configurations of all the components of the application. The variability space of
the application is therefore the Cartesian product of the variability spaces for its
components, V = V1 × · · · × V|C|.

The ultimate goal of the DevOps engineers or the autonomic platform managing
the application will be to find the best configuration, c∗ (tk) for the application’s
current execution context, θ(tk), which is a vector of the metric values of the mon-
itored application at the time point tk. The traditional applications of autonomic
computing assumes that the goals and preferences of the application’s DevoOps en-
gineers can be captured as a utility function from the variability space to the unit

Digital Twins for Autonomic Cloud Application Management 7

interval, U : c ∈ V 7→ [0, 1]. Finding the best configuration given the current ex-
ecution context means, most likely, solving a non-linear mixed continuous-discrete
optimization problem

c∗ (tk) = argmax
c(tk)∈V

U (c(tk) |θ(tk),φ) (1)

where φ is a set of fixed parameters for the utility function family. This problem
must be solved subject to a set of deployment constraints whenever there is a new
execution context, i.e., whenever any of the monitored values changes. The metric
values can change abruptly and frequently, for instance as application users come
and go, leaving little time for the optimization of the configuration before the next
context change happens. The latter point is remedied by checking only the con-
straints, or the Service-Level Objectives (SLOs), of the optimization problem when
a new measurement arrives, and then stay with the existing configuration if it re-
mains feasible under the altered execution context.

The Bayesian approach of the DT defined in Section 2.1 allows the optimization
to be done entirely based on the SLOs defined for the application. The same solver
used for the mathematical programme (1) can be used. Searching for an optimal
configuration, it will generate a sequence of candidate application configurations,
c (tk), feasible for the application’s current execution context. One may then run a
set of parallel simulations using the DT application model for each candidate con-
figuration where the components randomly draw delay times from the delay distri-
butions using the Maximum Likelihood Estimates (MLEs) of all delay distribution
parameters. Alternatively, the secondary distributions, updated on each measure-
ment from the running application, allow precise confidence intervals to be given
for the parameters of the delay distributions. The simulation can be executed using
these worst case limits for the distribution parameters. For both alternative ways of
selecting the delay distribution parameters, one computes the relevant application
performance metrics indicating the goodness of the overall application performance
indicators under the chosen set of distribution parameters for a candidate configura-
tion from the ensemble of its DT simulations.

Evaluating the SLOs for the computed application performance metric values
will indicate if a configuration candidate is likely to remain feasible, or if a new
and better configuration must be deployed for guaranteeing the continued feasibil-
ity of the application. Only the feasible configuration candidates will be retained
and scored according to some high level goals set by the DevOps engineers like
’least deployment cost’ or ’minimal reconfiguration from the currently running con-
figuration’, and the candidate with the highest score can be selected as the next
deployment configuration.

The approach can be illustrated with a small data farming application with three
components: A dispatcher component sending off data parallel jobs to a set of
worker components, and one result processing component receiving the output of
the workers, see Figure 2. All jobs must be completely processed by a given dead-
line. Assume that the execution time delay distribution of a job on a worker is Gaus-
sian, N(µ, σ). At the 95% confidence level, the delay value will be in the interval

8 Geir Horn, Rudolf Schlatte, and Einar Broch Johnsen

µ± 1.96σ. From the confidence intervals of the secondary distributions at the same
level of significance one has that µ ∈ [µ−, µ+] and σ ∈ [σ−, σ+], and so the worst
case bound on the execution time of one job at one worker is µ++1.96σ+. However,
as multiple workers are processing jobs in parallel, there could be a queue of results
for the downstream component causing additional global delays, and possibly this
component could end up as a bottleneck in the application. For this particular ex-
ample, one could calculate the queuing delays using queueing theory, but given that
the arrival distribution of the results on the last component is unknown and depen-
dent on the processing delay distributions of the worker, it is in general impossible
to model this system analytically and assess if the deadline is met for a given ap-
plication configuration. As the autonomic application management must work for
any application, simulating the DT is the only way to collect realistic performance
statistics for the managed application.

3 Abstract Behavioral Specification model as the Digital Twin

3.1 The Abstract Behavioral Specification Language

The ABS language combines implementation-level specifications with verifiability,
high-level design with executability, and formal semantics with practical usability.
ABS is a concurrent, object-oriented, modelling language with a functional layer
with algebraic datatypes and side-effect-free functions. Of particular interest for
this paper is Real-Time ABS [16], which additionally features a time and resource
model: going beyond purely behavioural specifications, ABS models can specify
time elapsed on a logical clock at certain points in the program logic, as well as
resource usage when executing certain code paths. This resource usage will again
influence the observed logical time for model execution. Instead of a full introduc-
tion to the language, which can be found, e.g., in the language manual1, this section
maps ABS language features to the concepts of Cloud application modelling dis-
cussed in Section 2.1.

ABS as a language is based on the Actor model [3], with actors executing con-
currently and communicating via asynchronous method calls. Method call results
are returned via Future variables, which the caller can synchronize on. This nat-
urally models the components of a Cloud application and their synchronous and
asynchronous communication patterns.

Actors in ABS possess state in the form of fields bound to values. Compu-
tations on values (numbers, strings, boolean, actor references, futures, and user-
defined algebraic data types) are expressed in a purely functional sub-language that
is amenable to formal analysis. Depending on the desired level of detail of the Cloud
application model, we can consider only the control flow of the data transformation
steps mentioned in Section 2.1, or include manually abstracted or real computa-

1 https://abs-models.org/manual/

https://abs-models.org/manual/

Digital Twins for Autonomic Cloud Application Management 9

tions in the model. In case the Cloud model has different, data-dependent control
flow that needs to be modeled, typically some form of data will be included in
the model. Multiple instances of components, and dynamic creation and tear-down
of components, can be modelled by creating and releasing actors modelling these
components. It is straightforward to model auto-scaling resource pools of such com-
ponents.

As mentioned, the time consumed by a component’s computation can be mod-
elled via the logical clock implemented in Real-Time ABS. Elapsed time can be
specified as constant or dependent on actor state, e.g., as a function of the length of
an input parameter to the computation. Logical time only elapses when explicitly
specified; otherwise, computations are modelled to run “infinitely fast”.

To model the deployment of the Cloud application components on machines with
different resources, ABS implements a language feature called Deployment Compo-
nent [16]. A deployment component serves as a location for one or more actors, and
has a set of resources like computation speed, network bandwidth, memory, num-
ber of cores that it distributes among its actors. An actor can explicitly specify a
resource need like computation or bandwidth for a step in its computation; that
operation will take a certain amount of logical time depending on the amount of
available resources.

Finally, ABS implements a Model Application Programming Interface (API) that
allows to access the state of dedicated objects and call methods on these objects
via Hypertext Transfer Protocol (HTTP) requests from outside the running model.
Object state and method call results are returned in the JavaScript Object Notation
(JSON) [21] data format. For simple visualizations and interactions with a running
model, the model can serve HyperText Markup Language2 (HTML) and JavaScript
to a web browser and react to requests from that browser session.

3.2 Modelling Cloud Applications with ABS

The ABS features are closely aligned with the Cloud application modelling con-
cepts, so converting those models into ABS will lead to understandable code,
even when done automatically or semi-automatically. All of data-dependent delays,
deployment-dependent delays and data transfer delays are directly represented at
the ABS language level.

The component types shown in Figure 1 can be implemented as actors. Each
component’s queue will be modelled explicitly inside the ABS actor, to ensure the
First In is the First Out (FIFO) semantics and to make the queue length and other
attributes available in the model.

Simple component parameterization, e.g., parameters for random distributions of
data and computation sizes, can be implemented via local actor state. These param-

2 https://html.spec.whatwg.org/

https://html.spec.whatwg.org/

10 Geir Horn, Rudolf Schlatte, and Einar Broch Johnsen

eters can be changed at run time by a dedicated monitor component, and accessed
and stored from outside via the Model API during and after model execution.

More complex behavioral differences, e.g., the data flow policies shown in Fig-
ure 2, can be implemented either via ABS traits as mix-ins of methods into class
definitions or, in case policies should be adaptable at run time, via a method chang-
ing its behavior depending on local state. Again, policy state can be accessed from
outside the model via the Model API.

The Cloud application topology can be implemented via ABS deployment com-
ponents that model the spatial arrangement of components on machines with varying
attributes. Some additional modeling or implementation work might be required if
it becomes necessary to model complex machine topologies with non-trivial cost
functions for transferring data between two given machines.

Data that needs to be persisted, e.g., initial and computed random distribution
parameters for each component, can be exported via the Model API. ABS includes
read-only support for the SQLite database engine; this can be used for bulk initial-
ization of components at model run-time. Behavior or parameter changes during a
model run can be triggered via the Model API.

4 Discussion

There are many approaches available for a Cloud operator to schedule the incoming
workload [1, 19]. It is important to note that the Cloud application management
discussed in this paper takes an application centric view. In other words, there are
no restrictions on new Cloud resources other than budget and time to acquire the
needed virtual resources. The application components are allocated to the available
virtual resources ignoring how the application’s virtual resources are scheduled on
the physical data centre hardware by the involved Cloud operator(s).

This paper has discussed the modelling of the DT using Bayesian estimation of
the stochastic parameters of the involved distributions. The resulting DT model can
be seen as resembling application modelling using a Bayesian Network (BN) [2].
BNs assume binary node states organized as a Directed Acyclic Graph (DAG), and
have recently been used for applications with DAG dependencies to schedule the
application components on a fixed number of heterogeneous resources [22]. The
closest related approach to the ideas presented here is probably the modelling of
planning problems as a dynamic BN in time and delay variables with direct sampling
of the simulated BN to estimate the overall plan completion time (makespan) [5].

However, autonomic Cloud application management is not only about executing
the application as quickly as possible, and the DT allows constrained optimization
for multiple objectives on carefully selected adequate resources. The use of the ABS
modelling language allows the extension of the DT refining the application model
if needed to capture all details for validating various candidate application config-
urations and probabilistically simulating their performance indicators; some related
case studies are listed in [25].

Digital Twins for Autonomic Cloud Application Management 11

5 Conclusion

Constrained autonomic Cloud application management requires the optimization of
the application configuration. This paper has presented the vision of using a Digi-
tal Twin (DT) based on the Abstract Behavioral Specification (ABS) language as a
simulation model to assess the feasibility of various application configuration can-
didates given the application’s Service-Level Objectives (SLOs). The proposed DT
approach avoids the need for the cumbersome utility function definition normally
required for autonomic computing, and allows better expressiveness for the ap-
plication model thereby enhancing the optimization of the application’s deployed
configuration. This promising approach will hopefully soon be implemented in an
autonomic Cloud application management platform to demonstrate its benefits for
real world applications.

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 871643 MORPHEMIC3

Modelling and Orchestrating heterogeneous Resources and Polymorphic applica-
tions for Holistic Execution and adaptation of Models In the Cloud

References

1. A. R. Arunarani, D. Manjula, and Vijayan Sugumaran: Task Scheduling Techniques in Cloud
Computing: A Literature Survey. Future Generation Computer Systems 91, 407–415 (2019).
DOI: 10.1016/j.future.2018.09.014

2. Adnan Darwiche: Modeling and Reasoning with Bayesian Networks. Cambridge University
Press (2009). DOI: 10.1017/CBO9780511811357

3. Agha, G.A.: ACTORS - a model of concurrent computation in distributed systems. MIT Press
(1990)

4. Barbara Rita Barricelli, Elena Casiraghi, and Daniela Fogli: A Survey on Digital Twin: Defini-
tions, Characteristics, Applications, and Design Implications. IEEE Access 7, 167653–167671
(2019). DOI: 10.1109/ACCESS.2019.2953499

5. Beaudry, E., Kabanza, F., and Michaud, F.: Planning for Concurrent Action Executions Under
Action Duration Uncertainty Using Dynamically Generated Bayesian Networks. In: Proceed-
ings of the International Conference on Automated Planning and Scheduling, pp. 10–17 (2010)

6. Bergmayr, A., et al.: A Systematic Review of Cloud Modeling Languages. ACM Computing
Surveys (CSUR) 51(1), 22:1–22:38 (2018). DOI: 10.1145/3150227

7. Bradley P. Carlin, and Thomas A. Louis: Bayesian Methods for Data Analysis. Chapman and
Hall/CRC (2008). DOI: 10.1145/3150227

8. Floch, J., et al.: Playing MUSIC — Building Context-Aware and Self-Adaptive Mobile Ap-
plications. Softw. Pract. Exper. 43(3), 359–388 (2013). DOI: 10.1002/spe.2116

3 http://morphemic.cloud

https://doi.org/10.1016/j.future.2018.09.014
https://doi.org/10.1017/CBO9780511811357
https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/10.1145/3150227
https://doi.org/10.1145/3150227
https://doi.org/10.1002/spe.2116
http://morphemic.cloud

12 Geir Horn, Rudolf Schlatte, and Einar Broch Johnsen

9. Geihs, K., et al.: A Comprehensive Solution for Application-Level Adaptation. Softw. Pract.
Exper. 39(4), 385–422 (2009). DOI: 10.1002/spe.900

10. Gilboa, I.: Rational Choice. MIT Press (2010). DOI: 10.1002/spe.900
11. Hallsteinsen, S., et al.: A Development Framework and Methodology for Self-Adapting Ap-

plications in Ubiquitous Computing Environments. Journal of Systems and Software 85(12),
2840–2859 (2012). DOI: 10.1016/j.jss.2012.07.052

12. Horn, G., and Skrzypek, P.: MELODIC: Utility Based Cross Cloud Deployment Optimisation.
In: Proceedings of the 32nd International Conference on Advanced Information Networking
and Applications Workshops (WAINA), pp. 360–367. IEEE Computer Society (2018). DOI:
10.1109/WAINA.2018.00112

13. Horne, G., and Schwierz, K.-P.: Summary of Data Farming. Journal of Systems and Software
5(1), 8–27 (2016). DOI: 10.3390/axioms5010008

14. IBM: An architectural blueprint for autonomic computing. White Paper Third Edition, p. 34.
IBM (2005). DOI: 10.1016/j.jss.2012.07.052

15. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., and Steffen, M.: ABS: A Core Language
for Abstract Behavioral Specification. In: Proceedings of the International Symposium on For-
mal Methods for Components and Objects (FMCO 2010). LNCS, vol. 6957, pp. 142–164.
Springer, Heidelberg (2010). DOI: 10.1016/j.jss.2012.07.052

16. Johnsen, E.B., Schlatte, R., and Tapia Tarifa, S.L.: Integrating deployment architectures and re-
source consumption in timed object-oriented models. Journal of Systems and Software 84(1),
67–91 (2015). DOI: 10.1016/j.jlamp.2014.07.001

17. Kephart, J.O., and Chess, D.M.: The Vision of Autonomic Computing. Journal of Systems and
Software 36(1), 41–50 (2003). DOI: 10.1109/MC.2003.1160055

18. Kephart, J.O., and Das, R.: Achieving Self-Management via Utility Functions. Journal of Sys-
tems and Software 11(1), 40–48 (2007). DOI: 10.1109/MIC.2007.2

19. Kumar, M., Sharma, S.C., Goel, A., and Singh, S.P.: A Comprehensive Survey for Scheduling
Techniques in Cloud Computing. Journal of Network and Computer Applications 143(12), 1–
33 (2019). DOI: 10.1016/j.jnca.2019.06.006

20. Lau, K.-K., and Wang, Z.: Software Component Models. Journal of Systems and Software
33(10), 709–724 (2007). DOI: 10.1109/TSE.2007.70726

21. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., and Vrgoč, D.: Foundations of JSON Schema.
In: Proceedings of the 25th International Conference on World Wide Web. WWW ’16,
pp. 263–273. International World Wide Web Conferences Steering Committee (2016). DOI:
10.1145/2872427.2883029

22. Pranab K. Muhuri, and Sajib K. Biswas: Bayesian Optimization Algorithm for Multi-Objective
Scheduling of Time and Precedence Constrained Tasks in Heterogeneous Multiprocessor Sys-
tems. Applied Soft Computing 92(12), 106274 (2020). DOI: 10.1016/j.asoc.2020.
106274

23. Rasmussen, C.E., and Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press
(2005). DOI: 10.7551/mitpress/3206.001.0001

24. Sanchez, S.M., and Sánchez, P.J.: Better Big Data via Data Farming Experiments. In: Ad-
vances in Modeling and Simulation: Seminal Research from 50 Years of Winter Simulation
Conferences. Ed. by A. Tolk, J. Fowler, G. Shao, and E. Yücesan, pp. 159–179. Springer
(2017). DOI: 10.1007/978-3-319-64182-9_9

25. Schlatte, R., Johnsen, E.B., Kamburjan, E., and Tapia Tarifa, S.L.: Modeling and Analyzing
Resource-Sensitive Actors: A Tutorial Introduction. In: Damiani, F., and Dardha, O. (eds.)
Coordination Models and Languages, pp. 3–19. Springer (2021). DOI: 10.1007/978-3-
030-78142-2_1

26. Tao, F., Zhang, H., Liu, A., and Nee, A.Y.C.: Digital Twin in Industry: State-of-the-Art. Journal
of Systems and Software 15(4), 2405–2415 (2019). DOI: 10.1109/TII.2018.2873186

https://doi.org/10.1002/spe.900
https://doi.org/10.1002/spe.900
https://doi.org/10.1016/j.jss.2012.07.052
https://doi.org/10.1109/WAINA.2018.00112
https://doi.org/10.3390/axioms5010008
https://doi.org/10.1016/j.jss.2012.07.052
https://doi.org/10.1016/j.jss.2012.07.052
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MIC.2007.2
https://doi.org/10.1016/j.jnca.2019.06.006
https://doi.org/10.1109/TSE.2007.70726
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1016/j.asoc.2020.106274
https://doi.org/10.1016/j.asoc.2020.106274
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1007/978-3-319-64182-9_9
https://doi.org/10.1007/978-3-030-78142-2_1
https://doi.org/10.1007/978-3-030-78142-2_1
https://doi.org/10.1109/TII.2018.2873186

	Digital Twins for Autonomic Cloud Application Management
	Geir Horn, Rudolf Schlatte, and Einar Broch Johnsen
	Introduction
	The Cloud Application and its Digital Twin
	Cloud Application Modelling
	Digital Twins
	Optimized Cloud Application Management

	Abstract Behavioral Specification model as the Digital Twin
	The Abstract Behavioral Specification Language
	Modelling Cloud Applications with ABS

	Discussion
	Conclusion

