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ABSTRACT

Modern cyber-physical applications, such as those adopting the Digital Twin paradigm, typically connect
simulators with data-rich components and domain knowledge, both often formalized as knowledge graphs.
Engineering such applications poses challenges to developers. This paper presents a language-based in-
tegration of knowledge graphs and simulators for object-oriented languages. We use Functional Mock-Up
Objects (FMOs) as a programming layer to encapsulate simulators compliant with the FMI standard into OO
structures and integrate FMOs into the class and type systems. We show how FMOs can be integrated into
knowledge graphs by means of semantical lifting, and used to ensure structural properties of cyber-physical
applications. We provide a prototype implementation of the proposed integration and discuss how it can be
realized in other languages. Finally, the use of FMOs in practice is illustrated by two case studies.

Keywords: Co-Simulation, Object-Orientation, Software Engineering, Knowledge Graphs.

1 INTRODUCTION

In the engineering of modern cyber-physical systems, maintainability requires us to handle modularity,
reuse, variability and other structuring principles for highly heterogeneous applications that combine simu-
lators, live data streams, control systems, semantic technologies and (cloud) networking. This is especially
critical for Digital Twin applications (Barricelli et al. 2019), which connect simulators according to domain
knowledge and must be able to express their structure in terms of the domain to ensure that the digital twin
corresponds to the modeled physical twin.

The structure connecting simulators within the application needs to be configured in a domain specific
way. However, domain experts are not always available and rarely trained to work in interdisciplinary
software engineering teams. One solution is to formalize the required domain knowledge, such that it can be
queried algorithmically. Knowledge graphs (Hitzler et al. 2010) are the established technique to formalize
domain knowledge. While their potential to enhance Digital Twins has been recognized (Cameron et al.
2018, Rozanec et al. 2020, Kharlamov et al. 2018), their connection to simulators in general, is hitherto
unexplored. Similarly, connecting simulation and knowledge graphs “has been mostly limited to the creation
of knowledge bases in the form of ontologies.” (Listl et al. 2020), i.e., to express knowledge, not use it.
Indeed, a recent survey by Listl et al. (2020) on this topic concluded that “previous approaches are often
tailored to a specific use case and thus a generic solution that provides the flexibility to implement different
applications for several domains is still missing.”
In this paper, we propose such a generic solution. Furthermore, we address how a co-simulation frame-
work (Gomes et al. 2018) can be used to connect the simulators meaningfully, i.e., according to formalized
domain knowledge. The Functional Mock-Up Interface (FMI) standard (Blochwitz et al. 2012) provides a
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uniform interface to simulators by encapsulating them in Functional Mock-Up Units (FMUs). These units
are defined broadly enough to encompass most components needed for digital twin applications, for example
realizing the connection to live data (Feng et al. 2021, Frasheri et al. 2021). Their generic interface, however,
poses a challenge for development of the application itself, as it is not integrated into the structures of the
programming language used to develop the application. Indeed, co-simulation with FMUs has so far mostly
been considered for static connections or for primitive languages without any reuse mechanism (Thule et al.
2019). Tool support, however, is direly needed to not only provide an efficient and working co-simulation,
a brittle task in itself (Hansen et al. 2021, Inci et al. 2021), but also for reconfigurations that change the
connections in a meaningful way.

Approach. We present an approach that directly connects FMUs and knowledge graphs to drastically
simplify the engineering of applications that connect simulators and formalized domain knowledge. We in-
tegrate FMUs directly into the object model of an object-oriented language as Functional Mock-Up Objects
(FMOs). This integration of the FMI is transparent in the sense that programmers can use it as a foreign
language interface: the model description of the FMU is a first-class concept in the language, completely
encapsulated in an FMO. Properties of the loaded FMU are treated as fields and its operations as meth-
ods. FMOs enable us to integrate the model information of the FMU directly into the type system without
requiring the programmer to learn a new library and its pitfalls.

By connecting FMOs with knowledge graphs we can analyze the structure of a program to detect whether
it is a meaningful digital twin, i.e., whether it is indeed mirroring its physical counterpart and, thus, can be
used as a meaningful representation of it. We connect FMOs to knowledge graphs by semantically lifting the
FMOs, i.e., by mapping the FMOs to a part of the knowledge graph. This means that the whole program state
is interpreted as a knowledge graph and can be investigated using semantic web technologies. Technically,
we introduce an extension of the SMOL language (Kamburjan et al. 2021), that introduced semantic lifting
of object-oriented runtime structures, and use the FMOs to lift the encapsulated FMUs as well.

We illustrate the general principle of FMOs in terms of a digital shadow that reconfigures its parameters upon
detecting a drift between simulated and observed behavior with the house example of the Open Simulation
Platform (Smogeli et al. 2020). Using semantical lifting as a structuring constraint, we can formulate correct
(w.r.t. the domain) digital twins using knowledge graph shapes. Our approach is implemented and available
online,1 but is general enough to be applied to other object-oriented programming languages.

Contribution and Structure. Our main contribution is a programming language that treats FMUs as a
first-order concept and integrates it into its type system and semantical lifting mechanism. We show how
this can be used for to develop digital twin structures. We first give preliminaries on the FMI and knowledge
graphs in Sec. 2 before we introduce the programming language in Sec. 3. We discuss its semantical lifting
in Sec. 4 and its usage in Sec. 5. We discuss the implementation strategy in Sec. 6 and related work in Sec. 7
before we conclude in Sec. 8.

2 PRELIMINARIES

There are many definitions of digital twins (Barricelli et al. 2019). In this work, we understand by a digital
twin an application containing simulators, whose connections mirror the structure of some existing system,
the physical twin, such that data flows from digital to physical twin and vice versa. A digital shadow has
only data flow from the physical twin to the digital twin.

FMI. The functional mock-up interface (Blochwitz et al. 2012) is a standard for the exchange of sim-
ulation units, where a simulation units is, following the formalization of Gomes et al. (2019), a tuple
(S,U,Y,set,get,doStep), where S is the internal state space, U the set of input variables, Y the set of

1Source code and examples are publically available under https://smolang.org.

https://smolang.org
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output variables, set : S×U ×V → S the function to set the values of the input variables to some values
of domain V , get : S×Y → V the function to get the results and doStep : S×R+ → R the function to
perform the simulation for a given amount of time. In the context of the FMI, a simulation unit is called a
function mock-up unit (for co-simulation) (Gomes et al. 2018).

The FMI defines additional structures for simulation units, such as types or parameter variables, which
cannot be reset, and additional information on the correct usage, e.g., the order of calls needed to initialize
an FMU. Most importantly, it defines the model description, an XML formatted description of input and
output variables, and further information about the FMU.

Knowledge Graphs. For our purposes, a knowledge graph (Hitzler et al. 2010) is a formalization of
domain knowledge in terms of a vocabulary and axioms over terms from the vocabulary. The underlying
formalisms for knowledge graphs are (mostly) description logics (Baader et al. 2003), which are decidable
fragments of first-order logic. Knowledge graphs are usually expressed in the Web Ontology Language
OWL (W3C, OWL WG 2012). More concretely, the ontology specifies the vocabulary of classes and
properties that can be used by the system model, and a set of axioms, i.e., constraints, to which the model
must adhere. Ontologies are today used in many different domains, both within organizations, and as parts
of large open projects, like SNOMED CT, an open ontology for clinical terms (SNOMED International
2007).

Data can be expressed as axioms over constants in knowledge graphs, and serialized using the graph-
based Resource Description Framework RDF (W3C, RDF WG 2014). In RDF, each named node of the
graph has the form prefix : name. RDF represents knowledge graphs as a set of triples of the form
subject predicate object. For example, to express that some node pre:node is a member of the class
pre:special, one adds the triple pre:node a pre:Special, where a is short for rdf:type, a special
predicate for membership. Subjects and objects are summarized as nodes.

There is good tool support to check consistency of semantic models, query them, reason over them to
infer new facts, or check if concrete facts are implied. In our work, we need (1) first-order reasoning to
check whether a knowledge graph is consistent, i.e., that one cannot derive a contradiction from it, (2) data
queries, and (3) shape validation. We use the RDF query language SPARQL (W3C, SPARQL WG 2013) to
retrieve data from a knowledge graph and Shapes Constraint Language SHACL (W3C, SHACL WG 2017)
to decide whether certain shapes hold in the knowledge graphs. We introduce OWL, RDF, SPARQL and
SHACL using examples throughout the paper.

3 A FUNCTIONAL MOCK-UP OBJECT LANGUAGE

To engineer cyber-physical systems, we need language and tool support for the used underlying technolo-
gies, which for our digital twins are most importantly simulators and knowledge graphs. For this purpose,
we define a programming language that includes support for both technologies. The Semantical Micro Ob-
ject Language (SMOL) (Kamburjan et al. 2021) is a syntactically standard, statically typed object-oriented
language and can be seen conceptually as a subset of Java. SMOL goes beyond standard languages by pro-
viding special operations for semantical operations, which we detail below. In this paper, we extend SMOL
to additionally support a special construct that loads an FMU as a Functional Mock-Up Object (FMO) into
its runtime. After creation, the FMO is transparent; i.e., it can be used like a normal object, albeit with a
special FMO-type. In this section we introduce the syntax and runtime representation of FMOs by example.

Syntax. Syntactically, we extend SMOL by (a) a new category of types to describe FMOs, and (b) a new
statement that creates them. An FMO is the object-oriented representation of an FMI. Its in- and out-ports
become the fields of the FMO and the functions become methods. For example, the doStep operations is
a method with a floating point parameter. The initialization cycle is done in an (implicit) constructor, i.e.,
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an FMO is always in the step mode of the FMI co-simulation state machine (Blochwitz et al. 2012), or
throws an exception during object creation.

Types. FMOs are not instantiated from classes but by reading the Model Description of a co-simulation
FMU. To represent this, we use FMO-types. An FMO-type FT is defined by the following grammar, where
f ranges over field names and T over non-FMO types (we denote by overbar a comma-separated list of
elements):

FT ::= Cont[Fld] Fld ::= (in | out) T f
We denote the set of field names with in kind in an FMO-type FT by iFld(FT), the set of field names with
out kind by oFld(FT), and the type of a field within an FMO-type by T(Fld,FT1).

FMO-types are covariant; i.e., an FMO-type FT1 is a subtype of another FMO-type FT2, written FT1 ≤: FT2,
if FT1 contains more fields than FT2, and the fields that the types share have subtypes in FT1:

FT1 ≤: FT2 ⇐⇒∀Fld ∈ iFld(FT2). T(Fld,FT1)≤: T(Fld,FT2)

∀Fld ∈ oFld(FT2). T(Fld,FT1)≤: T(Fld,FT2)

The FMO-type defined by an FMU is

Cont[in T1 ip1, . . . ,in Tn ipn, . . . ,out T1 op1, . . . ,out Tm opm],

where Cont (for continuous behavior) is a type constructor, ipi are the input variables of types Ti and op j
are the output variables of types T j. All datatypes of FMI 2.0 are directly representable in SMOL.

To instantiate an FMO, we require an additional statement in SMOL. This statement takes as its parameters
the path to a file containing an FMU to read its model description, and a series of assignments that initialize
the input variables.

Definition 1 (FMO Instantiation). Let l range over locations (i.e., object fields and variables), e over
expressions and f over FMO-fields. FMO-instantiation is defined via grammar for the following statement

l = simulate(path, f = e);

Let FTpath be the FMO-type defined by the FMU at path, Tl the type of l, and T(e) the type of an expression
e. An FMO-instantiation is well-typed if FTpath ≤: Tl and T(e)≤: T(f,FTpath) for all assignments f = e.

Operations on FMO-typed expressions are field accesses, where in fields can only be written and out fields
can only be read. Also, for each supported function there is a corresponding method with the same name.

Example 1. Let us illustrate the use of SMOL to build a self-configuring digital shadow. The shadow
consists of one FMU to read the value from a physical system, an FMU of a simulator of this system and
a monitor. The simulator has one parameter, which must be adjusted to shadow the system correctly. The
monitor compares the current values output by the FMUs to the observations of the physical system and
reconfigures itself if the difference is above a certain threshold: A model search is started and the FMU for
the simulator is started with possible values for its parameter, until running the simulation in the last time
slice matches the system.2

The following code creates the monitor and the FMOs for the FMUs. The FMUs must both have an output
variable val, the parameter of the simulator must be an initializable input variable or parameter named p.
Initially, we set this parameter to 1.0.

2For simplicity, we consider the difference between the streams at one point in time and a rather simple model search in this
example. Our actual implementation contains less artificial variants of the example.
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1 Cont[out Double val] sys = simulate("Realsys.fmu");
2 Cont[out Double val] shadow = simulate("Sim.fmu",initVal=sys.val, p=1.0);
3 Monitor monitor = new Monitor(1.0); monitor.run(sys, shadow);

The following code runs the shadow until the threshold is reached. Then, a new shadow based on the last
value of the simulator and the last value of the system prior to advancing time is searched for. Note that
here, the FMUs are transparent and treated as normal object with a doStep method.

1 class Monitor(Double threshold)
2 Unit run(Cont[out Double val] sys, Cont[out Double val] shadow)
3 while shadow != null do
4 Double last = sys.val;
5 sys.doStep(1.0); shadow.doStep(1.0);
6 Double d = sys.val - shadow.val;
7 if(d >= threshold) then this.findNewShadow(last, sys.val); end
8 end
9 end
10 end

The model search is given in the method findNewShadow. We search for a fitting value of the parameter in
the range [0.5,1.5] and return the first simulator that stays below the threshold. The method is also part of
Monitor.

1 Cont[out Double val] findNewShadow(Double last, Double sysVal)
2 Int step = 0;
3 while step <= 10 do
4 this.shadow = simulate("Sim.fmu", initVal=last, p=0.5+step*0.1);
5 this.shadow.doStep(1.0);
6 Double d = sysVal - this.shadow.val;
7 if(d <= threshold) then break; end //New shadow found.
8 step = step + 1;
9 end
10 this.shadow = null; //No new shadow found.
11 end

4 SEMANTICAL LIFTING OF FMOS

Semantical lifting maps a program state to a knowledge graph, to see the program state through the lense of
domain knowledge. In particular, we use semantical lifting to validate the adequacy of the digital twin w.r.t.
both the application domain (e.g., to answer questions such as “is this application connecting the FMUs
corresponding to some possible structure of the domain?”) and digital twin engineering (e.g., to answer
questions such as “are the FMUs connected such that they interact with the physical system in a meaningful
way?”). In this section, we describe the semantical lifting of FMOs. Semantical lifting of program states
itself is described in prior work (Kamburjan et al. 2021), and is only described as far as needed.

Knowledge Graph Setup. The knowledge graph we consider consists of the following parts: (i) axioms
and data describing general domain knowledge, (ii) axioms describing general knowledge about SMOL
states, the SMOL domain, and (iii) the data generated by the semantical lifting itself. Part (i) can be some
existing ontology, e.g., the IEEE standard ontologies for robotics and automation (IEEE ORA WG 2015,
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Fiorini et al. 2017). Part (ii), the SMOL domain, introduces the vocabulary and axioms needed to express
knowledge about SMOL program states. We refrain from giving the full definitions here, their RDF for-
malization is available as part of our open-source implementation. The encoding of FMOs in SMOL is
represented as follows.

OWL Classes. Extending the basic ontology for object-oriented states (Kamburjan et al. 2021), it
states the existence of OO classes, objects, fields, and furthermore the existence of special simu-
lation classes, input ports, output ports. In RDF, the existence of these concepts is expressed by
X a owl:Class. for

X ∈ {smol:OutPort,smol:InPort,smol:Class,smol:Field,smol:Simulation,smol:Object}.

Additionally, ports connect an object with some data by X a owl:DatatypeProperty. for X ∈
{smol:OutPort,smol:InPort}. Each of the names has a prefix (smol: or owl:) denoting its domain
and the identifier itself (e.g., outPort).

OWL Properties. We furthermore express the domain and range of properties that connect the afore-
mentioned classes as axioms. E.g., smol:modelName connects FMOs (modeled as member of
smol:Simulation with the a String, namely the name of the FMU, taken from its model descrip-
tion. Further properties are smol:hasPort connecting FMOs and ports, smol:hasName connecting
ports with their name, smol:hasValue connecting FMOs and their current value.

Semantical Lifting We explain how a knowledge base is generated from a program state. At runtime,
each FMO is represented as a tuple containing (1) an object identifier, (2) the model description of the loaded
FMU, (3) a pointer to the FMU itself, and (4) a buffer for all variables to allow reading without invoking the
FMU. We do not lift the full model description, which can be easily done using any XML-to-RDF converter,
and instead lift a string containing the path to it. Thus, for each FMO the lifting is as follows.

Definition 2. Let (X ,path,fmu,buffer) be the runtime representation of an FMO, where X is an object
identifier, path a string literal containing a file path, fmu a reference and buffer a map from port names (as
string literals) to pairs (kind,v), where kind described the causality of the variable (input, output, local, etc.
See (Modelica Association 2021, Sec. 2.2.7)). Let name be the name as described in the model description
in path. Its lifting is the following set of triples:

X a smol:Simulation X smol:hasName name X smol:loaded path

for each variable var ∈ dom(buffer) there is a node run:v with:

X smol:hasVar run:var run:var smol:hasKind kind(buffer(var)) X run:var value(buffer(var))

Example 2. Consider the code from Ex. 1 and the state directly before run is called with an initial value
of 0.0 for sys.val. The lifted knowledge graph is shown in Fig. 1, where none relevant parts of the graph
and the smol:loaded property have been omitted for readability. The core is the lifted Monitor object: a
node run:monitor that is a member of prog : Monitor and has properties prog : shadow and prog : sys,
corresponding to each of its fields. The properties connect to nodes for the FMO, with the lifting as above.

The knowledge graph can be used to express domain knowledge about the structure of a digital twin. For
example, we can verify that the monitor indeed has two different FMUs: one for the physical system and
one for the simulation. Also we can verify that the monitor stored under Monitor.shadow is indeed the
shadow (and vice versa). Note that this is general knowledge about digital twins. Thus, it can be formulated
partially independent of the implementation. Thus, we can achieve a separation of concerns between (1)
programming the behavior of a digital twin and (2) ensuring its structural adequacy.
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Figure 1: Knowledge graph for the digital shadow example.

5 EXPLOITING THE SEMANTICAL LIFTING

Lifted program states can be used to validate the current structure of the program, including its simulators,
against domain constraints. This can be either domain constraints from the domain of digital twin engi-
neering, or from the application domain. We first introduce the semantic technologies by example using the
domain of digital twin engineering and the digital shadow example from Ex. 1 and Ex. 2.

Consistency A simple validation is to check that the lifted state is indeed consistent with the domain
knowledge. This task is standard for all description logic reasoners. For example, consider the
domain knowledge that expresses that (1) an FMO loading an FMU with name “Shadow” is a
ShadowFMO and (2) that the property prog:shadow points to a ShadowFMO. This can be expressed,
in the Manchester syntax for OWL (Horridge et al. 2006), as follows:

: ShadowFMO subClassOf smol:hasName value “Shadow” (1)

prog:shadow Range : ShadowFMO (2)

The first axiom expresses that every object that has the value ”Shadow” in its smol:hasName prop-
erty is a member of the OWL class ShadowFMO. The second axiom expresses that the range of the
prog:shadow are only members of ShadowFMO. If this set of axioms is consistent with the semanti-
cally lifted state, then the field Monitor.shadow indeed only points to FMUs that are shadowing
the real system.

Shapes Consistency relies on adding axioms and performing reasoning on the knowledge graph. In
contrast, SHACL uses graph shape constraints on the subgraphs that can occur in the knowledge
graph. Checking these graphs does not require reasoning and it is thus, potentially, very efficient.
For example, the property stating that every Monitor instance loads a ShadowFMO in its Monitor
.shadow field can be expressed with the following SHACL shape:

ex:ShadowShape a sh:NodeShape; sh:targetClass prog:Monitor ;
sh:property [

sh:path ( prog:shadow smol:hasName );
sh:hasValue "Shadow" ; ].

This shape expresses that every node of class prog:Monitor has a path through the properties
prog:shadow and smol:hasName which ends in the value "Shadow".

Queries While SHACL defines shapes that must be adhered to, it is not capable of expressing negative
properties. To this end, we can predefine SPARQL queries that access the knowledge base and
should return empty sets. Continuing our example, the following SPARQL query returns Monitor
instances that have loaded their simulator FMU as the FMU connecting it to the physical system.

SELECT ?m WHERE { ?m prog:system ?fmu. ?fmu a :ShadowFMO }
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Figure 2: Co-Simulation structure of the Open Simulation Platform house case study.

At its core, the query defines also a shape, but it may also use reasoning to derive new knowledge.
The above example uses the notion of a ShadowFMO, which must be derived first.

The example above shows that we can use knowledge graphs to express properties about digital twins. Next,
we show that they can also be used to show that a digital twin is correctly mirroring its physical counter part,
i.e., to check its configuration. To this end, we first introduce a co-simulation program based on a house
model from the Open Simulation Platform (Smogeli et al. 2020). It models the temperature changes in a
house with two rooms and a controller that controls the heaters in the rooms.

Example 3. The structure of the FMUs for a house with two rooms and two heaters is shown in Fig. 2.
There is one FMU per room, which is connected to the FMU of the controller of the house and two FMUs
for its walls. The outer walls are connected to an outside FMU, while the inner wall is connected to the
rooms. The heaters are also connected to the controller FMU itself, which has an external clock FMU.

A digital twin must be adequate: it must mirror the physical system to give meaningful results. Additionally,
hypothetical scenarios (e.g., possible changes to the structure of the house) must adhere to basic domain
knowledge to be useful. We now give the central parts of the SMOL code and give examples for how we
can check both the adequacy of the twin itself and the adequacy of hypothetical scenarios.

Example 4. The classes used to model Ex. 3 are defined in Lst. 1. We omit all methods, as the propagation
of value and time advance are not important for adequacy, but only the structure of connections. The Dyn
class realizes a common superclass for co-simulation. Each FMU is encapsulated in one object, which has
explicit connections to its neighbors (except the controller and clock FMUs, which share one object).

Domain adequacy. We formalize knowledge about (this kind of) houses in terms of axioms and check
whether a certain setup adheres to it. For example, consider the knowledge that a controller must control
two different rooms, which is expressed by requiring the following query to always return an empty result:

SELECT ?room WHERE { ?ctrl a prog:Controller.
?ctrl prog:r1 ?room. ?ctrl prog:r2 ?room }

Observe that this is not knowledge about how to configure a twin, as we considered for the digital shadow.
Instead, it is knowledge about how the physical controller must be used and, thus, how the digital twin must
be structured internally.

Structural adequacy. Let us assume that the digital twin is twinning a concrete building. The structure
of the building is captured by the following (partial) knowledge graph:

asset:heater1 a asset:Heater. asset:heater1 asset:in asset:room1.
asset:heater2 a asset:Heater. asset:heater2 asset:in asset:room2.
asset:heater1 asset:id 13. asset:heater2 asset:id 12.
asset:room1 asset:leftOf asset:room2.
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1 abstract class Dyn()
2 abstract Int propagate()
3 abstract Int advance(Double db) end
4 abstract class Wall extends Dyn() end
5 class Room extends Dyn(Cont[in Double h_InnerWall, in Double h_OuterWall,
6 in Double h_powerHeater, out Double T_room] f,
7 Wall inner, Wall outer, Controller ctrl,
8 Boolean left, Int id) end
9 class Controller extends Dyn(Cont[in Double T_room1, in Double T_room2,
10 in Double T_clock, out Double h_room1,
11 out Double h_room2] dynamics,
12 Cont[out Double Clock] clock,
13 Room r1, Room r2, Int id) end
14 class InnerWall extends Wall(Cont[in Double T_room1, in Double T_room2,
15 out Double h_wall] dynamics,
16 Room left, Room right) end

Listing 1: SMOL class definitions for the digital twin of the house.

There are two heaters (asset:heater1 and asset:heater2) in two different rooms asset:room1
and asset:room2. For the asset (of which we only show the identifier), we have the following spatial
information: asset:room1 is left of asset:room2. We express that the structure of the digital twin
corresponds to the physical system as follows. We first introduce knowledge about which heater must be
left of the other via a modelsLeft property. Note that the heater and room are one object in the digital
twin, but they are two nodes in the physical twin.
:modelsLeft subPropertyOf asset:in o asset:leftOf o inverse(asset:in)

The following query returns all correctly configured digital twins: a SMOL heater and a physical heater are
considered the same if they have the same identifier. If the heater h1 is modeled as left of the heater h2,
then the SMOL room for o1 must be the leftmost and o2 must be not.

SELECT * WHERE { ?o1 prog:id ?id1. ?h1 asset:id ?id1.
?o2 prog:id ?id2. ?h2 asset:id ?id2.
?h1 :modelsLeft ?h2.
?o1 prog:left True. ?o2 prog:left False. }

6 IMPLEMENTATION

The implementation, including the above case studies and further examples, is available as part of the SMOL
interpreter (see online auxiliary material). The source code also contains a formal definition of SMOL syntax
as an xText (Eysholdt and Behrens 2010) grammar. The SMOL runtime is implemented as an interpreter
that takes a set of FMU files and SMOL files. FMOs are handled separately from normal objects, but we
do allow null to be assigned to an FMO-type location. When loading FMUs, the runtime performs some
basic additional checks; e.g., it will only load FMUs for co-simulation and not for model exchange.

The SMOL interpreter implements interactive execution using a Read-Evaluate-Print-Loop (REPL) for de-
bugging, and in particular allows to buffer the output variables of an FMO. Using a special command draw,
one can print the graph of the buffered FMO.

Implementation Strategy. Our approach in this paper has been based on SMOL in order to reuse the
semantical lifting mechanism, which so far has only been implemented for SMOL. The FMO concept itself,
however can easily be adopted in any object-oriented language implementing the FMI as follows:
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1. Create a wrapper class around the FMI calls to a single loaded FMU, based on the model information
of the FMU. This can be done statically or dynamically, if the FMU is not known at compile time.

2. Create a factory that takes an FMU file and returns an instance of the corresponding FMO class.
3. Export a knowledge graph from an object structure, e.g., by implementing a special serializer.

The runtime semantics of SMOL can be used as a guide to design the wrapper classes. The implementation
in the interpreter does not explicitly require such a class and uses a more generic Kotlin implementation.
The recovery of FMI concepts must then be implemented on top of an abstraction of the program that
concentrates on the FMO — a suitable abstraction could be SMOL itself.

Extensions. So far, our implementation only supports FMI 2.0 and its data types. One can easily add the
vector types of FMI 3.0 and units on top of the data types using standard type system approaches (Bennich-
Björkman and McKeever 2018). FMI 3.0 adds event handling to FMUs, which is naturally handled in an
object-oriented setting using observer or publish-subscribe mechanisms. Remark that our implementation
is under active development and does not yet support all properties of FMI 2.0.

7 RELATED WORK

The FMI standard has a number of libraries for bindings into (object-oriented) languages, which are listed
under https://fmi-standard.org/tools/. For example, at least three bindings exist for Java alone, of which
JavaFMI (Kremers et al. 2022) is used as a library in our implementation. None of these bindings considers
the connection to knowledge graphs or semantic web technologies, so we refrain from discussing them
in detail. Our approach can easily be converted to applications using any of these libraries following the
implementation strategy outlined in Sec. 6. More in line with our work, Thule et al. (2019) give a more
formal and language-based approach by introducing the Master Algorithm specification language. Although
it does not connect to knowledge graphs, it aims to give a semantic foundation to interconnected simulators.

The idea of using knowledge graphs for co-simulation has been explored by Lu et al. (2020) to define
high-level scenarios. Silver et al. use similar ideas to include a domain ontology to express constraints for
simulation in a discrete event simulation framework (Silver et al. 2007, Han et al. 2011, Silver et al. 2011).
In contrast to our paper, their work is mostly concerned with the modeling of the simulation domain and not
the surrounding structure. Similarly, Turnitsa et al. (2010) give an knowledge graph that encompasses both
modeling and simulation. An overview over the combination of knowledge graphs and simulation in more
specific fields can be found in the recent survey of Listl et al. (2020).

Contrary to the approaches described above, our aim is not to show that knowledge graphs can be used to
express knowledge about simulations, simulation scenarios and simulating structures, but to show (a) how to
use this knowledge practically within a programming language framework, which makes our approach more
general and applicable, and (b) how knowledge graphs and simulation interact specifically for digital twins.
We believe that this is an underexplored research direction despite the recognized potential of knowledge
graphs in this area (Cameron et al. 2018, Rozanec et al. 2020, Kharlamov et al. 2018).

8 CONCLUSION

We have presented a language-based approach to develop applications that combine simulators and formal-
ized domain knowledge, as well as its implementation in SMOL. The presented language extension uses
Functional Mock-Up Objects as a transparent programming layer that encapsulates the FMI in a standard
OO structure and tightly integrates it into the type system. Furthermore, we demonstrate how semanti-
cal lifting enables the use of knowledge graphs to ensure structural properties, especially for digital twins.
We show that semantical lifting can be used to express and check crucial properties of both digital twin

https://fmi-standard.org/tools/
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engineering and domain constraints. For future work, beyond extending our implementation to cover the
upcoming FMI 3.0 standard and include the aforementioned unit type system, we plan to investigate the use
of semantical lifting at runtime for dynamic reconfigurations that reflect changes in the physical twin, as
well as inheritance for FMUs in context of semantic lifting (Kamburjan, Klungre, and Giese 2022).
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