
SymPaths: Symbolic Execution
Meets Partial Order Reduction

Frank de Boer1, Marcello Bonsangue2 , Einar Broch Johnsen3 ,
Violet Ka I Pun3,4 , S. Lizeth Tapia Tarifa3 , and Lars Tveito3

1 CWI, Amsterdam, the Netherlands
f.s.de.boer@cwi.nl

2 Leiden University, Leiden, the Netherlands
m.m.bonsangue@liacs.leidenuniv.nl

3 Department of Informatics, University of Oslo, Oslo, Norway
{einarj,violet,sltarifa,larstvei}@ifi.uio.no

4 Western Norway University of Applied Sciences, Bergen, Norway
Violet.Ka.I.Pun@hvl.no

Abstract. Symbolic execution is an important technique for software
analysis, which enables systematic model exploration by following all
possible execution paths for a given program. For multithreaded shared
variable programs, this technique leads to a state space explosion. Partial
order reduction is a technique which allows equivalent execution paths
to be recognized, reducing the state space explosion problem. This pa-
per provides formal justifications for these techniques in a multithreaded
setting by proving the correctness and completeness of symbolic execu-
tion for multithreaded shared variable programs, with and without the
use of partial order reduction. We then show how these formal justifi-
cations carry over to prove the soundness and relative completeness of
a proof system for such multithreaded shared variable programs in dy-
namic logic, such that partial order reduction can be used to simplify
the proof construction by mitigating the state space explosion.

1 Introduction

Symbolic execution [1] is an important technique for software analysis. It is
especially used for testing, but also for debugging and deductive verification. In
fact, the KeY verification system [2] is based on symbolic execution. Symbolic
execution is intuitively very appealing, because one symbolic execution may
correspond to a large, possibly infinite, class of normal (concrete) executions
by representing the input values to a program by logical variables. Symbolic
execution has made tremendous progress in recent years; recent surveys [3, 4]
cover improvements in the effectiveness as well as the achieved code coverage of
symbolic execution tools such as, e.g., DART [5], EXE [6], KLEE [7]. As already
observed in [8], the formal justification for the technique in terms of correctness
has received much less attention. In contrast, [8] formally defines the correctness
of symbolic execution by relating a symbolic transition system to a concrete
structural operational semantics.

http://orcid.org/0000-0003-3746-3618
http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0002-8763-5548
http://orcid.org/0000-0001-9948-2748

Symbolic execution has mainly been applied to sequential languages, where
different executions can be captured by different path conditions. By considering
executions with different path conditions, a tool can systematically explore the
entire symbolic execution graph of a sequential program. In contrast, concur-
rent languages give rise to non-determinism during execution, which is another
source of state space explosion when using symbolic execution for such model
exploration. In this paper, we study symbolic execution for multithreaded shared
variable programs in terms of a symbolic transition system. In order to capture
the non-determinism, we combine path conditions with scheduling traces, which
reflect the order in which different threads have been selected for execution, into
so-called symbolic paths (or sympaths). We prove the correctness and complete-
ness of the resulting system by extending the work of [8] to a multithreaded
setting. To address the state space explosion resulting from the different possi-
ble scheduling decisions, we show how partial order reduction (POR) [9] can be
introduced into the symbolic execution framework. POR allows symbolic states
to be pruned from the overall search space during model exploration, by merging
symbolic states with equivalent symbolic paths. We extend the symbolic transi-
tion system with a pruning operation for search states by means of POR, and
prove the correctness and completeness of the resulting system.

Finally, we consider a proof system for multithreaded shared variable pro-
grams using dynamic logic [10], in the spirit of symbolic execution in the KeY
system. We show how soundness and relative completeness of this proof system
can be obtained by extending the soundness and correctness proofs for the sym-
bolic transition system. We further show how POR can be applied in this setting
to reduce the state space explosion during the verification in the proof system,
and again prove soundness and relative completeness by extending the corre-
sponding soundness and correctness proofs for the symbolic transition system
with POR.

The main contributions of this paper can be summarized as follows:
– A formal model of symbolic execution for multithreaded shared variable pro-

grams, with a formal justification in terms of correctness and completeness;
– Pruning techniques for the symbolic execution model using POR, with a

formal justification in terms of correctness and completeness;
– AMaude [11] implementation of the two symbolic execution models, allowing

their comparison in terms of the number of reduction steps to explore the
full state space and the number of final symbolic states; and

– A dynamic logic proof system for multithreaded shared variable programs
with pruning techniques using POR, with a formal justification in terms of
soundness and relative completeness proofs.

2 Background

2.1 Symbolic Execution
In the development of a formal model of the symbolic execution of multithreaded
shared variable programs, we follow the general approach of [8]. We define the

2

symbolic execution of such programs by means of a transition system for gen-
erating the atomic computation steps between symbolic configurations. A sym-
bolic configuration consists of the program to be executed, a substitution which
symbolically represents the state, i.e., the assignment of symbolic values to the
shared program variables, and a path condition. In general, a substitution assigns
expressions of the programming language to the program variables.

We then provide a formal justification of this symbolic transition system by
relating it to a transition system for generating the atomic computation steps
between concrete configurations. A concrete configuration consists of the multi-
threaded program that remains to be executed and the assignment of values to
the shared program variables. The formal justification involves a proof of cor-
rectness and completeness. Correctness establishes that executing the program
in any initial state that satisfies the path condition leads to the corresponding
execution path. On the other hand, completeness amounts to showing that all
concrete executions are covered by the symbolic transition system.

In this paper, we extend the approach of [8] to multithreaded shared vari-
able programs. At the core of this extension lies the symbolic representation of
scheduling information in the path condition.

2.2 Partial Order Reduction

Partial order reduction (POR) is a technique to reduce the size of the state
space when exploring the different executions of a parallel program by exploit-
ing the commutativity of concurrently executed independent transitions [9, 12].
This commutativity relation between transitions is lifted to an equivalence rela-
tion ∼ on traces over these transitions. Given a trace tr reflecting an interleaved
execution of a number of parallel threads, the set [tr] of traces equivalent to tr
according to the equivalence relation ∼, is supposed to preserve the sequential
order of transitions for the individual threads. Thus, all equivalent traces have
the same length and contain the same events. Let s tr−→ s′ denote that the state
s′ can be reached from a state s by applying the transition steps according to the
order given by a trace tr . The pruning of states based on traces is justified during
model exploration when the traces are sufficiently expressive to make sure that
equivalent traces lead to equal states; i.e., the following must be a theorem [9]:

Theorem 1. If s0
tr1−−→ s1, s0

tr2−−→ s2 and tr2 ∈ [tr1], then s1 = s2.

Observe that, given a trace tr , the elements of [tr] can be enumerated by
successively permuting adjacent commuting events. An additional problem is to
identify syntactic criteria to approximate this semantic notion of equivalence.
This can be done by identifying transitions that correspond to interference-
free statements [13]; e.g., two transitions are independent if their corresponding
statements do not affect each others’ program variables.

In program analysis, POR can be used to explore the different equivalence
classes of executions, rather than exploring every execution path. Assuming that
we can decide whether two traces are in the same equivalence class, we can stop

3

Pr ∈ Prog ::=P . . . P
P ∈ Proc ::= proc {s}
s ∈ Stm ::= s; s | x := e | if e {s} else {s} | while e {s}
e ∈ Exp ::=x | v | op(e, . . . , e)
op ∈ Ops ::= ==| ∧ | ∨ | + | − | < | ≤ | ...
v ∈ Val ::= True | False | 0 | 1 | 2 | . . .

Fig. 1: The syntax of the basic programming language PL.

the analysis of the current execution path if we know that its trace is equivalent
to the trace of an execution that we have already explored.

3 Combining Symbolic Execution and POR

We formalize how symbolic execution and partial order reduction can be com-
bined in the context of a basic calculus of parallel execution.

3.1 A Basic Calculus of Parallel Processes

To formalize the main concepts of symbolic execution with partial order reduc-
tion, we consider a basic programming language PL with a given set of types,
including Bool and Int, and a set Var of program variables, with the typical
element x. The syntax of PL is defined in Fig. 1, where s denotes a sequence of
statements. A program Pr consists of a list of processes P of the form proc {s},
where the statement s of the process will be executed in parallel with the state-
ments of other processes. Statements s contain sequential compositions s1; s2,
assignments x := e, conditionals and while-statements. Expressions e consist
of program variables x, values v, and operators op applied to expressions. The
operators include standard operators on the types Bool and Int, and values v
the usual values of these types. A predicate is an expression of type Bool; the set
of predicates is denoted by BExp, with typical element b. We assume that pro-
grams are well-typed, so operators are recursively applied to the correct number
of correctly typed subexpressions.

3.2 Concrete Semantics

A valuation ε is a (mathematical) function Var → Val which assigns to each
program variable x ∈ Var a value v ∈ Val. For any expression e, let ε(e) denote
its value with respect to the valuation ε (defined by induction on the structure
of e). We now describe a transition system for the concrete execution of PL
programs, based on a transition relation between concrete states. These states
are given by the grammar in Fig. 2.

Definition 1 (Concrete States). A concrete state cs is a term (|ε,Σ|), where ε
denotes a valuation and Σ denotes a thread pool.

4

cs ∈ ConState ::= (|ε,Σ|)
τ ∈ Thread ::= ι(s)

ε ∈ Valuation ::= ε | ε[x 7→ v]
Σ ∈ ThreadPool ::= {τ} | Σ ∪Σ

V ∈ VarSet ::= {x} | V ∪ V

Fig. 2: Runtime syntax for the concrete semantics, where ι is a thread identifier,
v a value and s a statement.

Fig. 3 defines the concrete semantics for PL by means of a transition relation
→c between concrete states. The rules Conc-Assign, Conc-Cond1, Conc-
Cond2, Conc-While1 and Conc-While2 respectively describe the concrete
executions of assignments, conditional and while-statements by a single thread ι.
The concrete execution of the assignment in a thread ι, as in rule Conc-Assign,
results on an update in ε, where the new value for variable x is the value ob-
tained by the valuation ε(e) of the expression e. For a conditional statement in a
thread ι, we apply one of the rules Conc-Cond1 or Conc-Cond2, depending
on the valuation ε(b) of Boolean expression b. If the valuation is True, then we
reduce the conditional statement to s1 by applying rule Conc-Cond1, other-
wise we reduce it to s2 by applying rule Conc-Cond2. The while-statement
is similar to the conditional statement, applying rules Conc-While1 or Conc-
While2, respectively. We let T (Σ) denote the set of identifiers for the active
threads in thread pool Σ (i.e, the threads in the thread pool which have not yet
terminated).

(Conc-Assign)
v = ε(e)

(|ε, {ι(x := e; s)} ∪Σ|)
→c (|ε[x 7→ v], ι(s)} ∪Σ|)

(Conc-Cond1)
ε(b) = True

(|ε, {ι(if b {s1} else {s2}; s)} ∪Σ|)
→c (|ε, {ι(s1; s)} ∪Σ|)

(Conc-Cond2)
ε(b) = False

(|ε, {ι(if b {s2} else {s2}; s)} ∪Σ|)
→c (|ε, {ι(s2; s)} ∪Σ|)

(Conc-While1)
ε(b) = True

(|ε, {ι(while b {s1}; s2)} ∪Σ|)
→c (|ε, {ι(s1; while b {s1}; s2)} ∪Σ|)

(Conc-While2)
ε(b) = False

(|ε, {ι(while b {s1}; s2)}Σ|)
→c (|ε, {ι(s2)} ∪Σ|)

Fig. 3: A concrete semantics for PL.

5

Initial and final concrete states. Given a program Pr = proc {s1} . . . proc {sn},
let init(Pr) denote the set of threads {ι1(s1), . . . , ιn(sn)} such that ι1, . . . , ιn
are distinct thread identifiers. The initial state cs0 for the concrete execution
of Pr is given by the concrete state (|ε, init(Pr)|), where ε assigns some initial
values to the program variables in Pr (i.e., ε(x) = v0, for all x ∈ VarSet). The
execution of a program terminates when the concrete state (|ε,Σ|) is such that
T (Σ) = ∅ (technically, we may add a termination marker as a statement in
the runtime syntax). For notational convenience, we denote such final concrete
states by (|ε, ∅|).

A concrete execution consists of a sequence of concrete states cs0, . . . , csn
such that cs0 is some initial concrete state of the form (|ε, init(Pr)|), and for
0 ≤ i < n there exist concrete transitions csi →c csi+1.

Proposition 1 (Reachability for concrete executions). A concrete state cs
is reachable if and only if there exists a concrete execution cs0, . . . , csn such that
csn = cs.

This proposition follows by a straightforward induction on the length of the
concrete execution. ut

3.3 Symbolic Semantics

We now introduce the machinery for the symbolic execution of PL. Let vars(e)
denote an inductively defined function which returns the set of program vari-
ables in an expression e. Abstracting from its possible KeY implementation as a
sequence of symbolic updates, we define a symbolic substitution σ as a (math-
ematical) function Var → Exp which assigns to each program variable x ∈ Var
an expression e ∈ Exp with the following constructors: ε denotes the empty
substitution, and σ[x 7→ e] the substitution mapping x to e and y to σ(y) for
every other variable y (i.e., y 6= x). As usual, composition σ1 ◦ σ2 is defined
recursively over these constructors for substitutions σ1 and σ2. By eσ we denote
the application of the substitution σ to the expression e, defined inductively by

xσ=σ(x)
op(e1, . . . , en)σ= op(e1σ, . . . , enσ) .

In the sequel, we will also use the alternative function application σ(e) which
denotes the homeomorphic extension of σ to expressions.

Let sequences φ over a set X be constructed from the empty sequence ε, the
elements in X as singleton sequences, and by a concatenation operator φ1 · φ2
applied to sequences φ1 and φ2.

We can now define symbolic paths, which combine the accumulated Boolean
conditions from symbolic execution (Sect. 2.1) with the scheduling traces used
for partial order reduction (Sect. 2.2), as follows:

Definition 2 (Symbolic Paths). A symbolic path φ is a sequence of events
ι〈e, V1, V2〉, where ι is a thread identifier, e a predicate and V1, V2 ⊆ VarSet.

6

cn ∈ Configuration ::= ss | cn cn
ss ∈ SymState ::= (|σ, φ,Σ|)

τ ∈ Thread ::= ι(s)
σ ∈ Subst ::= ε | σ[x 7→ e]

φ ∈ SymPath ::= ε | ι〈e, V, V 〉 | φ · φ
Σ ∈ ThreadPool ::= {τ} | Σ ∪Σ

V ∈ VarSet ::= {x} | V ∪ V

Fig. 4: Runtime syntax for the symbolic semantics, where ι is a thread identifier,
e an expression and s a statement.

The predicates e will be used to capture path conditions, and the sets V1
and V2 the write and read effects associated with a program statement. Let
dφe denote the path condition corresponding to a symbolic path φ, given as the
conjunction of the predicates in the events of φ. For a substitution σ and a
symbolic path φ, let σ(φ) denote the symbolic path obtained by the pointwise
application of σ to all expressions in the events of φ.

Next we describe a transition system for the symbolic execution of PL based
on a transition relation between symbolic configurations, which are sets of sym-
bolic states. These configurations are given by the grammar in Fig. 4.

Definition 3 (Symbolic state). A symbolic state ss is a term (|σ, φ,Σ|), where

– σ is a symbolic substitution,
– φ is a symbolic path, and
– Σ is a thread pool.

A configuration cn consists of a set of symbolic states. Given a substitution σ′
and a configuration cn, let σ′(cn) denote the pointwise application of substitution
σ′ to each symbolic state in cn, such that σ′((|σ, φ,Σ|)) = (|σ′ ◦ σ, σ′(φ), Σ|).

Fig. 5 defines the symbolic semantics for PL, by means of a (symbolic) transi-
tion relation →s between configurations of symbolic states. As usual, cn→∗s cn′
denotes that cn′ is reachable from cn by a finite number of transitions of →s.
Transitions may be labelled by the identifier of the thread which is reduced; thus,
ι−→s describes an atomic execution step by a specific thread ι. The rules Assign,

Cond and While respectively describe the symbolic executions of assignments,
conditional and while-statements by a single thread. An assignment in thread ι
is captured by the rule Assign, where the substitution σ is updated with the
symbolic value eσ for x and the symbolic path φ is extended with the event
ι〈True, {x}, vars(e)〉, indicating that an assignment has as path condition True,
that there is a write to the variable x and there are reads from the variables in the
expression e. The symbolic execution of both conditional and while-statements
generates two symbolic states which correspond to the two different outcomes
of the evaluation of the Boolean condition. A conditional statement in thread ι
is captured by rule Cond, which reduces the statement to either s1 or s2, de-
pending on the predicates bσ and ¬bσ. This rule abstracts the two conditional

7

(Schedule)
{ι1, . . . , ιn} = T (Σ)

(|σ, φ,Σ|) ιi−→s cni 1 ≤ i ≤ n

(|σ, φ,Σ|)→s cn1 . . . cnn

(Context)
cn1 →s cn

′
1

cn1 cn2 →s cn
′
1 cn2

(Assign)
φ′ = φ·ι〈True, {x}, vars(e)〉

(|σ, φ, {ι(x := e; s)} ∪Σ|)
ι−→s (|σ[x 7→ eσ], φ′, {ι(s)} ∪Σ|)

(Cond)
φ1 = φ·ι〈bσ, ∅, vars(b)〉
φ2 = φ·ι〈¬bσ, ∅, vars(b)〉

(|σ, φ, {ι(if b {s1} else {s2}; s)} ∪Σ|)
ι−→s (|σ, φ1, {ι(s1; s)} ∪Σ|)

(|σ, φ2, {ι(s2; s)} ∪Σ|)

(While)
φ1 = φ·ι〈bσ, ∅, vars(b)〉
φ2 = φ·ι〈¬bσ, ∅, vars(b)〉

(|σ, φ, {ι(while b {s1}; s2)} ∪Σ|)
ι−→s (|σ, φ1, {ι(s1; while b {s1}; s2)} ∪Σ|)

(|σ, φ2, {ι(s2)} ∪Σ|)

Fig. 5: A symbolic semantics for PL with symbolic paths.

rules of the concrete semantics by resulting in two possible symbolic states. The
while-statement is handled analogously in rule While.

The rule Schedule introduces branching by generating all symbolic states
reachable in one step from a symbolic state with thread pool Σ, by applying
a transition rule for each thread ιi in Σ and by collecting the corresponding
resulting configurations cni. The rule Context lifts transitions starting from a
single symbolic state to transitions between configurations themselves (i.e., con-
figurations should be interpreted modulo the reordering of the states). Remark
that the Context rule introduces branching because different symbolic states
can be chosen, but this branching is trivially confluent.

Example 1 (Symbolic execution). This example illustrates the use of the sym-
bolic transition system. Consider a program with two threads:

proc {x := 0;x := y + 1; s} proc {if (x = 0) {s1} else {s2}},

where s, s1 and s2 are arbitrary statements (possibly sequentially composed and
nested). We construct an initial configuration with one symbolic state

(|σ, ε, {ι1(x := 0;x := y + 1; s), ι2(if (x = 0) {s1} else {s2})}|),

where σ = [x 7→ x0, y 7→ y0] and the two threads are identified by ι1 and ι2
respectively. With only one symbolic state, we apply the rule Schedule, which
reduces thread ι1 by means of rule Assign and thread ι2 by means of rule Cond,

8

and obtain a configuration with three symbolic states:

(|σ[x 7→ 0], ι1〈True, {x}, ∅〉, {ι1(x := y + 1; s), ι2(if (x = 0) {s1} else {s2})}|)
(|σ, ι2〈x0 = 0, ∅, {x}〉, {ι1(x := 0;x := y + 1; s), ι2(s1)}|)
(|σ, ι2〈x0 6= 0, ∅, {x}〉, {ι1(x := 0;x := y + 1; s), ι2(s2)}|)

The execution can now progress in any of the three symbolic states, where one
is arbitrarily chosen by the rule Context. Let us select the first symbolic state.
Since there are two threads which can be scheduled in this symbolic state and
the Cond executes both branches of ι2, application of the rule Schedule results
in a configuration with five symbolic states:

(|(σ[x 7→ 0])[x 7→ y0 + 1], ι1〈True, {x}, ∅〉 · ι1〈True, {x}, {y}〉,
{ι1(s), ι2(if (x = 0) {s1} else {s2})}|)

(|σ[x 7→ 0], ι1〈True, {x}, ∅〉 · ι2〈x0 = 0, ∅, {x}〉, {ι1(x := y + 1; s), ι2(s1)}|)
(|σ[x 7→ 0], ι1〈True, {x}, ∅〉 · ι2〈x0 6= 0, ∅, {x}〉, {ι1(x := y + 1; s), ι2(s2)}|)
(|σ, ι2〈x0 = 0, ∅, {x}〉, {ι1(x := 0;x := y + 1; s), ι2(s1)}|)
(|σ, ι2〈x0 6= 0, ∅, {x}〉, {ι1(x := 0;x := y + 1; s), ι2(s2)}|)

Thus, the application of the rules Context and Schedule alternate, the former
introduces branching in the execution tree since any symbolic state may be
selected and the latter introduces additional symbolic states in a configuration.
This alternation continues until the threads identified by ι1 and ι2 have both
terminated.

Symbolic transitions can be adapted by means of a symbolic substitution:

Proposition 2 (Framing). For any σ ∈ Subst, ss ∈ SymState, and cn ∈
Configuration, we have that if ss→s cn then σ(ss)→s σ(cn).

This proposition follows by a straightforward induction on the length of the
symbolic execution. ut

Initial and final symbolic states. Given a program Pr = proc {s1} . . . proc {sn},
the initial state ss0 for the symbolic execution of Pr is given by a symbolic
configuration with a single symbolic state (|σ, ε, init(Pr)|), where σ(x) = x, for
all x ∈ VarSet. The execution of a program terminates when T (Σ) = ∅ for
all symbolic states (|σ, φ,Σ|) in the configuration cn (technically, we may add
a termination marker as a statement in the runtime syntax). For notational
convenience, we denote such final symbolic states by (|σ, φ, ∅|).

For any computation ss0 →∗s cn, starting from the initial symbolic state ss0,
the symbolic states ss′ ∈ cn represent symbolic states which are reachable by a
particular scheduling of the threads and a particular symbolic evaluation of the
Boolean conditions dφe of the conditional and while-statements, as recorded by
the symbolic path φ in ss′. This is captured by the following proposition which
relates the above notion of reachability and the following notion of a symbolic

9

execution: A symbolic execution consists of a sequence ss0, . . . , ssn of symbolic
states such that ss0 denotes the initial symbolic state (as defined above), and for
0 ≤ i < n there exist symbolic configurations cni+1 and transitions ssi→scni+1
such that ssi+1 ∈ cni+1. Note that the reachability of ssn only states the ex-
istence of configurations cni, for 0 ≤ i ≤ n, such that cn0 = ss0, cni→scni+1,
0 ≤ i < n, and ssn ∈ cnn.

Proposition 3 (Reachability for symbolic executions). A symbolic state
ss is reachable if and only if there exists a symbolic execution ss0, . . . , ssn such
that ssn = ss.

This proposition follows by a straightforward induction on the length of the
symbolic execution. ut

3.4 Correctness

We prove correctness with respect to the concrete semantics from Sec. 3.2. Cor-
rectness then roughly consists of showing that for every symbolic execution there
exists a corresponding concrete execution. We can now introduce the following
formulation of the correctness theorem, where the valuation ε ◦ σ, which con-
sists of a composition of the valuation ε and the substitution σ, is defined by
ε ◦ σ(x) = ε(σ(x)).

Theorem 2 (Correctness). For every symbolic execution ss0, . . . , ssn such
that ε0(dφne) = true, where ε0 is a valuation and φn the symbolic path of ssn,
there exists a concrete computation cs0, . . . , csn such that, for 0 ≤ i ≤ n, the
states ssi and csi have the same thread pool, and εi = ε0 ◦ σi, where εi denotes
the valuation of csi and σi denotes the substitution recorded by ssi.

Proof. The proof proceeds by induction on the length of the symbolic computa-
tion and a case analysis of the last transition. As such, it consists of a straightfor-
ward extension of the correctness proof of the symbolic execution of the under-
lying sequential programming language (consisting of assignments, conditional
and while-statements, and their sequential composition), as given in [8]. ut

Corollary 1. Let (|σ1, φ1, Σ1|) →∗s (|σn, φn, Σn|) cn be a symbolic transition se-
quence and ε a valuation such that ε(dφne). Then there exists a concrete transi-
tion sequence (|ε1, Σ1|)→∗c (|εn, Σn|) such that εi = ε ◦ σi for all 1 ≤ i ≤ n.

This corollary follows directly from Theorem 2 and Proposition 2. ut
The converse of Theorem 2 states that for every concrete execution there

exists a symbolic one.

Theorem 3 (Completeness). For any concrete computation cs0, . . . , csn,
there exists a symbolic execution ss0, . . . , ssn such that for 0 ≤ i ≤ n the
states ssi and csi have the same thread pool, and εi = ε0 ◦ σi, where εi denotes
the valuation of csi and σi denotes the substitution recorded by ssi.

10

The proof of the theorem proceeds by a straightforward induction on the length
of the concrete computation and a case analysis of the last transition. ut

Corollary 2. Let (|ε1, Σ1|)→∗c (|εn, Σn|) be a concrete transition sequence and ε
a valuation such that ε1 = ε◦σ1. Then there exists a symbolic transition sequence
(|σ1, φ1, Σ1|)→∗s (|σn, φn, Σn|) cn such that εn = ε ◦ σn for all 1 ≤ i ≤ n.

This proposition follows directly from Theorem 3 and Proposition 2. ut

3.5 Partial Order Reduction

In order to provide a syntactic characterization of POR in the transition system
of Fig. 5, we first define an equivalence-preserving permutation as an equivalence
relation between symbolic paths. For this purpose, we use a syntactic criterion
for interference freedom [14, 15], based on the disjointness of read- and write-
variables between the two events [13].

Definition 4 (Interference Freedom & Path Equivalence). Given two
events ev1 = ι1〈e1,W1, R1〉 and ev2 = ι2〈e2,W2, R2〉. The interference freedom
of the events ev1 and ev2, denoted ev1 ∼ ev2, is defined as follows:

ev1 ∼ ev2 ⇐⇒ ι1 6= ι2 and (R1 ∩W2) = (W1 ∩R2) = (W1 ∩W2) = ∅.

Let φ1 and φ2 be symbolic paths. Denoted by ∼ the smallest equivalence relation
on symbolic paths such that

ev1 ∼ ev2 implies φ1 · ev1 · ev2 · φ2 ∼ φ1 · ev2 · ev1 · φ2

We have the following semantical justification of the above definition.

Proposition 4 (Confluence). Let

(|σ, φ, {τ1, τ2} ∪Σ|)
ι1−→s (|σ1, φ · ev1, {τ ′1, τ2} ∪Σ|) cn1

and
(|σ, φ, {τ1, τ2} ∪Σ|)

ι2−→s (|σ2, φ · ev2, {τ1, τ
′
2} ∪Σ|) cn2

be two symbolic transitions such that ev1 ∼ ev2. Then there exists a substitution
σ′ such that

(|σ1, φ · ev1, {τ ′1, τ2} ∪Σ|)
ι2−→s (|σ′, φ · ev1 · ev2, {τ ′1, τ ′2} ∪Σ|) cn2

and

(|σ2, φ · ev2, {τ1, τ
′
2} ∪Σ|)

ι1−→s (|σ′, φ · ev2 · ev1, {τ ′1, τ ′2} ∪Σ|) cn1

Proof. It suffices to consider the following cases of the events ev1 and ev2. The
case where ev1 = ι1〈b1σ, ∅, vars(b1)〉 and ev2 = ι2〈b2σ, ∅, vars(b2)〉 follows imme-
diately from the symbolic semantics of conditional and while-statements. Next,

11

let ev1 = ι1〈True, {x}, vars(e)〉 and ev2 = ι2〈bσ, ∅, vars(b)〉. By the symbolic se-
mantics of assignments, it follows that σ1 = σ[x 7→ σ(e)]. Since ev1 ∼ ev2, we
have that x 6∈ vars(b), and thus bσ (syntactically) equals bσ1. As the last case, let
ev1 = ι1〈True, {x1}, vars(e1)〉 and ev2 = ι2〈True, {x2}, vars(e2)〉. Furthermore,
let σ1 = σ[x1 7→ σ(e1)] and σ2 = σ[x2 7→ σ(e2)]. Since ev1 ∼ ev2, we have that
x1 and x2 are distinct variables, x1 6∈ vars(e2), and x2 6∈ vars(e1). It follows that
for i 6= j ∈ {1, 2}, eiσj equals the expression eiσ, and σi[xj 7→ σi(ej)] equals the
simultaneous substitution σ[x1, x2 7→ e1σ, e2σ]. ut

The following corollary of Proposition 4 states that equivalent symbolic paths
uniquely determine the substitution and thread pool of a reachable symbolic
state.

Corollary 3 (Determinism). For any reachable symbolic states (|σ, φ,Σ|) and
(|σ′, φ′, Σ′|), φ ∼ φ′ implies σ = σ′ and Σ = Σ′.

The equivalence relation ∼ is then trivially extended to symbolic states as
follows: if φ ∼ φ′ then (|σ, φ,Σ|) ∼ (|σ, φ′, Σ|). We can now apply a partial
order reduction to the symbolic transition system by simply lifting it to the
equivalence classes of symbolic states. Let [cn] denote the equivalence classes
of the symbolic states of the symbolic configuration cn. In addition, let γ be
a selection function such that [cn]γ denotes the symbolic configuration which
results from selecting from each of the equivalence classes of the symbolic states
of the symbolic configuration cn a (canonical) representative. We then have the
following partial order reduction rule.

(PORγ)
[cn]γ →s cn

′

cn→porγ cn
′

Correctness and completeness of the partial order reduction rule with respect to
the symbolic transition system follows from the above corollary which ensures
that the partial order reduction rule is independent of the choice of the repre-
sentatives of the equivalence classes of symbolic states. This is formalized by the
following proposition.

Proposition 5 (Bisimulation). The transition systems →s and →porγ are
bisimilar with respect to the equivalence relation ∼: Let cn1 and cn2 be two
symbolic configurations such that [cn1] = [cn2]. Then for any transition cn1 →s

cn′1, there exists a transition cn2 →porγ cn
′
2 such that [cn′1] = [cn′2], and vice

versa.

Proof. It suffices to prove that ss ∼ ss′ and ss ι→s cn implies that there exists a
cn′ such that ss′ ι→s cn

′ and [cn] = [cn′], which follows from a straightforward
case analysis of the transition ss ι→s cn. ut

A symbolic state ss is PORγ reachable if there exists a symbolic configuration
cn such that ss0 →∗porγ cn and ss ∈ cn (where ss0 denotes the initial symbolic
state, as defined above).

12

Corollary 4 (Correctness of POR). For any symbolic state ss that is PORγ
reachable, there exists an equivalent symbolic state ss′ ∼ ss which is→s reachable
(i.e., there exists a symbolic configuration cn such that ss0 →∗s cn and ss′ ∈ cn).

Proof. Induction on the length of the computation ss0 →∗porγ cn, where ss
′ ∈ cn,

using the above proposition. ut

Corollary 5. For any POR computation (|σ, φ,Σ|)→∗porγ (|σ′, φ′, Σ′|) cn, there
exists a symbolic computation (|σ, φ,Σ|)→∗s (|σ′, φ′, Σ′|) cn.

Proof. The proof follows directly from Corollary 4 and Proposition 2. ut

Corollary 6 (Completeness of POR). For any symbolic state ss that is →s

reachable, there exists an equivalent symbolic state ss′ ∼ ss which is PORγ
reachable.

Proof. Induction on the length of the computation ss0 →∗s cn, where ss′ ∈ cn,
using the above proposition. ut

Corollary 7. For any symbolic computation (|σ, φ,Σ|)→∗s (|σ′, φ′, Σ′|) cn, there
exists a POR computation (|σ, φ,Σ|)→∗porγ (|σ′, φ′, Σ′|) cn.

Proof. The proof follows directly from Corollary 6 and Proposition 2. ut

Note that Corollary 7 holds because we are free in the choice of γ. In Sect. 5,
we fix a particular selection function, meaning all symbolic states, but not all
symbolic computations, will be reachable.

4 Dynamic Logic for Multithreaded Programs

This section demonstrates how the integration of symbolic execution and partial
order reduction presented in Sect. 3 can be put to use to define a dynamic logic
proof system for multithreaded programs.

4.1 Dynamic Logic

The formulas of dynamic logic are defined inductively, starting from the set BExp
of Boolean expressions.

Definition 5 (DL Formulas). Given a set BExp of Boolean expressions over
variables x ∈ VarSet, symbolic substitutions σ ∈ Subst and thread pools Σ ∈
ThreadPool, the dynamic logic formulas are defined inductively as the smallest
set DL such that

1. Ψ ∈ DL if Ψ ∈ BExp
2. ¬Ψ1, Ψ1 ∧ Ψ2, Ψ1 ∨ Ψ2, Ψ1 → Ψ2, Ψ1 ↔ Ψ2 ∈ DL if Ψ1, Ψ2 ∈ DL
3. ∃x · Ψ, ∀x · Ψ ∈ DL if x ∈ VarSet and Ψ ∈ DL
4. [Σ]Ψ ∈ DL if Ψ ∈ DL

13

5. {σ}Ψ ∈ DL if σ ∈ Subst and Ψ ∈ DL

The setDL extends the set FOL of first-order logic formulas with two modalities
[Σ]Ψ and {σ}Ψ , which we refer to as the box-modality and the update-modality,
respectively. (Note that the update modality here features a symbolic substi-
tution σ, which differs slightly from the symbolic updates in KeY. Symbolic
substitutions may be implemented using symbolic updates.) A formula Ψ ∈ DL
is called first-order if it does not contain any modality (i.e., Ψ ∈ FOL). For
simplicity, we may write [Pr]Ψ to express [init(Pr)]Ψ , where Pr ∈ Prog.

We write ε |= Ψ to denote that a formula Ψ is valid in a valuation ε (or
that ε satisfies Ψ). The satisfiability of a DL formula can be defined as follows
(e.g., [10]):

Definition 6 (Satisfiability of DL Formulas). Let Ψ ∈ DL, e ∈ BExp and ε
a valuation. Satisfiability is defined inductively as follows:

ε |= e ⇐⇒ ε(e) = >
ε |= ¬Ψ ⇐⇒ ε 6|= Ψ
ε |= Ψ1 ∧ Ψ2 ⇐⇒ ε |= Ψ1 and ε |= Ψ2
ε |= Ψ1 ∨ Ψ2 ⇐⇒ ε |= Ψ1 or ε |= Ψ2
ε |= ∃x · Ψ ⇐⇒ ε[x 7→ ε(e)] |= Ψ for some e ∈ Exp
ε |= ∀x · Ψ ⇐⇒ ε[x 7→ ε(e)] |= Ψ for all e ∈ Exp
ε |= [Σ]Ψ ⇐⇒ ε′ |= Ψ for all ε′ such that (|ε,Σ|)→∗c (|ε′, ∅|)
ε |= {σ}Ψ ⇐⇒ ε′ |= Ψ and ε′ = ε ◦ σ

Operators for implication and equivalence can be defined as usual in terms of
negation and disjunction. This definition of the box-modality [Σ]Ψ corresponds
to partial correctness in the sense that the formula only needs to hold for all
execution paths that lead to a final state; in particular, [Σ]Ψ is true if the
execution of Σ never terminates. The update modality {σ}Ψ corresponds to
executing a sequence of assignments. Observe that {σ}{σ′}Ψ ↔ {σ ◦ σ′}Ψ .

4.2 A DL Sequent Calculus for Multithreaded Programs

We first define a sequent calculus for proving DL formulas over multithreaded
Pr programs, and then transform it into a transition system similar to →s.

A sequent of the form Γ ⇒ Ψ , where Γ and Ψ are sets of formulas, expresses
that the conjunction of the formulas in the antecedent Γ implies the disjunction
of the formulas in the succedent Ψ ; a sequent Γ ⇒ Ψ is valid, denoted |= Γ ⇒ Ψ
if and only if its corresponding implication is valid.

The sequent calculus is given by the rules in Fig. 6. To prove a sequent,
one constructs a proof tree with the sequent as an open goal at the root by
repeatedly applying rules to open proof goals until all open goals have been
closed. The application of a rule to an open goal closes the goal and extends
the tree with new open goals corresponding to the premisses of the rule. An
axiom closes an open goal. A particular feature of this calculus is that sequents
are labelled, such that the thread which is symbolically executed in the rules

14

DL-Assign, DL-Cond and DL-While is determined by the label. Rule DL-
Schedule forces all threads to be explored in the construction of the proof
tree. We omit standard rules for first-order logic (e.g., [2, Ch. 2]), and assume
that we can determine whether sequents of the form Γ ⇒ Ψ hold, when Γ, Ψ
consist of formulas in FOL. Consequently, we can decide whether a branch can
be closed by checking if the formulas in the antecedent Γ are inconsistent or by
means of the rule DL-Reduce, which reduces the sequent to first-order formulas
by applying the substitution σ to Ψ (assuming Ψ consists of formulas in FOL,
otherwise one of the presented rules applies).

To show that a DL formula Ψ is true for a program Pr , we need to construct
a proof by applying the rules of the sequent calculus, starting from the sequent
Γ ⇒ {σ}[init(Pr)]Ψ , where xσ = x for all x ∈ VarSet. Observe that due to
the interleaving of threads, we may need to prove many equivalent sequents in
different nodes of the proof tree. These sequents differ only in the order in which
steps from different non-interfering threads have been selected in the branches
leading to the nodes.

In order to eliminate such redundant nodes during the proof construction, we
now consider a path-sensitive reformulation of this calculus. For this purpose, we
introduce path-sensitive sequents, a variation of the sequents above, in the form
Γ, φ⇒ Ψ , where φ is a symbolic path as defined in Sect. 3. The correspondence
with the standard sequents is obtained by lifting the symbolic path to, e.g.,
Γ, dφe ⇒ Ψ for the sequent above. We consider a transition relation→dl between
sets Ω of path-sensitive sequents that need to be proven, corresponding to the
open leaf nodes of the proof tree constructed by the sequent calculus above. The
rules of the transition relation→dl are presented in Fig. 7. Each transition in the
proof system takes a sequent from Ω and replaces it with some new sequents.
As before, we omit the standard rules for first-order logic; we remove sequents
that correspond to closed leaf nodes in the proof trees, such that a closed proof
tree in the proof calculus here corresponds to an empty set of sequents. Thus,
a sequent Γ, φ ⇒ Ψ has a proof if Γ, φ ⇒ Ψ →∗dl ∅ (or if the formulas in Γ, dφe
are inconsistent). Observe that as a consequence of the representation, we have
a linear sequence of proof steps rather than a proof tree.

The rules of the transition system in Fig. 7 correspond closely to the se-
quent calculus of Fig. 6. For each rule of the sequent calculus, the corresponding
transition rule is obtained by letting the left-hand-side of the transition be the
conclusion of the proof rule and the right-hand-side its set of premises. The re-
maining transition rule DLT-Context corresponds in the transition system to
the selection of open nodes in the proof tree for the next construction step (this
step is not formalized in the sequent calculus). Observe that the transition sys-
tem→dl is locally confluent as the result of applying DLT-Context to different
sequents in a set Ω is unaffected by the order of these rule applications.

4.3 Soundness and Relative Completeness for the DL Proof System

Our goal is to establish that the DL proof system for multithreaded programs
is sound and relative complete. For this purpose, we take the formulation as

15

(DL-Reduce)
Γ ⇒ {σ}Ψ

Γ ⇒ {σ}[∅]Ψ

(DL-Assign)
Γ ⇒ {σ[x 7→ σ(e)]}[{ι(s)} ∪Σ]Ψ

Γ
ι=⇒ {σ}[{ι(x := e; s)} ∪Σ]Ψ

(DL-Schedule)
{ι1, . . . , ιn} = T (Σ)

Γ
ι1=⇒ {σ}[Σ]Ψ · · · Γ ιn==⇒ {σ}[Σ]Ψ

Γ ⇒ {σ}[Σ]Ψ

(DL-Cond)
Γ, bσ ⇒ {σ}[{ι(s1; s)} ∪Σ]Ψ
Γ,¬bσ ⇒ {σ}[{ι(s2; s)} ∪Σ]Ψ

Γ
ι=⇒ {σ}[{ι(if b {s1}

else {s2}; s)} ∪Σ]Ψ

(DL-While)
Γ, bσ ⇒ {σ}[{ι(s1;

while b {s1}; s2)} ∪Σ]Ψ
Γ,¬bσ ⇒ {σ}[{ι(s2)} ∪Σ]Ψ

Γ
ι=⇒ {σ}[{ι(while b {s1}; s2)} ∪Σ]Ψ

Fig. 6: A proof calculus for dynamic
logic.

(DLT-Context)
Ω1 →dl Ω

′
1

Ω1 Ω2 →dl Ω
′
1 Ω2

(DLT-Reduce)
Γ, φ⇒ {σ}[∅]Ψ
→dl Γ, dφe ⇒ {σ}Ψ

(DLT-Assign)
φ′ = φ·ι〈True, {x}, vars(e)〉

Γ, φ
ι=⇒ {σ}[{ι(x := e; s)} ∪Σ]Ψ

→dl Γ, φ
′ ⇒ {σ[x 7→ σ(e)]}

[{ι(s)} ∪Σ]Ψ

(DLT-Schedule)
{ι1, . . . , ιn} = T (Σ)

Γ, φ
ιi=⇒ {σ}[Σ]Ψ →dl Ωi 1 ≤ i ≤ n

Γ, φ⇒ {σ}[Σ]Ψ →dl Ω1 . . . Ωn

(DLT-Cond)
φ1 = φ·ι〈bσ, ∅, vars(b)〉
φ2 = φ·ι〈¬bσ, ∅, vars(b)〉

Γ, φ
ι=⇒ {σ}[{ι(if b {s1}

else {s2}; s)} ∪Σ]Ψ
→dl Γ, φ1 ⇒ {σ}[{ι(s1; s)} ∪Σ]Ψ

Γ, φ2 ⇒ {σ}[{ι(s2; s)} ∪Σ]Ψ

(DLT-While)
φ1 = φ·ι〈bσ, ∅, vars(b)〉
φ2 = φ·ι〈¬bσ, ∅, vars(b)〉

Γ, φ
ι=⇒ {σ}[{ι(while b {s1}; s2)} ∪Σ]Ψ

→dl Γ, φ1 ⇒ {σ}[{ι(s1;
while b {s1}; s2)} ∪Σ]Ψ

Γ, φ2 ⇒ {σ}[{ι(s2)} ∪Σ]Ψ

Fig. 7: A transition system with sym-
bolic paths for dynamic logic.

16

a transition system (Fig. 7) as our starting point, and connect it to the sym-
bolic execution framework defined in Sect. 3. In fact, the symbolic execution
achieved by the transition relation →dl corresponds exactly to that achieved by
the transition relation →s, as expressed by the following lemma.

Lemma 1. Γ, φ⇒ {σ}[Σ]Ψ →dl {Γ, φ′ ⇒ {σ′}[Σ′]Ψ} ∪Ω if and only if
(|{σ, φ,Σ|)→s (|{σ′, φ′, Σ′|) cn.

Proof. Follows by induction over the transition rules. For each rule in the tran-
sition system (Fig. 7), select the corresponding rule for symbolic execution, and
vice versa. ut

Lemma 1 allows soundness to be shown in terms of the soundness of the
symbolic execution framework and the soundness of the underlying proof system
for FOL.

Theorem 4 (Soundness). Let Σ ∈ ThreadPool, σ ∈ Subst, φ ∈ SymPath and
Γ, Ψ ∈ DL. If Γ, φ⇒ {σ}[Σ]Ψ →∗dl ∅, then |= Γ, φ⇒ {σ}[Σ]Ψ .

Proof. Without loss of generality, we may assume that Ψ consists of first-order
formulas. Assume Γ, φ ⇒ {σ}[Σ]Ψ →∗dl ∅. Then, due to the confluence of the
transition system →dl, there is a derivation Γ, φ ⇒ {σ}[Σ]Ψ →∗dl Ω such that
Σ′ = ∅ for all Γ, φ′ ⇒ {σ′}[Σ′]Ψ ∈ Ω. Then by applying DLT-Reduce, we
get Γ, dφ′e ⇒ {σ′}Ψ →∗dl ∅. This last reduction uses the proof system for FOL,
which by assumption gives |= Γ, dφ′e ⇒ {σ′}Ψ for any concrete valuation.

Let ε be a valuation such that ε |= Γ, dφ′e, and by Def. 6, we have ε |= {σ′}Ψ .
By Def. 6 again, we have ε2 |= Ψ where ε2 = ε ◦ σ′

By Lemma 1 and the assumption Γ, φ⇒ {σ}[Σ]Ψ →∗dl ∅, we get (|σ, φ,Σ|)→∗s
(|σ′, φ′, ∅|) cn. Given this and ε |= dφ′e (implied by ε |= Γ, dφ′e), then by Corol-
lary 1 we get (|{ε1, Σ|) →∗c (|{ε2, ∅|) such that ε1 = ε ◦ σ and ε2 = ε ◦ σ′. This
together with ε2 |= Ψ and Def. 6 gives ε1 |= [Σ]Ψ ; consequently by Def. 6 again,
we get ε |= {σ}[Σ]Ψ . Finally, dφ′e implying dφe gives ε |= Γ, φ⇒ {σ}[Σ]Ψ . ut

The relative completeness of the proof system can be shown in terms of the
correctness of the symbolic execution framework and the relative completeness
of the underlying proof system for FOL in a similar way.

Theorem 5 (Relative Completeness). Let Σ ∈ ThreadPool, σ ∈ Subst, φ ∈
SymPath and Γ, Ψ ∈ DL. If |= Γ, φ⇒ {σ}[Σ]Ψ , then Γ, φ⇒ {σ}[Σ]Ψ →∗dl ∅.

Proof. Since we aim to show relative completeness, we assume the completeness
of the underlying first-order logic proof system; i.e., |= ψ implies ψ →∗dl ∅ for
any first-order formula ψ. Moreover, without loss of generality, we may assume
that Ψ consists of only first-order formulas.

Assume ε |= Γ, φ ⇒ {σ}[Σ]Ψ for some ε, and assume further ε |= Γ ∧ dφe.
This gives ε |= {σ}[Σ]Ψ . By Def. 6, we have ε′ |= [Σ]Ψ where ε′ = ε ◦σ. Then by
Def. 6 again, we have ε′′ |= Ψ for all valuations ε′′ such that (|ε′, Σ|)→∗c (|ε′′, ∅|).

17

Given this together with ε′ = ε ◦ σ and by Corollary 2, there exist a symbolic
computation (|σ, φ,Σ|)→∗s (|σ′, φ′, ∅|) cn for some σ′ and φ′ such that ε′′ = ε ◦σ′.

Since ε′′ |= ε ◦ σ′ gives ε |= {σ′}Ψ , then by assuming ε |= Γ ∧ dφ′e, we get
|= Γ ∧ dφ′e ⇒ {σ′}Ψ . By Lemma 1, we have Γ, φ ⇒ {σ}[Σ]Ψ →∗dl {Γ, φ′ ⇒
{σ′}[∅]Ψ} ∪ Ω, where Γ, φ′ ⇒ {σ′}[∅]Ψ can be reduced to Γ, dφ′e ⇒ {σ′}Ψ by
rule DLT-Reduce. Finally by the completeness of FOL that gives us Γ, φ′ ⇒
{σ′}Ψ →∗dl ∅, the theorem follows. ut

Remark that the rule DLT-While here is based on unfolding the while-
loop to emphasize its similarity with the rule While of Sect. 3.3. The rule could
be lifted to reasoning about infinite unfoldings of the while-loop using a loop-
invariant in the usual way; the proof of relative completeness would then require
an assumption about a sufficiently strong invariant to prove reachability for all
finite approximations of the infinite unfoldings.

4.4 Partial Order Reduction in Proof Search

We now lift the equivalence relation ∼ of Def. 4 to DL sequents as follows: if
φ ∼ φ′ then Γ, φ⇒ {σ}[Σ]Ψ ∼ Γ, φ′ ⇒ {σ}[Σ]Ψ . Let [Ω] denote the equivalence
classes of setsΩ of path-sensitive sequents. Let γ be a selection function such that
[Ω]γ denotes the path-sensitive sequent which results from selecting from each
of the equivalence classes of path-sensitive sequents of the set Ω a (canonical)
representative. This allows us to define the following partial order reduction rule
for the proof construction in DL:

(DL-POR)
[Ω]γ →dl Ω

′

[Ω]→dlporγ [Ω′]

The transition system→dlporγ is locally confluent as the result of applying (DLT-
Context) to different sequents in a set [Ω]γ is not affected by the order of these
rule applications.

Remark that in the proof system we have formalized as →dlporγ , the state
of the proof search is represented as a set Ω of open proof goals. The same
ideas could also be formulated in a proof system which represents the proof
using a more standard graph-like proof structure, in which each sequent in Ω
corresponds to an open proof goal in a leaf node of the graph. If the symbolic
paths are kept on a canonical form in the sequents (see Sect. 5), the rule DL-
POR would correspond to a rule which merges nodes with different occurrences
of the same proof goal, turning the proof into a directed acyclic graph.

Correctness and relative completeness of→dlporγ can be shown following the
proofs for Theorems 4 and 5 above. In fact, the symbolic execution achieved
by the transition relation →dlporγ corresponds exactly to that of the transition
relation →porγ′ , as expressed by the following lemma.

Lemma 2. Γ, φ⇒ {σ}[Σ]Ψ →dlporγ {Γ, φ
′ ⇒ {σ′}[Σ′]Ψ} ∪Ω if and only if

(|{σ, φ,Σ|)→porγ′ (|{σ′, φ′, Σ′|) cn.

18

Proof. Follows by induction over the transition rules. For each rule in the transi-
tion system for→dlporγ , select the corresponding rule for→porγ′ , and vice versa.

ut

Lemma 2 allows soundness and relative completeness to be shown for→dlporγ ,
following the proof structure of Theorems 4 and 5 above.

Theorem 6 (Soundness). Let Σ ∈ ThreadPool, σ ∈ Subst, φ ∈ SymPath and
Γ, Ψ ∈ DL. If Γ, φ⇒ {σ}[Σ]Ψ →∗dlporγ ∅, then |= Γ, φ⇒ {σ}[Σ]Ψ .

Proof (Sketch). Since→dlporγ is locally confluent, we can adapt the proof struc-
ture of Theorem 4. The proof then follows from Corollary 5 and Lemma 2. ut

Theorem 7 (Relative Completeness). Let Σ ∈ ThreadPool, σ ∈ Subst, φ ∈
SymPath and Γ, Ψ ∈ DL. If |= Γ, φ⇒ {σ}[Σ]Ψ , then Γ, φ⇒ {σ}[Σ]Ψ →∗dlporγ ∅.

Proof (Sketch). We adapt the proof structure of Theorem 5. The proof then
follows from Corollary 7 and Lemma 2. ut

5 Implementation

We have developed a prototype implementation of the transition systems →s

and →porγ from Sect. 3, in order to report on experimental results and validate
the approach. The prototype is developed in Maude [11], which allows writing
executable models in rewriting logic [16]. We do not cover the full details of the
implementation5 here, but focus on how it differs from the transition system
presented in Sect. 3.

Given a program Pr, our implementation executes the program symbolically.
The program terminates when all threads have terminated, resulting in a con-
figuration of final symbolic states. In addition, we output statistics about how
many symbolic states are in a configuration and the number of applications of the
rule Schedule needed to reach a configuration from the initial configuration,
in order to compare the two systems →s and →porγ .

The implementation stays very close to the transition systems defined in
Sect. 3. One notable difference is that while the rule PORγ achieves partial
order reduction by lifting the symbolic transition system to equivalence classes
and by fixing a selection function γ to obtain the canonical representative, the
implementation transforms all symbolic states to a canonical form. We achieve
this by defining an ordering between interference-free events, and by choosing
the smallest lexicographic representative. The ordering of interference-free events
depends on the thread identifiers, which we assume to have a total order; in the
implementation, these are represented as natural numbers.

Another difference is that the while statement in Sect. 3 is possibly un-
bounded, which can lead to an infinite number of paths in a symbolic setting.
In order to get terminating executions for the examples in the prototype, the
while-loop has been given an optional bound.
5 The implementation is available at https://github.com/larstvei/sympaths.

19

https://github.com/larstvei/sympaths

Example 2. The following is a very simple program with three threads, all of
which perform a single assignment.

proc {y := x} proc {z := x} proc {x := 2}

There are six final search states for this program in →s, with the following
symbolic paths:

ι0〈True, {y}, {x}〉 · ι1〈True, {z}, {x}〉 · ι2〈True, {x}, ∅〉
ι1〈True, {z}, {x}〉 · ι0〈True, {y}, {x}〉 · ι2〈True, {x}, ∅〉
ι0〈True, {y}, {x}〉 · ι2〈True, {x}, ∅〉 · ι1〈True, {z}, {x}〉
ι1〈True, {z}, {x}〉 · ι2〈True, {x}, ∅〉 · ι0〈True, {y}, {x}〉
ι2〈True, {x}, ∅〉 · ι0〈True, {y}, {x}〉 · ι1〈True, {z}, {x}〉
ι2〈True, {x}, ∅〉 · ι1〈True, {z}, {x}〉 · ι0〈True, {y}, {x}〉

According to Definition 4, we have ι1〈True, {z}, {x}〉 ∼ ι0〈True, {y}, {x}〉.
With partial order reduction in →porγ , symbolic states that contain symbolic
paths that only differ in the order of independent events can be pruned from
the search. Executing the program in our implementation of in →porγ gives the
following four symbolic paths, which cannot be reduced further.

ι0〈True, {y}, {x}〉 · ι1〈True, {z}, {x}〉 · ι2〈True, {x}, ∅〉
ι0〈True, {y}, {x}〉 · ι2〈True, {x}, ∅〉 · ι1〈True, {z}, {x}〉
ι1〈True, {z}, {x}〉 · ι2〈True, {x}, ∅〉 · ι0〈True, {y}, {x}〉
ι2〈True, {x}, ∅〉 · ι0〈True, {y}, {x}〉 · ι1〈True, {z}, {x}〉

Example 3. The program in Fig. 8 consists of three threads, where the first two
threads iterate in a while-loop, and the last thread assigns a variable to p,
depending on the values of i, m, j and n. In the program, the variables x and
y are shared between two out of three threads, while the other variables are
local to a thread. To make the program terminating, we use bounded while-
loops to specify the number of iterations of the loops that should be performed.
Since there is no synchronization, the program has a high number of concurrent
interleavings.

proc {
while (i < m) [1] {

x := x ∗ i ;
i := i + 1

}
}

proc {
while (j < n) [1] {

y := y ∗ j ;
j := j + 1

}
}

proc {
i f (i == m and j == n) {
p := x ∗ y

} else {
p := −1

}
}

Fig. 8: A concurrent program

The search space for this program grows very quickly. If we consider two
instances of the program, with bounds 1, 1 and 2, 1 for the two while-loops,

20

respectively, the following table shows the number of symbolic search states upon
termination and the number of steps in terms of applications of the scheduling
rule for executions with and without partial order reduction. In the table, the
leftmost column shows the bounds of the two while-loops.

→s →porγ
Bounds States Steps States Steps
1,1 6744 14495 35 596
2,1 58944 132884 97 1562

Fig. 9 shows how many symbolic search states are visited during the search.
As expected, when no partial order reduction is applied, the number of states
grows monotonically. However, with partial order reduction, the number of states
peaks at 110 states in the middle of the search, but many of these are later found
to be equivalent, leading to a final number of 35 states.

Search states

0 3000 6000 9000 12000 15000
0
1500
3000
4500
6000
7500

st
at

es

→s steps

(a) Search without POR.

Search states

0 100 200 300 400 500 600
0
30

60
90
120

st
at

es

→porγ steps

(b) Search with POR.

Fig. 9: The number of symbolic search states for the program with bounds 1, 1.

6 Language Extensions

In this section, we briefly describe some possible extensions to the programming
language.

6.1 Aliasing

In this paper, we considered a multithreaded shared variable programming lan-
guage that only includes assignments to simple variables. Assignments involving
arrays or fields of objects give rise to aliasing. In [8], a formal model is described
for the symbolic execution of such assignments in a sequential context. Extend-
ing this model to multithreaded programs further requires a definition of the
equivalence relation between symbolic paths that takes aliasing into account, in
order to apply partial order reduction. More specifically, the commutativity of
two events will depend on the aliasing information encoded by the symbolic path
preceding these two events.

21

6.2 Dynamically Spawned Threads

It is straightforward to extend the language and the symbolic transition system
→s with dynamic thread creation. A new thread can be introduced by adding
a syntactic construct new(s) to Pr. Since threads in the symbolic states are
represented by a thread pool, the dynamically created thread needs to both be
inserted into the thread pool and maintain the uniqueness of thread identifiers.
Let a predicate fresh(ι, Σ) express that a thread identifier ι does not occur among
the identifiers of the threads already in the thread poolΣ. It should be noted that
the thread identifies are only generated at run-time and cannot be manipulated
by the program. As such they are different from the object identities in KeY.
The introduction of dynamically created threads can be handled by extending
the symbolic transition system →s with the following additional rule:

(NewThread)
fresh(ι′, Σ)

(|σ, φ, {ι(new(s′); s)} ∪Σ|)
ι−→s (|σ, φ, {ι(s), ι′(s′)} ∪Σ|)

The proofs of correctness and completeness are straightforward extensions of the
proofs of Theorems 2 and 3.

6.3 Synchronization

The programming language discussed in this paper has no means of synchroniza-
tion between threads. Synchronization can be achieved through simple mecha-
nisms like locks or channels, or the more general mechanism of guarding state-
ments with a condition on shared memory (e.g., await (x < 5) in the syntax of
ABS [17]). We can extend the language with guards by adding an event with
the condition of the guard to the symbolic path whenever a guarded thread is
scheduled. In the context of partial order reduction, equivalence between paths
remains the same, as the conditions imposed by guards are no different than the
conditions of conditional or while-statements.

6.4 Object Orientation

Above we already discussed the symbolic execution of assignments to fields of
objects. In [8] a formal model of the symbolic execution of a basic sequential
objet-oriented language is given which includes method calls. Of particular in-
terest here is that the underlying symbolic representation of the heap abstracts
from concrete object identifiers (or “locations”). In contrast, in the KeY system
the symbolic execution of field assignments is defined with respect to an explicit
heap variable. Such an explicit heap variable introduces a mismatch between the
abstraction level of the programming language and its symbolic execution. On
the other hand, in [18] we already formalized symbolic execution for abstract
object creation in dynamic logic which, as in [8], does not involve an explicit

22

heap variable. As such this formalization provides a promising basis for further
extensions to object-oriented multithreaded programs, using the partial order
reduction techniques as described in this paper.

7 Related Work

Symbolic execution of concurrent programs is limited by the state space explo-
sion due to all possible interleavings of concurrent events [19]. As such, the num-
ber of execution paths and of branching points where path conditions need to be
evaluated, grows exponentially in the number of concurrent events within each
thread. Many techniques have been proposed to mitigate state explosion [3], for
example by using heuristics [20], abstractions [21], or by either merging [22, 23]
or pruning states [9, 24,25]. We studied the latter approach in this paper.

Similar to [24, 26, 27], we assume the execution of a program symbolically
on a virtual machine that dynamically computes a dependency relation between
states. Executions that have the same causal structure can be pruned, as they
are equivalent with respect to finding errors in the given program. Our approach
differs from prior works on combining partial order reduction techniques with
symbolic execution. The main difference is that we provide a formal framework
for studying the correctness and completeness of the symbolic and the reduced
semantics with respect to that with concrete values. In this respect, we extend
the work in [8] to concurrency.

Although it does not play a role in the programming language we considered
in this paper, in general, the computation of the dependency relation may involve
alias analysis. To avoid imprecision and extra computational burden, it could be
interesting to investigate the combination of the current results with the syntax-
based method proposed in [8] for checking aliases.

Our second contribution is a sound and relative complete dynamic logic for
concurrent programs using partial order reduction. Several variations of dynamic
logic exist for sequential programs, but only few calculi extend dynamic logic to
concurrency. Most notably, concurrent dynamic trace logic [28] extends dynamic
logic with symbolic execution rules for concurrent interleavings and dynamic
thread creation based on the rely/guarantee methodology, the dynamic logic
for concurrent Java [29] has been implemented in the KeY system [2], and the
dynamic logic for Creol [30] supports compositional verification of an object-
oriented modeling language for concurrent distributed applications [31]. The
latter is very similar to our dynamic logic, because its semantics is based on
traces, reformulating the work in [32] in the context of dynamic logic. The main
difference with our approach is in the use of partial order reduction, so that
verification is not only compositional but also effective. Other related dynamic
logics for concurrency are Peleg’s Concurrent Dynamic Logic [33], its extension
with channels and shared variable communication [34], and the dynamic logic for
communicating concurrent systems [35]. The former can only treat concurrent
systems with no communication, while the latter can describe communications

23

and concurrency using a CCS-based language with Kleene-star for recursion.
Neither of these logics, however, focus on partial order reduction.

8 Conclusion

The use of symbolic execution for multithreaded languages may lead to a state
space explosion during model exploration. In this paper, we have studied how
symbolic execution can be combined with partial order reduction, a technique for
pruning symbolic states during model exploration by pruning states with equiv-
alent symbolic paths. Our study is foundational: we develop a formal model of
symbolic execution for multithreaded programs and provide a formal justification
for the correctness of this model. We show how the formal model can be extended
to incorporate partial order reduction, and provide a formal justification of cor-
rectness for the extended model. We then show how a proof system in dynamic
logic for the considered multithreaded programming language corresponds to the
formal model of symbolic execution such that correctness proofs for the latter
carry over to prove soundness and relative completeness for the proof system.
These proofs, which curiously establish the soundness and relative completeness
of the proof system with partial order reduction by means of bisimulation, pro-
vide a formal justification for pruning nodes during proof construction, thereby
simplifying the proof construction for multithreaded programs.

In this paper, our focus has been on the formal justification of the basic
mechanisms of symbolic execution combined with partial order reduction for
multithreaded programs. This work leaves many possible extensions unexplored.
The current formulation of symbolic execution (and the corresponding proof
system) will generate many unfeasible paths. One interesting extension of our
work is the further pruning of search states by evaluating the consistency of
symbolic paths, which opens for many different evaluation strategies (e.g., [3]).
Another interesting extension is the treatment of aliases for the dependency
relation underlying partial order reduction, which leads to imprecision and extra
computational burden. It would also be interesting to investigate the formal
justification of more aggressive pruning techniques, such as prefix-pruning over
the equivalence relation of the partial order reduction.

Acknowledgement. We thank the reviewers for their valuable comments.

References

1. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7) (1976)
385–394

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M., eds.:
Deductive Software Verification - The KeY Book - From Theory to Practice. Vol-
ume 10001 of Lecture Notes in Computer Science. Springer (2016)

3. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3) (2018) 50:1–50:39

24

4. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2) (2013) 82–90

5. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In Sarkar, V., Hall, M.W., eds.: Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’05), ACM (2005) 213–223

6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In Juels, A., Wright, R.N., di Vimercati, S.D.C.,
eds.: Proc. 13th ACM Conference on Computer and Communications Security
(CCS’06), ACM (2006) 322–335

7. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In Draves, R., van
Renesse, R., eds.: Proc. 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’08), USENIX Association (2008) 209–224

8. de Boer, F.S., Bonsangue, M.M.: On the nature of symbolic execution. In ter Beek,
M.H., McIver, A., Oliveira, J.N., eds.: Proc. 3rd World Congress on Formal Meth-
ods (FM 2019). Volume 11800 of Lecture Notes in Computer Science., Springer
(2019) 64–80

9. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem. Volume 1032 of Lecture Notes in
Computer Science. Springer (1996)

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing. MIT
Press (October 2000)

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.L., eds.: All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic. Volume 4350 of Lecture
Notes in Computer Science. Springer (2007)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2001)
13. Andrews, G.R.: Concurrent programming - principles and practice. Benjam-

in/Cummings (1991)
14. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta

Inf. 6 (1976) 319–340
15. Apt, K.R., de Boer, F.S., Olderog, E.: Verification of Sequential and Concurrent

Programs. 3 edn. Texts in Computer Science. Springer (2009)
16. Meseguer, J., Rosu, G.: The rewriting logic semantics project: A progress report.

Inf. Comput. 231 (2013) 38–69
17. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core

language for abstract behavioral specification. In Aichernig, B., de Boer, F.S.,
Bonsangue, M.M., eds.: Proc. 9th International Symposium on Formal Methods
for Components and Objects (FMCO 2010). Volume 6957 of Lecture Notes in
Computer Science., Springer (2011) 142–164

18. de Gouw, S., de Boer, F.S., Ahrendt, W., Bubel, R.: Integrating deductive verifica-
tion and symbolic execution for abstract object creation in dynamic logic. Software
and Systems Modeling 15(4) (2016) 1117–1140

19. Steele, G.L.: Making asynchronous parallelism safe for the world. In: Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 1990), ACM (1989) 218–231

20. Li, Y., Su, Z., Wang, L., Li, X.: Steering symbolic execution to less traveled
paths. In: Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA
2013), ACM (2013) 19–32

25

21. Guo, S., Kusano, M., Wang, C., Yang, Z., Gupta, A.: Assertion guided symbolic ex-
ecution of multithreaded programs. In: Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2015), ACM (2015) 854–865

22. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In Vitek, J., Lin, H., Tip, F., eds.: Proc. ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI’12), ACM
(2012) 193–204

23. Scheurer, D., Hähnle, R., Bubel, R.: A general lattice model for merging symbolic
execution branches. In Ogata, K., Lawford, M., Liu, S., eds.: Proceedings of the
18th International Conference on Formal Engineering Methods (ICFEM 2016).
Volume 10009 of LNCS., Springer (2016) 57–73

24. Boonstoppel, P., Cadar, C., Engler, D.: RWset: Attacking path explosion in
constraint-based test generation. In Ramakrishnan, C. R.and Rehof, J., ed.: Tools
and Algorithms for the Construction and Analysis of Systems, Springer (2008)
351–366

25. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2005), ACM (2005) 110–121

26. Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Proceedings of the 9th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2003), Springer-Verlag (2003) 553–568

27. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with Java
PathFinder. SIGSOFT Softw. Eng. Notes 29(4) (2004) 97–107

28. Bruns, D.: Deductive verification of concurrent programs. Technical Report 3,
Karlsruher Institut für Technologie (KIT) (2015)

29. Beckert, B., Klebanov, V.: A dynamic logic for deductive verification of concurrent
programs. In: Proc. Fifth IEEE Intl. Conf. on Software Engineering and Formal
Methods (SEFM 2007), IEEE Computer Society (2007) 141–150

30. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Sci. Comput. Program. 77(12) (2012) 1289–1309

31. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for
distributed concurrent systems. Theoretical Computer Science 365(1) (2006) 23–66

32. Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of dynamic systems:
Component reasoning for concurrent objects. Electr. Notes Theor. Comput. Sci.
203(3) (2008) 19–34

33. Peleg, D.: Concurrent dynamic logic. In: Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing (STOC 1985), ACM (1985) 232–239

34. Peleg, D.: Communication in concurrent dynamic logic. J. Comput. Syst. Sci.
35(1) (1987) 23–58

35. Benevides, M.R.F., Schechter, L.M.: Propositional dynamic logics for communi-
cating concurrent programs with CCS’s parallel operator. J. Log. Comput. 24(4)
(2014) 919–951

26

	SymPaths: Symbolic Execution Meets Partial Order Reduction

