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Abstract. Loosely-coupled distributed systems organized as collections
of so-called cloud-native microservices are able to adapt to traffic in very
fine-grained and flexible ways. For this purpose, the cloud-native mi-
croservices exploit containerization and container management systems
such as Kubernetes. This paper presents a formal model of resource con-
sumption and scaling for containerized microservices deployed and man-
aged by Kubernetes. Our aim is that the model, developed in Real-Time
ABS, can be used as a framework to explore the behavior of deployed
systems under various configurations at design time—before the systems
are actually deployed. We further present initial results comparing the
observed behavior of instances of our modeling framework to correspond-
ing observations of real systems. These preliminary results suggest that
the modeling framework can provide a satisfactory accuracy with respect
to the behavior of distributed microservices managed by Kubernetes.

1 Introduction

Software that was considered scalable yesterday, may now be perceived as in-
flexible and overly entangled compared to the suites of so-called microservices
that are today widely used [4]. Microservices are loosely coupled, independently
deployed, cloud-native small services [26]. Kubernetes [16] is a framework to re-
siliently run distributed systems built from such microservices; it takes care of
scaling and failover for the application, provides deployment patterns, service
discovery, load balancing and other development-related functionalities.

The underlying technology for orchestrating microservices with Kubernetes,
is containerization [11]. Containers encapsulate a microservice environment, ab-
stracting details of machines and operating systems from the application devel-
oper and the deployment infrastructure. Well-designed containers and container
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images are scoped to a single microservice, such that managing microservices
means managing containers rather than machines. Thus, containerization en-
ables a shift from machine-oriented to application-oriented orchestration of a
system’s deployment by managing containers to minimize the downtime for any
deployed microservice, even when the system is flooded with requests.

In this paper, we develop a formal model of resource consumption and scaling
for containerized microservices deployed and managed by Kubernetes. Although
this model abstracts from many aspects of Kubernetes (e.g., self-healing, roll-
outs, rollbacks, and storage orchestration), it already allows system deployment
under several configurations to be explored at the modeling level, before the
system is actually deployed. Our objective with this work is to develop a mod-
eling framework which can help the developer in finding a deployment strategy
for a microservice-based system which meets the system’s performance require-
ments. We aim to facilitate the comparison of different deployment strategies
on a highly configurable and executable model. Although not addressed in this
paper, the formal model can also be used to verify liveness and safety properties
for workflows deployed as microservices with Kubernetes.

The Kubernetes model has been developed using Real-Time ABS [6, 22],
a formal executable modeling language targeting distributed and cloud-based
systems. We present a preliminary validation of our work by comparing results
obtained with the Kubernetes model to observations of a real system running on
HPC4AI [3], a cluster for deploying high-performance applications. The results
of this comparison suggest that the model-based analysis of an application’s
deployment complies with the observed performance of its actual deployment.

The main contributions of this paper can be summarized as follows:

– Formalization: We develop a succinct formal executable model of Kuber-
netes, a state-of-the-art management framework for monitoring resources
consumption and scalability of microservices;

– Configurable modeling framework: The developed Kubernetes model
can be configured to different client workloads and to different microservices
running in parallel and affecting each others performance. By means of sim-
ulations, system administrators can easily compare how different parameter
configurations affect the performance of their deployed microservices at the
modeling level;

– Evaluation: The proposed modeling framework is validated by comparing
an instance of the framework, modeling a real system deployed using Kuber-
netes, to the modeled system. We consider several scenarios in which different
workloads will trigger the need for automatic autoscaling. The results sug-
gest that our modeling framework can provide a satisfactory accuracy with
respect to the behavior of real systems.

Paper overview. Section 2 introduces microservices, Kubernetes and Real-Time
ABS. Section 3 presents the developed Kubernetes model. Section 4 discusses
how the model was validated. Section 5 surveys related work and Section 6
concludes the paper.
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2 Background

2.1 Microservices, containers and their management via Kubernetes

Microservices [26] are small basic services which are easy to adapt to distributed
hardware. They stem from service-oriented architectures (SOA) [14] and service-
oriented computing (SOC) [17]. Microservices are so-called cloud native; i.e.,
they are built to run scalable applications on cloud infrastructure. An applica-
tion consists of a collection of loosely coupled microservices. This decoupling
makes them easier to develop, deploy, scale, monitor and maintain in isolation.
Microservice architectures facilitate scalability since new instances of the same
microservice can be launched to split the workload locally, without scaling the
overall service.

Containers encapsulate execution environments for microservices, abstract-
ing from details of physical and virtual machines and operating systems from the
application developer and the deployment infrastructure. Containers have been
proposed instead of heavy VMs, and raise the level of abstraction from running
a service on virtual hardware to running it using logical resources. Containers
keep the advantages of virtualization such as modularity, but the unit of deploy-
ment is the container and not a full VM, which opens for better utilization of
resources. Containers offer better scalability and maintainability because they
can be added or updated easily, such that resources can be shared in clusters to
which containers can be added or removed on-demand.

By encapsulating microservices in containers, the services can be monitored
with respect to service performance and resource utilization. In contrast to VMs,
which run all components, including an operating system on top of virtualized
hardware, containers are lightweight but still keep their own filesystem, CPU,
memory, and process space similar to a VM. However, they are decoupled from
the underlying infrastructure, and additional containers can be created at exe-
cution time rather than only at deployment time. They are also portable across
clouds and OS distributions [15], therefore they require much less space and have
faster booting time.

Kubernetes is an open-source system3 for managing containerized applications
across multiple hosts. It provides basic mechanisms for deployment, mainte-
nance, and scaling of applications. Figure 1 depicts a logical representation of a
Kubernetes instance in a public or private cloud. Among all the components im-
plementing its functionalities, in the rest of this section, we briefly introduce the
main Kubernetes components related to resource management, load balancing
and autoscaling4 (for further details, see [16]).

Pods are the basic scheduling unit in Kubernetes. They are high-level ab-
stractions for groups of containerized components. A pod consists of one or
more containers that are guaranteed to be co-located on the host machine and
can share resources. A pod is deployed according to its resource requirements
3 https://github.com/kubernetes/kubernetes/
4 https://kubernetes.io/docs/concepts/

https://github.com/kubernetes/kubernetes/
https://kubernetes.io/docs/concepts/


4 G. Turin et al.

Worker Node-1

Pod

Container

Container

Resources status:
CPU: 2300/4000
Memory: 1.5G/4G

Pod

Container

Container

Master Node

API server

VM VM

Public or private cloud

API pods

Monitor

Dashboard

ProxyCloud 
controller
Scheduler

Controller managers

Scheduler
s

LoadBalancer
s

Monitors

Autoscalers
Controller managers

Scheduler
s

LoadBalancer
s

Monitors

Autoscalers
Controller managers

LoadBalancers

Monitors

Autoscalers

OS OS

Worker Node-N

Resources status:
CPU: 3200/4000
Memory: 1.9G/4G

Pod

Container

Container

VM

API pods

Monitor

Proxy

OS

Pod
Container

…

Pod
Container

Pod
Container

Pod
Container

Fig. 1: A logical representation of Kubernetes components in a generic cloud
infrastructure. The colors mark services deployed on the cluster, their controller
managers reside on the master and their pods are distributed among the workers.

and has its own specified resource limits. For two or more pods to be deployed
in the same node, the sum of the minimum amounts of resources required for
the pods needs to be available in the node. All pods have unique IP address,
which allows applications to use ports without the risk of conflict. Within the
pod, containers can reference each other directly, but a container in one pod
cannot address a container in another pod without passing through a reference
to a service; the service then holds a reference to the target pod at the specific
pod IP address. The IP addresses of pods are ephemeral; i.e., they are reassigned
on pod creation and system boot.

Services represent components that act as basic internal load balancers and
ambassadors for pods. A service groups together a logical collection of pods that
perform the same function and presents them as a single entity. This allows
the Kubernetes framework to deploy a service that can keep track of and route
to all the back-end containers of a particular type. Internal consumers only
need to know about the stable endpoint provided by the service. Meanwhile,
the service abstraction enables the scaling or replacing of back-end work units
as necessary. The IP address of a service remains stable regardless of changes
to the pods to which it routes requests. By deploying a service, the associated
pods gain discoverability, which simplifies container designs. Whenever access
to one or more pods needs to be provided to another application or to external
consumers, a service can be configured. Although services, by default, are only
available using an internally routable IP address, they can be made available
outside of the cluster.

Autoscalers are responsible for ensuring that the number of pods deployed
in the cluster matches the number of pods in its configuration. There is one
autoscaler for each service, managing a group of identical, replicated pods which
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are created from pod templates and can be horizontally scaled. Autoscalers are
processes that refer to a pod template and control parameters to scale identi-
cal replicas of a pod horizontally, i.e. by increasing or decreasing the number of
running copies. Thus, autoscalers facilitate load distribution and increase avail-
ability natively within Kubernetes.

Nodes in a cluster are each given a role (master or worker) within the Kuber-
netes ecosystem. One node functions as the master node, it implements a server
that acts as a gateway and controller for the cluster by exposing an API for
developers and external traffic. It carries out scheduling, and orchestrates com-
munication between other components. The master node acts as the primary
point of contact with the cluster and is responsible for most of the centralized
logic that Kubernetes provides. The workers host pods and form the larger part
of a Kubernetes cluster. The worker nodes have explicit resource capabilities,
which are known by the system. These are given as a set of labels attached to a
worker node to specify its version, status and particular features.

Scheduler is in charge of assigning pods to specific nodes in the cluster.
The scheduler matches the operating requirements of a pod’s workload to the
resources that are available in the current infrastructure environment, and places
pods on appropriate nodes. The scheduler is responsible for monitoring the avail-
able capacity on each node to make sure that workloads are not scheduled in
excess of the available resources. The scheduler needs to know the total capacity
of each node as well as the resources already allocated to existing workloads on
the nodes.

2.2 Real-Time ABS

The abstract behavioral specification language (ABS)5 is an actor-based, object-
oriented modeling language targeting concurrent and distributed systems and
supports the design, verification, and execution of such systems [18]. ABS has
a Java-like syntax and a concurrency model, based on active objects, which
decouples communication and synchronization using asynchronous method calls,
futures and cooperative scheduling [7]. ABS is an open-source research project.6

The functional layer of ABS is used to model computations on the internal
data of objects. It allows designers to abstract from the implementation de-
tails of imperative data structures at an early stage in the software design. The
functional layer combines parametric algebraic data types (ADTs) and a simple
functional language with case distinction and pattern matching. ABS includes a
library with predefined datatypes such as Bool, Int, String, Rat, Float, Unit, etc.
It also has parametric datatypes such as lists, sets and maps. All other types
and functions are user-defined.

The imperative layer of ABS allows designers to express communication and
synchronization between active objects. In the imperative layer, threads are en-
capsulated within COGs [18,28] (concurrent objects groups). Threads are created

5 www.abs-models.org
6 ABS can be found on GitHub at github.com/abstools/abstools.

http://www.abs-models.org
https://github.com/abstools/abstools
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automatically at reception of a method call and terminated after the execution of
the method call is finished. ABS combines active (with a run method which is au-
tomatically activated) and reactive behavior of objects by means of cooperative
scheduling: Inside COGs threads may suspend at explicitly defined scheduling
points, after which control may be transferred to another thread. Suspension
allows other pending threads to be activated. The suspending thread does not
signal any other particular thread, instead the selection of the next thread to
be executed is left to the scheduler. Between these scheduling points, only one
thread is active inside a COG, which means that race conditions are avoided.

Real-Time ABS [6] extends ABS with support for the modeling and manip-
ulation of dense time. This extension allows the logical execution time to be
represented inside methods. The local passage of time is expressed in terms of
duration statements (which constrain time advance, similar to guards in, e.g.,
UPPAAL [23] and Real-Time Maude [27]). To express dense time, we consider
the two types Time and Duration Real-Time ABS provides. Time values capture
points in time as reflected on a global clock during execution. In contrast, finite
durations reflect the passage of time as local timers over time intervals.

ABS is supported by a range of analysis tools (see, e.g., [1]); for the analyses
in this paper, we are using the simulation tool which generates Erlang code.

3 A Kubernetes Model in Real Time ABS

Service
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Fig. 2: The architecture of the modeled Ku-
bernetes cluster

In this section, we present the
Real-Time ABS model of Kuber-
netes, with a focus on resource
management and autoscaling, by
modeling the Kubernetes compo-
nents involved in the deployment
of a service. We aim for the model
to be executable and to faithfully
reproduce the behavior of Kuber-
netes. The precision of this model
determines the predictive capa-
bilities of the simulations of real
world scenarios.

Figure 2 shows the structure
of a modelled cluster. A service is
composed from its pods, an end-
point, a load balancer and an au-
toscaler. Clients invoke the service by sending a request to the endpoint which
gets a selected pod using the load balancer. A pod is deployed on a node and
consumes its resources while processing a request. The scheduler manages the
number of pods for the service and calls the autoscaler to deploy new pods. In
the remainder of this section, we discuss some selected aspects of this model.7

7 The full model is available at https://doi.org/10.5281/zenodo.3975006.

https://doi.org/10.5281/zenodo.3975006
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3.1 Modeling of Pods

A service is carried out by its pods, for simplicity in the proposed model pods
are assumed to consist of a single container (a pod with many containers would
correspond to a pod running one container which consumes the sum of their con-
sumed resources). They are deployed onto nodes whose resources are consumed
while processing requests.

Figure 3 shows the model of a pod using the PodObject class: a PodObject is
instantiated by passing the configuration parameters which are serviceName, id,
compUnitSize, cpuRequest, cpuLimit, monitor (used by the method processRequest
in Fig. 4) and insufficientMemCooldown. After the underlying node is set by the
setNode method, the refreshAvailableCpu cycle starts. The PodObject class has a
custom scheduler which executes refreshAvailableCpu as the first method of every
time interval. Note that the auxiliary function reset_availCpu_scheduler, which
is set as custom scheduler of the COG by the expression inside square brackets
(Fig. 3 Line 1), ensures that the scheduler gives priority to the execution of
method refreshAvailableCpu and guarantees that every consumed CPU unit is
counted in the right time interval. If availableCpu falls to zero the pod has reached
its cpuLimit meaning no more CPU will be consumed within that time interval.
The allocateMemory and releaseMemory methods manage memory allocation and
deallocation on the Node, they are both called in the processRequest method. If
the Node’s free memory is not sufficient, the allocateMemory method waits for
insufficientMemCooldown time before retrying.

Figure 4 shows processRequest method (called by clients) in a PodObject,
which models resource consumption while processing a request. In our model, a
Request is modeled as a pair of CPU and memory costs. The method first stores
information about the CPU and memory cost, a time stamp started, for the
calling time of a request, and a deadline for the request to be processed. At lines
2 and 3 the required memory is allocated, the request cost is then consumed one
step at a time in the loop of lines 6–17. The size of the step is compUnitSize and
is set in the pod configuration, which determines the amount of CPU the pod
can consume in a round, having the same compUnitSize for every pod achieves
fair CPU scheduling on a node. If the Node runs out of CPU resources, the
consumption is suspended (consumeCpu sets the variable blocked to True) for
that time interval, it is then resumed in the next time interval after the pod’s
monitor is updated. At line 9 availableCpu is checked, if it is equal to zero the
pod limit is reached and no more cost is consumed within that time interval.
Once the request cost is entirely consumed, at line 19 the previously allocated
memory is released and at line 21 the total time spent in the process is computed
subtracting started to the actual time. Line 22 shows how the spentTime is then
compared to the deadline This approximates the quality of service related to the
response time, separating served requests between successes and failures. The
passing of time is a consequence of the limited amount of available CPU on a
node in every time interval. As explained in Sect. 2.2, the value of time during
the model execution is managed by the functions provided by Real-Time ABS.
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1 [Scheduler: reset_availCpu_scheduler(queue)] class PodObject(String serviceName, Int id,
2 Rat compUnitSize, Rat cpuRequest, Rat cpuLimit, ResourcesMonitor monitor,
3 Rat insufficientMemCooldown) implements Pod {
4 Bool blocked = False; Node node = null; Rat availableCpu = 0;
5
6 Unit setNode(Node n){ this.node = n; this!refreshAvailableCpu(); }
7
8 Unit refreshAvailableCpu(){
9 this.availableCpu = cpuLimit; // sets max available CPU for this time interval

10 this.blocked = False;
11 await duration(1,1);
12 this!refreshAvailableCpu();}
13
14 Bool processRequest(Request request, Time started, Duration deadline){ ... }
15
16 Rat allocateMemory(Rat requiredMemory){
17 Bool memoryAllocated = False;
18 Rat givenMemory = 0;
19
20 while (!memoryAllocated){
21 givenMemory = await node!allocateMemory(requiredMemory);
22 if (givenMemory > 0){ memoryAllocated = True; }
23 else {await duration(insufficientMemCooldown,insufficientMemCooldown);}}
24 return givenMemory;}
25
26 Rat releaseMemory(Rat amount){ Rat v = await node!releaseMemory(amount); return v;}
27 ...}

Fig. 3: PodObject class

1 Bool processRequest(Request request, Time started, Duration deadline) {
2 Rat cost = requestCost(request); Rat requiredMemory = memory(request);
3 this.allocateMemory(requiredMemory); // memory allocation
4 monitor!consumedMemoryUpdate(requiredMemory);
5
6 while (cost > 0){
7 ...
8 if (cost >= compUnitSize){
9 await this.availableCpu > 0; // check on the pod limit

10 await node!consumeCpu(compUnitSize,this); // consume node CPU
11 await !this.blocked; // refresh sync
12 availableCpu = availableCpu − compUnitSize;
13 monitor!consumeCpu(compUnitSize);
14 cost = cost − compUnitSize; // cost decreases
15 } else if (cost > 0){ ... } // consume remaining cost
16 ... suspend;}
17
18 this.releaseMemory(requiredMemory); // memory release
19 monitor!consumedMemoryUpdate(−requiredMemory);
20 Rat spentTime = timeDifference(now(),started); // deadline check
21 Bool success = (spentTime <= durationValue(deadline));
22 return success; }

Fig. 4: Pod processRequest method

1 interface ServiceLoadBalancer{
2 Pod getPod();
3 Unit addPod(Pod p, ResourcesMonitor rm);
4 Unit removePod(Pod p);
5 List〈Pair〈Pod,ResourcesMonitor〉 〉 getPods();
6 ServiceState getConsumptions(); // Total service consumption
7 List〈PodState〉 getPodsConsumptions();}

Fig. 5: ServiceLoadBalancer interface
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3.2 Modeling of Services

A service is invoked through its endpoint which provides the service reference for
the clients. As explained in Sec. 2.1, every service has its own load balancer that
chooses the pod to which the endpoint forwards the request. The load balancer’s
policy for work distribution between all the pods of the service is round robin.
Figure 5 shows the ServiceLoadBalancer interface of our model: getPod returns
the pod for forwarding a request, addPod and removePods add and remove pods
from the pods of the service, getPods returns the service’s available pods and
getConsumptions and getPodConsumptions return the total consumption and per
pod consumption values in the current time interval.

Like in a real Kubernetes installation, a service in our model is config-
urable. Several parameters are passed on service instantiation as PodConfig and
ServiceConfig. PodConfig specifies the CPU request and limit for the pods, the
cool-down time for insufficient memory and the computation unit size. The mem-
ory cool-down is the time awaited before retrying in case there’s not enough free
memory on the node. The computation unit size is the amount of cost computed
every time the pod is given the CPU. For example, if CompUnitSize for Service
A is 1 and for Service B is 2, the pods of Service B will execute twice the cost of
the pods of Service A every time they are scheduled. This allows control over the
CPU time scheduling, setting all unit sizes to the same amount will provide a
fair scheduling, while setting different values allows to set different priorities for
the pods. ServiceConfig specifies the initial number of pods, the minimum and
maximum number of pods for the service and the configuration of the autoscaler.

3.3 Modeling of Autoscalers

Every service in our model has also its own Autoscaler which creates and deletes
pods. On service initialization it creates the specified starting number of pods
and then periodically checks the average load on the pods. In case the given
thresholds for scaling are reached, it creates or deletes pods accordingly. After
creating a pod the Autoscaler calls the Scheduler to deploy it on a node. Fig-
ure 6 shows the resize method of the Autoscaler, it fetches the average pod CPU
consumption ratio in the current time interval, waits for the next time interval
to apply the scaling, then starts over. The Autoscaler has its own configuration:
cycle period gives the frequency of resize execution, the thresholds for scaling
(percentages of requested CPU) up and down are modeled by downscaleThreshold
and upscaleThreshold and finally, downscalePeriod specifies how long a pod set
has to stay idle before shrinking. While scaling up is immediate as soon as the
threshold is hit, for scaling down the load is required to stay below the threshold
for a configurable period of time before any pod is deleted.

3.4 Modeling of Nodes

The Kubernetes master node is not explicitly modeled, its functionalities are
implemented in the model logic, while Node models the Kubernetes worker node,
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1 Unit resize(){
2 ServiceState ss = await lb!getConsumptions(); // get service consumption
3 Rat serviceRatio = cpuRatio(ss);
4
5 if (serviceRatio < downscaleThreshold){ // updates the cumulative counter
6 underDsThresholdCounter = underDsThresholdCounter + 1;
7 } else { // reset it
8 underDsThresholdCounter = 0;}
9 await duration(cycle, cycle); // scale in the successive time interval

10 if (serviceRatio >= upscaleThreshold && nPods < maxPods){
11 ... // scale up}
12 if (underDsThresholdCounter >= downscalePeriod && nPods > minPods){
13 ... // scale down}
14 this!resize();}

Fig. 6: ServiceAutoscaler resize method

which has a given amount of resources (CPU and memory) to be consumed by
its running pods. CPU and memory capacities for a node are specified upon
node creation:

– CPU is refreshed every time interval, the total amount of computed costs on
a node in the time interval cannot exceed the node’s CPU capacity.

– Memory is time independent, it can be decreased and restored, it is de-
creased when a pod starts the processing of a request and allocates memory
cost on the node memory. If there is enough free memory then it is decreased
for the whole computation time and the allocated amount is restored on re-
quest completion. In case the free memory is insufficient, the request remains
pending until enough memory is available.

The available resources of the node are statically reserved when a pod is
scheduled. The amount of CPU required by the pod serves as discriminant for
the scheduler to find a suitable node. (This easily extends to matching over
multiple resource capabilities using the aforementioned label mechanism, which
we have left for future work.) Hence a node can be fully occupied while actually
idle, since there can be many pods deployed on it, but none is receiving requests.

3.5 Modeling of Scheduler

The Scheduler deploys pods on nodes. Figure 7 shows the deployPod method of
the Scheduler: it checks the pod CPU request and compares it to the available
CPU in the least busy node. If there is enough available CPU, the pod is sched-
uled on that node, otherwise it remains pending, to be scheduled in another time
interval.

4 Validating the Model

We report on initial experiments to assess the precision of our model with respect
to real microservices managed by Kubernetes.
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1 Node deployPod(Pod p, ResourcesMonitor rm){
2 Bool deployed = False;
3 Rat requestedCpu = await rm!getCpuRequest();
4 Node result = null;
5
6 while (!deployed){
7 result = head(activeNodes);
8 Rat maxCpu = await result!getAvailableCpu(); // total cpu − total requested CPU
9 List〈Node〉 nodesToCheck = tail(activeNodes);

10 foreach ( n in nodesToCheck){ ... // get the node with maximum available CPU}
11 if (maxCpu >= requestedCpu){await result!addPod(p,rm); deployed = True;}
12 else{await duration(1,1);} }
13 return result;}

Fig. 7: Scheduler deployPod method

4.1 Experimental setup

We set up experiments in which we compare two simple scenarios of microservices
running on a cluster to simulations in our model.

HPC4AI. The experiments have been performed on the HPC4AI infrastruc-
ture. HPC4AI [3] is a centre on High-Performance Computing for Artificial In-
telligence at the University of Turin and the Polytechnic University of Turin,
which offers on-demand provisioning of AI and BDA cloud services to a hetero-
geneous industrial community of Small-Medium Enterprises (SMEs) active in
many different sectors and leaning towards Industry 4.0. The centre aims at an
increasingly connected ecosystem of devices that produce digital data of increas-
ing variety, volume, speed and volatility. To fully exploit its potential, the next
generation of AI applications must embrace distributed High-Performance Com-
puting (HPC) techniques and platforms, where computing and data management
capabilities of distributed HPC are readily and easily accessible on-demand to
data scientists, who are more used to perform their work locally on interactive
platforms. The centre is currently looking at using containerized microservices
for this purpose. The preliminary results of this paper contribute towards a mod-
eling framework to equip HPC4AI with deployment decisions for this complex
setup.

Simulations. We replicated two simple scenarios in the model, each simulating
the execution of a stress test on a microservice system deployed on the HPC4AI
cluster. The stress tests have been created with Apache Jmeter, a tool generating
traffic to test web services. To reproduce the same circumstances, we modeled
the cluster infrastructure and measured the load generated during the stress
test for any type of service request. To this end, we represented stress tests as
waves of requests (see Figs. 8a and 10c). To reproduce the load of a wave, the
model instantiates a certain number of clients; by duplicating the number it will
simulate twice the load of the original wave.
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We consider single workload and mixed workload scenarios. In the single
workload scenario the flow of requests is generated by three succeeding groups
of threads targeting the same service and running at different speed, such that
the central wave, with the highest load (see Fig. 8a) delivers twice the number of
requests than the first and the third. Simulating complicated stress tests requires
more measurements to be taken. In the mixed workload scenario we therefore
considered two services sharing the available resources and affecting each others
performance. In this setting, each service is targeted by a thread group generating
a certain load for the service.

To provide a baseline for the resource consumption of the model, we tuned the
model by stressing each service in isolation. After that, it is possible to simulate
mixed workloads. To generate a group of clients that reproduces a certain load in
the model, we needed to find the balance between the number and the cost of the
requests sent at any step. Here we decide also on the granularity of the model: a
large set of requests in the real system will be simulated in the model with few
costly ones, as done with batch processing. This will keep the granularity of the
simulations coarse, instead of fine-grained with many cheap requests, and will
allow us to run big workloads in the model in a short amount of time.

The duration of a time interval in the model is decided during the model
calibration, where the size of the waves in the requests determines the length of
the stress test on the cluster, and the granularity of the model the number of
time intervals of the simulation.

Experiments. We set up two experiments with a time interval corresponding
to 2 seconds.

Experiment 1. The purpose of Experiment 1 is to check the precision of the
modeling framework. We do this by running a single service stress test 10 minutes
long, in order to measure the model’s ability to reproduce Kubernetes autoscaling
while the service is processing requests and then compare the load experienced
on the cluster with the one seen in the simulation. In more detail, the cluster
setting was one service deployed and three nodes available with 4000 millicores
of CPU capacity each.

We start with one pod requiring 1000 millicores of CPU and limited to 2500.
The autoscaling threshold was set to 80% of the required CPU busy and the
downscale time was 300 seconds of inactivity. The load on the cluster has been
generated with Jmeter:8 a group of 50 threads send requests with a given timing
for a three minutes, flooding the system with a wave. Then for the next three
minutes they generate requests at twice the speed (the second wave) before
sending the final requests again at their initial speed (see Fig. 8a). This stress
test has been replicated in the model by bulking clients up to reach the first wave
load, then twice that number of clients has been used to flood during the second
wave, and finally return to the initial amount of request in the third wave (see
Fig. 8c), to obtain the same total load in the simulation and real Kubernetes
8 https://jmeter.apache.org/

https://jmeter.apache.org/
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deployment. The ABS code emulating the clients can be found in the repository
of the simulator along with the Jmeter stress test descriptor.9

Experiment 2. The purpose of Experiment 2 is to test the prediction ability of
the modeling framework. Namely, given the same load of requests of two services
to the model and the real system, can we predict the scaling behavior of the real
system? We run a second stress test 13 minutes long in a scenario with the two
services, where each service goes through variable load, so that we can simu-
late scheduling and autoscaling in a resource-intensive scenario under different
configurations. The first service is the same as in Experiment 1 and configured
similarly; the second service has a different profile of resource consumption, its
pods require 1000 millicores of CPU and limited to 2500, but have an upscale
threshold of 95% and a downscale time of 300 seconds. The stress test load can
be divided into four phases and is different for both services: one uses the same
thread group as the first simulation, but inverting the load of the three waves: it
starts with a high load of requests, then reduces the load to half and finally in-
creases it again to the double. The load on the second service has been calibrated
separately, it starts low, turns high, then drops down again before finishing with
a demand that is much higher than the previous high traffic wave.

4.2 Results of the Experiments

Experiment 1. Figure 8 reports on the results of the first experiment. The load in
the real system, shown in Fig. 8a, triggers the scaling of pods, shown in Fig. 8b.
The approximated load in the model, shown in Fig. 8c, triggers the scaling of
pods, shown in Fig. 8d. The graphs suggest that the model is properly calibrated
and can reproduce the scalability scenario with reasonable accuracy.

Experiment 2. The results of the second experiment are shown in Figs. 10, 11
and 12. In this case we first reproduced the load in the Kubernetes model, based
on the measurements of the separate loads of the two services, then we executed
the model with the two services, potentially affecting each others performance,
and therefore affecting also the scalability of the services. Figure 10 shows the
result of this calibration.

We then tested different configurations of the model before doing the cor-
responding runs on the real cluster. This carried two main benefits: it lowered
the resources needed to test several configurations, and it emulated a real time
interval with few seconds of computation time.

Service 1 Service 2
Calibration 80% 95%
Configuration 1 95% 80%
Configuration 2 95% 95%

Fig. 9: Upscale thresholds for Experiment 2.

We considered two different
configurations, changing the up-
scale threshold for the services.
In the first configuration, shown
in Fig. 11, we obtained similar
graphs for the model and for the
9 https://github.com/giaku/abs-k8s-model

https://github.com/giaku/abs-k8s-model
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Fig. 8: The results of the first experiment.

real system. The yellow line represents the number of pods for the first service,
which stayed beneath 2 as a result of having a 95% scaling threshold, the blue
line represents the second service, which raised up to six with an upscale thresh-
old of 80%. In the second configuration, shown in Fig. 12, we tested 95% as the
threshold for the second service as well, its number of pod grew at most at 5
(blue line) both in the simulator and on the real cluster. Figure 9 summarizes
the different configurations.

5 Related Work

Cloud-based models in ABS. Whereas there are many cloud modeling languages
(see, e.g., [5]), this paper is part of a line of work on formal modeling of virtualized
systems in ABS. The perspective on virtualized systems we have taken, is to focus
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Fig. 10: Calibration for the mixed workload scenario of the second experiment.

on resource provisioning and quality-of-service, which typically affects the timing
behavior of systems on the cloud. The underlying technical idea is to introduce a
separation of concerns between resource-needs for different computational tasks,
and resource-provisioning in the infrastructure [20–22]. This approach has been
successfully applied to different kinds of virtualization infrastructure, including
Amazon AWS [19], Hadoop YARN [25] and Hadoop Spark Streaming [24]. The
concurrency model of ABS, based on actors, has also been used for verification to
industrial case studies in a DevOps setting [1] and for parallel cost analysis [2], a
novel static analysis method related to parallelism and maximal span. The formal
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Fig. 11: Results for the first configuration, comparing the predicted need for
pods in the model the observed use of pods on the real cluster.

model of Kubernetes presented in this paper differs from previous work in its
nested virtualization; i.e., the containerization of microservices lead to two levels
of book-keeping in the resource-sensitive architecture, corresponding to the pods
ond nodes of the Kubernetes framework. Furthermore, the notion of indirection
due to the service-concept and the auto-scaling groups add complexity compared
to previous work.

Optimization of microservice management. It has been shown that deployment
management can be formalized as finite state machines, such as the Aeolus [13]
and TOSCA-compliant deployment models [10], which can be adapted to for-
mally reason about the static deployment of microservices; i.e., to express com-
ponent resilience and static links between components. For example, the static
deployment of microservices can be encoded as a constraint problem [9]. This
work, which is based on Aeolus, takes an ABS model as its starting point. In
contrast to our work, the authors are not restricted to modelling and simulation
but are able to decide on optimal deployment. However, the optimization can
only handle very limited forms of reconfiguration, and does not address dynamic
scaling as modelled in our work.
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Fig. 12: Results for the second configuration, comparing the predicted need for
pods in the model the observed use of pods on the real cluster.

Testing environments for Cloud-based services. In order to perform tests on
the real Kubernetes platform, we looked for a tool that allowed to simulate
multiple requests in parallel to the service and to simulate behavior that varies
over time. After a brief investigation about which tools are available on the
market (eg: Apache JMeter10, Locust11, Tsung12, etc.) we decided to use Apache
JMeter since it is an open-source tool, it is multiplatform, multiprotocol, it comes
with a simple GUI for configuration and to run the simulation from a shell, it
presents the simulation results in textual or graphical format. Apache JMeter is
used both by companies and in the scientific field to emulate traffic to network
services [8, 12].

The most significant KPIs that we are looking for in order to evaluate the
service performance are the response time over time (which gives us an indication
about the quality of the offered service) and the number of requests per second
(to have an evaluation about the load our service undergoes).

10 https://jmeter.apache.org/
11 https://locust.io/
12 http://tsung.erlang-projects.org/

https://jmeter.apache.org/
https://locust.io/
http://tsung.erlang-projects.org/
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6 Conclusion and Future Work

In this paper, we present a formal model of resource consumption and scaling for
containerized microservices deployed and managed by Kubernetes. The model
focuses on how the deployment of such systems can behave under various con-
figurations to be explored at design time and abstract from other aspects of
Kubernetes such self-healing, rollouts, rollbacks, and storage orchestration. This
preliminary model and results contribute towards the development of a model-
ing framework which can help developers in finding a deployment strategy for a
microservice-based system which meets the system’s performance requirements.
The model is implemented in Real-Time ABS, it can be configured with differ-
ent client workloads and different microservices running in parallel and affecting
each others performance. The presented model can be used to explore different
configurations for loosely coupled microservices at design time.

In future work, we plan to extend the model with aspects related to resiliency
and reconfiguration of distributed and decoupled system, adding possible fail-
ures, volumes and stateful Kubernetes components. In particular, we plan to use
the resulting model to assess quality-of-service aspects of different configuration
choices by, e.g., predicting their response time and resource consumption. We
also plan to trace data movement within the cluster and predict how this may
affect the performance. We plan to validate such models using workloads col-
lected from hours, weeks or months of running real systems. We further plan to
investigate how such resiliency and reconfiguration can affect data access times
and patterns.
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