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Abstract. Non-determinism in a concurrent or distributed setting may
lead to many different runs or executions of a program. This paper
presents a method to reproduce a specific run for non-deterministic ac-
tor or active object systems. The method is based on recording traces
of events reflecting local transitions at so-called stable states during ex-
ecution; i.e., states in which local execution depends on interaction with
the environment. The paper formalizes trace recording and replay for a
basic active object language, to show that such local traces suffice to
obtain global reproducibility of runs; during replay different objects may
operate fairly independently of each other and in parallel, yet a program
under replay has guaranteed deterministic outcome. We then show that
the method extends to the other forms of non-determinism as found in
richer active object languages. Following the proposed method, we have
implemented a tool to record and replay runs, and to visualize the com-
munication and scheduling decisions of a recorded run, for Real-Time
ABS, a formally defined, rich active object language for modeling timed,
resource-aware behavior in distributed systems.

1 Introduction

Non-determinism in a concurrent or distributed setting leads to many different
possible runs or executions of a given program. The ability to reproduce and
visualize a particular run can be very useful for the developer of such programs.
For example, reproducing a specific run representing negative (or unexpected)
behavior can be beneficial to eliminate bugs which occur only in a few out
of many possible runs (so-called Heisenbugs). Conversely, reproducing a run
representing positive (and expected) behavior can be useful for regression testing
for new versions of a system.

Deterministic replay is an emerging technique to provide deterministic ex-
ecutions of programs in the presence of different non-deterministic factors [1].
In a first phase, the technique consists of recording sufficient information in a
trace during a run to reproduce the same run during a replay in a second phase.
Approaches to reproduce runs of non-deterministic systems can be classified as
either content-based or ordering-based replay. Content-based replay records the
results of all non-deterministic operations whereas ordering-based replay records
the ordering of non-deterministic events.
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This paper considers deterministic replay for non-deterministic runs of Ac-
tive Object languages [2], which combine the asynchronous message passing of
Actors with object-oriented abstractions. Compared to standard OO languages,
these languages decouple communication and synchronization by communicating
through asynchronous method calls without transfer of control and by synchro-
nizing via futures. We develop a method to reproduce the runs of active objects.
The method is ordering-based, as we represent the parallel execution of active
objects as traces of events. We show that locally recording events at so-called
stable states suffice to obtain deterministic replay. In these states, local execu-
tion needs to interact with the environment, e.g., to make a scheduling decision
or to send or receive a message. We formalize execution with record and replay
for a basic active object language, and show that its executions enjoy confluence
properties which can be described using such traces. These confluence properties
justify the recording and replay of local traces to reproduce global behavior.

Active object languages may also contain more advanced features [2], such as
cooperative scheduling [3, 4], concurrent object groups [3, 5] and timed, resource-
aware behavior [6]. With cooperative scheduling, an object may suspend its
current task while waiting for the result of a method call and instead schedule
a different task. With concurrent object groups, several objects share an actor’s
lock abstraction. With timed, resource-aware behavior, local execution requires
resources from resource-centers (e.g., virtual machines) to progress. These fea-
tures introduce additional non-determinism in the active object systems, in ad-
dition to the non-determinism caused by asynchronous calls. We show that the
proposed method extends to handle these additional sources of non-determinism.

The proposed method to deterministically replay runs has been realized for
Real-Time ABS [6], a modeling language with these advanced features, which has
been used to analyze, e.g., industrial scale cloud-deployed software [7], railway
networks [8], and complex low-level multicore systems [9, 10]. Whereas the lan-
guage supports various formal analysis techniques, most validation of complex
models (at least in an early stage of model development) is based on simulation.
The tracing capabilities have a small enough performance impact to be enabled
by default in the simulator. The simulator itself is implemented as a distributed
system in Erlang [11]. The low performance overhead comes from only recording
local events in each actor, which does not impose any additional communication
or synchronization, which are typically bottlenecks in a distributed system.

Contributions. Our main contributions can be summarized as follows:

– we propose a method to reproduce runs for active object systems based on
recording events reflecting local transitions from stable object states;

– we provide a formal justification for the method in terms of confluence and
progress properties for ordering-based record & replay for a basic actor lan-
guage with asynchronous communication and synchronization via futures;

– we show that the method extends to address additional sources of non-
determinism as found in richer active object languages; and

– we provide an implementation of the proposed method to record, replay and
visualize runs for the active object modeling language Real-Time ABS.
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class C {
Int n = 1;
Unit m1() { n = n - 1; }
Unit m2() { n = n * 3; }

}

// Main block
{

C o = new C();
o!m1();
o!m2();

}

Fig. 1: A simple program, with
two possible results

Fig. 2: The executions leading to the two
different results for the simple program.

Paper overview Section 2 provides a motivating example, Section 3 considers the
problem of reproducibility for a formalization of a basic active object language
and Section 4 formalizes record and replay over the operational semantics of the
basic language. Section 5 considers reproducibility for extensions to the basic
language. Section 6 presents our implementation of the method for Real-Time
ABS. Section 7 discusses related work and Section 8 concludes the paper.

2 Motivating Example

Consider the program in Fig. 1. It consists of a class C, with a single integer
field, initialized to 1 and two methods m1 and m2. The main block of the pro-
gram creates an active object o as an instance of the class, and performs two
asynchronous calls on o, o!m1() and o!m2() respectively. Since the calls are
asynchronous, the caller can proceed to make the second call immediately, with-
out waiting for the first call to complete. The two calls are placed in the queue
of o and scheduled in some order for execution by o. (We here assume method
execution is atomic, but this assumption will be relaxed in Section 5.)

Thus, even the execution of this very simple program can lead to two differ-
ent results, depending on whether o!m1() is scheduled before o!m2(), and con-
versely, o!m2() is scheduled before o!m1(). In the first case, the field n (which
is initially 1) will first be decremented by 1 and then be multiplied with 3, re-
sulting in a final state in which the field n has the value 0. In the second case,
the field n is first multiplied by 3, then decremented by 1, resulting in a final
state in which the field n has the value 2. Fig. 2 depicts the two cases (using
the visualization support in our tool, described in Section 6.3). Note that this
problem still occurs for languages with ordered message passing between two
actors (e.g., Erlang [11]) when the two calls are made by different callers.

The selection of run to execute is decided by the runtime system and is
thus non-deterministic for the given source program. In general, there can be
much more than two possible runs for a parallel active object system. If only
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a few of the possible runs exhibit a particular behavior (e.g., a bug), it can be
very interesting to be able to reproduce a particular run of the given program.
We propose a method to instrument active objects systems which allows global
reproducibility of runs through local control for each active object.

3 A Formal Model of Reproducibility

To formalize the problem of global reproducibility through local control for ac-
tive object systems, we consider a basic active object language in which non-
determinism stems from the order in which method calls are selected from the
queue of the active objects.

3.1 A Basic Active Object Language

P ::“ CL tT x; s u

CL ::“ classC tT x; Mu

M ::“ T m pT xq tT x; s u

s ::“ s; s | skip | x “ rhs

| if e t s u else t s u

| while e t s u | return e

rhs ::“ e | new C peq | e!mpeq | x.get

Fig. 3: BNF for the basic active
object language.

Consider a basic active object language with
asynchronous method calls and synchroniza-
tion via futures. The language has a Java-
like syntax, given in Fig. 3. Let T , C and m
range over type, class and method names, re-
spectively, and let e range over side-effect free
expressions. Overlined terms denote possibly
empty lists over the corresponding syntactic
categories (e.g., e and x).

A program P consists of a list CL of class declarations and a main block
tT x; su, with variables x of type T and a statement s. A class C declares fields
(both with types T ) and contains a list M of methods. A method m has a return
type, a list of typed formal parameters and a method body which contains local
variable declarations and a statement s. Statements are standard; assignments
x “ rhs allow expressions with side-effects on the right-hand side rhs.

Asynchronous method calls decouple invocation from synchronization. The
execution of a call f = o!m(args) corresponds to sending a message m(args)

asynchronously to the callee object o and initializes a future, referenced by f,
where the return value will be stored. The statement x = f.get retrieves the
value stored in the future f. This operation synchronizes with the method return;
i.e., the execution of this statement blocks the active object until the future f has
received a value. Messages are not assumed to arrive in the same order as they
are sent. The selection of messages in an object gives rise to non-determinism in
the execution. An example of a program in this language was given in Section 2.

3.2 An Operational Semantics for the Basic Language

We present the semantics of the basic active object language as a transition
relation between configurations cn. In the runtime syntax (Fig. 4), a configura-
tion cn can be empty (ε), or a set of objects, futures, and invocation messages.
We let o and f be dynamically created names from a set of object and future
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cn ::“ ε | object | future | invoc | cn cn q ::“ ε | process | q q
future ::“ futpf, valq val ::“ v | K
object ::“ obpo, a, p, qq a ::“ x ÞÑ v | a, a

process ::“ ta | su p ::“ process | idle
invoc ::“ invpo, f,m, vq v ::“ o | f | true | false | t

Fig. 4: Runtime syntax; here, o and f are object and future identifiers.

identifiers, denoted Identifiers. An active object obpo, a, p, qq has an identifier o,
attributes a, an active process p (that may be idle) and an unordered process
pool q. A future futpf, valq has an identifier f and a value val (which is K if the
future is not resolved). An invocation invpo, f,m, vq is a message to object o to
activate method m with actual parameters v and send the return value to the
future f . Attributes bind program variables x to values v. A process ta | su has
local variables a and a statement list s to execute. Values are object identifiers
o, future identifiers f , Boolean values true and false, and other literal val-
ues t (e.g., natural numbers). The initial state of a program consists of a single
active objects obpomain, a, p,Hq, where the active process p corresponds to the
main block of the program. Let namespcnq denote the set of object and future
identifiers occurring in a configuration cn.

Figure 5 presents the main rules of the transition relation cn Ñ cn1. A run
is a finite sequence of configurations cn0, cn1, . . . , cnn such that cni Ñ cni`1 for
0 ď i ă n. We assume configurations to be associative and commutative (so

we can reorder configurations to match rules), where
˚
ÝÑ denotes the reflexive

and transitive closure of Ñ. Let bindpm, v, f, Cq denote method lookup in the
class table, returning the process corresponding to method m in class C with
actual parameters v and with future f as the return address of the call. Thus,
every process has a local variable destiny which denotes the return address of the
process (i.e., the future that the process will resolve upon completion), similar
to the self-reference this for objects. We omit explanations for the standard rules
for assignment to fields and local variables, conditionals, while and skip.

Rule Activate formalizes the scheduling of a process p from the unordered
queue q when an active object is idle. In Async-Call, an asynchronous method
call creates a message to a target object o1 and an unresolved future with a fresh
name f . Object creation in New-Actor creates a new active object with a fresh
identifier o1, and initializes its attributes with initAttributespC, o1q, including
reference to itself (this). These are the only rules that introduce new names for
identifiers; let a predicate freshpoq denote that o is a fresh name in the global
configuration (abstracting from how this is implemented). Rule Load puts the
process corresponding to an invocation message in called object’s queue. Rule
Return resolves the future associated with a process with return value v, and
Read-Fut fetches the value v of a future f into a variable. With rule Context,
parallel execution in different active objects has an interleaving semantics.

Definition 1 (Stable configurations). A configuration cn is stable if, for all
objects in cn, the execution is blocked or the object needs to make a scheduling
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(Activate)

p P q

obpo, a, idle, qq
Ñ obpo, a, p, qztpuq

(Assign1)

v “ rresspa˝lq x P domplq

obpo, a, tl | x “ e; su, qq
Ñ obpo, a, tlrx ÞÑ vs | su, qq

(Assign2)

v “ rresspa˝lq x R domplq

obpo, a, tl | x “ e; su, qq
Ñ obpo, arx ÞÑ vs, tl | su, qq

(Cond1)

true “ rresspa˝lq

obpo, a, tl | if e ts1u else ts2u; su, qq
Ñ obpo, a, tl | s1; su, qq

(Cond2)

false “ rresspa˝lq

obpo, a, tl | if e ts1u else ts2u; su, qq
Ñ obpo, a, tl | s2; su, qq

(While)

s11 “ s1; while e ts1u

obpo, a, tl | while e ts1u; s2u, qq
Ñ obpo, a, tl | if e ts11u else tskipu; s2u, qq

(New-Actor)

a1 “ initAttributespC, o1q freshpo1q

obpo, a, tl | x “ new Cpq; su, qq
Ñ obpo, a, tl | x “ o1; su, qq obpo1, a1, idle,Hq

(Skip1)

obpo, a, tl | skip; su, qq
Ñ obpo, a, tl | su, qq

(Skip2)

obpo, a, tl | skipu, qq
Ñ obpo, a, idle, qq

(Context)

cn1 Ñ cn11
cn1 cn2 Ñ cn11 cn2

(Async-Call)

o1 “ rresspa˝lq v “ rresspa˝lq freshpfq

obpo, a, tl | x “ e!mpeq; su, qq
Ñ obpo, a, tl | x “ f ; su, qq invpo1, f,m, vq futpf,Kq

(Load)

p1 “ bindpm, v, f, classOfpoqq

invpo, f,m, vq obpo, a, p, qq
Ñ obpo, a, p, q Y tp1uq

(Return)

v “ rresspa˝lq lpdestinyq “ f

obpo, a, tl | return eu, qq futpf,Kq
Ñ obpo, a, idle, qq futpf, vq

(Read-Fut)

v ‰ K f “ rresspa˝lq

obpo, a, tl | x “ e.get; su, qq futpf, vq
Ñ obpo, a, tl | x “ v; su, qq futpf, vq

Fig. 5: Semantics of the basic active object language.

decision. An object is blocked if it needs to execute a get-statement. An object
needs to make a scheduling decision if its active process is idle.

Let G denote a stable configuration. We say that two stable configurations

G1 and G2 are consecutive in a run G1
˚
ÝÑ G2 if, for all cn such that G1

˚
ÝÑ cn

and cn
˚
ÝÑ G2, if cn ‰ G1 and cn ‰ G2 then cn is not a stable configuration.

Lemma 1 (Reordering of atomic sections). Let G1 and G2 be stable con-

figurations. If G1
˚
ÝÑ G2, then there exists a run between G1 and G2 in which

only a single object executes between any two consecutive stable configurations.

Proof (sketch). Observe that the notion of stability captures any state of an
object in which it needs input from its environment. The proof then follows
from the fact that the state spaces of different objects are disjoint and that
message passing is unordered. This allows consecutive independent execution
steps from different objects to be reordered. [\
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(Local-Assign1)

v “ rresspa˝lq x P domplq

a, tl | x “ e; su ; a, tlrx ÞÑ vs | su

(Local-Assign2)

v “ rresspa˝lq x R domplq

a, tl | x “ e; su ; arx ÞÑ vs, tl | su

(Local-While)

s11 “ s1; while e ts1u

a, tl | while e ts1u; s2u ; a, tl | if e ts11u else tskipu; s2u

(Local-Skip1)

a, tl | skip; su ; a, tl | su

(Local-Cond1)

true “ rresspa˝lq

a, tl | if e ts1u else ts2u; su
; a, tl | s1; su

(Local-Cond2)

false “ rresspa˝lq

a, tl | if e ts1u else ts2u; su
; a, tl | s2; su

(Local-Skip2)

a, tl | skipu ; a, idle

(Global-Activate)

p P q a, p
!; a1, p1 p “ tl | su

lpdestinyq “ f q1 “ qztpu

obpo, a, idle, qq
sched xo,fy
ÝÝÝÝÝÝÝÑ obpo, a1, p1, q1q

(Global-Return)

v “ rresspa˝lq lpdestinyq “ f

obpo, a, tl | return eu, qq futpf,Kq
futWr xo,fy
ÝÝÝÝÝÝÝÝÑ obpo, a, idle, qq futpf, vq

(Global-Context)

cn1
ev?
ÝÝÑ cn11

cn1 cn2
ev?
ÝÝÑ cn11 cn2

(Global-New-Actor)

a2 “ initAttributespC, o1q
freshpo1q a, tl | x “ o1; su ; a1, p1

obpo, a, tl | x “ new Cpq; su, qq
new xo,o1y
ÝÝÝÝÝÝÝÑ obpo, a1, p1, qq obpo1, a2, idle,Hq

(Global-Read-Fut)

v ‰ K f “ rresspa˝lq

a, tl | x “ v; su
!; a1, p

obpo, a, tl | x “ e.get; su, qq futpf, vq
futRe xo,fy
ÝÝÝÝÝÝÝÑ obpo, a1, p, qq futpf, vq

(Global-Async-Call)

o1 “ rresspa˝lq v “ rresspa˝lq

freshpfq a, tl | x “ f ; su
!; a1, p

obpo, a, tl | x “ e!mpeq; su, qq
inv xo,fy
ÝÝÝÝÝÝÑ obpo, a1, p, qq invpo1, f,m, vq futpf,Kq

(Global-Load)

p1 “ bindpm, v, f, classOfpoqq

invpo, f,m, vq obpo, a, p, qq
Ñ obpo, a, p, q Y tp1uq

Fig. 6: Coarse-grained, labelled semantics of the basic active object language.

3.3 A Labelled Operational Semantics for the Basic Language

Based on Lemma 1, we can define a semantics of the basic active object language
with a more coarse-grained model of interleaving which is equivalent to the
semantics presented in Fig. 5. We let this coarse-grained semantics be labeled
by events to record the interaction between an active object and its environment.
The events are defined as follows:

Definition 2 (Events). Let o,f PIdentifiers. The set E of events ev is given by

ev ::“ new xo, oy | inv xo, fy | sched xo, fy | futWr xo, fy | futRe xo, fy.

In the coarse-grained semantics, a transition relation a, p ; a1, p1 captures
local execution in an active object with attributes a. These rules are given in
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Fig. 6 (top) and correspond to the rules Assign1, Assign2, While, Cond1, Cond2,
Skip1 and Skip2 of Fig. 5. These rules are deterministic as there is at most one

possible reduction for any given pair a, p. Let
˚; denote the reflexive, transitive

closure of ;, let the unary relation |; denote that there is no transition from

a given pair a, p, and let the relation
!; denote the reduction to normal form

according to ;; i.e.,

a, p
!; a1, p1 ðñ a, p

˚; a1, p1 ^ a1, p1 |;

In the remaining rules, given in Fig. 6 (bottom), a labelled transition relation
cn

ev
ÝÑ cn1 captures transitions in which the local execution of an active object

interacts with its environment through scheduling, object creation, method in-
vocation, or interaction with futures. These rules also correspond to the similar
rules in Fig. 5, with two differences:

1. The rules are labelled with an event reflecting the particular action taken in
the transition, and

2. the rules perform a local deterministic reduction to normal form according
to the ; relation in each step.

Remark that rule Global-Load is identical to Load of Fig. 5; although we do not
need to add an explicit label the rule is kept at the global level since it involves
both an object and a message. Rule Global-Context is labeled by ev? to cap-
ture that the label is optional (i.e., the rule also combines with Global-Load).
We henceforth consider runs for the basic active object language based on this
labelled semantics.

3.4 Execution Traces and their Reordering

This section looks at traces reflecting the runs of programs in the basic active
object language according to the semantics of Section 3.3, and their reordering.
We consider traces over events in E . Let ε denote the empty trace, and τ1 ¨ τ2 the
concatenation of traces τ1 and τ2. For an event ev and a trace τ , we denote by
ev P τ that ev occurs somewhere in τ and by τ ew ev that τ ends with ev (i.e.,
Dτ 1.τ “ τ 1¨ev). Define τ{o and τ{f as the projection of a trace τ to the alphabet of
an object o and a future f , by their first or second argument respectively (where
an alphabet is the set of events involving that name). Finally, let namespτq
denote the inductively defined function returning the set of identifiers that occur
in a trace τ (e.g., namespinv xo, fyq “ to, fu). We assume that every initial
configuration has a main object and process, and let namespεq “ tomain, fmainu.

Given a run cn0
ev0
ÝÝÑ ¨ ¨ ¨

evn
ÝÝÑ cnn`1, we denote cn0

τ
ùñ cnn`1 that a trace τ

is the trace of the run if τ “ ev0 ¨ ¨ ¨ evn (where τ ignores the unlabeled transition
steps of the run). Well-formed traces can be defined as follows, based on [12]:
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Definition 3 (Well-formed Traces). Given o, o1, f P Identifiers. Let wfpτq
denote that τ is well-formed, defined inductively:

wfpεq ðñ True
wfpτ ¨ new xo, o1yq ðñ wfpτq ^ o P namespτq ^ o1 R namespτq
wfpτ ¨ inv xo, fyq ðñ wfpτq ^ o P namespτq ^ f R namespτq
wfpτ ¨ sched xo, fyq ðñ wfpτq ^ o P namespτq ^ τ{f “ inv xo1, fy
wfpτ ¨ futWr xo, fyq ðñ wfpτq ^ τ{f ew sched xo, fy
wfpτ ¨ futRe xo, fyq ðñ wfpτq ^ futWr xo1, fy P τ

Wellformedness thus captures a happens-before relation over events while
ensuring that certain identifiers are new at given points in the trace. Din and
Owe have shown that the trace of any run of the semantics of an active object
language similar to ours is well-formed [12]. For example, no process can be
scheduled unless it has been invoked (which again requires the Global-Load
rule to apply in between Global-Async-Call and Global-Activate). Given
a trace τ , we can now define the equivalence class rτ s of traces which preserve
the local ordering and the wellformedness of τ , as follows:

Definition 4 (Global trace set). Let τ be a trace and define

rτ s “ tτ 1 | τ 1{o “ τ{o for all object identifiers o P namespτq ^ wfpτ 1qu.

Remark that this construction is closely related to equivalence classes in
Mazurkiewics trace theory [13], with wellformedness as the dependency relation
of the equivalence classes.

Example 1. The program from Fig. 1 (Section 2) has the following traces:

τ1 “ new xomain, oy ¨ inv xomain, fm1y ¨ inv xomain, fm2y ¨ sched xo, fm1y ¨ sched xo, fm2y

τ2 “ new xomain, oy ¨ inv xomain, fm1y ¨ sched xo, fm1y ¨ inv xomain, fm2y ¨ sched xo, fm2y

τ3 “ new xomain, oy ¨ inv xomain, fm1y ¨ inv xomain, fm2y ¨ sched xo, fm2y ¨ sched xo, fm1y

Observe that traces τ1 and τ2 belong to the same global trace set (i.e. rτ1s “ rτ2s),
and will produce the same final state.

Let G
o:f
ùñ G1 denote a run between consecutive stable configurations which

executes the process identified by f on object o in the stable configuration G

until the next stable configuration G1. If sched xo, fy ¨ τ is the trace of G
o:f
ùñ G1,

then τ is a trace over the event set tinv xo, f 1y, new xo, o1y, futWr xo, fy | o1, f 1 P
Identifiersu. This observation provides an intuition for the following lemma:

Lemma 2 (Local confluence). Let G1, G2, G3 be stable configurations, o, o1

object and f, f 1 future identifiers, with o ‰ o1, f ‰ f 1. If G1
o:f
ùñ G2 and G1

o1:f 1

ùùñ

G3, then there is a stable configuration G4 such that G2
o1:f 1

ùùñ G4 and G3
o:f
ùñ G4.

Proof (sketch). The proof follows from the fact that execution in an object does
not inhibit a process to run in another object. [\
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The following theorem shows that local confluence implies global confluence
for executions in the same global trace set (which means that the two executions
agree on the local trace projections).

Theorem 1 (Global confluence). Let G1, G2, G3 be stable configurations and

τ1, τ2 traces such that G1
τ1
ùñ G2 and G1

τ2
ùñ G3. If τ2 P rτ1s then G2 “ G3.

Proof (sketch). Observe that runs with traces in the same global trace set must
agree on the naming of objects and futures. The result then follows by induction

over the length of G1
τ1
ùñ G2 from local confluence (Lemma 2). [\

4 Global Reproducibility with Local Traces

The global confluence of executions with traces in the same global trace set
provides a formal justification for a method to obtain global reproducibility for
distributed active object systems which exhibit non-deterministic behavior. The
method is based on enforcing the local trace projection from the global trace
set on each active object. For the basic active object language, the method is
based on recording the events from the set E during an execution. This set of
events, which includes events capturing the scheduling decisions of the runtime
system as well as the choice of dynamically created names during a particular
execution, is sufficient to establish the wellformedness of the recorded trace and
identify the global trace set of the recorded run. Furthermore, if we record local
traces for each active object, these will correspond to the local trace projections
of the global trace set. In fact, any composition of local traces recorded during
a run will result in the same global trace set. Similarly, any composition of local
trace projections enforced during a replay will result in a trace in the same
global trace set. Thus, Theorem 1 guarantees that local recording and replay of
different traces from the same global trace set will result in the same final state.
It remains to show that for any such trace in the global trace set corresponding to
a recorded run, the execution during replay will not get stuck. For this purpose,
we now formalize record and replay as extensions to the semantics of the basic
active object language.

We extend the operational semantics of Fig. 6 to record and replay traces.
Let τ Ź cn denote an extended runtime configuration, where τ is a witness for
cn, playing dual roles for recording and replaying. A recorded run starts from an
initial configuration εŹ cn, where cn is the initial configuration of the run to be
recorded. The reduction system for recording a trace is given as a relation

‚
ÝÑ by

the rules in Fig. 7; the two rules correspond to the unlabeled (just Global-Load)
and labeled transitions of the semantics, respectively. A replay starts from an
initial configuration τ Ź cn, where τ is a trace and cn the initial configuration
of the run to be replayed. The reduction system for replaying a trace is given as
a relation

§
ÝÑ by the rules in Fig. 8, the two rules are symmetric to those for

recording a run. The rules in Fig. 7 and Fig. 8 formalize the obvious relation
between the recording and replaying of a trace and a run in the semantics of the
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(Unlabeled-Record)

cnÑ cn1

τ Ź cn
‚
ÝÑ τ Ź cn1

(Labeled-Record)

cn
ev
ÝÑ cn1

τ Ź cn
‚
ÝÑ τ ¨ ev Ź cn1

Fig. 7: Semantics of Record

(Unlabeled-Replay)

cnÑ cn1

τ Ź cn
§
ÝÑ τ Ź cn1

(Labeled-Replay)

cn
ev
ÝÑ cn1

ev ¨ τ Ź cn
§
ÝÑ τ Ź cn1

Fig. 8: Semantics of Replay

basic active object language. Let
‚
ùñ and

§
ùñ denote the reflexive, transitive

closures of
‚
ÝÑ and

§
ÝÑ, respectively.

Lemma 3 (Freshness of names). For any recording ε Ź cn
‚
ùñ τ Ź cn1 or

replay τ ¨ τ 1 Ź cn
§
ùñ τ 1 Ź cn1, we have that namespτq “ namespcn1q.

Proof (sketch). Follows by induction over the length of ε Ź cn
‚
ùñ τ Ź cn1 and

τ ¨ τ 1 Ź cn
§
ùñ τ 1 Ź cn1, respectively. [\

It follows from Lemma 3 that given an identifier x P Identifiers and a run

ε Ź cn
‚
ùñ τ Ź cn1, if x R namespτq, then x R namespcn1q and consequently,

the predicate freshpxq will hold as a premise for any rule in the semantics that
one may want to apply to cn1. Consequently, fresh-predicates in the premises of
the transition rules of the basic active language will accept the identifier names
chosen from the recorded trace when replaying a run.

Lemma 4 (Progress for replay by global trace). Let G,G1 be stable con-

figurations. If εŹG
‚
ùñ τ ŹG1 then τ ŹG

§
ùñ εŹG1.

Proof. The proof is by induction over the length of the run εŹG
‚
ùñ τŹG1. The

base case is obvious. We assume (IH) that if εŹG
‚
ùñ τŹcn then τŹG

§
ùñ εŹcn

and show that if ε ŹG
‚
ÝÑ τ ¨ ev Ź cn1 then τ ¨ ev ŹG

§
ÝÑ τ Ź cn1. By the IH,

this amounts to showing that if εŹ cn
‚
ÝÑ ε ¨ evŹ cn1 then ev ¨ εŹ cn

§
ÝÑ εŹ cn1.

The proof proceeds by cases over the transition rules of the basic active object
language (cf. Fig. 5). The interesting cases are the rules which need new names.
Lemma 3 ensures that the predicate freshpoq will hold for a new name o in ev
(and similarly for f), and the corresponding rules can be applied. [\

It follows from Theorem 1 that if we can replay a run which is equivalent to
a recorded run τ , the final state of the replayed run will be the same as for the
recorded run. It remains to show that any run in the equivalence class rτ s can
in fact be replayed.

Theorem 2 (Progress for replay by local control). Let G,G1 be stable

configurations, τ, τ 1 traces. If εŹG
‚
ùñ τŹG1 and τ 1 P rτ s, then τ 1ŹG

§
ùñ εŹG1.

Proof (sketch). We show by induction over the length of trace τ that if εŹG
‚
ùñ

τ Ź cn and τ 1 P rτ s, then τ 1ŹG
§
ùñ εŹ cn1. It then follows from Theorem 1 that

cn “ cn1. [\
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5 Extensions for Richer Active Object Languages

The method for global reproducibility of executions for a basic active object
language based on record & replay of local traces, may be extended to include
features introducing other sources of non-determinism in richer active object
languages [2]. We here briefly review some such features and how the method
may be extended to cover them.

Cooperative scheduling. In cooperatively scheduled languages (e.g., [3–5, 14]),
methods may explicitly release control, allowing other pending method invoca-
tions be scheduled. The criteria for being rescheduled may be that some boolean
condition is met, or a future being resolved. Note that methods still execute until
it cooperatively releases control; i.e., a method will not be interrupted because
the condition of another method is satisfied. With cooperative scheduling, the
same task may be scheduled several times, which means that the same schedul-
ing event may occur multiple times in a trace. In the method for reproducibility,
this extension can be covered by an additional suspension-event reflecting the
processor release and an adjustment of the wellformedness condition to reflect
that a scheduling event either comes after a invocation event (as for the basic
language) or after a suspension event on the same future.

Concurrent object groups. In language with concurrent object groups (e.g., [3,5]),
a group of concurrent objects (or cog) share a common scheduler, which be-
comes the unit of distribution; this gives an interleaved semantics between ob-
jects within the same cog, while separate cogs are truly concurrent. For record
& replay, the events of a trace need to capture the cog, rather than the object,
in which an event originated. Recording the names of cogs is sufficient for re-
producibility without controlling the naming of objects. For the reproducibility
method, the proofs in Section 4 would use an equivalence relation between con-
figurations that only differ in the choice of object names inside the cogs and the
global trace set (Def. 4) would project on cogs rather than objects.

Resource-aware behavior. Active objects may reside in a resource center with
limited resources, e.g. CPU or memory restrictions, with regards to time (e.g.,
[6, 15]). Statements may have some associated cost which requires available re-
sources in order to execute. If there are insufficient resources, then execution is
blocked in that object until time advances. Here, object compete for resources, in
the same sense that tasks compete for processing time. Following our method for
deterministic replay, the traces can be extended with events for resource request
in a similar manner as method invocations in the basic active objects language,
and resource provision with events similar to the task scheduling events.

External non-determinism and random numbers. Active object languages may
also feature external factors that may influence an execution, such as input from a
user, fetching data from a database or receiving input from a socket, or random
number generation. Here, a purely ordering-based method is insufficient. Our
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replay method needs to be extended with events which include the data received
from the external source and the replay would need to fetch data from the trace
rather than from the external source, similar to the reuse of object and future
identifiers from the trace in the previous section. Random number generation
can be seen as a special case of external non-determinism; for pseudo-random
number generators it would be sufficient to only record the initial seed for reuse
during replay.

6 Implementing Record & Replay for Real-Time ABS

We report on our implementation1 of record & replay, based on the formalization
in Section 4. The implementation was done for Real-Time ABS [6, 16], an ac-
tive object modeling language which includes the following features discussed in
Section 5: cooperative scheduling, concurrent object groups, and timed, resource-
aware behavior, all of which are handled by our implementation. The simulator
for Real-Time ABS models, written in Erlang, supports interaction with a model
during execution via the Model API [17] in order to, e.g. fetch the current state
of an object, advance the simulated clock or visualize the resource consumption
of a running model. In addition, we have implemented a visualizer for recorded
traces. In this section, we discuss the following aspects of the implementation:
the recording of traces in a distributed setting, the handling of names, the vi-
sualization of traces, and performance characteristics for the implementation of
record & replay.

6.1 Recording Traces in a Distributed Setting

For simulation, ABS models are transpiled to Erlang code by representing most
entities as Erlang actors, e.g., concurrent object groups (or cogs), resource cen-
ters, futures and ABS-level processes. Thus, execution is concurrent and may
be distributed over multiple machines. This leads to two important differences
from the formalization in Section 4:

– True concurrency: The formalization is based on an interleaved concurrency
model, which yields a total order of events. In the simulator, cogs are imple-
mented as Erlang actors and may operate in true parallel, where two events
may happen simultaneously, which corresponds to a partial order of events.

– Distributed state: Because the state of the model is distributed over many
independent actors, we cannot easily synchronize over the state of different
actors. In the implementation, such synchronization in the formalization
must be realized by asynchronous message passing protocols.

1The Real-Time ABS simulator is available at
https://github.com/abstools/abstools
The accompanying visualization tool is available at
https://github.com/larstvei/ABS-traces

https://github.com/abstools/abstools
https://github.com/larstvei/ABS-traces
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These differences pose challenges for recording and replaying global traces in the
implementation. When recording a run, it is not trivial to obtain a global trace. If
all cogs and resource centers were to report their recorded events to a single actor
maintaining the global trace, races could occur between different asynchronous
messages. For example, if an object o invokes a method on another object o1, then
the corresponding invocation and scheduling events could arrive in any order.
Such races could be resolved by, e.g., introducing additional synchronization or
using Lamport timestamps [18, 19]. Similarly, precisely replaying a global trace
would require some synchronization protocol with the actor holding the global
trace, severely increasing the level of synchronization during execution.

We address these challenges by only considering the local projections of the
global trace for each cog and resource center. The information needed to con-
struct local traces does not require any additional synchronization. During re-
play, only the local execution of an actor is controlled, which is sufficient to
obtain a run with a trace in the same global trace set.

6.2 Names in the Erlang Simulator

The formalization allows recorded names to be reused when replaying a run.
In contrast, in the Erlang system cogs, resource centers and futures are imple-
mented as actors (i.e. Erlang actors) and identified by a process identifier (pid)
determined by Erlang. To ensure that names in the events of the recorded trace
are easily identifiable in a replay without modifying the naming scheme of Er-
lang, we construct additional names that are associated with the given pid. The
constructed names follow a deterministic naming scheme, which guarantees that
names are globally unique without depending on knowledge of names generated
in other actors (in contrast to the fresh-predicate in the semantics).

Cogs, resource centers and futures can be named locally following a naming
scheme based on existing actors already having such unique, associated names.
The name xAid, i ` 1y of a new actor can be determined by the actor Aid in
which it is created, together with a local counter denoting the number i of
actors previously created in Aid. Thus, the name of the actor corresponds to its
place in the topology and is guaranteed to be fresh.

6.3 Visualization of Recorded Traces

The trace recorded during a simulation can give the user insight into that exe-
cution of a model, since it captures the model’s communication structure. The
recorded trace may be extracted from a running simulation via the Model API
or written to file on termination. However, the terse format of the traces makes
it hard for users to quickly get an intuitive idea of what is happening in the
model. Complementing the replay facility, we have developed a tool to visual-
ize recorded traces, which conveys information from traces in a more intuitive
format. To facilitate visualization, the events in our implementation are slightly
richer than those in Definition 2; e.g., they include the name of the method
corresponding to the future in the event.
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The visualization reconstructs a global trace τ from its local projections.
Since the local ordering of events is already preserved by the recorded traces,
we only need to compose local traces in a way that preserves wellformedness.
We derive a happens-before relation ă from wellformedness (Definition 3), and
denote its transitive closure by Î.

The happens-before relation Î gives a partial order of events. In the visu-
alization of the trace τ , all events are depicted by a colored dot. For any two
events e1, e2, e1 is drawn above e2 if e1 Î e2; the events are drawn in the same
column only if they reside in the same cog or resource center. An arrow is drawn
between any two events e1, e2 if e1 ă e2. Events that are independent (i.e., nei-
ther e1 Î e2 nor e2 Î e1) may be drawn in the same row. Events with the
same future as argument are drawn with the same color. The tool additionally
supports simple navigation in the trace, gives visual indicators of simulated time
steps, and supports time advancement in a running model through the model
API, making it easy to step forward in time. Fig. 2 illustrates the visualization
for two runs of the motivating example.

6.4 Example

Consider a Real-Time ABS model of an image rendering service which can pro-
cess either still photos or video. The service is modeled as a class Service with
two methods photo_request and video_request. The model captures resource-
sensitive behavior in terms of cost annotations associated with the execution of
skip-statements inside the two methods and in terms of deadlines provided to
each method call. The processing cost for rendering an image is constant (here,
the cost is given by the field image_cost), but the processing cost of rendering
a video depends on the number of frames (captured by a parameter n to the
method video_request). The success of each method call depends on whether
it succeeded in processing its job, as specified by the cost annotation, before
its deadline passes; this is captured by the expression in the return statement
return (Duration(0) < deadline()). Remark that deadline() is a prede-
fined read-only variable in Real-Time ABS processes. Its value is given by the
caller.

In the main block, a server is created on which the service can run. This
server is a resource-center with limited processing capacity (called a deployment
component in Real-Time ABS [6]), restricting the amount of computation that
can happen on the server per time interval in the execution of the model. The
service is then deployed on the server (by an annotation [DC: server] to new-
statement. We let a class Client (omitted here) model a given number of pro-
cessing requests to the image rendering service in terms of asynchronously calling
the two methods a given number of times (e.g., the call to video_request takes
the form [Deadline: Duration(10)] f = s!video_request(n), pushing the
associated futures f to a list, and then counting the number of successful re-
quests when the corresponding futures have been resolved. It is easy to see that
the success of calls to the video_request method which requires more resources,
may depend on whether it is scheduled before or after calls to photo_request,
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class Service {
Int image_cost = 1;

Bool photo_request () {
[Cost: image_cost] skip;
return (Duration (0)

< deadline ());
}

Bool video_request(Int n) {
[Cost: n*image_cost] skip;
return (Duration (0)

< deadline ());
}

}

// Main block
{

DC server
= new DC("Server", 2);

[DC: server] Service s1
= new Service ();

new Client(s1, 1, 100);
}

Fig. 9: Real-Time ABS code for
the photo rendering service.

Fig. 10: Visualization of a run of the
photo rendering service.

depending on the provided deadlines. Thus, the model exhibits both schedul-
ing non-determinism for asynchronous calls and resource-aware behavior. The
image in Fig. 10 depicts a trace from a simulation of the model, showing inter-
actions between a deployment component (left), the service (middle) and the
client (right).

6.5 Performance Characteristics of the Implementation

We give a brief evaluation of the performance characteristics of record & replay
for Real Time ABS. The size of the traces is proportional to the number of
objects, method invocations and resource provisions. Because we do not impose
additional synchronization, we are able to achieve a constant-time overhead. To
investigate how record & replay scales, we created a micro-benchmark perform-
ing method invocations on an active object, and recorded execution times for
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Fig. 11: Record and replay: example (left) and process microbenchmark (right)

102, 103, . . . , 106 method calls. We also ran the example of Section 6.4, record-
ing execution times for 102, 103 and 104 Client iterations. These are worst-case
scenarios for record & replay, as the invoked methods do not perform any com-
putation that does not result in creating an event.

Fig. 11 shows the results of the two programs with replay enabled, with record
enabled and the last release of Real-Time ABS which does not feature record &
replay. Note that we only measure simulation time and do not include the time
reading and writing trace files. We can see that the results of Fig. 11 (left) are
slightly improved and the overhead observed in Fig. 11 (right) is about a factor
of 1.8. We note that supporting record & replay in Real-Time ABS required
extensive modifications to the Real-Time ABS simulators implementation.

7 Related Work

This work complements other analysis techniques for Real-Time ABS models,
such as simulation [17], deductive verification [9], and parallel cost analysis [20]
and testing [21]. We here discuss related work on deterministic replay. Deter-
ministic replay is an emerging technique to reproduce executions of computer
programs in the presence of different non-deterministic factors [1]. It enables
cyclic debugging [22] in non-deterministic execution environments. Our focus is
on software-level reproducibility in the context of actor-systems. Approaches to
reproduce specific runs of non-deterministic systems can be either content-based
or ordering based [23].

Content-based methods trace the values read from a shared memory location.
These are particularly suitable when there is a lot of external non-determinism
(typically I/O operations, like user input). Content-based replay for actor sys-
tems typically record messages, including the sender, receiver and message con-
tent, (see, e.g., [24–26]). This technique is typically used for rich debuggers like
Actoverse [24] for Scala’s Akka library, which provides visualization support sim-
ilar to ours. However, content-based approaches do not scale well [27], because
the traces can become very large for message-intensive applications.
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Ordering-based (or control-based) methods trace a system’s control-flow. Our
work fits within this category. Without external non-determinism, replaying the
control-flow will reproduce the data of the recorded run. Ordering-based meth-
ods exist for asynchronous message passing using the message passing interface
(MPI) [19,28]. MPI assumes that messages from the same source are received in
order, this does not generally hold for actor systems. Aumayr et al. in [27] study
ordering-based replay for actor systems with a memory-efficient representation
of the generated traces. Netzer et al. [29] propose an interesting method to only
trace events directly related to races, rather than all events (removing up to 99%
of the events). This line of work is complementary to our focus on formal correct-
ness and low runtime-overhead during record and replay. We believe we could
benefit from their work to obtain more efficient trace representations. Lanese
et al. recently proposed a notion of causal-consistent replay based on reversible
debugging [30], which enables replay to a state by only replaying its causal de-
pendencies. Similar to our work, they also formalize record & replay for an actor
language. In contrast to our work, their approach is based on a centralized actor
for tracing, and can only be used in combination with a debugger [31].

8 Conclusion and Future Work

This paper has introduced a method for global reproducibility for runs of dis-
tributed Active Object systems, based on local control. The proposed method
is order-based and decentralized in that local traces are recorded and replayed
without incurring any additional synchronization at the global level. The method
is formalized as an operational semantics for a basic active object language, with
trace recording and replay. This system exhibits non-determinism through the
scheduling of asynchronous method calls and synchronization using first-class
futures. Based on this formalization, we justify in terms of properties of trace
equivalence classes that local control suffices to reproduce runs with a final state
which is equivalent to the final state of a recorded run. We then discuss how other
features of active object languages which introduce additional non-determinism
can be supported by our method, including cooperative concurrency, concurrent
object groups and resource-aware behavior.

The proposed method has been implemented for Real-Time ABS, an Active
Object modeling language which includes most of the above-mentioned features
and which has a simulator written in Erlang. The implementation only records
local ordering information, which allows the overhead of both the record and
replay phases to be kept low compared to deterministic replay systems which
reproduce an exact global run.

In future work, we plan to build on the proposed record & replay tool for
systematic model exploration, by modifying traces between the record and replay
phase to explore different runs. This can be done by means of DPOR-algorithms
for actor-based systems [32–34]. Combining DPOR with our proposed tool for
record & replay would result in a stateless model checker [35] for Active Object
systems.
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