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Abstract. Virtually timed ambients is a calculus of nested virtualiza-
tion, which models timing and resource consumption for hierarchically
structured virtual machines. This structure may change dynamically to
support load-balancing, migration, and scaling. This paper introduces
resource-awareness for virtually timed ambients, which enables processes
to actively query the system about the resources necessary for a task and
to reconfigure accordingly. Technically we extend virtually timed ambi-
ents with context-expressions using modal logic operators, give a formal
semantics for the extension, and define bisimulation for resource-aware
virtually timed systems. The paper also provides a proof of concept im-
plementation in Maude and a case study involving dynamic auto scaling.

1 Introduction

In cloud-computing, horizontal scaling describes scaling by adding more ma-
chines into the given pool of resources. Cloud-service providers offer different
kinds of scaling policies that allow their clients to monitor applications and au-
tomatically adjust capacity to maintain steady performance at low costs. For
example, Amazon EC2 Auto Scaling [1] allows to dynamically and automati-
cally scale the virtual capacity up or down according to conditions defined by
the client. This paper provides a formalization to support dynamic auto scaling
via resource-awareness for virtually timed ambients.

The calculus of virtually timed ambients [11] is a calculus of explicit resource
provisioning, based on mobile ambients [3], and has been used to model nested
virtualization in cloud systems. Virtualization technology enables the resources
of an execution environment to be represented as a software layer, a so-called vir-
tual machine. Dynamic nested virtualization, first introduced in [7], is a crucial
technology to support cloud systems, as it enables virtual machines to migrate
between different cloud providers [22]. It is also necessary to host virtual ma-
chines with operating systems which themselves support virtualization [2], such
as Microsoft Windows 7 and Linux KVM. The time model used to realize the re-
source provisioning for virtually timed ambients is called virtual time. The time
of a virtually timed ambient proceeds in the context of its parental ambient and
is relative to the parent’s time progression, With nested levels of virtualization,
virtual time becomes a local notion of time which depends on an ambient’s po-
sition in the nesting structure. Virtually timed ambients are mobile, reflecting
that virtual machines may migrate between host virtual machines. Observe that
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such migration affects the execution speed of processes in the migrating virtually
timed ambient, as well as in the virtually timed ambient which is left, and in the
virtually timed ambient which is entered.

Resource-awareness allows processes or programs to know about available
resources and about resources necessary for a task, and react accordingly. For
virtually timed ambients, resource awareness enables, e.g.,horizontal scaling, by
adding more virtual machines to a server in the cloud. The notion of resource-
aware virtually timed ambients is based on context-aware ambients (CCA) [21],
which introduce context-guarded processes to enable context-awareness of mo-
bile ambients. We enhance the given context expressions to cover the notions
of timing and resources of virtually timed ambients and extend the theory of
resource-aware virtually timed ambients by contextual bisimulation. We further
provide a case study for modeling dynamic auto scaling on the cloud. Thus, we
define a calculus to model explicit resource management in cloud computing.

Contributions. The main contributions of this paper are the following:

– we define and discuss a calculus of resource-aware virtually timed ambients;
– we define weak timed context bisimulation for resource-aware virtually timed

ambients;
– we show the feasibility of virtually timed ambients as a modelling language

for cloud computing with a case study of dynamic auto scaling on Amazon
EC2 modelled in a prototype implementation of our calculus in the Maude
rewriting system;

– all concepts are illustrated by examples.

To the best of our knowledge, this is the first implementation of resource aware-
ness for mobile ambients in rewriting logic.

Paper overview. We introduce resource-aware virtually timed ambients in Sec-
tion 3. Section 4 discusses the implementation and contains the case study, ex-
emplifying dynamic auto scaling on the cloud. We discuss related work and
conclude in Sections 5 and 6.

2 Virtually Timed Ambients

Virtually timed ambients [10,11] is a calculus of explicit resource provisioning,
based on mobile ambients. Mobile ambients [3] are processes with a concept of
location, arranged in a hierarchy which may change dynamically. Virtually timed
ambients interpret these locations as places of deployment and extend mobile
ambients with notions of virtual time and resource consumption. The timed
behavior depends on the one hand on the local timed behavior, and on the other
hand on the placement or deployment of the virtually timed ambient or the
process in the hierarchical ambient structure. Virtually timed ambients combine
timed processes and timed capabilities with the features of mobile ambients.
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n name
tick virtual time slice

Timed processes:
P,Q ::= 0 inactive process

| P | Q parallel composition
| (νn)P restriction
| !C.P replication
| C.P prefixing
| n[Sched | tickx | P ] virtually timed ambient

Timed capabilities:
C ::= in n enter n and adjust the local scheduler there
| out n exit n and adjust the local scheduler

on the outside
| open n open n and adjust own local scheduler
| c consume a resource

Table 1. Syntax of virtually timed ambients, x ∈ N0.

Definition 1 (Virtually timed ambients). The syntax of virtually timed
ambients is given by the grammar in Table 1.

Timed processes differ from mobile ambients in that each virtually timed
ambient contains, besides possibly further (virtually timed) subambients, a local
scheduler. In the sequel, we omit the qualification “timed” or “virtually timed”,
when speaking about processes, capabilities, or ambients when the context of
virtually timed ambients is clear. In the calculus, virtually timed ambients are
represented by names and time slices are written as tick. The inactive process
0 does nothing. The parallel composition P | Q allows both processes P and
Q to proceed concurrently, where the binary operator | is commutative and as-
sociative. The restriction operator (νm)P creates a new and unique name with
process P as its scope. Replication of processes is given as !C.P . A process P
located in an virtually timed ambient named n is written n[Sched | tickx | P ],
where tick0 ≡ 0. Ambients can be nested, and the nesting structure can change
dynamically, this is specified by prefixing a process with a capability C.P . Timed
capabilities extend the capabilities of mobile ambients by including a resource
consumption capability c and by giving the opening, exiting, and entering ca-
pabilities of ambients a timed interpretation. These capabilities restructure the
hierarchy of an ambient system, so the behavior of local schedulers and resource
consumption changes, as these depend on the placement of the timed ambient
in the hierarchy.

In a virtually timed ambient, the local scheduler triggers timed behavior and
local resource consumption. Each time slice emitted by a local scheduler triggers
the scheduler of a subambient or is consumed by a process as a resource in a
preemptive, yet fair way, which makes system behavior sensitive to co-located
virtually timed ambients and resource consuming processes.
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Definition 2 (Local and root schedulers). Let the sets unserved and served
contain the names of virtually timed ambients as well as processes (these are
represented directly, lacking names). A local scheduler is denoted by

Schedspeed{in, out, rest, unserved, served},

where speed ∈ Q relates externally received to internally emitted time slices;
in ∈ N records the number of received time slices; out ∈ N records the numbers
of time slices than can be distributed for each incoming time slice, while rest ∈ N
records additional distributable time slices depending on the speed; and unserved
contains local ambients with a positive speed and processes which are intended
to receive one time slice in this round of the scheduling, while served contains
processes scheduled for the next round.

Root schedulers, represented as Sched†{in, out, 0, unserved, served}, are local
schedulers which do not need an input to distribute time slices and therefore have
no defined speed.

The semantics of virtually timed ambients is given as a reduction system,
similar to the semantics of mobile ambients. The rules for structural congruence
P ≡ Q are equivalent to those for mobile ambients (and therefore omitted here).
The reduction relation P _ Q for virtually timed ambients makes use of ob-

servables, also known as barbs. Barbs, originally introduced for the π-calculus
[16], capture a notion of immediate observability. In the ambient calculus, these
observations concern the presence of a top-level ambient whose name is not re-
stricted. Let m̃ describe a tuple of names, then the observability predicate ↓n or
“barb” is defined as follows:

Definition 3 (Barbs, from [14]). Process P strongly barbs on n, written
P↓n, if P ≡ (νm̃)(n[P1] | P2), where n /∈ {m̃}.

A process that does not contain ν-binders is said to be ν-binder free. By moving
the ν-binders to the outside and only considering the inside of their scope, we
can observe the bound ambients inside the scope of the ν-binders.

Definition 4 (Timed top-level ambients). For a process P , let P↓ denote
the sets of all timed top-level ambients: P↓ = {n | P ≡ (νm̃)P ′ ∧ P ′ is ν-binder
free ∧ P ′↓n ∧ speedn > 0}.

Timed capabilities. The reduction rules for virtually timed ambients are given
in Tables 2 and 3. The timed capabilities in n, out n, and open n enable
virtually timed ambients to move in the hierarchical ambient structure. The
local schedulers need to know about the current subambients, so their lists of
subambients need to be adjusted when virtually timed ambients move. Observe
that without adjusting the schedulers, the moving subambient would not receive
time slices from the scheduler in its new surrounding ambient. In TR-In and
TR-Out, the schedulers of the old and new surrounding ambient of the moving
ambient are updated by removing and adding, respectively, the name of the
moving ambient, if it has a speed greater zero. The scheduler of the moving
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Sdlk = Schedspeedk{ink, outk, restk,Uk,Sk}, n ∈ Uk ∪ Sk

Sdlm = Schedspeedm{inm, outm, restm,Um,Sm}
Sdln = Schedspeedn{inn, outn, restn,Un,Sn}
Sdl′k = Schedspeedk{ink, outk, restk, Uk \ {n},Sk \ {n} }
Sdl′m = Schedspeedm{inm, outm, restm,Um,Sm ∪ {n} }, if speedn > 0 else Sdlm

Sdl′n = Schedspeedn{inn, outn, restn,Un,Sn ∪ P↓ }

k[Sdlk | n[Sdln | in m.P | Q] | m[Sdlm | R] | U ]

_ k[Sdl′k | m[Sdl′m | R | n[Sdl′n | P | Q]] | U ]

(TR-In)

Sdlk = Schedspeedk{ink, outk, restk,Uk,Sk}, n ∈ Um ∪ Sm

Sdlm = Schedspeedm{inm, outm, restm,Um,Sm}
Sdln = Schedspeedn{inn, outn, restn,Un,Sn}
Sdl′k = Schedspeedk{ink, outk, restk,Uk,Sk ∪ {n} }, if speedn > 0 else Sdlk

Sdl′m = Schedspeedm{inm, outm, restm, Um \ {n},Sm \ {n} }
Sdl′n = Schedspeedn{inn, outn, restn,Un,Sn ∪ P↓ }

k[Sdlk | m[Sdlm | n[Sdln | out m.P | Q] | R] | U ]

_ k[Sdl′k | n[Sdl′n | P | Q] | m[Sdl′m | R] | U ]

(TR-Out)

Sdlk = Schedspeedk{ink, outk, restk,Uk,Sk}, n ∈ Uk ∪ Sk

Sdl′k = Schedspeedk{ink, outk, restk, Uk \ {n},Sk \ {n} ∪ P↓ ∪R ↓ }
(TR-Open)

k[Sdlk | open n.P | n[Sdln | R] | Q] _ k[Sdl′k | P | R | Q]

Sdlm = Schedspeedk{inm, outm, restm,Um,Sm}, speedm > 0

Sdl′m = Schedspeedm{inm, outm, restm,Um,Sm ∪ {c .P} }
(TR-Resource)

m[Sdlm | c .P | R] _ m[Sdl′m | R]

Table 2. Timed reduction rules for timed capabilities. Here, a blue backdrop marks
the trigger of the reduction, red the changes in the schedulers, and green eventual
constraints.

subambient is also updated as it needs to contain the barbs of the process that
was hidden behind the movement capability. In TR-Open, the scheduler of the
opening ambient itself is updated by removing the name of the opened ambient
and adding the barbs of the processes inside this ambient as well as the barbs
of the process hidden behind the open capability. The scheduler of the opened
ambient is deleted. In TR-Resource, the time consuming process moves into
the scheduler, where it awaits the distribution of a time slice as resource before it
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Sdl = Schedspeed{in, 0, 0, ∅, ∅}, Sdl′ = Schedspeed{ in + 1 , 0, 0, ∅, ∅}, R 6≡ c .P | P ′

a[ tick | Sdl | R] _ a[Sdl′ | R] (RR-Empty)

Sdl = Schedspeed{in, 0, 0,U,S}, U ∪ S 6= ∅
Sdl′ = Schedspeed{ in + 1, x, z ,U,S}, speed = x+

∑z
y=1

1
by

, by > 1

a[ tick | Sdl | R] _ a[Sdl′ | R]

(RR-Tick)

Sdl = Schedspeed{in, out, rest, ∅,S }, R 6≡ c .P | P ′

Sdl′ = Schedspeed{in, out, rest, S, ∅ }

a[Sdl | R] _ a[Sdl′ | R]

(RR-NewRound)

out > 0 , ai ∈ U, ai ≡ c .P , Sdl = Schedspeed{in, out, rest,U,S}
Sdl′ = Schedspeed{in, out− 1 , rest,U \ {ai} ∪ P↓ ,S}

a[Sdl | R] _ a[Sdl′ | R | P ] (RR-Tock1-consume)

out > 0 , ai ∈ U, R ≡ ai[Sdlai | P ′] | P , R′ ≡ ai[Sdlai | tick | P ′] | P
Sdl = Schedspeed{in, out, rest,U,S}
Sdl′ = Schedspeed{in, out− 1 , rest,U \ {ai} ,S ∪ {ai} }

a[Sdl | R] _ a[Sdl′ | R′] (RR-Tock1-ambient)

rest > 0 , in mod brest = 0, ai ∈ U, ai ≡ c .P , speed = x+
∑z

y=1
1
by

, by > 1

Sdl = Schedspeed{in, out, rest,U,S}
Sdl′ = Schedspeed{in, out, rest− 1 ,U \ {ai} ∪ P↓ ,S}

a[Sdl | R] _ a[Sdl′ | R | P ] (RR-Tock2-consume)

rest > 0 , in mod brest = 0, ai ∈ U, speed = x+
∑z

y=1
1
by

, by > 1

R ≡ ai[Sdlai | P ′] | P , R′ ≡ ai[Sdlai | tick | P ′] | P
Sdl = Schedspeed{in, out, rest,U,S}
Sdl′ = Schedspeed{in, out, rest− 1 ,U \ {ai} ,S ∪ {ai} }

a[Sdl | R] _ a[Sdl′ | R′] (RR-Tock2-ambient)

rest > 0 , in mod brest 6= 0, speed = x+
∑z

y=1
1
by

, by > 1

Sdl = Schedspeed{in, out, rest,U,S}, Sdl′ = Schedspeed{in, out, rest− 1 ,U,S}

a[Sdl | R] _ a[Sdl′ | R] (RR-Tock2-no action)

Sdl† = Sched†{in, 0, 0,−,U,S}, Sdl†∗ = Sched†{ in + 1, 1 , 0,−,U,S}

Sdl† _ Sdl†∗
(RR-Root)

Table 3. Reduction rules for fair, preemptive distribution of virtual time and resources,
where by ∈ N. A blue backdrop marks the reduction trigger and red the changes.



can continue. This reduction can only happen in virtually timed ambients with
speed greater zero, meaning ambients which actually emit resources.

The RR-Tick and RR-Tock rules in Table 3 distribute time slices via the
local schedulers. We want to enable the schedulers to distribute time slices as
soon as possible. The ratio of output time slices to input time slices is defined
by the speed ∈ Q of the scheduler. For example, for a speed of 3/2 the first in-
coming tick should trigger one outgoing time slice and the second input should
trigger two, emitting in total three time slices for two inputs. Thus, in order
to implement a simple eager scheduling strategy, we make use of the so-called
Egyptian fraction decomposition to decide the number of time slices to be dis-
tributed by a local scheduler for each input time slice tick. For every rational
number q ∈ Q it holds that q = x+

∑z
y=1

1
by

for x, by ∈ N, which is solvable in

polynomial time. A greedy algorithm (e.g. [6]) yields the desirable property that
a time slice is distributed as soon as possible. From this decomposition, it follows
that for each input time slice the local scheduler with speed q will distribute x
time slices, plus one additional time slice for every by-th input. In RR-Tick, the
local scheduler receives a time slice, which it registers in the counter in. At the
same time out and rest initiate the distribution of time slices depending on the
Egyptian fraction decomposition of the speed of the scheduler. These steps of
the time slice distribution are shown in the RR-Tock rules, which allow trans-
ferring a new tick to a timed subambient or using the time slice as a resource for
a consume capability, which is waiting in the scheduler. The RR-Tock1 rules
concern the number x of time slices that are given out for every input time slice,
while the RR-Tock2 rules only allow to give out a time slice if the input step
is a multiple of one of the fraction denominators by. This amounts to a concrete
implementation of a fair scheduler where progress is uniform over the queue of
timed subambients and time consuming processes. Once all waiting subambients
and processes inside the set unserved have been served one time slice and are
moved to the set served, either the rule RR-NewRound ensures that the next
round of time slice distribution can begin, or, if the queue is empty, the rule
RR-Empty is applied. This scheduling strategy ensures fairness in the compe-
tition for resources between processes, without enforcing a particular order in
each round of the scheduler. The root scheduler Sched† reduces without time
slices from surrounding ambients in RR-Root.

Example 1 (Virtually timed subambients, scheduling and resource consumption).
The virtually timed ambient cloud , exemplifying a cloud server, emits one time
slice for every time slice it receives, Sdlcloud = Sched1{0, 0, 0, ∅, ∅}. It contains
two tick and is entered by a virtually timed subambient vm.

cloud [Sched1{0, 0, 0, ∅, ∅} | tick | tick]

| vm[Sched3/4{0, 0, 0, ∅, ∅} |in cloud . c .P ]

The ambient vm exemplifies a virtual machine containing a resource consuming
task, where Sdlvm = Sched3/4{0, 0, 0, ∅, ∅}. The Egyptian fraction decomposi-
tion of the speed yields 3/4 = 0+1/2+1/4 meaning that there is no time slice given
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out for every incoming time slice, but one time slice for every second incoming
time slice, and one for every fourth. The process reduces as follows:

_cloud [Sched1{0, 0, 0, ∅, vm} | tick | tick
| vm[Sched3/4{0, 0, 0, ∅, ∅} |c .P ]] (TR-In)

_cloud [Sched1{0, 0, 0, vm, ∅} | tick | tick
| vm[Sched3/4{0, 0, 0, ∅, ∅} |c .P ]] (RR-NewRound)

_cloud [Sched1{0, 0, 0, vm, ∅} | tick | tick
| vm[Sched3/4{0, 0, 0, ∅, c .P} | 0]] (TR-Resource)

_cloud [Sched1{0, 0, 0, vm, ∅} | tick | tick
| vm[Sched3/4{0, 0, 0, c .P, ∅} | 0]] (RR-NewRound) .

Here the ambient vm enters the ambient cloud and is registered in the sched-
uler. Furthermore, the resource consuming process in vm is registered. In the
next steps the time slices move into the scheduler of the cloud ambient and are
distributed further down in the hierarchy.

_cloud [Sched1{1, 1, 0, vm, ∅} | tick
| vm[Sched3/4{0, 0, 0, c .P, ∅} | 0]] (RR-Tick)

_cloud [Sched1{1, 0, 0, ∅, vm} | tick
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick]] (RR-Tock1-ambient)

_cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick]] (RR-NewRound)

_cloud [Sched1{2, 1, 0, vm, ∅}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick]] (RR-Tick)

_cloud [Sched1{2, 0, 0, ∅, vm}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick | tick]] (RR-Tock1-ambient)

_cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick | tick]] (RR-NewRound) .

Now the ambient vm can use the time signals to enable resource consumption.

_cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{1, 0, 1, c .P, ∅} | tick]] (RR-Tick)

_cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{1, 0, 0, c .P, ∅} | tick]] (RR-Tock2-no action)

_cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{2, 0, 1, c .P, ∅} | 0]] (RR-Tick)

_cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{2, 0, 0, P↓, ∅} | P ]] (RR-Tock2-consume)

Note that as the calculus is non-deterministic, the reduction rules can be applied
in arbitrary order, making several outcomes possible.
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Context: Context expressions:
E ::= 0 nil κ ::= True true
| � hole | � hole
| n[E] location | ¬κ negation
| E | P parallel composition | κ1 | κ2 parallel composition

| κ1 ∧ κ2 conjunction
| n[κ] location
| ⊕κ spatial next modality
| ♦(speed,s)κ somewhere modality
| �x@nκ sometime modality
| ∃x.κ existential quantification
| c consumption

Table 4. Syntax of contexts and context expressions

3 Resource-Aware Virtually Timed Ambients

We now consider context-guarded actions for the calculus of virtually timed am-
bients, building on properties of context aware ambients [21].

Definition 5 (Resource-aware virtually timed ambients). The syntax
of resource-aware virtually timed ambients is given by the grammar in Table 1
together with the process

κ.P (context-guarded process),

where κ is a context expression. The semantics of resource-aware virtually timed
ambients is given by the reduction rules in Tables 2 and 3 and the rule

E � κ

E(κ?P ) _ E(P )
(TR-Context).

A context-guarded process κ?P has to fulfil a context requirement before it
can be reduced, meaning that a guard is removed when it is satisfied by the
environment. The context model is given in Table 4, where E denotes a context
or environment and 0 is the empty context. Ambient names and processes are
defined as in Table 1. The symbol � is the hole context, showing the position of
a process in the surrounding context. A ground context is defined to be a normal
process with no holes. Multi-hole contexts are omitted.

Definition 6 (Context evaluation, from [21]). Let E1 and E2 be contexts.
The evaluation of context E1 at context E2, denoted E1(E2), is the context ob-
tained by replacing the hole in E1 (if any) by E2 as follows

E1(E2) =

{
E1 if E1 is a ground context,

E1{� ← E2} otherwise,

where E1{� ← E2} is the substitution of E2 for � in E1.
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Context expressions are defined in Table 4. We enhance the context expres-
sions for context-aware ambients from [21] with a consumption formula, stating
the existence of consume capabilities in a process, as well as resource-aware
sometime and somewhere modalities capturing the number of resources con-
sumed in a certain ambient during the reduction, and the relative speed and
number of siblings of the target ambient, respectively. To expose these numbers
in reductions, we define a labeled reduction relation. While _ refers to all re-

duction steps in virtually timed ambients, we denote by
tick−−−_ the steps of the

(RR-Tick) rule, i.e., the internal reductions in the schedulers enabling timed

reduction of processes. All other reduction steps are marked by
τ−_.

Definition 7 (Tick-reduction). P
tick−−−_ P ′ iff P | tick −→ P ′. We write

tickx−−−_ if x time signals tick are used; i.e., P
tickx−−−_ P ′ iff P | tick | · · · |

tick −→∗ P ′, where the number of time signals tick is x. The weak version

of this reduction is defined as P
tickx

===⇒ P ′ iff P (
τ−_
∗ tick−−−_ τ−_

∗
)xP ′, where

τ−_
∗

describes the application of an arbitrary number of τ -steps.

The relation
tickx

===⇒n captures the number of resources used inside an ambient n
inside a process.

Definition 8 (Tick-reduction inside an ambient). P
tickx

===⇒n P
′ iff P _∗

P ′ and there exists Q,Q′ such that P ↓∗ n[Q], P ′ ↓∗ n[Q′] and Q
tickx

===⇒ Q′.

Lastly, we define accumulated speed [10] based on the eager distribution strat-
egy for time slices. The accumulated speed accum{m}P ∈ Q in a subambient m
which is part of a process P , is the relative speed of the ambient m with respect
to the speed of the parental ambient and the siblings of m.

Definition 9 (Accumulated speed). Let speedk ∈ Q and children(k) denote
the speed and number of children of a virtually timed ambient k. Let m be a
timed subambient of a process P , the name parent denoting the direct parental
ambient of m, and C the path of all parental ambients of m up to the level of
P . The accumulated speed for preemptive scheduling in a subambient m up to
the level of the process P is given by

accum{m}P = speedm · 1/children(parent) · speedparent

= speedm ·
∏
k∈C

1/children(k) ·
∏
k∈C

speedk

Schedulers distribute time slices preemptively, as child processes get one time
slice at a time in iterative rounds. Consequently, an ambient’s accumulated speed
is influenced by both the speed and the number of children n of the parental
ambient. Thus, scheduling is not only path sensitive but also sibling sensitive.

The formal semantics for context expressions is given by the satisfaction
relations in Table 5. The spatial reduction relation ��, which describes the option
to go exactly one step deep into the nesting of ambients, is defined as follows.
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E � True
E � � iff E = �
E � ¬κ iff E 6� κ
E � κ1 | κ2 iff exist E1, E2, such that E = E1 | E2 and E1 � κ1 and E2 � κ2

E � κ1 ∧ κ2 iff E � κ1 and E � κ2

E � n[κ] iff exist E′, such that E = n[E′] and E′ � κ
E � ⊕κ iff exist E′, such that E ��E′ and E′ � κ
E � ♦(speed,s)κ iff exists E′, E′′, n s.t. (E ≡ n[Sdl | E′] | E′′ ∨ E ��∗ n[Sdl | E′])

∧E′ � κ ∧ accum{n}E ≥ speed ∧ |USdl ∪ SSdl| ≤ s
E � �x@nκ iff exist E′, such that E

ticky

===⇒n E
′, y ≤ x and E′ � κ

E � ∃x.κ iff exist n, such that E � κ{x← n}
E � c iff exist E′, E′′, E′′′, such that E ↓∗E′ and E′ ≡ E′′. c .E′′′

Table 5. Satisfaction relation for context expressions

Definition 10 (Spatial reduction). E ��E′ iff there exist a name n and con-
text E′′ such that E = (n[E′] | E′′) and ��∗ is the reflexive and transitive closure.

Thus, the spatial next modality ⊕ is satisfied if and only if the expression follow-
ing it is satisfied after stepping one level down in the context. The consumption
expression c is satisfied by any context which contains a consumption capability
anywhere inside. A context E satisfies the sometime modality if and only if it
can reduce to a context satisfying the formula, while using less than x resources
in the ambient n in the reduction. Lastly, the somewhere modality is satisfied if
and only if there exists a subcontext of E satisfying the formula and the relative
speed in the sublocation containing the context is greater or equal the given
speed and the sublocation has less or equal than s timed subambients.

We use the virtually timed system from Example 1 to show the meaning of
some context expressions.

Example 2 (Context expressions and context-guards). It holds that

cloud [Sdlcloud | tick | tick | vm[Sdlvm |c .0]] � �2@vm¬c.

This means that two resources are used in the virtual timed ambient before the
consume capability reduces. This reduction can be seen in Example 1. Further,
it holds that

cloud [Sdlcloud | � | tick | tick | vm[Sdlvm |c .P ]] � ⊕(vm[True] | � | True)

or, omitting the hole,

cloud [Sdlcloud | tick | tick | vm[Sdlvm |c .P ]] � ⊕(vm[True] | True)

as there is an ambient named vm directly under the top level in the system. Using
the context expression as context-guard we can define the following process

cloud [Sdlcloud | ⊕vm[True]? open vm | tick | tick | vm[Sdlvm |c .P ]],

which aims to open the subambient vm if it is the only process on the top level
in the system. As this is true after the ticks have been moved into the scheduler,
the guard is removed and the process reduces to cloud [Sdlcloud |c .P ].
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Weak timed context bisimulation. We define weak timed context bisimulation for
resource-aware ambients, which extends the definition of weak bisimulation for
virtually timed ambients [11] by treating the context-guarded processes as τ
actions in the timed labelled transition system and adding notions of context
bisimulation [19,20] to the bisimulation relation.

The following definitions make use of the notion of timed systems, which are
special processes without capabilities on the outermost level.

Definition 11 (Timed systems). Timed systems are given as follows:

M,N ::= 0
| M | N
| (νn)M
| n[P ],

where P is a timed process as given in Table 1.

The behavior of a timed system interacting with its environment is given as
a transmission system with transition labels.

Definition 12 (Labels). Let the set of labels Lab, with typical element α, be
given as follows:

α ∈ Lab ::= τ
| k.enter n | k.exit n | k.enter n | n.open k
| ∗.exit n | ∗.enter n
| k.tick

where k and n represent names of ambients. The label τ is called the internal la-
bel, the rest are called observable labels. We refer to labels of the forms ∗.exit n
and ∗.enter n as anonymous and other labels as non-anonymous, and let the
untimed labels exclude the k.tick label.

Note that the c capability does not represent an interaction with an en-
vironment but an internal action and is therefore not captured by a separate
observable label apart from τ .

Definition 13 (Timed labeled transitions). The observable steps M
α−→M ′

of the timed labeled transition semantics for timed systems is given by the rules
of Table 6. For internal behavior, τ -steps are the result of reduction steps, i.e.,
M _ M ′ implies M

τ−→M ′.

The untimed labels, which record the system-environment interactions (i.e.,
ambient movements induced by capabilities), coincide with the labels from the
untimed case of mobile ambients [14]. In rules Enter and Exit, an ambient k
enters, respectively exits, from an ambient n provided by the environment. The
rules Enter Shh and Exit Shh model the same behavior for ambients with
private names. In rule Co-Enter, an ambient n, provided by the environment,
enters an ambient k of the process. In rule Open, the environment provides an
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(νm̃)(m[Sdl |in n.P | Q] |M),m ∈ m̃
∗.enter n−−−−−−→ (νm̃)(n[m[(Sdl | P ) | Q] | ◦ ] |M) (Enter Shh)

(νm̃)(k[Sdl |in n.P | Q] |M), k /∈ m̃
k.enter n−−−−−−→ (νm̃)(n[k[(Sdl | P ) | Q] | ◦ ] |M) (Enter)

(νm̃)(m[Sdl |out n.P | Q] |M),m ∈ m̃
∗.exit n−−−−−→ (νm̃)(m[(Sdl | P ) | Q] | n[M | ◦ ]) (Exit Shh)

(νm̃)(k[Sdl |out n.P | Q] |M), k /∈ m̃
k.exit n−−−−−→ (νm̃)(k[(Sdl | P ) | Q] | n[M | ◦ ]) (Exit)

(νm̃)(k[(Sdlk | P )] |M), k /∈ m̃
k.enter n−−−−−−→ (νm̃)(k[Sdl∗k | n[◦] | P ] |M) (Co-Enter)

(νm̃)(k[(Sdl | P )] |M)
n.open k−−−−−→ n[ ◦ | (νm̃)(P |M)] (Open)

(νm̃)(k[Sdl | Q] |M), k /∈ m̃
k.tick−−−−→ (νm̃)(k[Sdl | tick | Q] |M) (Tick)

Table 6. Rules for timed labeled transition systems, where in (Co-Enter) given
Sdlk = Schedspeedk{in, out, rest, unserved, served} the updated scheduler is denoted
by Sdl∗k = Schedspeedk{in, out, rest, unserved ∪ {n}, served} if speedn > 0 as described
in Table 2.

ambient n in which the ambient k of the process is opened. In rule Tick, the

transition M
k.tick−−−−→M ′ expresses that the top-level ambient k of the system M

receives one time slice tick from the root scheduler on the global level.

The post-configurations after the transitions contain the symbol ◦, which
is used as placeholder variable. The labels, which capture interaction with the
environment, carry partial information about the “data” exchanged with the en-
vironment. For example, label k.enter n carries information about the identity
k of the ambient being entered, which is contained in the system, as well as the
identity of the entering ambient named n, which, before the step, is still part of
the environment. If the enter-label conceptually indicates that some arbitrary
ambient n[R | Sdl] enters the system as an effect of executing the in n-capability,
then the name n is mentioned as part of the label but its “body” R | Sdl is not.
We want to relate the actions of the two systems by a notion of bisimulation.
Intuitively, if one system does a transition where n[R | Sdl] enters, the second
system must be able to exhibit the same transition, i.e., have the “same” am-
bient entering without breaking their (bi)simulation relationship. In principle,
the second system can simulate the first doing a step where an ambient n[R]
enters, with the body S ≡ R | Sdl. To achieve that (without overburdening the
labels by interpreting them up-to structural congruence ≡), the definition uses
the placeholder ◦ and requires preservation of the relationship for all instantia-
tions of the placeholders for both systems by the same body (cf. Definition 14
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below). The substitution of the placeholder by a pair consisting of a process and
its local scheduler, is written as P • (Sdl | Q) and defined as expected.

The reduction semantics of a process can be encoded in the labelled transition
system, because a reduction step can be seen as an interaction with an empty
context. We are interested in bisimulations that abstract from τ -actions and use
the notion of weak actions; let ==⇒ denote the reflexive and transitive closure of
τ−→, let

α
=⇒ denote ==⇒ α−→==⇒, and let

α̂
=⇒ denote ==⇒ if α = τ and

α
=⇒ otherwise.

Definition 14 (Weak timed context bisimulation). A symmetric relation

R over timed systems is a weak timed context bisimulation if M R N and M
α−→

M ′, α ∈ {k.enter n, k.exit n, k.enter n, n.open k, ∗.exit n, ∗.enter n, k.tick,
τ} implies:

1. If α is a non-anonymous label, then N
α̂
=⇒ N ′ for some N ′, such that such that

for all schedulers Sched and processes P it holds that E[M ′•(Sched | P )] R
E[N ′•(Sched | P )], for each context E.

2. For anonymous labels:
(a) If α = ∗.enter n, then N | n[◦] ==⇒ N ′ for some N ′, such that for all

schedulers Sched and processes P it holds that E[M ′•(Sched | P )] R
E[N ′•(Sched | P )], for each context E.

(b) If α = ∗.exit n, then n[ ◦ | N ] ==⇒ N ′ for some N ′, such that for all
schedulers Sched and processes P it holds that E[M ′•(Sched | P )] R
E[N ′•(Sched | P )], for each context E.

The preservation of bisimilarity by system contexts follows from this definition:

Theorem 1. Weak timed context bisimilarity is preserved by system contexts.

The given bisimulation relation is a congruence. Furthermore, the relation coin-
cides with reduction barbed congruence, defined as the largest relation which is
preserved by all constructs of the language, by the internal steps of the reduction
semantics, and by so-called barbs, which are simple observables of terms.

Definition 15 (Reduction barbed congruence over timed systems).
Reduction barbed congruence over timed systems is the largest symmetrical re-
lation over timed systems which is preserved by all system contexts, is reduction
closed and barb preserving.

We can show that the bisimulation relation coincides with reduction barbed
congruence by following the proof given in [11].

Theorem 2. Weak timed context bisimulation and reduction barbed congruence
over resource-aware virtually timed systems coincide.

4 Implementation and Case Study

We implement resource-aware virtually timed ambients in the rewriting logic sys-
tem Maude [5,17]. Rewriting logic is a flexible semantic and logical framework
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which can be used to represent a wide range of systems with low representational
distance [15]. Rewriting logic embeds membership equational logic, which lets a
specification or program contain both equations and rewrite rules. When exe-
cuting a Maude specification, rewrite steps are applied to normal forms in the
equational logic. Both equations and rewrite rules may be conditional, meaning
that specified conditions must hold for the rule or equation to apply.

The calculus of virtually timed ambient and a modal logic model checker
for virtually timed ambients have been implemented in Maude [12]. The timed
reduction rules (Tables 2 and 3) are represented as rewrite rules and modal logic
formulas are built from operator declarations in Maude. We now extend this
implementation with guarded processes and the corresponding reduction rule,
and with replication and restricted names, thereby allowing non-unique names
for ambients 1. The syntax of resource-aware virtually timed ambients, given in
Table 3, is represented by Maude terms, constructed from operators:

op zero : -> VTA [ctor] .

op _|_ : VTA VTA -> VTA [id: zero assoc comm] .

op _._ : Capability VTA -> VTA .

op _[_|_] : Name Scheduler VTA -> VTA .

op !_ : VTA -> VTA .

op !<_>_ : Names VTA -> VTA .

op _?_ : Formula VTA -> VTA [frozen (2)] .

The correlation between our formal definition and the Maude specification is
easy to see. The operator zero represents the inactive process. Parallel compo-
sition has the algebraic properties of being associative, commutative and having
zero as identity element. Concatenation is represented by a dot. Virtually timed
ambients are represented by a name followed by brackets containing a scheduler
and processes. Replication is represented by an exclamation mark and context-
guarded processes by a question mark. The frozen attribute prevents subterms
behind the guard from being rewritten before the guard has been resolved.

The prototype implementation currently covers a negation free fragment of
the logic. Context expressions (defined in Table 4) are implemented explicitly as
modal logic formulas, their duals have been implemented as necessary for the case
study. We explain the implementation of the reduction rules by the rewrite rule
for context-guards, corresponding to TR-Context. The guards express global
properties, which make it necessary to capture the entire environment. This is
achieved by wrapping the top-level ambient in brackets op {_} : VTA -> VTA,
which syntactically distinguish the top-level ambient from subambients. Using
these brackets, we can express that a rewrite rule may only be applied at the
global level. Guards are resolved by invoking the given modal logic model checker
for virtually timed ambients during execution:

crl [RemoveGuard] : { P } => { removeGuard(P, G) }

if G, Gs := findGuards(P) /\

removeGuardedProcess(P, G) |= G => true .

1 The full source code for the calculus and the case study is available at:
https://github.com/larstvei/Check-VTA/tree/resource-aware
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Here, findGuards(P) provides the set of all active guards found in the pro-
cess, and some guard G is arbitrarily selected. Using the satisfaction relation
|= the model checker is invoked on the top-level ambient, where the operation
removeGuardedProcess(P, G) removes the guard together with the process be-
hind it and thus yields the environment of the guarded process. If the environ-
ment satisfies the guard, the guard is removed by removeGuard(P, G).

A case study of dynamic auto scaling on Amazon EC2. In the following,
we show how resource-aware virtually timed ambients can model dynamic auto
scaling of Amazon EC2 instances, based on the Auto Scaling User Guide by
Amazon Web Services [1]. An auto scaling group is a collection of EC2 instances,
which are essentially virtual machines, illustrated in Fig. 1. The user can specify
the minimum and maximum number of instances in an auto scaling group, and
auto scaling ensures that the given group never goes below or above these bounds.
By specifying scaling policies the user enables auto scaling to adjust the number
of instances depending on the demand on the application.

Fig. 1. Example of an auto scaling group as given in [1].

We model a cloud server as a top-level ambient with a scheduler sdl(’asg),
an auto scaling group asg, a garbage bin garbage, and a number of requests,
demanding resources. A minimal example of scaling can be given by using two
requests request(2), each expecting two resources:

op example : -> VTA .

eq example =

{ ’cloud[sdl(’asg) | asg | request(2) | request(2) | garbage] } .

The expressions asg, garbage and request(2) reduce to resource-aware vir-
tually timed ambients, containing other ambients and processes. For example,
request(K) is an ambient containing an empty scheduler sdl, movement capa-
bilities and a number K of consume capabilities, representing load on the machine.

eq request(K) =

’request[sdl | in(’asg) . open(’move) . zero | consumes(K)] .
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The ambient asg, which models the auto scaling group, manages the virtual
machines and dynamically scales depending on the load. A request may enter
the asg where an idle virtual machine seizes it or, if no virtual machine is idle
and the maximal number of virtual machines is not reached, the asg scales up
and produces a new virtual machine to handle the request. Scaling up is achieved
by means of replicated ambients with restricted names, representing new virtual
machines, protected by a scaling guard which realizes the scaling policy:

eq scalingGuard(MIN, MAX) =

(+) someone(’asg[<> 0 MIN someone(’isRegistry[True]) \/

someone(’request[True]) /\

<> 0 MAX someone(’isRegistry[True]) /\

no-one(NotConsume /\ (+) someone(’isVM[True]))]) .

The guard checks the number of virtual machines, their load and the existence
of a request. The formula someone(F) is introduced to capture a recurring pat-
tern in the case study, namely the satisfaction of a formula by one ambient in
the process. The dual is expressed by no-one(F). The guard uses the somewhere
modality and is satisfied if there are less then the minimal number of subambi-
ents in a ’registry ambient (marked by the subambient ’isRegistry) which
contains a subambient for every active virtual machine. It is also satisfied if there
exists a request inside the auto scaling group, the maximal number of machines
is not reached, and there is no idle virtual machine (marked by the property
NotConsume and the subambient ’isVM). Idle virtual machines move into the
garbage ambient, if the number of virtual machines is not below the minimum.
By running the example in Maude, we can see how the scaling process and the
virtual machines react dynamically to the load on the auto scaling group.

Maude> frew example .

result VTA:

{’cloud[sched 0{0,0,0,’asg,none}

| ’asg[sched 1{10,0,0,’vm1,none}

| ...

| !< ’vm > (open(’scaling_lock) . scalingGuard ? scalingProcess)

| ’vm1[...]]

| ’garbage[sched 0{0,0,0,’vm0,none}

| ’vm0[...] | ...]]}

Initially, the auto scaling group produces a virtual machine ’vm0[...], in accor-
dance with the scaling policy which requires at least one running instance. The
first request is handled by ’vm0[...], and a new virtual machine ’vm1[...]

is produced and handles the second request. Once ’vm0[...] has resolved its
request, it moves itself into the garbage ambient. The second virtual machine
’vm1[...] is prevented from deleting itself, due to the scaling policy. The model
autonomously creates virtual machines to deal with incoming requests and scales
back down when the machines are not needed anymore.
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5 Related Work

The calculus of virtually timed ambients, first introduced in [10], is based on
mobile ambients [3]. Mobile ambients model both location mobility and nested
locations, and capture processes executing at distributed locations in networks
such as the Internet. Gordon proposed a simple formalism for virtualization
(without notions of timing or resources) loosely based on mobile ambients in [8].
The calculus of virtually timed ambients [10,11] stays closer to the syntax of
the original mobile ambient calculus, while at the same time including notions
of time and explicit resource provisioning. Our notion of resource provisioning
extends work on deployment models in ABS [9] to additionally cover nested
virtualization and the capabilities of mobile ambients. Resource-awareness for
virtually timed ambients draws on the Calculus of Context Aware Ambients
[21] which introduces context-guarded processes to enable context-awareness of
mobile ambients. The context expressions in this paper are adapted to cover the
timing and resource aspects of virtually timed ambients.

Cardelli and Gordon defined a labeled transition system for their mobile am-
bients [4], but no bisimulation. A bisimulation relation for a fragment of mobile
ambients, called mobile safe ambients, is defined in [13] and provides the basis for
later work. A labelled bisimulation for mobile ambients is defined by Merro and
Nardelli [14], who prove that this bisimulation is equivalent to reduction barbed
congruence and develop up-to-proof techniques. The weak timed bisimulation
defined in [11] is a conservative extension of this approach, which is extended
further in this paper using notions of context bisimulation developed in [19,20].

In [12] we use the Maude [5] system to implement a model checker, exploiting
the low representational distance which distinguishes Maude [15]. The reduction
rules for mobile ambients as well as a type system have been implemented in
Maude in [18]. In contrast, our implementation focuses on capturing the timed
reduction rules of virtually timed ambients as well as the modal formulas to
define guards and resource-awareness.

6 Concluding Remarks

Virtualization opens for new and interesting foundational models of computation
by explicitly emphasizing deployment and resource management. The calculus
of virtually timed ambients is a formal model of hierarchical locations of ex-
ecution with explicit resource provisioning. Resource provisioning for virtually
timed ambients is based on virtual time, a local notion of time reminiscent of
time slices provisioned by an operating system to virtual machines in the context
of nested virtualization. This paper introduces resource-awareness for virtually
timed ambients, which enables horizontal scaling. We define weak timed con-
text bisimulation for resource-aware virtually timed ambients as an extension
of bisimulation for mobile ambients. We implement the calculus in the rewrit-
ing logic system Maude and illustrate its use by a case study of dynamic auto
scaling. Future work aims to develop optimization strategies for resource-aware
scaling as well as a notion of higher order resources.
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