
Release the Beasts: When Formal
Methods Meet Real World Data ?

Rudolf Schlatte, Einar Broch Johnsen, Jacopo Mauro,
S. Lizeth Tapia Tarifa, and Ingrid Chieh Yu

Department of Informatics, University of Oslo, Oslo, Norway
{rudi,einarj,jacopom,sltarifa,ingridcy}@ifi.uio.no

Abstract. It is well-known that the difference between theory and prac-
tice seems smaller in theory than in practice. From the perspective of the
coordinator, the coordinated components play the role of wild beasts, for-
tunately imprisoned in boxes. From the perspective of the care-free se-
manticist, the development of tools is merely a minor step away (possibly
hidden in promises of future work). This paper draws parallels between
beasts and tool building by describing challenges we have encountered
and sharing experiences and lesson learned when going from a composi-
tional semantics to a well-functioning tool interacting with industrial use
cases. Concretely, we discuss the development of the simulation backend
for Real-Time ABS.

In addition to his scientific contributions, Farhad Arbab has always been
an outstanding speaker with a flair for inspiring talks and memorable
punchlines. This paper is written for a highly appreciated colleague.

1 Introduction

Inside every box, there is a beast1 just waiting to be discovered. Look closely and
you will find it, lurking in the shadow of some interface. Even if you decide not
to look, the beasts will still be there; their behavior an unsolvable mystery to the
exogenous spectator. Each beast has its own particularities, its own irregularities,
and its own side effects. Every beast is potentially a new friend, some of them
can be worth knowing.

Many researchers rely on abstraction for their formalizations and reasoning
systems. It is our secret weapon; apply it and a lot of problems simply vanish in
a “puff” [1]. Programming languages are also getting increasingly more abstract,
allowing us to express programs in more generic ways, relying on some low-level
machinery to ensure that they are well-behaved. High-level languages should
make it easier to express and prove the correctness of the behavior we want in our
? This research was supported by the SIRIUS Centre for Scalable Data Access (237898)
and by the EU project HyVar: Scalable Hybrid Variability for Distributed Evolving
Software Systems (H2020-644298).

1 The metaphor of the ‘beast in the box’ was invented by Farhad Arbab around 2005.

systems. We continue to strive for more abstraction [2], for more semantics [3],
for more compositionality [4]. As we climb the ladder of abstraction, we leave
the operational behind in favor of the denotational, we ignore the “how” in favor
of the “what”. Let us consider Reo [5] as a case in point; happily unconcerned
with the behavior it coordinates, it is pure compositionality with an endless
flow of semantics [6]. Reo’s different semantics describe the flow of data through
connectors coinductively [6], using constraint automata [7] abstracting from the
distinction between input and output, or as an artist’s palette of colors [8]. Each
semantics highlights a particular aspect of Reo’s exogenously coordinated flow.
The different semantics also enable the implementation of tools (e.g., [8–10]). The
construction of tools reveals another kind of beasts: the implementation details
and the interface to the real world. In fact, it is on the path from semantics to
tools that we encounter the beasts that are the focus of this paper, where the
ideal compositional world of semantics comes with many afterthoughts.

In the rest of this paper, we discuss these afterthoughts and open the boxes
to get a closer look inside. Section 2 gives a brief overview of ABS and its seman-
tics, the language that we are using to illustrate our findings when looking into
the boxes. Section 3 proposes a starting point when venturing towards imple-
mentation and tools. Section 4 discusses implementation issues, Sect. 5 describes
interfacing with models, and Sect. 6 describes issues of community and develop-
ment. Sections 7 and 8 describe two case studies which illustrate the interest of
venturing down this road.

2 A Short Overview of Real-Time ABS

Real-Time ABS is a formally defined, actor-based, object-oriented modeling lan-
guage targeting distributed systems with early deployment decisions and timing
requirements. Real-Time ABS extends ABS, a language with a formal syntax
and semantics defined in operational semantics (SOS) [13] as well as trace se-
mantics [12]. Compared to other actor or active object languages [26], two distin-
guishing features of Real-Time ABS are its support for cooperative concurrency
and the explicit modeling of deployment decisions in a real-time setting.

The language is layered and combines a simple, functional language to express
local computation; an object-oriented, imperative language for asynchronous
communication and synchronization; and real-time and deployment layers which
allows object requiring resources for their computations to be placed at loca-
tions with restricted resource capacity, and to model the time-sensitive behavior
of these objects. The combination of functional and imperative layers makes it
easy to model an object-oriented design, yet retain a high level of abstraction for
internal computations and data modeling. The real-time and deployment layers
make it possible to express timing properties and compare deployment decisions
early in the software development process.

Real-Time ABS includes a Cloud API, used to model how software appli-
cations interact with a cloud provider [27]. The model offer services to client
applications to dynamically acquire and release virtual machines on demand.

(Suspend)

o(a, {l | suspend; s}, q)
→ o(a, idle, {l | s} ◦ q)

(Release-Cog)

o(a, idle, q) c(o)
→ o(a, idle, q) c(ε)

(Activate)

p = select(q, a, cn)
{o(a, idle, q) c(ε) cn cl(t)}

→ {o(a, p, (q \ p)) c(o) cn cl(t)}

(Run-Inside-Interval)

cn cl(t)
!→ cn′ cl(t)

0 < d ≤ mte(cn′, t) btc = bt+ dc
{cn cl(t)}

→t {timeAdv(cn′, d) cl(t+ d)}

(Run-To-New-Interval)

cn cl(t)
!→ cn′ cl(t)

0 < d ≤ mte(cn′, t) dte = t+ d

{cn cl(t)}
→t {timeAdv(rscRefill(cn′), d) cl(t+ d)}

Fig. 1. Some rules from the operational semantics of Real-Time ABS.

The model of the cloud provider is based on deployment components, which are
computation locations with limited resource capacities and which are used to
represent created virtual machines of given processing capacities. The commu-
nication interface of the cloud provider allows a model of a client application
to create machines with a desired execution capacity, acquire machines to start
task executions, release machines, and finally get the accumulated usage cost.
This API extension has been used in several case studies. In particular, Sect. 7
reports on experiences with Real-Time ABS using this Cloud API.

Figure 1 illustrates the SOS semantics of Real-Time ABS (for details of the
full semantics, see [15, 19]). In these rules, a configuration cn is a multiset of
terms, including objects, concurrent object groups (cogs), which share a thread
of execution, and execution locations with restricted amount of resources. The
timed configuration includes a global clock cl(t). The use of brackets encapsu-
lating timed configurations allows the left hand sides of rules to match the whole
configuration and not just some of its terms. An object is a term o(σ, p, q) where
o is the object’s identifier, σ is a substitution representing the binding of the
object’s fields, p is an (active) process, and q a pool of processes. For the process
pools q, concatenation is denoted by q1 ◦ q2. A process {σ|s} consists of a substi-
tution σ of local variable bindings (including the variable deadline which denotes
the remaining execution time of the process until a soft deadline is passed) and
a list s of statements, or it is idle. A cog c(act) contains an identifier c and the
currently active object act or ε if no object of the cog is currently active.

Rule Suspend enables cooperative scheduling and suspends the active process
to the process pool, leaving the active process idle, and Release-Cog makes the
cog idle if the object holding its lock is idle. Given an idle object with an idle
cog, rule Activate schedules a process from the process queue and grabs the lock
of the cog. Here, the function select chooses a process which is ready to execute
from the process queue. If there is no such process, the premise is false.

Time advance in the semantics is specified by a transition relation →t and
the rules Run-Inside-Interval and Run-To-New-Interval. The model of time
is based on maximal progress, so time will only advance when execution is oth-

erwise blocked (i.e., !→ denotes the reduction to normal form in the premises of
the rules). The rule Run-Inside-Interval captures time advance which does not
influence the resource availability in the execution locations of the system, and
the rule Run-To-New-Interval captures the case when the resources in the exe-
cution locations should be “refilled” for the next time interval. The function mte
calculates the maximal time advance, which is the largest amount by which time
can advance such that no “interesting” occurrence will be missed in any object
or execution location. The function timeAdv updates the active and suspended
processes of all objects, decrementing the values of all deadlines and duration
statements. The function rscRefill captures the effect of time advance on the
execution locations, causing the refilling of resources in each of them.

3 Leaving the World of Semantics and Compositionality

Compositionality is often regarded as the key to address real systems using
formal methods. In semantics, compositionality gives us maintainability by min-
imizing the interference between different mathematical objects such that new
objects will not violate existing semantic rules and such that different objects
can be composed or coordinated via their interfaces. In reasoning, composition-
ality allows us to reason about each of these objects separately, and later put
together the derived local behaviors by means of composition rules. In an ideal,
mathematical setting, composition rules such as logical conjunction come natu-
rally [11]. In practice, they are often complex and need to, e.g., resolve interfer-
ence between processes [4] or match shared events in local traces [12]. Remark
that compositionality also often leads to incompleteness in analysis by introduc-
ing abstractions in local reasoning in terms of interfaces, communication traces,
scheduling traces, and other assumptions which generalize the environment.

A major challenge in formal methods is what we may call “leaking abstrac-
tions”. Leaking abstractions typically occur when our reasoning about a high-
level model or a program requires more low-level information than we have avail-
able at the surface level: We have lost too much information in our abstractions.
For example, the abstractions are leaking when knowledge about the runtime
system’s locks, its partitioning of data into blocks, or its (often unspecified or
non-deterministic) scheduling decisions are required to reason about the behav-
ior of programs which do not mention any locks, memory blocks, or schedulers
in the surface language.

An interesting example of leaking abstractions is deployment. In high-level
languages we want to abstract from knowledge of, e.g., memory layout, which
processor gets to run a task, or how tasks distribute over nodes in a grid. With
virtualization, hardware becomes data in our software programs. In our work
on virtualized services for the cloud in the ABS modeling language, described
in Sect. 2, we were confronted with how to give a high-level representation of
low-level deployment details; we needed to explicitly represent time as well as dy-
namic deployment decisions allowing the program to change its own deployment.
Our solutions were also confronted with real industrial case studies [14].

To capture uniform time advance and their effect on computing resources
operationally, we suddenly needed global rules, as the one shown in Fig. 1. To
apply the modeling language to industrial case studies, we needed efficient tools
which integrated our models with real world operational data. To be useful to
practitioners, these tools should not derive theorems from our models, but rather
produce easily accessible information; exit Greek variables, enter the world of
visual analytics. As all things flow [5], we have focussed on timed data streams
depicting the runtime behavior of models.

4 From Operational Semantics to Simulation

If denotational semantics captures the “what” and operational semantics the
“how”, a simulator captures the “really how”. This section discusses some details
from the experiences gained in moving the perspective from the operational se-
mantics of Real-Time ABS to the realm of execution (see Sect. 2 for a brief
introduction to the language). The process of implementing a language’s op-
erational semantics into the tool domain includes many conventional software
development tasks: fixing a concrete syntax that is expressible in ASCII, choos-
ing an implementation platform, implementing a parser and type-checker, code
generation, etc. In the case of Real-Time ABS, the tool chain runs on top of
the Java Virtual Machine, translating ABS models into runnable code using one
of several “backends”. The first backend, initially developed for a precursor lan-
guage called Creol [16], was implemented on top of the rewriting logic system
Maude [17]. Later this backend was joined by a language implementation in Java
and one in Erlang [18].

In addition to standard software engineering issues, translating a formal se-
mantics such as Real-Time ABS into code presents some unique challenges. In
this particular case even though the starting point of this translation was an
operational semantics [15,19] detailing the “how”, some of its rules have a deno-
tational flavour hiding the “really how”. Rules that are straightforward to under-
stand in terms of “what” they are doing, devolve into convoluted code; e.g., the
humble negation operator morphs into a global actor resulting in performance
bottlenecks, etc. In the remainder of this section, we present a selection of in-
teresting implementation challenges, encountered during the implementation of
the Real-Time ABS simulator. The chosen challenges relate to the rules of the
operational semantics shown in Figure 1.

4.1 Clock Advance

A straightforward expression of a logical clock rule is: If no process can execute,
advance the clock by the maximum amount that makes no process miss a dead-
line. This can be expressed in a rule such as Run-Inside-Interval of Sect. 2,
Fig. 1, where the symbol !→ denotes the maximum application of other rules. In
the more concrete world of Maude’s rewriting logic, expressing that no process
can execute entails checking the status of each process, slowing down simulation.

Lesson 1 Semantic rules which contain global (whole-program) state are expen-
sive and easily lead to problems of scaling during implementation.

Rules with global state are not compositional by nature. This makes a direct
implementation of semantic rules with global state badly suited for simulating
systems with large state. This problem can be circumvented by introducing a
centralized coordinator or a distributed protocol.

Note that the property “cannot execute” is non-monotonous since a process
waiting for a computation result can become runnable again as a consequence
of a process in another cog terminating. On the even less abstract distributed
Erlang platform using explicit actors, this can easily lead to temporary “glitches”
as a completion message travels from source cog to target cog. As a consequence,
it was necessary to implement a dedicated singleton actor tracking the status of
each cog. Entertaining months were spent chasing ever more improbable protocol
errors that resulted in spurious clock advances.

Lesson 2 Negations (“it is not the case that. . . ”) translate into universal quan-
tifiers whose implementation requires knowledge of global state.

4.2 Scheduling Processes

In contrast to the semantics of a logical clock representing dense time, which
is specific to ABS, the semantics of scheduling of cooperative processes is well-
understood and standard. In ABS, scheduling entails an idle cog picking an en-
abled process and executing it, thereby becoming busy. The semantics of schedul-
ing is shown in Suspend, Release-Cog and Activate of Sect. 2, Fig. 1; the
select function here returns a runnable process p from the process pool q.

This behavior was implemented in Erlang by choosing one element out of a
set of ready process identifiers, sending it an activation signal and removing it
from the ready process set. We were satisfied that this simple implementation
was trivially correct and according to the desired semantics, until we received a
bug report about a deadlock in the simulation engine.

The user, as it turns out, was running two processes communicating via a
shared object field: process A was spinning on a field (while(!field) suspend;),
while process B’s task was to set the field (field = True;). Note that both of
these processes are enabled and ready to run. Due to the implementation of
Erlang’s standard set datatype gb_sets, process A happened to be chosen every
time, thereby starving process B that would, in turn, have enabled process A to
make progress. The solution was to (i) gently mock the offending user’s program,
which should have used the ABS construct await field; instead of busy-looping,
and (ii) implement a randomizing scheduler to cater for a potentially infinite
sequence of naïve models in the future.

Lesson 3 The simplest possible, obviously correct implementation of a semantic
rule might not be suitable in practice.

5 Getting the Real World into the Models

An implementation of a language semantics gives us a “compute kernel” of sorts
that can be used to execute programs written in the language. However, pure
computation, even when correctly implemented, is not always useful by itself.
End users tend to expect facilities for input and output, which are often ab-
stracted away in language semantics.

This section describes some useful patterns and extensions of Real-Time ABS
in the areas of input, output, and visualization. Most of these are implemented
in terms of a “Model API”. The very first implementations of ABS (and Creol,
its precursor) consisted of equations and rewrite rules over terms representing
objects, processes and other runtime semantics entities that executed on the
rewriting logic system Maude [17]. The result of a computation was represented
as a dump2 of the final state of the global configuration, rendered as ASCII. The
results of simulation (both computation results and model state) were accessed
by one-off scripts, often using regular expressions to extract relevant parts of
this dumped output.

While working on various case studies with industrial partners, the need
to both access model state and influence the model from the outside became
apparent. The creation of other backends (and later versions of Maude) enabled
the addition of printed character output to the language, but accessing richer,
structured data remained elusive.

Lesson 4 Simulation engines need visualization and text output as a minimum,
ideally also a way to access structured state.

In response to these end user needs, a Model API was established for the
Erlang backend. The API is based on web technologies: communication via the
HTTP protocol, with data returned in JSON format. This choice was made
to maximize the ease of implementation of tools to interoperate with a running
model; most programming languages come with standard libraries to emit HTTP
requests and to parse JSON.

Figure 2 illustrates interaction with a running model from the command
line: the user first obtains a list of entry points (entry points are added to the
model by the modeler), then a list of callable methods and finally the result of a
method call. A representation of an ABS object’s internal state can be obtained
in a similar way. This API was used in an industrial case study [20] to drive an
ABS model according to traces obtained from the system logs of a real system.

Lesson 5 Any aspect of a tool that is not core to its functionality (e.g., commu-
nication protocols, structured data storage) should be implemented using estab-
lished industrial standards and existing libraries. This makes it easier for both
implementor and end user.
2 The reviewers of the EU project Credo (https://projects.cwi.nl/credo/), tasked
with implementing Creol [16], correctly pointed out that screenfuls of text (or, for
larger model states, hundreds of kilobytes) were not an effective way of communi-
cating and understanding model behavior.

https://projects.cwi.nl/credo/

~$ cu r l l o c a l h o s t :8080/ c a l l
[" h e l l o o b j "]
~$ cu r l l o c a l h o s t :8080/ c a l l / h e l l o o b j
[{ "name" : " g r e e t i n g " ,

" parameters " : [{ "name" : "name" ,
" type" : "ABS. StdLib . S t r ing " }] ,

" re turn " : "ABS. StdLib . S t r ing " }]
~$ cu r l l o c a l h o s t :8080/ c a l l / h e l l o o b j / g r e e t i n g ?name=Joe
{" r e s u l t " : "He l lo ␣Joe ! "}

Fig. 2. Interacting with the Model API.

One consequence of adding a Model API, i.e., a way of communicating with
a model from outside, is that we move from a closed to an open world where
the full behavior of the model can no longer be analyzed statically. This can
impact proof theories and other analysis approaches, especially when relying on
the whole-program analysis. Modular, compositional analysis methods are less
affected as only a few selected modules are opened to the outside world.

Lesson 6 Tools have different, sometimes conflicting requirements. Making a
language implementation more useful for simulation (“programming”) can result
in proofs of correctness becoming more difficult, and vice versa.

6 Getting the Models into the Real World

In the early days of ABS and its extensions, knowledge about the language was
transmitted orally. All users were part of the same institution, or at least of the
same project, so education and discovery of best practices happened face-to-face.
Similarly, bugs and problems were discovered, reported, discussed, and fixed via
personal interaction. However, this does not scale for a language with users that
are not personally known to the language implementors and designers.

The aim for a widely-used tool must be to make it “self-supporting”; i.e., the
users should be able to find the answers to common problems by themselves.
Updating the documentation in response to user questions must be an ongoing
process.

Lesson 7 When a user asks a question that is covered by the documentation,
ask where they looked for the answer, then update the documentation to put it
there.

Additionally, a lot of programs are developed in a process of “coding-by-
imitation”. Good examples and tutorials help in the process of picking up an
unfamiliar language.

Lesson 8 Provide both small and large examples that show best practices and
“proper” ways to use a language to its fullest potential.

Another aspect of language uptake is visibility of ongoing development. For
users, access to the source code provides a measure of safety — but maybe more
important is a visible and accessible development process. Multi-year commit
activity and prompt responses to bug reports assure prospective customers that
any problems they might uncover will likely be solved as well.

Lesson 9 Make development activity visible to interested end users.

On the other hand, development can lead to “churn” in that introducing and
adapting features can break old code. Once a language is used more broadly, care
must be taken not to invalidate the users’ work. This can be done in multiple
ways: by keeping deprecated features around if they do not conflict with new
features; by documenting changes and update paths for outdated code; and by
providing means of identifying the tool version used for a specific model and
obtaining that version later, should the need arise.

Lesson 10 Do not break user code unnecessarily, and provide ways forward
(adapting code for new tool versions) and backward (obtaining previous tool ver-
sions) in case of necessary changes.

7 Use Case: Scaling with Traffic Data

This section describes a use case modeling a microservice architecture for dis-
patching car software updates [21]. The use case describes an innovative business
model which combines cloud computing and microservices to allow on-demand
delivery of scalable and modular applications with pay-as-you-go pricing.

The starting point for the model creation was the existing microservice ar-
chitecture. Part of the challenge was to create an appropriate abstraction, i.e.,
a simple executable model which exposes scaling decisions as configurable pa-
rameters. ABS helped to cope with this challenge because i) it natively supports
CPU, memory resources and the notion of deployment components [15], ii) be-
ing a full-fledged language it is more flexible than ad-hoc cloud simulators, iii)
it has parallel run-time support in Erlang, iv) tools for worst-case performance
analysis [22] and visualization are available.

Figure 3 shows the chosen methodology. First, we used worst case analysis
(e.g., queuing theory) and profiling techniques to understand which parts of the
system could be simplified and abstracted. This allowed in a second step to
create a simple model with fewer parameters to tune. Finally, to reduce the cost
of the cloud resources used by the microservice system and find good scaling
parameters, we used automatic parameter configurators [23, 24], i.e., tools that
rely on machine learning techniques to explore the possible configurations in a
smarter and more systematic way and come up with good parameter settings.

The creation of the model3 was quite straightforward. A microservice instance
and the load balancer for the redirection of requests was represented with objects.
3 https://github.com/HyVar/abs_optimizer

https://github.com/HyVar/abs_optimizer

Fig. 3. The scaling optimization methodology.

The internal computation performed by a microservice was abstracted to a skip
statement taking a given computation cost c as follows.

[Cost: c] skip;

The objects were instantiated on deployment components, a native construct
of ABS used to represent the virtual machines on which the real microservice
instances are deployed. In this way, the acquisition/dismissal of a virtual ma-
chine for scaling up/down was modeled by the creation/removal of a deployment
component exploiting the ABS native Cloud API (for details, see Sect. 2).

Based on this model, we can now search for good scaling settings using
the Sequential Model-Based Optimization for General Algorithm Configuration
(SMAC) tool [24], an automatic parameter configurator, to explore possible con-
figurations. This computationally heavy task was done using 64 nodes in a Nu-
mascale cluster, a scalable cluster with shared memory4. We run 64 instances
of SMAC in parallel for 12 hours. Every execution of SMAC was performing in
sequence the simulations running the generated Erlang processes on 6 dedicated
cores. The input request pattern used 24-hours of car traffic based on the number
of cars registered on the A414 highway, UK, on Monday, March 2, 2015.

Calibrating the microservice system with good scaling settings was in this
case vital. In theory a microservice system is a simple thing, in practice it was
not. In the beginning, our abstraction was completely disconnected from the
actual performances of the system. For instance, instead of having a uniform
latency distribution (predicted by our model), we obtained a distribution of
latencies like the one presented in Fig. 4. We could not understand why this
was happening since, based on our simulations, this was not explainable by
considering network problems or the variability of the performance of the cloud.
At the end, we discovered that the Amazon default “round-robin” load balancers
used in the real system implementation were not adopting a strictly round robin
policy. This official response on the AWS blog5 highlights the issue:
4 https://www.numascale.com/
5 https://forums.aws.amazon.com/message.jspa?messageID=316829

https://www.numascale.com/
https://forums.aws.amazon.com/message.jspa?messageID=316829

Fig. 4. Uneven request processing times.

“Round-robin does come into play but the client sessions do not always
honour TTL’s or DNS caches so you can get skewed results and un-
even distributions of requests. The ELB does not take into effect what
traffic/requests instances have received to-date in there traffic routing
decisions.”

When using Amazon’s load balancers, this problem rendered our abstraction
useless. We tried multiple approaches to mitigate this while still running the
default Amazon load balancers without achieving a satisfactory level of precision,
due to the unknown real policy of Amazon load balancers.

To improve predictability, the original microservice system was changed by
replacing the Amazon load balancers with HAProxy6, an open source and more
controllable solution. This way, the original system was improved and the ab-
straction was able to predict its behavior, thus allowing good scaling strategies
to be found [21]. Figure 5 shows that the simulation was robust enough to mimic
the real system and offer a performance estimation usable to set good scaling
parameters, even considering the random performance fluctuation of the cloud
instances. We used the Model API described in Sect. 5 to visualize the simu-
lations. This visualization greatly simplified the discovery of discrepancies and,
later, the gain of confidence in the robustness of the model. In this particular
case, it was possible to change the original application to make the model ac-
curate. However, this is not always the case. Developing accurate models which
faithfully represent commercial black box components still remains a challenge.

Lesson 11 Without having a faithful representation of the behavior of the sys-
tem, an optimization step in the model is useless.

6 https://www.haproxy.org

https://www.haproxy.org

Fig. 5. Comparison latency as predicted by ABS to the latency of the real system.

8 Use Case: Vessel Planning

Whereas Sect. 7 showcased a case study of a distributed software system with
virtualized deployment, ABS has been increasingly used to model other kinds
of systems (e.g., railways [25]). In this section, we consider an industrial case
study from the domain of operational planning. This case study addresses vessel
movements and cargo transport in the North Sea. The stakeholders want to
improve their workflow to have a better overview of the (potential) bottlenecks
delaying overall progress, the general load on different vessels, and the quality
of their logistics operation both in terms of the exploitation of vessel capacity
and on the timely delivery of material. We use Real-Time ABS as a modeling
language to simulate and visualize the actual logistics operations. Compared to
the tools currently used, Real-Time ABS simulations provide a different level of
overview which helps to gain precision in the decision making phase.

The case study illustrates the usefulness of ABS modeling beyond the realm
of computing systems, and makes use of both the input and output-facilities
of the Model API to drive the simulation of the model and for visualization of
output. Currently Real-Time ABS is here used for simulations. In a longer term
perspective, we intend to combine these simulations with stronger analyses to
generate solutions and verify their correctness with respect to requirements such
as resource restrictions, safety regulations, and space limitations.

We are working with industrial data from different parts of a complex supply
chain, and integrate these into a uniform ABS model. The data covers transport
plans for a large number of vessels moving between processing plants, with logs
for bulk and cargo delivery covering a twelve month period. In this use case,
ABS is used to define a general framework for modeling transport plans by
means of abstractions for, e.g., vessels, containers, bulk cargo, route segments,
and delivery deadlines in a generic way.

Fig. 6. Visualization of time series data depicting vessel movements.

The model is populated by specific data representing a concrete plan. This is
currently done by moving the data from Excel into a SQL database, then gen-
erating ABS data structures corresponding to the industrial data set. Thus, the
industrial data set acts as the driver for the ABS model. The modeler specifies a
time window, and data for this time interval is converted from the SQL database
and turned into the model of a concrete plan. This allows the ABS model of the
concrete plan for the given time window to be simulated. The planner is pre-
sented with a graphical view of the simulated plan, see Fig. 6. This graphical
view is dynamically generated in-browser from JSON data fetched via the Model
API (described in Sect. 5) and can be easily adapted by a frontend developer; no
knowledge of ABS is needed to create different views over the simulation data.

A practical challenge with this case study, in addition to the data cleaning
required to convert operational data to fit with the modeling framework in Real-
Time ABS and the interaction of the simulation backend and the SQL database,
was the conversion of calendar data to model time. Real-Time ABS represents
time using rational numbers. We calibrated the model with time 0 representing
midnight on the first day simulated. Subsequent dates were numbered 1, 2 . . . ,
with the fractional part representing time of day. This approach gave us sufficient
resolution to model real time using abstract time units.

9 Conclusion

This paper has discussed challenges in moving from formal, compositional lan-
guage semantics to industrially applicable tools. These challenges span from
pattern matching in reduction rules necessitating protocols in a distributed im-
plementation to documentation and input/output interfaces for real world data.
We have compared these challenges to the beasts hidden in the boxes of the
exogenous coordinator.

References

1. Arbab, F.: Puff, the magic protocol. In Agha, G., Danvy, O., Meseguer, J., eds.:
Formal Modeling: Actors, Open Systems, Biological Systems - Essays Dedicated
to Carolyn Talcott on the Occasion of Her 70th Birthday. Volume 7000 of Lecture
Notes in Computer Science., Springer (2011) 169–206

2. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4) (2007)
36–42

3. Jongmans, S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for reo. Sci.
Ann. Comp. Sci. 22(1) (2012) 201–251

4. de Roever, W.P., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Volume 54 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press (2001)

5. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3) (2004) 329–366

6. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In
Wirsing, M., Pattinson, D., Hennicker, R., eds.: Recent Trends in Algebraic Devel-
opment Techniques, 16th Intl. Workshop (WADT 2002). Volume 2755 of Lecture
Notes in Computer Science., Springer (2003) 34–55

7. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in reo by constraint automata. Sci. Comput. Program. 61(2) (2006) 75–113

8. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: synchronisation and
context dependency. Sci. Comput. Program. 66(3) (2007) 205–225

9. Arbab, F., Meng, S., Moon, Y., Kwiatkowska, M.Z., Qu, H.: Reo2MC: a tool chain
for performance analysis of coordination models. In van Vliet, H., Issarny, V.,
eds.: Proc. 7th joint meeting of the European Software Engineering Conf. and the
ACM SIGSOFT Intl. Symp. on Foundations of Software Engineering, ACM (2009)
287–288

10. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via
constraint satisfaction. Sci. Comput. Program. 76(8) (2011) 681–710

11. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15(1) (1993) 73–132

12. Din, C.C., Hähnle, R., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Locally ab-
stract, globally concrete semantics of concurrent programming languages. In: Proc.
26th Intl. Conf. on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2017). Volume 10501 of Lecture Notes in Computer Sci-
ence., Springer (2017) 22–43

13. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In Aichernig, B., de Boer, F.S.,
Bonsangue, M.M., eds.: Proc. 9th Intl. Symposium on Formal Methods for Com-
ponents and Objects (FMCO 2010). Volume 6957 of Lecture Notes in Computer
Science., Springer (2011) 142–164

14. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tapia Tarifa,
S.L., Wong, P.Y.H.: Formal modeling and analysis of resource management for
cloud architectures: An industrial case study using Real-Time ABS. Journal of
Service-Oriented Computing and Applications 8(4) (2014) 323–339

15. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. Journal of Logical
and Algebraic Methods in Programming 84(1) (2015) 67–91

16. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for
distributed concurrent systems. Theor. Comput. Sci. 365(1–2) (2006) 23–66

17. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.L., eds.: All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic. Volume 4350 of Lecture
Notes in Computer Science. Springer (2007)

18. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

19. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. ISSE 9(1) (2013) 29–43

20. Bezirgiannis, N., de Boer, F.S., de Gouw, S.: Human-in-the-loop simulation of
cloud services. In Paoli, F.D., Schulte, S., Johnsen, E.B., eds.: Proc. 6th European
Conf. on Service-Oriented and Cloud Computing (ESOCC 2017). Volume 10465 of
Lecture Notes in Computer Science., Springer (2017) 143–158

21. Lin, J.C., Mauro, J., Røst, T.B., Yu, I.C.: A Model-Based Scalability Optimization
Methodology for Cloud Applications. In: Proc. 7th IEEE Intl. Symp. on Cloud
and Service Computing (IEEE SC2), IEEE CS Press (2017)

22. Albert, E., Flores-Montoya, A., Genaim, S., Martin-Martin, E.: May-happen-in-
parallel analysis for actor-based concurrency. ACM Trans. Comput. Log. 17(2)
(2016) 11:1–11:39

23. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific
algorithm configuration. In: Proc. 19th European Conf. on Artificial Intelligence
(ECAI 2010). Volume 215 of Frontiers in Artificial Intelligence and Applications.,
IOS Press (2010) 751–756

24. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Proc. 5th Intl. Conf. on Learning and Intel-
ligent Optimization LION 5. Volume 6683 of Lecture Notes in Computer Science.,
Springer (2011) 507–523

25. Kamburjan, E., Hähnle, R.: Uniform modeling of railway operations. In Artho, C.,
Ölveczky, P.C., eds.: Proc. 5th Intl. Workshop on Formal Techniques for Safety-
Critical Systems (FTSCS 2016). Volume 694 of Communications in Computer and
Information Science. (2016) 55–71

26. Boer, F.D., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Din, C.C., Johnsen,
E.B., Sirjani, M., Khamespanah, E., Fernandez-Reyes, K., Yang, A.M.: A survey
of active object languages. ACM Comput. Surv. 50(5) (October 2017) 76:1–76:39

27. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling resource-aware virtualized
applications for the cloud in Real-Time ABS. In Aoki, T., Tagushi, K., eds.: Proc.
14th Intl. Conf. on Formal Engineering Methods (ICFEM’12). Volume 7635 of
Lecture Notes in Computer Science., Springer (November 2012) 71–86

	Release the Beasts: When Formal Methods Meet Real World Data

