
An Operational Semantics of
Cache Coherent Multicore Architectures∗

Shiji Bijo, Einar Broch Johnsen, Ka I Pun, and S. Lizeth Tapia Tarifa
University of Oslo, Norway

{shijib, einarj, violet, sltarifa}@ifi.uio.no

ABSTRACT
This paper presents a formal semantics of multicore architectures
with private cache, shared memory, and instantaneous inter-core
communications. The purpose of the semantics is to provide an
operational understanding of how low-level read and write oper-
ations interact with caches and main memory. The semantics is
based on an abstract model of cache coherence and allows formal
reasoning over parallel programs that execute on any given number
of cores. We prove correctness properties expressed as invariants
for the preservation of program order, data-race free execution of
low-level operations, and no access to stale data.

CCS Concepts
•Computer systems organization → Multicore architectures;
•Software and its engineering→ Formal language definitions;
Semantics;

Keywords
Formal semantics, multicore architectures, memory consistency,
cache coherence, correctness properties, observable behaviour.

1. INTRODUCTION
Multicore architectures dominate today’s hardware design. In

these architectures, cache memory is used to accelerate program
execution by providing quick access to recently used data, but al-
lowing multiple copies of data to co-exist during execution. Cache
coherence protocols ensure that cores do not access stale data. With
the dominating position of multicore architectures, system devel-
opers can benefit from a better understanding and ability to rea-
son about interactions between programs, caches and main mem-
ory. For this purpose we need clear and precise operational models
which allow us to reason about such interactions.

In this paper, we propose a formalization of an abstract model of
cache coherent multicore architectures, directly connecting the par-
∗Supported by the EU project FP7-612985 UpScale: From Inher-
ent Concurrency to Massive Parallelism through Type-based Opti-
misations (http://www.upscale-project.eu).

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

SAC 2016, April 04 - 08, 2016, Pisa, Italy

ACM ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851718

allel execution of programs on different cores to the movement of
data between caches and main memory. Similar to formal seman-
tics for programming languages, we develop an operational seman-
tics of parallel computations on cache coherent multicore architec-
tures. Our purpose is not to evaluate the specifics of a concrete
cache coherence protocol, but rather to capture program execution
on shared data at locations with coherent caches in a formal way.
Consequently, we integrate the basic MSI protocol directly into the
operational semantics of our formal model, while abstracting from
the concrete communication medium (which could be, e.g., a bus
or a ring), and from the specifics of cache associativity and replace-
ment policies. We show that this abstract model of cache coherent
multicore architectures guarantees desirable properties for the pro-
grammer such as program order, absence of data races, and that
cores always access the most recent value of data. The technical
contributions of this paper are (1) a formal, operational model of
executions on cache coherent multicore architectures and (2) cor-
rectness properties for the formal model expressed as invariants
over any given number of cores.

Related work. Approaches to the analysis of multicore architec-
tures include on the one hand simulators for efficiency and on the
other hand formal techniques for proving the correctness of specific
cache coherence protocols. We are not aware of work on abstract
models of execution on cache coherent multicore architectures and
their formalization, as presented in this paper.

Simulation tools allow cache coherence protocols to be speci-
fied to evaluate their performance on different architectures (e.g.,
gems [17] and gem5 [1]). These tools run benchmark programs
written as low-level read and write instructions to memory and per-
form measurements, e.g., the cache hit/miss ratio. Advanced simu-
lators such as Graphite [18] and Sniper [4] can handle multicore
architectures with thousands of cores by running on distributed
clusters. A framework, proposed in [15], statically estimates the
worst-case response times for concurrent applications running on
multiple cores with shared cache.

Both operational and axiomatic formal models have been used
to describe the effect of parallel executions on shared memory un-
der relaxed memory models, including abstract calculi [5], memory
models for programming languages such as Java [13], and machine-
level instruction sets for concrete processors such as POWER [16,
22] and x86 [23]. The behavior of programs executing under to-
tal store order (TSO) architectures is studied in [10, 24]. However,
work on weak memory models abstracts from caches, and is as such
largely orthogonal to our work that does not consider reordering of
source-level syntax. Cache coherence protocols can be formally
specified as automata and verified by (parametrized) model check-
ing (e.g., [7, 11, 19, 21]), or in terms of operational formalizations
which abstract from the specific number of cores to prove the cor-

rectness of the protocols (e.g., [8, 9, 25]). In contrast to these ap-
proaches, our model allows the explicit representation of programs
executing on caches. In this sense, our approach is more similar to
the unformalized work on simulation tools discussed above.

Paper overview. Sect. 2 briefly reviews background concepts
on multicore architectures, Sect. 3 presents our abstract model of
cache coherent multicore architectures, Sect. 4 details the opera-
tional semantics for this model, and Sect. 5 the associated correct-
ness properties, Sect. 6 concludes the paper.

2. MULTICORE ARCHITECTURES
Modern multicore architectures consist of components such as

independent processing units or cores, small and fast memory units
or caches associated to one or more cores, and main memory. Cores
execute program instructions and interact with main memory to
load and store data. Cores use caches to speed up their execu-
tions. The current market offers different designs for integrating
these components. Cache memory keeps the most recently used
data accessed by the core available for quick reading or writing. A
core reads or writes data as words. The cache is organized in cache
lines. Each cache line contains several words, such that a specific
word can be accessed by the core using a memory reference. Mul-
tiple continuous words in main memory form a block, which has a
unique memory address.

An attempt to access data from the cache is called a hit if the
data is found in the cache and a miss otherwise. In the case of
a miss, the block containing the requested data must be fetched
from a lower level in the memory hierarchy (e.g., main memory).
Since caches are small compared to main memory, a fetch instruc-
tion may require the eviction of an existing cache line. In this case,
the selection of which cache line to evict depends on how the cache
lines are organized, the so-called cache associativity, and on the
replacement policy. In k-way set associative caches, the caches are
grouped as sets with k cache lines and the memory block can go
anywhere in a particular set. For direct mapped caches, associativ-
ity is one and the cache is organized in single-line groups. In fully
associative caches, the entire cache is considered as a single set and
memory blocks can be placed anywhere in the cache. Replacement
policies determine the line to evict from a full cache set when a new
block is fetched into that set. Typical policies are random, FIFO,
and LRU (Least Recently Used).

Multicore architectures use cache coherence protocols to keep
the data stored in different local caches and in main memory con-
sistent. In particular, invalidation-based protocols are characterized
by broadcasting invalidation messages when a particular core re-
quires write access to a memory address. Examples of invalidation
protocols are MSI and its extensions (e.g., MESI and MOESI).

An invalidation-based coherence protocol integrates a finite state
controller in each core, and connects the cores and memory us-
ing a broadcast medium (a bus, ring, or other topology). The con-
troller responds to requests from its core and from other cores via
the medium. In the MSI protocol, a cache line can be in one of
the three states: modified, shared, invalid. For a line in a cache, a
modified state indicates that it is the most updated copy, and that all
other copies in the system are invalid, while a shared state indicates
that the copy is shared among one or more caches, and the main
memory and that all copies are consistent. When a core attempts to
access a line which is either invalid or does not exist in the cache,
i.e., a cache miss, it will broadcast a read request. Upon receiving
this message, the core which has a modified copy of the requested
cache line will flush it to the main memory and change the state of
the cache line to shared in both the core and the main memory. For
write operations, the cache line must be in either shared or modified

Figure 1: Abstract model of multi-core architecture (illustration).

state. An attempt to write to a cache line in shared state will broad-
cast an invalidation message to the other cores and the main mem-
ory. The state of the cache line will be updated to modified if the
attempt succeeds. Upon the receipt of an invalidation message, a
core will invalidate its copy only if the state is shared. For more de-
tails on variations of multicore architectures, coherence protocols,
and memory consistency, the reader may consult, e.g., [6, 12, 20].

3. THE ABSTRACT MODEL
This section describes our abstract model of execution on ar-

chitectures with shared memory, inter-core communications, and
where cores have a private one-level cache. Figure 1 depicts one
such architecture. The cores in our model execute low-level state-
ments, given as tasks and scheduled by a task queue, reflecting the
read and write operations of a program. These statements inter-
act with local caches and may trigger the movement of data be-
tween the caches and main memory, reflected as fetch and flush
data instructions. The exchange of messages between caches and
main memory is captured by an abstract communication medium,
abstracting from different concrete topologies such as bus, ring,
or mesh. Communication in this medium appears to be instanta-
neous and is captured by labels. If a core needs to access a block of
memory with address n, which is not available with the right per-
missions in its local cache, it will broadcast a !Rd(n) or !RdX(n)
message to all other components in the configuration to obtain read
or read exclusive permissions to n, respectively, and it will proceed
to fetch the data, if needed. Observe that a read exclusive mes-
sage will invalidate all other copies of that memory block in other
caches, so the sender can perform a write operation. Consequently,
the consistency of copies of data in different caches in this abstract
model will be maintained by an abstracted version of the basic co-
herence protocol MSI. Technically, we let synchronization of dual
labels on parallel transitions capture the instantaneous exchange of
messages, as common in process algebra. This mechanism is used
to model the abstract communication medium; a component which
sends a message generates a label and the other components will in-
stantaneously receive the dual labels ?Rd(n) and ?RdX(n) that the
medium automatically generates (e.g., as in Figure 1). For simplic-
ity, the data contained in memory blocks and cache lines is ignored,
a cache line has the same size as a memory block, and data does not
move from one cache to another directly, but indirectly via the main
memory. The model guarantees sequential consistency [14].

Figure 2 contains the syntax of the runtime structure in the model.
The input language consists of tasks with source-level statements

Syntactic
categories.
MM,C,Qu in id
n,m in address
r in reference
k in version
α in 〈k,status〉

Definitions.
Config ::=MM(M) Qu(sst) CR : H

CR ::=C(MLoc ` rst) : h
MLoc ::=M,∼,d

M ::= /0 |M[n 7→〈k,status〉]
status ::=mo | sh | inv

d ::=ε | d;d | fetch(n) | flush(n)
sst ::=ε | sst;sst | PrRd(r) | PrWr(r) | commit(r)
rst ::= sst | rst;rst | PrRdBl(r) | PrWrBl(r)

| commit
H ::=ε | H;ev
h ::=ε | h;ev

ev ::=W (C,n) | R(C,n)

Figure 2: Syntax for the abstract model of parallel architectures,
where over-bar denotes sets (e.g., CR) and where ∼ represents the
associativity and replacement policy.

sst. These statements are PrRd(r) for reading from a memory ref-
erence r, PrWr(r) for writing to r and commit(r) for flushing r.
Cores execute runtime statements rst, including sst, by interacting
with the local cache. The extra statements are explained as follows.
A core may be blocked during the execution due to a cache miss;
PrRdBl(r) and PrWrBl(r) represent the corresponding waiting
states while data is being fetched from main memory, and commit
forces the flushing of all modified data contained in a cache into
main memory, used at the end of a task to guarantee that all data is
flushed before another task is assigned to the core.

A runtime configuration Config expresses that the multicore
architecture has reached a given state after observing a trace H of
events. The configuration consists of a main memory MM(M), a set
Qu(sst) of tasks to be scheduled and executed in a core, multiple
cores CR, and a global history H of events. Memory maps M bind
memory addresses n to pairs 〈k,status〉, representing both memory
blocks in main memory and cache lines in cache memory. Each
core CR includes a local cache memory MLoc, a sequence rst of
statements to be executed, and a local history h. A cache memory
MLoc consists of a map M, a function ∼ expressing its cache as-
sociativity and replacement policy, and a sequence of data instruc-
tions d. In MSI, a cache line can be modified, shared or invalid;
this is captured in our formal syntax by a status mo, sh or inv, re-
spectively. (Since data is first modified in a cache, blocks in main
memory only have status sh or inv, see Sect. 4 below.) We abstract
from the actual data contained in M, but keep the version number k
of the data such that the highest version number together with a sh
or mo status represents the most updated copy of data. The lookup
function M(n) returns the corresponding pair 〈k,status〉 if n is in
the domain of M. Otherwise it returns ⊥, indicating n does not ex-
ist in M. Data instructions fetch(n) load memory blocks into
the cache when there is a cache miss and flush(n) store cache
lines in main memory.

Logs. The global history H logs the concurrent global execution
of statements in the cores CR, such that a successfully completed
read or write by a core to a reference r is reflected by an event
ev appended to H. Since many cores execute in parallel, multiple
events may be appended at the same time. In events R(C,n) for
reading and W (C,n) for writing, C is the id of the core and n the
block address in which r is located. The local history h logs the
execution of a core; it appends single events ev whenever a read or
write operation succeeds in the core. Thus, a local history h is a
projection over the global history H with respect to a given core.

4. OPERATIONAL SEMANTICS
We develop a structural operational semantics (SOS) for our ab-

stract model of cache coherent multicore architectures. In an initial
configuration, all memory blocks in the main memory MM have
status sh and version number 0, the task queue Qu contains a set
of tasks written in the source-level language sst, each core in CR
has an empty cache, and no data instructions as well as no run-
time statements. Executions start from an initial configuration by
applying global transition rules, which in turn apply local transi-
tion rules. Let Config ∗→ Config′ denote an execution starting from
Config and reaching configuration Config′ by applying zero or more
global transition rules, in which case we call Config′ reachable.

Global steps capture the abstract communication medium with
interactions to flush and fetch data to and from main memory, sched-
ule tasks and follow a global protocol to guarantee data consis-
tency. The communication medium, using labels for instantaneous
communication, allows many cores to request and access differ-
ent memory blocks in parallel. Therefore, there may in general be
many interactions occurring at the same time and synchronization
of labels on transitions is over a possibly empty sets of labels. We
formally define the syntax for the label mechanism as follows:

W ::= !Rd(n) |!RdX(n) Q ::=?Rd(n) |?RdX(n)
S ::= /0 | {W} | S∪S R ::= /0 | {Q} | R∪R

where S contains at most one label per block address n. Sect. 4.1
details the global rules.

Local steps capture the local transitions in main memory, the
local executions of statements in each core and the local actions
derived from the global protocol to keep local data coherent with
respect to the other components. Sect. 4.2 details the local rules.

4.1 Global Transition Rules
The global steps of the operational semantics are given in Fig-

ure 3. These transition rules describe the interactions and commu-
nications between the different components in the configuration,
and ensure data synchronization between cores and main memory.

Rule TOP-SYNCH captures the global synchronization for han-
dling a non-empty set S of labels corresponding to broadcast mes-
sages. In this rule, R is the set of receiving labels dual to S. The
configuration is updated in two steps: the main memory must ac-
cept the set R and the cores must accept the set S.

Rule CORE-COMMUNICATION recursively decomposes the la-
bel set S into sets of sending and receiving labels distributed over
the cores CR, such that each set eventually contains at most one W
label. Each set of cores must accept the associated set of labels
in the premises of the rule. The decomposition ensures that only
receiving messages are shared between the transitions. The rule
ensures that a core which does not send a message W will receive
the dual message Q. The decomposition also applies to the global
history which projects to the sets CR1 and CR2, respectively. If the
transitions generate events, these are merged into a set of events
which extends the global history H.

The rule TOP-ASYNCH captures parallel transitions in differ-
ent components when the set of labels is empty. These transi-
tions can be local to individual cores, parallel memory accesses
or scheduling of new tasks. There are four cases: CR1 perform lo-
cal transitions without labels, CR2 access main memory, CR3 get
new tasks from the task queue, and CR4 are idle. The decomposi-
tion for local transitions, memory accesses, and scheduling of new
tasks is respectively handled by the rules PAR-INTERNAL-STEPS,
PAR-MEMORY-ACCESS, and PAR-TASK- SCHEDULER. Let the
predicate disjoint(CR1,CR2,CR3,CR4) express that the sets of cores
involved in the parallel transitions are disjoint to each other.

(TOP-SYNCH)
MM(M)

R−→MM(M′) CR : H S−→CR′ : H ′

S 6= /0 {n |!RdX(n) ∈ S}∩{n |!Rd(n) ∈ S}= /0
R = {?RdX(n) |!RdX(n) ∈ S}∪{?Rd(n) |!Rd(n) ∈ S}
MM(M) Qu(sst) CR : H S−→MM(M′) Qu(sst) CR′ : H ′

(CORE-COMMUNICATION)

CR1 : H/id(CR1)
S1∪R2∪R
−−−−−→CR′1 : H/id(CR1);ev1

CR2 : H/id(CR2)
S2∪R1∪R
−−−−−→CR′2 : H/id(CR2);ev2

S = S1 ∪S2 S1 ∩S2 = /0 H ′ = H;(ev1 ∪ ev2)
R1 = {?RdX(n) |!RdX(n) ∈ S1}∪{?Rd(n) |!Rd(n) ∈ S1}
R2 = {?RdX(n) |!RdX(n) ∈ S2}∪{?Rd(n) |!Rd(n) ∈ S2}

CR1 CR2 : H S∪R−−→CR′1 CR′2 : H ′

(PAR-TASK-SCHEDULER)
sst′ = sst\sst

Qu(sst′) CR → Qu(sst′′) CR′

Qu(sst) CR C(M,∼,ε ` ε) : h
→ Qu(sst′′) CR′ C(M,∼,ε ` sst;commit) : ε

(TOP-ASYNCH)
CR =CR1 ∪CR2 ∪CR3 ∪CR4 disjoint(CR1,CR2,CR3,CR4)

CR′ =CR′1 ∪CR′2 ∪CR′3 ∪CR4 H ′ = H;ev
CR1 : H/id(CR1)→CR′1 : H/id(CR1);ev

MM(M) CR2→MM(M′) CR′2 Qu(sst) CR3→ Qu(sst′) CR′3
MM(M) Qu(sst) CR : H /0−→MM(M′) Qu(sst′) CR′ : H ′

(PAR-INTERNAL-STEPS)
H ′ = H;(ev1 ∪ ev2)

CR1 : H/id(CR1)→CR′1 : H/id(CR1);ev1

CR2 : H/id(CR2)→CR′2 : H/id(CR2);ev2

CR1 CR2 : H→CR′1 CR′2 : H ′

(PAR-MEMORY-ACCESS)
MM(M[n 7→α]);(MLoc)
→MM(M[n 7→α ′]);(MLoc′)

M′ = M[n 7→⊥] MM(M′) CR→MM(M′′)CR′

MM(M[n 7→α]) CR C(MLoc ` rst) : h
→MM(M′′[n 7→α ′]) CR′ C(MLoc′ ` rst) : h

(FETCH1)
m = select(M2,∼2,n) m = n

M(n) = 〈k,sh〉 M′2 = M2[n 7→〈k,sh〉]
MM(M);(M2,∼2,fetch(n);d2)
→MM(M);(M′2,∼2,d2)

(FETCH2)
m = select(M2,∼2,n) m 6= n M2(m) 6= 〈k,mo〉

M(n) = 〈k,sh〉 M′2 = M2[m 7→ ⊥,n 7→ 〈k,sh〉]
MM(M);(M2,∼2,fetch(n);d2)
→MM(M);(M′2,∼2,d2)

(FETCH3)
m 6= n

m = select(M2,∼2,n) M2(m) = 〈k,mo〉
MM(M);(M2,∼2,fetch(n);d2)

→MM(M);(M2,∼2,flush(m);fetch(n);d2)

(FLUSH1)
M2(n) = 〈k,mo〉 M′ = M[n 7→〈k+1,sh〉] M′2 = M2[n 7→〈k+1,sh〉]

MM(M);(M2,∼2,flush(n);d2)→MM(M′);(M′2,∼2,d2)

(FLUSH2)
M2(n) 6= 〈k,mo〉∨n 6∈ dom(M2)

MM(M);(M2,∼2,flush(n);d2)→MM(M);(M2,∼2,d2)

Figure 3: Global semantics for cache coherent multicore architectures

Data transfer between a cache and main memory is described
in rules of the form MM(M);(MLoc)→MM(M′);(MLoc′). They
capture the execution of data instructions fetch and flush. Here
the function select(M,∼,n), used in the rules for fetching a data
block with address n, returns the address of the cache line that needs
to be evicted to give space to the data block being fetched. If no
eviction is needed, the select function returns n (cf. rule FETCH1).
Rule FETCH2 describes the case where we need to evict a non-
modified cache line m; rule FETCH3 refers to the case where the
cache line m to be evicted has status mo, so it needs to be flushed be-
fore cache line n can be loaded. Rules FETCH1 and FETCH2 check
that the cache line has status sh in main memory, otherwise the
instruction is blocked until the data is flushed from another cache.

Rule FLUSH1 stores a cache line in main memory, incrementing
the version number and setting its status to sh both in the cache and
main memory. Rule FLUSH2 discards the flush(n) instruction if
the cache line n is no longer modified (or has been evicted).

4.2 Local Transition Rules
The rules in this section capture local transitions in either the

cores or the main memory, and are given in Figure 4. Local rules in
the cores reflect the statements being executed and the local finite
state controller enforcing the MSI protocol. Let addr(r) denote the
block address that contains the reference r, and status(M,n) the
status of cache line n in the map M.

In the main memory, the controller sets the status of a block to
inv in rule ONE-LINE-MAIN-MEMORY1 if exclusive access has
been requested. Rule ONE-LINE-MAIN-MEMORY2 will always
accept a shared read request. Rules MAIN-MEMORY1 and MAIN-
MEMORY2 are distribution rules for sets of labels.

Label sets are decomposed by the SEND-RECEIVE-MESSAGE
(which has only one W label), RECEIVE-EMPTY, and RECEIVE-
MESSAGE rules in order to feed the finite state controller. A core
can only receive an exclusive request ?RdX(n) for a cache line that
is not modified. Rule INVALIDATE-ONE-LINE sets the status of
cache line n to inv if the cache line has status sh when the core
receives a ?RdX(n) message. Rule IGNORE-INVALIDATE-ONE-
LINE ignores any read exclusive message for an invalid cache line,
or for a block which is not in the cache. For messages ?Rd(n), if the

cache line n has status mo, rule FLUSH-ONE-LINE adds a flush
to the head of the data instructions d (to avoid deadlock), otherwise
rule IGNORE-FLUSH-ONE-LINE ignores the message.

Read statements succeed if the cache line n containing the re-
quested reference r is available in the cache, applying rule PRRD1.
Otherwise, a fetch(n) instruction is added to the tail of the data
instructions d in rule PRRD2. In this case, execution is blocked by
the statement PrRdBl(r). Execution may proceed once the block n
has been copied into the cache, captured by rule PRRDBLOCK1. In
the parallel setting, the cache line may get invalidated while the
core is still blocked after fetch. Rule PRRDBLOCK2 captures
this situation and broadcasts the !Rd(n) message again.

Rule PRWR1 expresses that a write statement PrWr(r) succeeds
when the memory block has mo status in cache memory. If the
cache line is shared, the core needs to get exclusive access, cap-
tured by rule PRWR2. If the cache line is invalid (or the block
is not in the cache), the core first needs to request the cache line
in rule PRWR3. Similar to the case for read, we use a statement
PrWrBl(r) and the rule PRWRBLOCK1 to block repeated read
requests. Once the cache line has status sh, rule PRWRBLOCK2
requests exclusive access, as in rule PRWR2.

The statements commit(r) and commit are respectively used
to force flushing of a single modified cache line and of the entire
cache. Rules COMMIT1 and COMMIT2 capture the single cache
line for modified and non-modified cache lines, respectively. Rules
COMMIT-ALL1 and COMMIT-ALL2 reduce a commit statement
to a sequence of flush-instructions. In order to ensure data con-
sistency among main memory and individual caches, the final state-
ment in a task should be commit (see rule PAR-TASK-SCHEDULER
in Figure 3), in this way all modified data in the cache will be
flushed before another task is assigned to the core.

5. CORRECTNESS
We consider correctness properties for the proposed model, in-

cluding the preservation of program order in cores, the absence of
data races, and successful accesses to memory locations always re-
trieve the most recent value. We first define a function which trans-
lates statements into event histories:

(MAIN-MEMORY1)

MM(M)
R−→MM(M′) MM(M′)

Q−→MM(M′′)

MM(M)
R∪{Q}−−−−→MM(M′′)

(MAIN-MEMORY2)
MM(M)

/0−→MM(M)

(ONE-LINE-MAIN-MEMORY1)
M′ = M[n 7→〈k, inv〉]

MM(M)
?RdX(n)−−−−→MM(M′)

(ONE-LINE-MAIN-MEMORY2)

MM(M)
?Rd(n)−−−→MM(M)

(SEND-RECEIVE-MESSAGE)
C(MLoc ` rst) : h R−→C(MLoc′ ` rst) : h

C(MLoc′ ` rst) : h W−→C(MLoc′′ ` rst′) : h′

C(MLoc ` rst) : h
R∪{W}−−−−→C(MLoc′′ ` rst′) : h′

(RECEIVE-EMPTY)
C(MLoc ` rst) : h

/0−→C(MLoc ` rst) : h

(RECEIVE-MESSAGE)
C(MLoc ` rst) : h R−→C(MLoc′ ` rst) : h

C(MLoc′ ` rst) : h
Q−→C(MLoc′′ ` rst) : h

C(MLoc ` rst) : h
R∪{Q}−−−−→C(MLoc′′ ` rst) : h

(INVALIDATE-ONE-LINE)
M(n) = 〈k,sh〉

M′ = M[n 7→〈k, inv〉]
C(M,∼,d ` rst) : h

?RdX(n)−−−−→C(M′,∼,d ` rst) : h

(IGNORE-INVALIDATE-ONE-LINE)
n 6∈ dom(M)∨ status(M,n) = inv

C(M,∼,d ` rst) : h
?RdX(n)−−−−→C(M,∼,d ` rst) : h

(FLUSH-ONE-LINE)
n ∈ dom(M) status(M,n) = mo

d′ = flush(n);d
C(M,∼,d ` rst) : h

?Rd(n)−−−→C(M,∼,d′ ` rst) : h

(IGNORE-FLUSH-ONE-LINE)
n 6∈ dom(M)∨ status(M,n) 6= mo

C(M,∼,d ` rst) : h
?Rd(n)−−−→C(M,∼,d ` rst) : h

(PRRD1)
n = addr(r) status(M,n) 6= inv

C(M,∼,d ` PrRd(r);rst) : h
→C(M,∼,d ` rst) : h;R(C,n)

(PRRD2)
n = addr(r) status(M,n) = inv∨n 6∈ dom(M)

d′ = d;fetch(n) M′ = M[n 7→⊥]
C(M,∼,d ` PrRd(r);rst) : h

!Rd(n)−−−→C(M′,∼,d′ ` PrRdBl(r);rst) : h

(PRRDBLOCK1)
n = addr(r) status(M,n) = sh
C(M,∼,d ` PrRdBl(r);rst) : h
→C(M,∼,d ` rst) : h;R(C,n)

(PRRDBLOCK2)
n = addr(r) status(M,n) = inv

d′ = d;fetch(n) M′ = M[n 7→⊥]
C(M,∼,d ` PrRdBl(r);rst) : h

!Rd(n)−−−→C(M′,∼,d′ ` PrRdBl(r);rst) : h

(PRWR1)
n = addr(r) status(M,n) = mo

C(M,∼,d ` PrWr(r);rst) : h
→C(M,∼,d ` rst) : h;W (C,n)

(PRWR2)
n = addr(r) M(n) = 〈k,sh〉 M′ = M[n 7→〈k,mo〉]

C(M,∼,d ` PrWr(r);rst) : h
!RdX(n)−−−−→C(M′,∼,d ` rst) : h;W (C,n)

(PRWR3)
n = addr(r) status(M,n) = inv∨n 6∈ dom(M)

d′ = d;fetch(n) M′ = M[n 7→⊥]
C(M,∼,d ` PrWr(r);rst) : h

!Rd(n)−−−→C(M′,∼,d′ ` PrWrBl(r);rst) : h

(PRWRBLOCK1)
n = addr(r) status(M,n) = inv

d′ = d;fetch(n) M′ = M[n 7→⊥]
C(M,∼,d ` PrWrBl(r);rst) : h

!Rd(n)−−−→C(M′,∼,d′ ` PrWrBl(r);rst) : h

(PRWRBLOCK2)
n = addr(r) M(n) = 〈k,sh〉 M′ = M[n 7→〈k,mo〉]

C(M,∼,d ` PrWrBl(r);rst) : h
!RdX(n)−−−−→C(M′,∼,d ` rst) : h;W (C,n)

(COMMIT1)
n = addr(r) status(M,n) = mo

d′ = d;flush(n)
C(M,∼,d ` commit(r);rst) : h
→C(M,∼,d′ ` rst) : h

(COMMIT2)
n = addr(r)

status(M,n) 6= mo∨n 6∈ dom(M)

C(M,∼,d ` commit(r);rst) : h
→C(M,∼,d ` rst) : h

(COMMIT-ALL1)
status(M,n) = mo

flush(n) 6∈ d d′ = d;flush(n)
C(M,∼,d ` commit) : h
→C(M,∼,d′ ` commit) : h

(COMMIT-ALL2)
∀n ∈ dom(M).status(M,n) 6= mo

C(M,∼,d ` commit) : h
→C(M,∼,d ` ε) : h

Figure 4: Local semantics for cache coherent multicore architectures

DEFINITION 1. Let addr(r)=n. Define rst ↓C inductively over rst:

(PrRd(r);rst) ↓C =R(C,n); rst ↓C
(PrRdBl(r);rst) ↓C =R(C,n); rst ↓C

(PrWr(r);rst) ↓C =W (C,n); rst ↓C
(PrWrBl(r);rst) ↓C =W (C,n); rst ↓C
(commit(r);rst) ↓C =rst ↓C

commit ↓C =ε

ε ↓C =ε

Intuitively, rst ↓C reflects the expected program order of read and
write accesses when executing rst directly on main memory. Note
that ε;h = h. We show that execution with local cache preserves
this program order:

LEMMA 1 (PROGRAM ORDER).
If C(M,∼,ε ` rst) : ε →∗ C(M′,∼,d ` rst′) : h , then h;rst′ ↓C = rst ↓C .

The next lemma states properties about data races when access-
ing a memory block from main memory.

LEMMA 2 (NO DATA RACES). The following properties hold for
all reachable configurations MM(M) Qu(sst) CR : H:

(a) ∀n ∈ dom(M).(status(M,n) = inv ⇔
∃Ci(Mi,∼i,di ` rsti) : hi ∈CR. status(Mi,n) = mo)

(b) ∀n ∈ dom(M). (status(M,n) = inv ⇔
(∃CRi ∈CR where CRi =Ci(Mi,∼i,di ` rsti) : hi. status(Mi,n) = mo)
∧ ∀C j(M j,∼ j,d j ` rst j) : h j ∈CR\CRi.
(status(M j,n) = inv ∨n 6∈ dom(M j)))

(c) ∀n ∈ dom(M). (status(M,n) = sh⇔
(∀Ci(Mi,∼i,di ` rsti) : hi ∈CR. status(Mi,n) 6= mo))

(d) ∀Ci(Mi,∼i,di ` rsti) : hi ∈CR,∀n ∈ dom(Mi).
(status(Mi,n) = sh⇒ status(M,n) = sh)

Lemma 2 guarantees that there is at most one modified copy of
a memory block among the cores. This ensures single write access
and parallel read access to the memory blocks.

The following lemma shows that the shared copies of a memory
block n in different cores always have the same version number.
Let the function version(M,n) return the version number of block
address n in M.

LEMMA 3 (CONSISTENT SHARED COPIES). Given a reachable
configuration MM(M) Qu(sst) CR and n ∈ dom(M): If status(M,n) = sh,
and if for any C j(M j,∼ j,d j ` rst j) : h j ∈CR such that status(M j,n) = sh,
then version(M,n) = version(M j,n).

We define the most recent value of a memory block as follows:

DEFINITION 2 (MOST RECENT VALUE). For a global configu-
ration MM(M)Qu(sst) CR, a memory location n, and a core CRi ∈ CR,
where CRi =Ci(Mi,∼i,di ` rsti) : hi. Mi(n) has the most recent value if the
following holds.

(a) If Mi(n) = 〈k,sh〉, and ∀C j(M j,∼ j,d j ` rsti) : h j ∈CR\CRi.
status(M j,n) = sh, then M j(n) = 〈k,sh〉, and M(n) = 〈k,sh〉.

(b) If status(Mi,n) = mo, then status(M,n) = inv, and
∀C j(M j,∼ j,d j ` rsti) : h j ∈CR\CRi. status(M j,n) = inv.

With Lemma 3 and Definition 2, the following lemma shows that
if a core succeeds to access a memory block, it will always get the
most recent value.

LEMMA 4 (NO ACCESS TO STALE DATA). Let MM(M) Qu(sst)
CR be a reachable configuration such that CRi =Ci(Mi,∼i,di ` rsti) : hi for
CRi ∈CR. Given a block address n and an event e ∈ {R(Ci,n),W (Ci,n)},
we have that: if CRi : hi →CR′i : hi;e or CRi : h

!RdX(n)−−−−→CR′i : hi;e, then
Mi(n) has the most recent value.

6. CONCLUSIONS
Slogans such as “move the processes closer to the data” reflect

how data location is becoming increasingly important in parallel
computing. To study how computations and data locations inter-
fere, formal models which account for the location of data and the
penalties associated with data access may help the system devel-
oper. This paper proposes a basis for such formal models in terms
of an operational semantics of execution on cache coherent multi-
core architectures. The proposed model also opens for reasoning
about the proximity of processes and data using techniques from
programming languages research such as subject reduction proofs.

In this paper, the semantics incorporates the MSI cache coher-
ence protocol. In the semantics, version numbers and histories are
only needed for correctness proofs. Obvious extensions to our work
include dynamic task creation, loops, and choice in the language,
which all extend the operational semantics with standard rules. Go-
ing beyond these language extensions, we plan to use the presented
semantics in future work to study data layout in main memory, as
well as synchronization mechanisms between tasks and scheduling
policies to improve the cache hit/miss ratio. The long term goal is
to feed such analyses into a compiler for a high-level programming
language which targets multicore architectures, such as Encore [2].

For further details of this work, including supplementary proofs
for Sect. 5 and the description of a prototype interpreter, see [3].

7. REFERENCES
[1] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt,

A. G. Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[2] S. Brandauer, E. Castegren, D. Clarke, K. Fernandez-Reyes,
E. B. Johnsen, K. I Pun, S. L. Tapia Tarifa, T. Wrigstad, and
A. M. Yang. Parallel objects for multicores: A glimpse at the
parallel language Encore. In Formal Methods for Multicore
Programming, LNCS 9104, pages 1–56. Springer, 2015.

[3] S. Bijo, E. B. Johnsen, K. I Pun, and S. L. Tapia Tarifa. An
Operational Semantics of Cache Coherent Multicore
Architectures. Res. Rep. 449, Dept. of Informatics, Univ. of
Oslo, Dec 2015.

[4] T. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring
the level of abstraction for scalable and accurate parallel
multi-core simulation. In Intl. Conf. on High Performance
Computing, Networking, Storage and Analysis (SC’11),
pages 1–12, ACM 2011.

[5] K. Crary and M. J. Sullivan. A calculus for relaxed memory.
In Proc. POPL, pages 623–636. ACM, 2015.

[6] D. E. Culler, A. Gupta, and J. P. Singh. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann, 1997.

[7] G. Delzanno. Constraint-based verification of parameterized
cache coherence protocols. Formal Methods in System
Design, 23(3):257–301, 2003.

[8] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol
verification as a hardware design aid. In Proc. Intl. Conf. on
Computer Design (ICCD’92), pages 522–525. IEEE, 1992.

[9] D. L. Dill, S. Park, and A. G. Nowatzyk. Formal specification
of abstract memory models. In Proc. Symp. on Research on
Integrated Systems, pages 38–52. MIT Press, 1993.

[10] B. Dongol, O. Travkin, J. Derrick, and H. Wehrheim. A
high-level semantics for program execution under total store
order memory. In Theoretical Aspects of Computing (ICTAC
2013), LNCS 8049, pages 177–194. Springer, 2013.

[11] E. A. Emerson, and V. Kahlon. Rapid parameterized model
checking of snoopy cache coherence protocols. In Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS 2003), LNCS 2619, pages 144–159. Springer, 2003.

[12] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 2011.

[13] R. Jagadeesan, C. Pitcher, and J. Riely. Generative
operational semantics for relaxed memory models. In Proc.
ESOP, LNCS 6012, pages 307–326. Springer, 2010.

[14] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans.
Comput., 28(9):690–691, 1979.

[15] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury.
Timing analysis of concurrent programs running on shared
cache multi-cores. In Real-Time Systems Symp. (RTSS 2009),
pages 57–67. IEEE Press, Dec 2009.

[16] S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian,
J. Alglave, S. Owens, R. Alur, M. M. K. Martin, P. Sewell,
and D. Williams. An axiomatic memory model for POWER
multiprocessors. In Proc. CAV, LNCS 7358, pages 495–512.
Springer, 2012.

[17] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood. Multifacet’s general execution-driven
multiprocessor simulator (gems) toolset. SIGARCH Comput.
Archit. News, 33(4):92–99, Nov. 2005.

[18] J. E. Miller, H. Kasture, G. Kurian, C. G. III, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal. Graphite: A distributed
parallel simulator for multicores. In High-Performance
Computer Architecture (HPCA-16), pages 1–12. IEEE, 2010.

[19] J. Pang, W. Fokkink, R. F. H. Hofman, and R. Veldema.
Model checking a cache coherence protocol of a Java DSM
implementation. J. Log. and Alg. Prog., 71(1):1–43, 2007.

[20] D. A. Patterson and J. L. Hennessy. Computer Organization
and Design: The Hardware/Software Interface. Morgan
Kaufmann, 2013.

[21] F. Pong and M. Dubois. Verification techniques for cache
coherence protocols. ACM Comp. Surv., 29(1):82–126, 1997.

[22] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and
D. Williams. Understanding POWER multiprocessors. In
Proc. PLDI, pages 175–186. ACM, 2011.

[23] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O.
Myreen. X86-TSO: A rigorous and usable programmer’s
model for x86 multiprocessors. CACM, 53(7):89–97, 2010.

[24] G. Smith, J. Derrick, and B. Dongol. Admit your weakness:
Verifying correctness on TSO architectures. In 11th Intl.
Symp. on Formal Aspects of Component Softwares, LNCS
8997, pages 364–383. Springer, 2014.

[25] X. Yu, M. Vijayaraghavan, and S. Devadas. A proof of
correctness for the Tardis cache coherence protocol. arXiv
preprint, arXiv:1505.06459, 2015.

