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Abstract. We present a novel static analysis to infer the parallel cost
of distributed systems. Parallel cost differs from the standard notion of
serial cost by exploiting the truly concurrent execution model of dis-
tributed processing to capture the cost of synchronized tasks executing
in parallel. It is challenging to analyze parallel cost because one needs to
soundly infer the parallelism between tasks while accounting for waiting
and idle processor times at the different locations. Our analysis works in
three phases: (1) It first performs a block-level analysis to estimate the
serial costs of the blocks between synchronization points in the program;
(2) Next, it constructs a distributed flow graph (DFG) to capture the
parallelism, the waiting and idle times at the locations of the distributed
system; Finally, (3) the parallel cost can be obtained as the path of max-
imal cost in the DFG. A prototype implementation demonstrates the
accuracy and feasibility of the proposed analysis.

1 Introduction

Welcome to the age of distributed and multicore computing, in which software
needs to cater for massively parallel execution. Looking beyond parallelism be-
tween independent tasks, regular parallelism involves tasks which are mutually
dependent [17]: synchronization and communication are becoming major bottle-
necks for the efficiency of distributed software. This paper is based on a model of
computation which separates the asynchronous spawning of new tasks to differ-
ent locations, from the synchronization between these tasks. The extent to which
the software succeeds in exploiting the potential parallelism of the distributed lo-
cations depends on its synchronization patterns: synchronization points between
dynamically generated parallel tasks restrict concurrency.

This paper introduces a novel static analysis to study the efficiency of compu-
tations in this setting, by approximating how synchronization between blocks of
serial execution influences parallel cost. The analysis builds upon well-established
static cost analyses for serial execution [2,8,21]. We assume that a serial cost
analysis returns a “cost” for the serial blocks which measures their efficiency.
Traditionally, the metrics used in cost analysis [19] is based on counting the
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number of execution steps, because this cost model appears as the best ab-
straction of time for software. Our parallel cost analysis could also be used in
combination with worst-case execution time (WCET) analysis [1] by assuming
that the cost of the serial blocks is given by a WCET analysis.

Previous work on cost analysis of distributed systems [2] accumulates costs
from different locations, but ignores the parallelism of the distributed execution
model. This paper presents, to the best of our knowledge, the first static analysis
to infer the parallel cost of distributed systems which takes into account the
parallel execution of code across the locations of the distributed system, to infer
more accurate bounds on the parallel cost. Our analysis works in the following
steps, which are the main contributions of the paper:

1. Block-level cost analysis of serial execution. We extend an existing cost anal-
ysis framework for the serial execution of distributed programs in order to
infer information at the granularity of synchronization points.

2. Distributed flow graph (DFG). We define the notion of DFG, which allows
us to represent all possible (equivalence classes of) paths that the execution
of the distributed program can take.

3. Path Expressions. The problem of finding the parallel cost of executing the
program boils down to finding the path of maximal cost in the DFG. Paths
in the DFG are computed by means of the single-source path expression
problem [18], which finds regular expressions that represent all paths.

4. Parallel cost with concurrent tasks. We leverage the previous two steps to
the concurrent setting by handling tasks whose execution might suspend and
interleave with the execution of other tasks at the same location.

We demonstrate the accuracy and feasibility of the presented cost analysis by
implementing a prototype analyzer of parallel cost within the SACO system,
a static analyzer for distributed concurrent programs. Preliminary experiments
on some typical applications for distributed programs achieve gains up to 29%
w.r.t. a serial cost analysis. The tool can be used online from a web interface
available at http://costa.ls.fi.upm.es/web/parallel.

2 The Model of Distributed Programs

We consider a distributed programming model with explicit locations. Each lo-
cation represents a processor with a procedure stack and an unordered buffer
of pending tasks. Initially all processors are idle. When an idle processor’s task
buffer is non-empty, some task is selected for execution. Besides accessing its own
processor’s global storage, each task can post tasks to the buffer of any processor,
including its own, and synchronize with the reception of tasks (synchronization
will be presented later in Sec. 6). When a task completes, its processor becomes
idle again, chooses the next pending task, and so on.

2.1 Syntax

The number of distributed locations need not be known a priori (e.g., locations
may be virtual). Syntactically, a location will therefore be similar to an object and
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(newLoc)

fresh(lid ′), l′ = l[x→ lid ′]

loc(lid , tid , {tsk(tid ,m, l, 〈x = newLoc; s〉)} ∪ Q) ;
loc(lid , tid , {tsk(tid ,m, l′, s)} ∪ Q) ‖ loc(lid ′,⊥, {})

(async)

l(x) = lid1, fresh(tid1), l1 = buildLocals(z̄,m1)

loc(lid , tid , {tsk(tid ,m, l, 〈x.m1(z); s〉)} ∪ Q) ;
loc(lid , tid , {tsk(tid ,m, l, s)}∪Q)‖loc(lid1, , {tsk(tid1,m1, l1, body(m1))})

(select)
select(Q) = tid ,

t = tsk(tid , , , s) ∈ Q, s 6= ε(v)

loc(lid ,⊥,Q) ; loc(lid , tid ,Q)

(return)
v = l(x)

loc(lid , tid , {tsk(tid ,m, l, 〈return x; 〉)} ∪ Q) ;
loc(lid ,⊥, {tsk(tid ,m, l, ε(v))} ∪ Q)

Fig. 1. Summarized Semantics for Distributed Execution

can be dynamically created using the instruction newLoc. The program consists
of a set of methods of the form M ::=T m(T x){s}. Statements s take the form
s::=s; s | x=e | if e then s else s | while e do s | return x | x=newLoc | x.m(z̄), where
e is an expression, x, z are variables and m is a method name. The notation z
is used as a shorthand for z1, . . . , zn, and similarly for other names. The special
location identifier this denotes the current location. For the sake of generality,
the syntax of expressions e and types T is left open.

2.2 Semantics

A program state S has the form loc1‖ . . . ‖locn, denoting the currently existing
distributed locations. Each location is a term loc(lid , tid ,Q) where lid is the
location identifier, tid the identifier of the active task which holds the location’s
lock or ⊥ if the lock is free, and Q the set of tasks at the location. Only the task
which holds the location’s lock can be active (running) at this location. All other
tasks are pending, waiting to be executed, or finished, if they have terminated
and released the lock. A task is a term tsk(tid ,m, l, s) where tid is a unique task
identifier, m the name of the method executing in the task, l a mapping from
local variables to their values, and s the sequence of instructions to be executed
or s = ε(v) if the task has terminated and the return value v is available.

The execution of a program starts from a method m, in an initial state with
an initial location with identifier 0 executing task 0 of the form S0=loc(0, 0,
{tsk(0,m, l, body(m))}). Here, l maps parameters to their initial values and local
references to null (standard initialization), and body(m) refers to the sequence of
instructions in the method m. The execution proceeds from S0 by evaluating in
parallel the distributed locations. The transition→ denotes a parallel transition
W in which we perform an evaluation step ; (as defined in Fig. 1) at every dis-
tributed location loci with i=1, . . . , n, i.e., W≡loc1‖ . . . ‖locn → loc′1‖ . . . ‖loc′m.
If a location is idle and its queue is empty, the evaluation simply returns the
same location state. Due to the dynamic creation of distributed locations, we
have that m ≥ n.

The transition relation ; in Fig. 1 defines the evaluation at each distributed
location. The treatment of sequential instructions is standard and thus omitted.
In NewLoc, an active task tid at location lid creates a location lid ′ with a free
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void m (int n) {
. . . // m1

x. p();
. . . // m2

y. q();
. . . // m3

}
void p () {
. . . // p1
y. s() ;
. . . // p2
}

Trace 1©
o x y
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m3
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Trace 2©
o x y
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p2

s

q

P2

Trace 3©
o x y

m1

m2

m3

p1

p2

q

s

P3

P1 = m̂1+m̂2+m̂3 P2 = m̂1+p̂1+ŝ+q̂ P3 = m̂1+m̂2+q̂+ŝ

Fig. 2. Motivating example

lock, which extends the program state. This explains that m≥n. Async spawns
a new task (the initial state is created by buildLocals) with a fresh task identifier
tid1 in a singleton queue for the location lid1 (which may be lid). We here
elide the technicalities of remote queue insertion in the parallel transition step,
which basically merges locations with the same identifier by taking the union
of the queues. Rule Select returns a task that is not finished, and it obtains
the lock of the location. When Return is executed, the return value is stored in
v. In addition, the lock is released and will never be taken again by that task.
Consequently, that task is finished (marked by adding instruction ε(v)).

3 Parallel Cost of Distributed Systems

The aim of this paper is to infer an upper bound which is an over-approximation
of the parallel cost of executing a distributed system. Given a parallel transition
W ≡ loc1‖ . . . ‖locn → loc′1‖ . . . ‖loc′m, we denote by P(W ) the parallel cost
of the transition W . If we are interested in counting the number of executed
transitions, then P(W ) = 1. If we know the time taken by the transitions,
P(W ) refers to the time taken to evaluate all locations. Thus, if two instructions
execute in parallel, the parallel cost only accumulates the largest of their times.
For simplicity, we assume that all locations execute one instruction in one cost
unit. Otherwise, it must be taken into account by the cost analysis of the serial
cost (see Sec. 8). Given a trace t ≡ So→ . . .→Sn+1 of the parallel execution,
we define P(t) =

∑n
i=0 P(Wi), where Wi ≡ Si → Si+1. Since execution is non-

deterministic in the selection of tasks, given a program P (x), multiple (possibly
infinite) traces may exist. We use executions(P (x)) to denote the set of all
possible traces for P (x).

Definition 1 (Parallel cost). The parallel cost of a program P on input values
x, denoted P(P (x)), is defined as max({P(t)|t ∈ executions(P (x))}).

Example 1. Fig. 2 (left) shows a simple method m that spawns two tasks by
calling p and q at locations x and y, resp. In turn, p spawns a task by calling
s at location y. This program only features distributed execution, concurrent
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behaviours within the locations are ignored for now. In the sequel we denote by
m̂ the cost of block m. m̂1, m̂2 and m̂3 denote, resp., the cost from the beginning
of m to the call x.p(), the cost between x.p() and y.q(), and the remaining cost of
m. p̂1 and p̂2 are analogous. Let us assume that the block m1 contains a loop that
performs n iterations (where n is equal to the value of input parameter n if it is
positive and otherwise n is 0) and at each iteration it executes 10 instructions,
thus m̂1=10 ∗ n. Let us assume that block m2 contains a loop that divides the
value of n by 2 and that it performs at most log2(n+ 1) iterations. Assume that
at each iteration it executes 20 instructions, thus m̂2=20 ∗ log2(n + 1). These
expressions can be obtained by cost analyzers of serial execution [2]. It is not
crucial for the contents of this paper to know how these expressions are obtained,
nor what the cost expressions are for the other blocks and methods. Thus, in
the sequel, we simply refer to them in an abstract way as m̂1, m̂2, p̂1, p̂2 etc. �

The notion of parallel cost P corresponds to the cost consumed between
the first instruction executed by the program at the initial location and the last
instruction executed at any location by taking into account the parallel execution
of instructions and idle times at the different locations.

Example 2. Fig. 2 (right) shows three possible traces of the execution of this
example (more traces are feasible). Below the traces, the expressions P1, P2 and
P3 show the parallel cost for each trace. The main observation here is that the
parallel cost varies depending on the duration of the tasks. It will be the worst
(maximum) value of such expressions, that is, P=max(P1, P2, P3, . . . ). In 2©
p1 is shorter than m2, and s executes before q. In 3©, q is scheduled before s,
resulting in different parallel cost expressions. In 1©, the processor of location y
becomes idle after executing s and must wait for task q to arrive. �

In the general case, the inference of parallel cost is complicated because: (1)
It is unknown if the processor is available when we spawn a task, as this depends
on the duration of the tasks that were already in the queue; e.g., when task q is
spawned we do not know if the processor is idle (trace 1©) or if it is taken (trace
2©). Thus, all scenarios must be considered; (2) Locations can be dynamically
created, and tasks can be dynamically spawned among the different locations
(e.g., from location o we spawn tasks at two other locations). Besides, tasks can
be spawned in a circular way; e.g., task s could make a call back to location
x; (3) Tasks can be spawned inside loops, we might even have non-terminating
loops that create an unbounded number of tasks. The analysis must approximate
(upper bounds on) the number of tasks that the locations might have in their
queues. These points make the static inference of parallel cost a challenging
problem that, to the best of our knowledge, has not been previously addressed.
Existing frameworks for the cost analysis of distributed systems [3,2] rely on a
serial notion of cost, i.e., the resulting cost accumulates the cost executed by all
locations created by the program execution. Thus, we obtain a serial cost that
simply adds the costs of all methods: m̂1+m̂2+m̂3+p̂1+p̂2+q̂+ŝ.
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4 Block-level Cost Analysis of Serial Execution

The first phase of our method is to perform a block-level cost analysis of serial
execution. This is a simple extension of an existing analysis in order to provide
costs at the level of the blocks in which the program is partitioned, between
synchronization points. In previous work, other extensions have been performed
that use costs at the level of specific program points [4] or at the level of complete
tasks [3], but the partitioning required by our parallel cost analysis is different.
Later, we need to be able to cancel out the cost associated to blocks whose
execution occurs in parallel with other blocks that have larger cost. The key
notion of the extension is block-level cost centers, as defined below.

Block Partitioning. The need to partition the code into blocks will be clear
when presenting the second phase of the analysis. Essentially, the subsequent
analysis needs to have cost information for the following sets of blocks: Binit, the
set of entry blocks for the methods; Bexit, the set of exit blocks for the methods,
and Bcall, the set of blocks ending with an asynchronous call. Besides these blocks,
the standard partitioning of methods into blocks used to build the control flow
graph (CFG) for the method is performed (e.g., conditional statement and loops
introduce blocks for evaluating the conditions, edges to the continuations, etc.).
We use B to refer to all block identifiers in the program. Given a block identifier
b, pred(b) is the set of blocks from which there are outgoing edges to block b in
the CFG. Function pred can also be applied to sets of blocks. We write pp ∈ b
(resp. i ∈ b) to denote that the program point pp (resp. instruction i) belongs
to the block b.

Example 3. In Fig. 2, the traces show the partitioning in blocks for the methods
m, p, q and s. Note that some of the blocks belong to multiple sets as defined
above, namely Binit = {m1, p1, s, q}, Bexit={m3, p2, s, q}, Bcall={m1,m2, p1}. For
instance, m1 is both an entry and a call block, and s, as it is not partitioned, is
both an entry and exit block. �

Points-to Analysis. Since locations can be dynamically created, we need an
analysis that abstracts them into a finite abstract representation, and that tells
us which (abstract) location a reference variable is pointing-to. Points-to analysis
[2,13,14] solves this problem. It infers the set of memory locations which a ref-
erence variable can point-to. Different abstractions can be used and our method
is parametric on the chosen abstraction. Any points-to analysis that provides
the following information with more or less accurate precision can be used (our
implementation uses [2,13]): (1) O, the set of abstract locations; (2) M, the set
of abstract tasks of the form o.m where o ∈ O and m is a method name; (3) a
function pt(pp, v) which for a given program point pp and a variable v returns
the set of abstract locations in O to which v may point to.

Example 4. In Fig. 2 we have three different locations, which are pointed to by
variables o, x, y. For simplicity, we will use the variable name in italics to refer
to the abstract location inferred by the points-to analysis. Thus, O={o, x, y}.
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The abstract tasks spawned in the program are M={o.m, x.p, y.s, y.q}. In this
example, the points-to abstraction is very simple. However, in general, locations
can be reassigned, passed in parameters, have multiple aliases, etc., and it is
fundamental to keep track of points-to information in an accurate way. �

Cost Centers. The notion of cost center is an artifact used to define the gran-
ularity of a cost analyzer. In [2], the proposal is to define a cost center for each
distributed component; i.e., cost centers are of the form c(o) where o ∈ O and
c( ) is the artifact used in the cost expressions to attribute the cost to the dif-
ferent components. Every time the analyzer accounts for the cost of executing
an instruction inst at program point pp, it also checks at which location the in-
struction is executing. This information is provided by the points-to analysis as
Opp = pt(pp, this). The cost of the instruction is accumulated in the cost centers
of all elements in Opp as

∑
c(o)∗cost(inst),∀o ∈ Opp, where cost(inst) expresses

in an abstract way the cost of executing the instruction. If we are counting steps,
then cost(inst) = 1. If we measure time, cost(inst) refers to the time to exe-
cute inst. Then, given a method m(x̄), the cost analyzer will compute an upper
bound for the serial cost of executing m of the form Sm(x̄) =

∑n
i=1 c(oi)∗Ci,

where oi ∈ O and Ci is a cost expression that bounds the cost of the compu-
tation carried out by location oi when executing m. Thus, cost centers allow
computing costs at the granularity level of the distributed components. If one
is interested in studying the computation performed by one particular compo-
nent oj , we simply replace all c(oi) with i 6= j by 0 and c(oj) by 1. The idea
of using cost centers in an analysis is of general applicability and the different
approaches to cost analysis (e.g., cost analysis based on recurrence equations
[19], invariants [8], or type systems [9]) can trivially adopt this idea in order to
extend their frameworks to a distributed setting. This is the only assumption
that we make about the cost analyzer. Thus, we argue that our method can work
in combination with any cost analysis for serial execution.

Example 5. For the code in Fig. 2, we have three cost centers for the three
locations that accumulate the costs of the blocks they execute; i.e., we have
Sm(n) = c(o)∗m̂1 + c(o)∗m̂2 + c(o)∗m̂3 + c(x)∗p̂1 + c(x)∗p̂2 + c(y)∗ŝ+ c(y)∗q̂. �

Block-level Cost Centers. In this paper, we need block-level granularity
in the analysis. This can be captured in terms of block-level cost centers B
which contain all blocks combined with all location names where they can be
executed. Thus, B is defined as the set {o:b ∈ O × B | o ∈ pt(pp, this) ∧
pp ∈ b}. We define Binit and Bexit analogously. In the motivating example,
B = {o:m1, o:m2, o:m3, x:p1, x:p2, y:q, y:s}. Every time the analyzer accounts
for the cost of executing an instruction inst, it checks at which location inst
is executing (e.g., o) and to which block it belongs (e.g., b), and accumulates
c(o:b) ∗ cost(inst). It is straightforward to modify an existing cost analyzer to
include block-level cost centers. Given a method m(x̄), the cost analyzer now
computes a block-level upper bound for the cost of executing m. This upper
bound is of the form Sm(x̄) =

∑n
i=1 c(oi:bi) ∗ Ci, where oi:bi ∈ B, and Ci is a
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cost expression that bounds the cost of the computation carried out by location
oi while executing block bi. Observe that bi need not be a block of m because
we can have transitive calls from m to other methods; the cost of executing
these calls accumulates in Sm. The notation Sm(x̄)|o:b is used to express the cost
associated to c(o:b) within the cost expression Sm(x̄), i.e., the cost obtained by
setting all c(o′:b′) to 0 (for o′ 6= o or b′ 6= b) and setting c(o:b) to 1. Given a set
of cost centers N = {o0:b0, . . . , ok:bk}, we let Sm(x̄)|N refer to the cost obtained
by setting to one the cost centers c(oi:bi) such that oi:bi ∈ N . We omit m in
Sm(x̄)|N when it is clear from the context.

Example 6. The cost of the program using the blocks in B as cost centers, is
Sm(n)=c(o:m1)∗m̂1+c(o:m2)∗m̂2+c(o:m3)∗m̂3+c(x:p1)∗p̂1+c(x:p2)∗p̂2+c(y:s)∗ŝ+
c(y:q)∗q̂. We can obtain the cost for block o:m2 as Sm(n)|o:m2 = m̂2. With the
serial cost assumed in Sec. 3, we have Sm(n)|o:m2 = 20 ∗ log2(n+ 1). �

5 Parallel Cost Analysis

This section presents our method to infer the cost of executing the distributed
system by taking advantage of the fact that certain blocks of code must execute
in parallel, thus we only need to account for the largest cost among them.

5.1 Distributed Flow Graph

The distributed flow graph (DFG), introduced below, aims at capturing the dif-
ferent flows of execution that the program can perform. According to the dis-
tributed model of Sec. 2, when the processor is released, any pending task of the
same location could start executing. We use an existing may-happen-in-parallel
(MHP) analysis [5,12] to approximate the tasks that could start their execution
when the processor is released. This analysis infers pairs of program points (x, y)
whose execution might happen in parallel. The soundness of the analysis guaran-
tees that if (x, y) is not an MHP pair then there are no instances of the methods
to which x or y belong whose program points x and y can run in parallel. The
MHP analysis can rely on a points-to analysis in exactly the same way as our
overall analysis does. Hence, we can assume that MHP pairs are of the form
(x:p1, y:p2) where x and y refer to the locations in which they execute. We use
the notation x:b1 ‖ y:b2, where b1 and b2 are blocks, to denote that the program
points of x:b1 and y:b2 might happen in parallel, and, x:b1 ∦ y:b2 to indicate that
they cannot happen in parallel.

Example 7. The MHP analysis of the example shown in Fig. 2 returns that
y:s ‖ y:q, indicating that s and q might happen in parallel at location y. In
addition, as we only have one instance of m and p, the MHP guarantees that
o:m1 ∦ o:m3 and x:p1 ∦ x:p2. �

The nodes in the DFG are the cost centers which the analysis in Sec. 4 has
inferred. The edges represent the control flow in the sequential execution (drawn
with normal arrows) and all possible orderings of tasks in the location’s queues
(drawn with dashed arrows). We use the MHP analysis results to eliminate the
dashed arrows that correspond to unfeasible orderings of execution.
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Definition 2 (Distributed flow graph). Given a program P , its block-level
cost centers B, and its points-to analysis results provided by function pt, we
define its distributed flow graph as a directed graph G = 〈V,E〉 with a set of
vertices V = B and a set of edges E = E1 ∪ E2 ∪ E3 defined as follows:

E1 ={o:b1 → o:b2 | b1 → b2 exists in CFG}
E2 ={o1:b1 → o2:minit | b1 ∈ Bcall, pp : x.m() ∈ b1, o2 ∈ pt(pp, x)}
E3 ={o:b1 99K o:b2 | b1 ∈ Bexit, b2 ∈ Binit, o:b1 ‖ o:b2}

Here, E1 is the set of edges that exist in the CFG, but using the points-to
information in B in order to find out at which locations the blocks are executed.
E2 joins each block that contains a method invocation with the initial block
minit of the invoked method. Again, points-to information is used to know all
possible locations from which the calls originate (named o1 above) and also the
locations where the tasks are sent (named o2 above). Arrows are drawn for all
possible combinations. These arrows capture the parallelism in the execution
and allow us to gain precision w.r.t. the serial execution. Intuitively, they allow
us to consider the maximal cost of the path that continues the execution and the
path that goes over the spawned tasks. Finally, dashed edges E3 are required for
expressing the different orderings of the execution of tasks within each abstract

o:m1

o:m2

o:m3

x:p1

x:p2

y:s

y:q

Fig. 3. DFG for Fig. 2

location. Without further knowledge, the exit
blocks of methods must be joined with the entry
blocks of others tasks that execute at the same
location. With the MHP analysis we can avoid
some dashed edges in the DFG in the following
way: given two methods m, whose initial block
is m1, and p, whose final block is p2, if we know
that m1 cannot happen in parallel with p2, then
we do not need to add a dashed edge between
them. This is because the MHP guarantees that
when the execution of p finishes there is no instance of method m in the queue
of pending tasks. Thus, we do not consider this path in E3 of the DFG.

Example 8. Fig. 3 shows the DFG for the program in Fig. 2. The nodes are the
cost centers in Ex. 6. Nodes in gray are the nodes in Bexit, and it implies that
the execution can terminate executing o:m3, x:p2, y:s or y:q. Solid edges include
those existing in the CFG of the sequential program but combined with the
location’s identity (E1) and those derived from calls (E2). Since y:s ‖ y:q (see
Ex. 7), the execution order of s and q at location y is unknown (see Sec. 3). This
is modelled by means of the dashed edges (E3). In contrast, since o:m1 ∦ o:m3

and x:p1 ∦ x:p2, we neither add a dashed edge from o:m3 to o:m1 nor from x:p2
to x:p1. �

5.2 Inference of Parallel Cost

The next phase in our analysis consists of obtaining the maximal parallel cost
from all possible executions of the program, based on the DFG. The execution
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paths in the DFG start in the initial node that corresponds to the entry method
of the program, and finish in any node in Bexit. The first step for the inference is
to compute the set of execution paths by solving the so-called single-source path
expression problem [18], which finds a regular expression (named path expression)
for each node v ∈ Bexit representing all paths from an initial node to v. Given
a DFG G, we denote by pexpr(G) the set of path expressions obtained from the
initial node to all exit nodes in G.

Example 9. To compute the set pexpr for the graph in Fig. 3, we compute the
path expressions starting from o:m1 and finishing in exit nodes, that is, the
nodes in Bexit. In path expressions, we use o:m1·o:m2 to represent the edge from
o:m1 to o:m2. Thus, for the nodes in Bexit we have eo:m3 = o:m1·o:m2·o:m3,
ex:p2 = o:m1·x:p1·x:p2, ey:s = o:m1·(x:p1·y:s | o:m2·y:q·y:s)·(y:q·y:s)∗ and ey:q =
o:m1·(x:p1·y:s·y:q | o:m2·y:q)·(y:s·y:q)∗. �

The key idea to obtain the parallel cost from path expressions is that the
cost of each block (obtained by using the block-level cost analysis) contains not
only the cost of the block itself but this cost is multiplied by the number of times
the block is visited. Thus, we use sets instead of sequences since the multiplicity
of the elements is already taken into account in the cost of the blocks. Given
a path expression e, we define sequences(e) as the set of paths produced by e

and elements(p) as the set of nodes in a given path p. We use the notions of
sequences and elements to define the set N (e).

Definition 3. Given a path expression e, N (e) is the following set of sets:

{s | p ∈ sequences(e) ∧ s = elements(p)}.

In practice, this set N (e) can be generated by splitting the disjunctions in
e into different elements in the usual way, and adding the nodes within the
repeatable subexpressions once. Thus, to obtain the parallel cost, it is sufficient
to compute N+(e), the set of maximal elements of N (e) with respect to set
inclusion, i.e., those sets in N (e) which are not contained in any other set in
N (e). Given a graph G, we denote by paths(G) =

⋃
N+(e), e ∈ pexpr(G), i.e.,

the union of the sets of sets of elements obtained from each path expression.

Example 10. Given the path expressions in Ex. 9, we have the following sets:

N+(eo:m3) = {{o:m1, o:m2, o:m3}︸ ︷︷ ︸
N1

}, N+(ex:p2) = {{o:m1, x:p1, x:p2}︸ ︷︷ ︸
N2

}

N+(ey:s) = N+(ey:q) = {{o:m1, x:p1, y:s, y:q}︸ ︷︷ ︸
N3

, {o:m1, o:m2, y:s, y:q}︸ ︷︷ ︸
N4

}

Observe that these sets represent traces of the program. The execution captured
by N1 corresponds to trace 1© of Fig. 2. In this trace, the code executed at
location o leads to the maximal cost. Similarly, the set N3 corresponds to trace
2© and N4 corresponds to trace 3©. The set N2 corresponds to a trace where
x:p2 leads to the maximal cost (not shown in Fig. 2). Therefore, the set paths
is {N1, N2, N3, N4}. �
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Given a set N ∈ paths(G), we can compute the cost associated to N by using the
block-level cost analysis, that is, S(x̄)|N . The parallel cost of the distributed sys-
tem can be over-approximated by the maximum cost for the paths in paths(G).

Definition 4 (Inferred parallel cost). The inferred parallel cost of a program

P (x) with distributed flow graph G, is defined as P̂(P (x̄)) = max
N∈paths(G)

S(x̄)|N .

Although we have obtained the parallel cost of the whole program, we can easily
obtain the parallel cost associated to a location o of interest, denoted P̂(P (x̄))|o,
by considering only the paths that lead to the exit nodes of this location. In par-
ticular, given a location o, we consider the set of path expressions pexpr(G, o)
which are the subset of pexpr(G) that end in an exit node of o. The above defi-

nition simply uses pexpr(G, o) instead of pexpr(G) in order to obtain P̂(P (x̄))|o.

Example 11. The cost is obtained by using the block-level costs for all nodes
that compose the sets in paths. With the sets computed in Ex. 10, the overall
parallel cost is: P̂(m(n)) = max(S(n)|N1 ,S(n)|N2 ,S(n)|N3 ,S(n)|N4). Importantly,
P̂ is more precise than the serial cost because all paths have at least one missing
node. For instance, N1 does not contain the cost of x:p1, x:p2, y:s, y:q and N3

does not contain the cost of o:m2, o:m3, x:p2. Additionally, as o:m3 is the only
final node for location o, we have that P̂(m(n))|o = S(n)|N1 . Similarly, for location
y we have two exit nodes, y:s and y:q, thus P̂(m(n))|y = max(S(n)|N3 ,S(n)|N4). �

Recall that when there are several calls to a block o:b the graph contains only
one node o:b but the serial cost S(x̄)|o:b accumulates the cost of all calls. This
is also the case for loops or recursion. The nodes within an iterative construct
form a cycle in the DFG and by setting to one the corresponding cost center,
the serial cost accumulates the cost of all executions of such nodes.

Example 12. The program to the
right shows a modification of
method m that adds a loop which
includes the call y.q(). The DFG for
this code contains a cycle caused by
the loop, composed by the nodes
o:w, o:m3 and o:m4, where o:w
represents the entry block to the
while loop. The execution might
traverse such nodes multiple times
and consequently multiple instances
of y:q might be spawned.

void m (int n) {
. . . // m1 instr
x. p();
. . . //m2 instr
while(n > 0) {

n=n−1;
. . . //m3 instr
y. q();
. . . //m4 instr
}
. . . // m5 instr
}

o:m1

o:m2

o:w

o:m3

o:m4

o:m5

y:s

y:q

. . .

A serial cost analyzer (e.g.[2]) infers that the loop is traversed at most n times
and obtains a block-level serial cost of the form:

S(n) = c(o:m1)∗m̂1 + c(o:m2)∗m̂2 + n∗c(o:w)∗ŵ + n∗c(o:m3)∗m̂3 + n∗c(o:m4)∗m̂4+
c(o:m5)∗m̂5 + c(x:p1)∗p̂1 + c(x:p2)∗p̂2 + n∗c(y:q)∗q̂ + c(y:s)∗ŝ

11



For the DFG we obtain some interesting sets that traverse the loop: N1 =

{o:m1, o:m2, o:w, o:m3, o:m4, o:m5} and N2 = {o:m1, o:m2, o:w, o:m3, o:m4, y:q, y:s}.
Observe that N1 represents a trace that traverses the loop and finishes in o:m5

and N2 represents a trace that reaches y:q by traversing the loop. The cost asso-
ciated to N1 is computed as S(n)|N1 = m̂1+m̂2+n∗ŵ+n∗m̂3+n∗m̂4+m̂5. Note that
S(n)|N1 includes the cost of executing the nodes of the loop multiplied by n, cap-
turing the iterations of the loop. Similarly, forN2 we have S(n)|N2=m̂1+m̂2+n∗ŵ+

n∗m̂3+n∗m̂4+n∗q̂+ŝ, which captures that q might be executed n times. �

Theorem 1. P(P (x̄)) ≤ P̂(P (x̄)).

6 Parallel Cost Analysis with Cooperative Concurrency

We now extend the language to allow cooperative concurrency between the tasks
at each location, in the style of concurrent (or active) object systems such as
ABS [11]. The language is extended with future variables which are used to
check if the execution of an asynchronous task has finished. In particular, an
asynchronous call is associated with a future variable f as follows f=x.p(). The
instruction await f? allows synchronizing the execution of the current task with
the task p to which the future variable f is pointing; f.get is used to retrieve the
value returned by the completed task. The semantics for these instructions is
given in Fig. 4. The semantics of Async+Fut differs from Async in Fig. 1 in
that it stores the association of the future variable to the task in the local variable
table l. In Await1, the future variable we are awaiting points to a finished task
and await can be completed. The finished task t1 is looked up at all locations in
the current state (denoted by Locs). Otherwise, Await2 yields the lock so any
other task at the same location can take it. In Get1 the return value is retrieved
after the task has finished and in Get2 the location is blocked allowing time to
pass until the task finishes and the return value can be retrieved.

Handling concurrency in the analysis is challenging because we need to model
the fact that we can lose the processor at the await instructions and another pend-
ing task can interleave its execution with the current task. The first extension
needed is to refine the block partitioning in Sec. 4 with the set of blocks: Bget,
the set of blocks starting with a get; and Bawait, the set of blocks starting with
an await. Such blocks contain edges to the preceding and subsequent blocks as
in the standard construction of the CFG (and we assume they are in the set of
edges E1 of Def. 2). Fortunately, task interleavings can be captured in the graph
in a clean way by treating await blocks as initial blocks, and their predecessors
as ending blocks. Let b be a block which contains a f.get or await f? instruction.
Then awaited(f, pp) returns the (set of) exit blocks to which the future variable
f can be linked at program point pp. We use the points-to analysis results to
find the tasks a future variable is pointing to. Furthermore, the MHP analysis
learns information from the await instructions, since after an await f? we know
that the execution of the task to which f is linked is finished and thus it will not
happen in parallel with the next tasks spawned at the same location.
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(async+fut)
l(x) = lid1, fresh(tid1), l′ = l[f → tid1], l1 = buildLocals(z̄,m1)

loc(lid , tid , {tsk(tid ,m, l, 〈f = x.m1(z); s〉} ∪ Q) ;
loc(lid , tid , {tsk(tid ,m, l′, s)} ∪ Q) ‖ loc(lid1, , {tsk(tid1,m1, l1, body(m1))})

(await1)
l(f) = tid1, loc(lid1, ,Q1) ∈ Locs, tsk(tid1, , , s1) ∈ Q1, s1 = ε(v)

loc(lid , tid , {tsk(tid ,m, l, 〈await f?; s〉)} ∪ Q) ; loc(lid , tid , {tsk(tid ,m, l, s)} ∪ Q)

(await2)
l(f) = tid1, loc(lid1, ,Q1) ∈ Locs, tsk(tid1, , , s1) ∈ Q1, s1 6= ε(v)

loc(lid , tid , {tsk(tid ,m, l, 〈await f?; s〉)}∪Q) ; loc(lid ,⊥, {tsk(tid ,m, l, 〈await f?; s〉)}∪Q)

(get1)
l(f) = tid1, tsk(tid1, , , s1) ∈ Locs, s1 = ε(v), l′ = l[x→ v])

loc(lid , tid , {tsk(tid ,m, l, 〈x=f.get; s〉)}∪Q) ; loc(lid , tid , {tsk(tid ,m, l′, s)}∪Q)

(get2)

l(f) = tid1, tsk(tid1, , , s1) ∈ Locs, s1 6= ε(v)

loc(lid , tid , {tsk(tid ,m, l, 〈x=f.get; s〉)}∪Q)
; loc(lid , tid , {tsk(tid ,m, l, 〈x=f.get; s〉)}∪Q)

Fig. 4. Summarized Semantics of Concurrent Execution

Definition 5 (DFG with cooperative concurrency). We extend Def. 2:

E4 ={o1:mexit → o2:b2 | either pp:f.get or pp:await f? ∈ b2,mexit ∈ awaited(f, pp)}
E5 ={o:b1 99K o:b2 | b1 ∈ pred(Bawait), b2 ∈ Bawait ∪ Binit, o:b1 ‖ o:b2}
E6 ={o:b1 99K o:b2 | b1 ∈ Bexit, b2 ∈ Bawait, o:b1 ‖ o:b2}

Here, E4 contains the edges that relate the last block of a method with the
corresponding synchronization instruction in the caller method, indicating that
the execution can take this path after the method has completed. E5 and E6

contain dashed edges that represent the orderings between parts of tasks split
by await instructions and thus capture the possible interleavings. E5 considers
the predecessor as an ending block from which we can start to execute another
interleaved task (including await blocks). E6 treats await blocks as initial blocks
which can start their execution after another task at the same location finishes.
As before, the MHP analysis allows us to discard those edges between blocks
that cannot be pending to execute when the processor is released. Theorem 1
also holds for DFG with cooperative concurrency.

Example 13. Fig. 5 shows an example where the call to method p is synchronized
by using either await or get. Method p then calls method q at location o. The syn-
chronization creates a new edge (the thick one) from x:p2 to the synchronization
point in block o:m3. This edge adds a new path to reach o:m3 that represents a
trace in which the execution of m waits until p is finished. For the graph in Fig. 5
we have that paths is {{o:m1, x:p1, x:p2, o:m3, o:q}, {o:m1, o:m2, o:m3, o:q}}. Ob-
serve that the thick edge is crucial for creating the first set in paths. The dif-
ference between the use of await and get is visible in the edges labelled with ∗©,
which are only added for await. They capture the traces in which the execution of
m waits for the termination of p, and q starts its execution interleaved between
o:m2 and o:m3, postponing the execution of o:m3. In this example, the edges
labelled with ∗© do not produce new sets in paths. �
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void m () {
. . . // m1 instr
f = x.p(this );
. . . //m2 instr
await f ? | f . get
. . . // m3 instr
}
void p (Node o) {
. . . // p1 instr
o. q();
. . . // p2 instr
}

o:m1

o:m2

o:m3

x:p1

x:p2

o:q

∗©

∗©

Fig. 5. DCG with synchronization

Finally, let us remark that our
work is parametric in the underlying
points-to and cost analyses for serial
execution. Hence, any accuracy im-
provement in these auxiliary analy-
ses will have an impact on the accu-
racy of our analysis. In particular, a
context-sensitive points-to analysis
[15] can lead to big accuracy gains.
Context-sensitive points-to analyses
use the program point from which
tasks are spawned as context infor-
mation. This means that two differ-
ent calls o.m, one from program point p1 and another from p2 (where p1 6= p2)
are distinguished in the analysis as o:p1:m and o:p2:m. Therefore, instead of
representing them by a single node in the graph, we will use two nodes. The ad-
vantage of this finer-grained information is that we can be more accurate when
considering task parallelism. For instance, we can have one path in the graph
which includes a single execution of o:p1:m (and none of o:p2:m). However, if the
nodes are merged into a single one, we have to consider either that both or none
are executed. There are also techniques to gain precision in points-to analysis in
the presence of loops [16] that could improve the precision of our analysis.

7 Experimental evaluation

We have implemented our analysis in SACO and applied it to some distributed
based systems: BBuffer, the typical bounded-buffer for communicating several
producers and consumers; MailServer, which models a distributed mail server
system with multiple clients; Chat, which models chat application; DistHT, which
implements and uses a distributed hash table; BookShop, which models a web
shop client-server application; and P2P, which represents a peer-to-peer network
formed by a set of interconnected peers. Experiments have been performed on
an Intel Core i7 at 2.0GHz with 8GB of RAM, running Ubuntu 14.04. Table 1
summarizes the results obtained for the benchmarks. Columns Benchmark and
loc show, resp., the name and the number of program lines of the benchmark.
Columns #N and #E show the number of nodes and edges of the DFG with
concurrency (Def. 5). Columns #F and #P contain the number of terminal nodes
in the DFG and the number of elements in the set paths. Columns TS and TP̂
show, resp., the analysis times for the serial cost analysis and the additional
time required by the parallel cost analysis (in milliseconds) to build the DFG
graphs and obtain the cost from them. The latter includes a simplification of
the DFG to reduce the strongly connected components (SCC) to one node. Such
simplification significantly reduces the time in computing the path expressions
and we can see that the overall overhead is reasonable.

Column %P̂ aims at showing the gain of the parallel cost P̂ w.r.t. the serial

cost S by evaluating P̂(ē)/S(ē)∗100 for different values of ē. Namely, %P̂ is the av-
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Benchmark loc #N #E #F #P TS TP̂ #I %m %a %P̂
BBuffer 105 37 50 7 50 256 26 1000 3.0 19.7 77.4

MailServer 115 28 35 6 36 846 12 1000 61.1 68.6 88.5

Chat 302 84 245 25 476 592 126 625 5.7 56.0 85.4

DistHT 353 38 47 6 124 950 49 625 3.7 25.5 76.3

BookShop 353 60 63 7 68 2183 214 2025 9.2 50.9 71.1

P2P 240 168 533 27 730 84058 1181 512 13.0 85.9 95.2

Table 1. Experimental results (times in ms)

erage of the evaluation of the cost expressions P̂(ē) and S(ē) for different values
of the input arguments ē to the programs. The number of evaluations performed
is shown in column #I. The accuracy gains range from 4.8% in P2P to 28.9%
in BookShop. The gain of more than 20% for DistHT, BookShop and BBuffer is
explained by the fact that these examples take advantage of parallelism: the dif-
ferent distributed locations execute a similar number of instructions and besides
their code mostly runs in parallel. MailServer, Chat and P2P achieve smaller gains
because the blocks that are not included in the path (those that are guaran-
teed to happen in parallel with longer blocks) are non-recursive. Thus, when the
number of instructions is increased, the improvements are reduced proportion-
ally. Moreover, Chat and P2P create very dense graphs, and the paths that lead to
the maximum cost include almost all nodes of the graph. Column %m shows the
ratio obtained for the location that achieves the maximal gain w.r.t. the serial
cost. In most examples, except in MailServer, such maximal gain is achieved in
the location that executes the entry method. MailServer uses synchronization in
the entry method that leads to a smaller gain. Column %a shows the average
of the gains achieved for all locations. The average gain ranges from 80.3% to
31.4%, except for P2P, which has a smaller gain 14.1% due to the density of its
graph as mentioned above.

8 Conclusions and Related Work

We have presented what is to the best of our knowledge the first static cost anal-
ysis for distributed systems which exploits the parallelism among distributed
locations in order to infer a more precise estimation of the parallel cost. Our
experimental results show that parallel cost analysis can be of great use to know
if an application succeeds in exploiting the parallelism of the distributed loca-
tions. There is recent work on cost analysis for distributed systems which infers
the peak of the serial cost [3], i.e., the maximal amount of resources that a
distributed component might need along its execution. This notion is different
to the parallel cost that we infer since it is still serial; i.e., it accumulates the
resource consumption in each component and does not exploit the overall par-
allelism as we do. Thus, the techniques used to obtain it are also different: the
peak cost is obtained by abstracting the information in the queues of the dif-
ferent locations using graphs and finding the cliques in such graphs [3]. The
only common part with our analysis is that both rely on an underlying resource
analysis for the serial execution that uses cost centers and on a MHP analysis,
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but the methods used to infer each notion of cost are fundamentally different.
This work is improved in [4] to infer the peak for non-cumulative resources that
increase and decrease along the execution (e.g., memory usage in the presence of
garbage collection). In this sense, the notion of parallel cost makes sense only for
cumulative resources since its whole purpose is to observe the efficiency gained by
parallelizing the program in terms of resources used (and accumulated) in par-
allel by distributed components. Recent work has applied type-based amortized
analysis for deriving bounds of parallel first-order functional programs [10]. This
work differs from our approach in the concurrent programming model, as they
do not allow explicit references to locations in the programs and there is no dis-
tinction between blocking and non-blocking synchronization. The cost measure
is also quite different from the one used in our approach.

To simplify the presentation, we have assumed that the different locations
execute one instruction in one cost unit. This is without loss of generality because
if they execute at a different speed we can weight their block-level costs according
to their relative speeds. We argue that our work is of wide applicability as it can
be used in combination with any cost analysis for serial execution which provides
us with cost information at the level of the required fragments of code (e.g.,
[8,9,21]). It can also be directly adopted to infer the cost of parallel programs
which spawn several tasks to different processors and then use a join operator to
synchronize with the termination of all of them (the latter would be simulated
in our case by using a get instruction on all spawned tasks). As future work, we
plan to incorporate in the analysis information about the scheduling policy used
by the locations (observe that each location could use a different scheduler).
In particular, we aim at inferring (partial) orderings among the tasks of each
location by means of static analysis.

Analysis and verification techniques for concurrent programs seek finite repre-
sentations of the program traces to avoid an exponential explosion in the number
of traces (see [7] and its references). In this sense, our DFG’s provide a finite rep-
resentation of all traces that may arise in the distributed system. A multithread
concurrency model entails an exponential explosion in the number of traces,
because task scheduling is preemptive. In contrast, cooperative concurrency as
studied in this paper limits is gaining attention both for distributed [11] and for
multicore systems [6,20], because the amount of interleaving between tasks that
must be considered in analyses is restricted to synchronization points which are
explicit in the program.
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