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Abstract—While the HPC community is working towards the
development of the first Exaflop computer (expected around
2020), after reaching the Petaflop milestone in 2008 still only
few HPC applications are able to fully exploit the capabilities
of Petaflop systems. In this paper we argue that efforts for
preparing HPC applications for Exascale should start before
such systems become available. We identify challenges that
need to be addressed and recommend solutions in key areas
of interest, including formal modeling, static analysis and op-
timization, runtime analysis and optimization, and autonomic
computing. Furthermore, we outline a conceptual framework
for porting HPC applications to future Exascale computing
systems and propose steps for its implementation.

I. INTRODUCTION

Exascale computing [1] is expected to revolutionize com-
putational science and engineering by providing 1000x the
capabilities of currently available computing systems, while
having a similar power footprint. The total performance of
the 500 systems in the 44th TOP500 list (18 Nov 2014,
http://top500.org/) is about 0.3 exaFLOPS. The HPC com-
munity [2] is now working towards the development of the
first Exaflop computer, expected around 2020, after reaching
the Petaflop milestone in 2008. However, only a few HPC
applications are so far able to fully exploit the capabilities
of Petaflop systems [3]. Examples of typical scalability for
commonly used HPC applications in our organizations are
provided in Table I. As the existing HPC applications are the
major HPC asset, it is important and challenging to increase
their scalability and lifetime by making them Exascale-ready
before 2020.

The major challenge for preparing HPC applications for
Exascale is that there is no Exascale system available
yet. Currently all we have are assumptions about Exascale
systems. Therefore the commonly used measurement-based
approaches for reasoning about performance issues are not
applicable. Pre-exascale systems (known as Summit and
Sierra) that IBM [4] is developing for the U.S. Department
of Energy will exceed 100 petaflops and may provide hints
about the extreme-scale architectures of the future.

This paper argues that efforts for preparing HPC ap-
plications for Exascale should start before such systems
become available. We identify challenges that need to be
addressed and recommend solutions in areas that are relevant
for porting HPC application to future Exascale computing
systems, including formal modeling, static analysis and opti-
mization, runtime analysis and optimization, and autonomic
computing.

We suggest that porting of HPC applications should be
made by successive, stepwise improvements based on the
currently available assumptions and data about Exascale sys-
tems. This approach should support application improvement
each time new information about future Exascale systems
becomes available, including the time when the application
is actually deployed and runs on a concrete Exascale system.
A high-level application representation that captures key
functional and non-functional properties in conjunction with
the abstract machine model will enable programmers and
tools to reason about and perform application improve-
ments, and will serve as input to runtime systems to handle
performance and energy optimizations and self-aware fault
management. A tunable abstract machine model encapsu-
lates current assumptions for future Exascale systems and
enables a priori application improvement before the concrete
execution platform is known. At runtime, the model is
a posteriori tuned to support activities such as feedback-
oriented code improvement or dynamic optimization.

Major contributions of this paper include,
• identification of challenges and recommendation of

solutions in formal modeling (Section II-A), static anal-
ysis and optimization (Section II-B), runtime analysis
and optimization (Section II-C), autonomic computing
(Section II-D);

• a conceptual framework for preparing HPC applica-
tions for Exascale that supports a priori application
improvements before the concrete execution platform is
known as well as a posteriori optimization at runtime
(Section III-A);



Table I
TYPICAL CURRENT SCALABILITY (IN PROCESSOR CORES) OF COMMONLY USED HPC APPLICATIONS IN OUR ORGANIZATIONS.

Code Application Domain Language Scalability

WIEN2k Materials Science F90 1024
SIMONA Nano Science C++ 16384
ECHAM/MESSy Environmental Science F77/F90 1000
CORSIKA Astroparticle Physics F77/F90 2500
OpenFOAM Computational fluid dynamics C++ 16384
IBM Watson Graph Analytics C++ 32768
Bifrost Stellar atmosphere simulation F90 6500

• a discussion of the related work (Section IV).

II. CHALLENGES AND RECOMMENDATIONS

In this section we identify challenges and recommend so-
lutions in formal modeling, static analysis and optimization,
runtime analysis and optimization, and autonomic comput-
ing.

A. Formal modeling

Our goal is to adapt HPC application code to Exascale
execution platforms to achieve good utilization of resources.
For this, we need to address questions such as:

1) What would happen if we change application or hard-
ware layout?

2) What would happen if we change some parameters of
the execution platform?

3) What would happen if we use a different execution
platform?

Unfortunately, answering these questions cannot be done
experimentally at the concrete level because such platforms
do not yet exist. An alternative is to address these questions
at an abstract level, focusing only on relevant information
without actually executing the program.

We believe that relevant information in this context is not
what the code aims to achieve (the result of the computation)
but its corresponding resource footprints, that is, how com-
putational tasks communicate and synchronize, the amount
of resources (such as memory and computing time) these
tasks require, and how they access and move data.

In order to adapt the HPC code to a particular architecture
we need to capture such resource footprints of software
modules at different levels of granularity (e.g., program
statements, blocks in procedure bodies and whole proce-
dures), and be able to compare different task composi-
tions. Consequently, the modeling language must feature
massively parallel operators over such task-level resource
footprints [5]. A similar notion of resource footprints and
composition can be used to express the properties of the
architecture in a machine model to capture the resources
that the architecture can make available to the code.

Working with resource footprints can be supported by
an abstract behavioral specification language [6], in which

models describe both tasks and deployments. These models
can be used to predict the non-functional behavior of code
before it is deployed, and to compare deployments using
formal methods. This requires a formal semantics for the
specification language that can be used to devise static
analysis techniques.

When developing code from scratch using a model-based
approach, the resource footprints can be specified in tandem
with the standard model in a model-driven development [7],
[8], [9], [10]. However, when building such models from
existing HPC code, monitoring profiles of low- and medium-
scale systems can be used to extract resource footprints
that approximate the resource consumption in terms of
probabilistic distributions.

B. Static analysis and optimization

The application of formal methods to parallel programs
for analyzing functional properties, such as safety and live-
ness, has a long tradition. For non-functional properties,
such as execution time and energy consumption, most per-
formance analysis approaches use monitoring and present
statistical information to the user. These approaches are
helpful to improve HPC application code, but they also have
some shortcomings:

1) Due to non-determinism, different program executions
might lead to different observations. As a conse-
quence, these methods are not able to provide reliable
probabilistic information about average or worst-case
execution times.

2) They are based on execution on a real platform,
thus they cannot be used to predict performance on
Exascale computers, which are not available yet.

3) These methods can be used to identify execution
bottlenecks, but they cannot explain the reasons for
these bottlenecks, and thus they do not offer any
concrete support for code improvement.

We expect that formal methods can address these limi-
tations to provide performance analysis tools that consider-
ably go beyond the state-of-the-art. A major step in this
direction will be the usage of resource footprints which
describe both HPC applications and execution platforms
as abstract probabilistic models. Formal analyses can be



applied to these models to predict their probabilistic be-
havior. While a range of techniques are available for non-
probabilistic programs, the analysis of parallel probabilis-
tic programs still need development effort. To achieve a
reasonable balance between scalability and precision for
challenging HPC applications, it seems fundamental to use
hybrid approaches [11] that combine techniques such as
static analysis, dynamic analysis, simulation, (parametric)
model checking [12], counterexample-guided abstraction
refinement [13], deductive approaches, etc.

To deliver the envisaged performance analysis tools, we
face the following challenges: (1) determining the com-
putation of cost properties that are given by means of
probabilistic distributions; (2) the inference of average cost
in addition to the traditional worst-case cost; (3) take into
account the underlying platform through a set of probabilis-
tic parameters; (4) deal with massive and heterogeneous
parallelism [14], [15], [16], [17] which is challenging for
program analysis in general; and (5) develop multi-objective
resource usage analyses and optimizations.

C. Runtime analysis and optimization

Formal modeling and static analysis should be enhanced
with analysis of measurements at runtime. Plenty of tools
(for instance, http://www.vi-hps.org) have been developed
for performance measurement and analysis of HPC appli-
cations at runtime. However, these tools will experience
several issues when applied to Exascale. The collection rates
and the overall volume of monitoring data in an Exascale
computing environment will exceed the scalability of present
performance tools. Therefore, throttling the data volume will
have to be applied online in order to store as less data as
possible and as much as necessary for later post mortem
analysis. However, simple profiling will not be sufficient due
to loss of temporal information, thus a hybrid approach will
have to be applied that performs on-the-fly trace analysis
in order to discard irrelevant data, while retaining the same
amount of information.

The metric classification should be based on the formal
model (see Section II-A). Such an approach will provide a
generic insight into the performance of an HPC application
that can be used for detecting performance bottlenecks. The
instrumentation and hardware counter monitoring should
follow a similar procedure where source code probing should
be applied automatically by using tools such as OPARI
[18]. While many tools for collecting metrics of computing
performance have been developed, very few analysis tools
exist for energy consumption metrics in adequate accuracy
and time resolution necessary for the runtime performance
analysis [19], [20].

Currently, common approaches (see for example PRACE
best practices [21]) for optimizing HPC applications require
per-case inspection of runtime performance measurement
data, such as profiling and tracing data. After the critical re-

gion has been determined, diverse heuristic approaches, such
as “trial and error”, “educated guess” or “rule of thumb”,
are applied to make changes in the affected source code
sections. The most significant limitation of these heuristics
and knowledge-based approaches is that,

1) all changes are made directly and manually in the
source code, and

2) the effect of the changes does not always lead to
an improved performance which makes necessary the
repeating of all steps several times.

Moreover, Exascale computers pose a multi-objective
optimization problem, weighing out the effects of several
sometimes incongruent requirements. Therefore, a system-
atic and automatic approach for the optimization problem
is essential to find the optimal solution. Another problem is
that the critical section in an application typically changes
with the optimization iterations and/or with upscaling, due
to the law of diminishing returns, which makes the manual
analysis and source code changes even more laborious and
inefficient, even if done by an experienced HPC developer.
Thus instrumentation, collection/measurement and analysis
steps should be automated, for example based on high-level
scalable tools [22], [23], [24], and integrated into a feedback
loop (see Section II-D).

D. Autonomic computing

During the execution of an application, failures may
occur or the application performance may be below the
expectation. These issues are addressed typically by pro-
grammers in a “trial and error” manner, i.e. by manually
changing and adapting their code to handle the failures
and improve the performance. Our proposed framework
(Section III-A) provides means for model-based failure
handling or performance improvement based on autonomic
computing. Autonomic computing addresses self-managing
characteristics of distributed computing resources with the
facilities to adapting to unpredictable changes while hiding
management complexity to operators and users [25]. Among
the explored categories, advanced-control based methods
and more specifically distributed controllers are the first can-
didates to realize autonomic computing in Exascale systems.

We propose to devise methodologies to efficiently collect
runtime information balancing the amount and cost for
storage of monitoring data with the quality of monitored
data necessary to make deductions about the application
behavior (e.g. trace analysis). The goal is thereby to define
methodologies to scale current monitoring tools to Exascale,
balancing between quality and volume of monitoring data.

Combining the information from both static code analysis
and runtime analysis, as outlined above, we will iteratively
apply objective-oriented transformations to legacy applica-
tion code at a formal level based on the Exascale DSL
model (see Section II-A). To this end, we will automate
the analysis, optimization and transformation processes by



implementing a generic feedback loop independent of the
concrete programming language, algorithms used and target
hardware architecture. A feedback loop driver enables to
link the static analysis tool, the runtime analysis tool,
the knowledge database and multi-parameter multi-objective
optimization. As output, a set of rules (policies) is generated
which is then applied to transform the formal application
model and to adapt the runtime environment parameters
(cf. Figure 1). After the transformations a new application
executable is built and started in the adapted runtime envi-
ronment. This described loop is iterated until convergence
of the optimization.

III. CONCEPTUAL FRAMEWORK AND BENEFITS

In this section we propose a conceptual framework for
porting HPC applications to Exascale computing systems.
Furthermore, we highlight benefits of our conceptual frame-
work in the context of Exascale computing.

A. Conceptual Framework

Our proposed approach for preparing HPC applications
for Exascale is depicted in Figure 1. The usage of a Domain-
Specific Exascale Language (DSEL) facilitates the program-
mer to express non-functional aspects (like required time to
solution, resilience or energy-efficiency) of the execution of
scalable parallel HPC codes. DSEL has a formal operational
semantics that enables the formal analysis of the code.
The aim of the Scalable Model-based Analyzer (SMA) is
to address non-functional properties of HPC codes, with
a particular focus on scalability while complying with the
crucial dimensions of resource consumption for Exascale
computing: time, energy, and resilience. The SMA is re-
sponsible for analyzing resource consumption in terms of
time, energy, and resilience, based on developed DSELs.
The Exascale Runtime Data Collector (ERDC) is responsible
for scalable monitoring to extract important monitoring data
through the utilization of various techniques like filtering,
streaming, or data mining. The runtime information is used
to verify or to tune the model of the code via the Autonomous
Feedback Loop (AFL). To endow the system with self-
adaption, control-theoretical concepts are incorporated in
autonomic computing paradigm. Based on the autonomic
technology for application optimization, programmers will
be less dependent on the currently used “trial-and-error”
approach.

Our approach considers optimization opportunities during
the application life cycle comprising improvements based
on static code analysis, deployment-time optimization, and
run-time optimization. The developed models are used to
identify the potential for improvement of the scalability
for HPC applications under study and suggest application
modifications that may lead to better scalability.

B. Benefits

Exascale computing is not simply the continuation of a
computational capability trend that has been proven true for
the last five decades. First, while clock rate scaling is limited,
complex multicore architectures and parallel computing still
follow Moore’s law. Second, Exascale computing capability
will finally allow complex real-life simulations and data
analytics. The latter will greatly expand the horizons of
scientific discovery and enable the new data-driven economy
to become a reality.

However, the Exascale promise faces a series of ob-
stacles, with the most difficult being energy, scalability,
reliability and programmability. Our proposal is to develop
a holistic, unifying and mathematically founded framework
to systematically attack the roots of these problems. That is,
instead of attacking these problems separately, we propose
a holistic approach to study them as a multi-parametric
problem which will allow us to deeply understand their
interplay and thus make the right decisions to navigate in
this complex landscape.

The benefits are targeting the full spectrum of actors and
beneficiaries. System developers will have a much better
path to design, while end users and application developers
will benefit from increased scalability, performance, relia-
bility and programmability. HPC centers will see a great
increase in overall system usability and an energy budget
that is affordable. This in turn has the potential to greatly
limit and contain the overall impact of high end HPC to the
environment.

IV. RELATED WORK

In a prospective analysis of issues with extreme scale sys-
tems [26], the importance of concurrency, energy efficiency
and resilience of software, as well as software–hardware co-
design has been elucidated.

Focusing on energy-aware HPC numerical applications,
the EXA2GREEN project (http://exa2green-project.eu) has
developed energy-aware performance metrics [27], as well
as energy-aware basic algorithm motifs such as linear solvers
[28]. Further work will strongly benefit from these results.
Different power measurement interfaces available on current
architecture generations have been evaluated and the role of
the sampling rate has been discussed [29].

The AutoTune approach [30] employs the Periscope tun-
ing framework [31] to automate performance analysis and
tuning of HPC applications with the goal to improve per-
formance and energy efficiency. Therein, both performance
analysis and tuning are performed automatically during a
single run of the application.

The DEEP project [32] has developed a novel Exascale-
enabling supercomputing architecture with a matching soft-
ware stack and a set of optimized grand-challenge simulation
applications. The goal of the DEEP architecture is to enable
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Figure 1. Our conceptual framework for porting HPC applications to Exascale computing systems

unprecedented scalability and with an extrapolation to mil-
lions of cores to take the DEEP concept to an Exascale level.
The follow-up DEEPer project (http://www.deep-er.eu) is
mainly focusing on I/O and resiliency aspects.

The CRESTA project (http://www.cresta-project.eu) has
adopted a co-design strategy for Exascale, including all
aspects of hardware architectures, system and application
software. A major asset from the CRESTA project is the
Score-P measurement system [33] on which an integration
and automation of performance analysis tools (cf. Sec-
tion II-C) can be based. In addition, efforts have been made
on developing a domain-specific language for expressing
parallel auto-tuning specifications and an adaptive runtime
support framework.

V. SUMMARY

Exascale computing will revolutionize high-performance
computing, but the first Exascale systems are not expected
to appear before 2020. In this paper we have argued that
the effort for preparing HPC applications for Exascale
should start now. We have proposed that porting of HPC
applications should be made by successive, stepwise im-
provements based on the currently available assumptions and
data about Exascale systems. This approach should support
application improvement each time new information about
future Exascale systems becomes available, including the
time when the application is actually deployed and runs on
a concrete Exascale system. We have identified challenges
that need to be addressed and recommended solutions in
key areas of interest for our approach including: formal
modeling, static analysis and optimization, runtime analysis
and optimization, and autonomic computing. Our future
research will address the development of a framework that
supports the conceptual framework presented in this paper.
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