Run-Time Checking of Data- and Protocol-Oriented
Properties of Java Programs:
An Industrial Case Study

Frank S. de Boer'2, Stijn de Gouw'?, Einar Broch Johnsen?, and Peter Y. H. Wong*
1 CWI, Amsterdam, The Netherlands
2 Leiden University, The Netherlands
3 University of Oslo, Norway
* Fredhopper B.V., Amsterdam, The Netherlands

ABSTRACT

Run-time verification is one of the most useful techniques
for detecting faults, and can be applied during any program
execution context, including debugging, testing, and pro-
duction. But in general it is limited to either state-based
properties of the data-flow (run-time assertion checking) or
protocol-oriented properties of the control flow (monitor-
ing). We introduce SAGA, a general framework that com-
bines monitoring and run-time assertion checking. SAGA
integrates both data-flow and control flow properties of Java
classes and interfaces in a single formalism. Furthermore we
compare the expressiveness and the usability of SAGA to
other current state of the art tools for run-time verification
by conducting an industrial case study from the eCommerce
software company Fredhopper.

Keywords

Histories, Traces, Attribute Grammar, Case Study, Speci-
fication, Run-time Assertion Checking, Run-time Verifica-
tion, Evaluation

1. INTRODUCTION

Run-time verification is one of the most useful techniques
for detecting faults, and can be applied during any program
execution context, including debugging, testing, and pro-
duction [5]. Compared to program logics, run-time verifica-
tion emphasizes executable specifications. Further, whereas
program logics statically cover all possible execution paths,
which is generally undecidable, run-time verification is a
fully automated, on-demand validation process which ap-
plies to the actual runs of the program.

Run-time verifiers can be divided in two general cate-
gories: run-time assertions checkers, which specify the data-
flow of a program, and monitors, which specify the control-
flow of a program. By their very nature, assertions are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPS ’13 Coimbra, Portugal

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

state-based in that they describe properties of the program
variables, e.g. fields of classes and local variables of meth-
ods. In general, assertions as supported for example by
the Java programming language or the Java Modeling Lan-
guage (JML) [2] can neither be used to specify the interac-
tion protocol between objects, which is in contrast to other
formalisms such as message sequence charts and UML se-
quence diagrams, nor can state-based assertions be used to
specify interfaces since interfaces do not have a state'. On
the other hand, there exists many monitoring tools (MOP,
PQL, Larva, Tracematches) which specify and check control-
flow (or protocol-oriented) properties, but do not specify
the data-flow: MOP, PQL, Larva, Tracematches, JmSeq,
UTJML.

The main contribution of this paper is twofold. Firstly, we
introduce SAGA, a general framework that combines moni-
toring and run-time assertion checking. In contrast to all of
the above tools, SAGA integrates both data-flow and con-
trol flow properties of Java classes and interfaces in a single
formalism. Table 1 lists the main features supported by
SAGA. Secondly, we provide an evaluation on the expres-
siveness and the usability of the current state of the art
tools for run-time assertion checking by conducting an in-
dustrial case study from the eCommerce software company
Fredhopper.

The basic idea underlying our framework is the represen-
tation of message sequences as words of a language generated
by a grammar. Grammars allow, in a declarative and highly
convenient manner, the description of the protocol structure
of the communication events. However, the question is how
to integrate such grammars with the run-time checking of
assertions, and how to describe the data flow of a message
sequence, i.e., the properties of the data communicated. We
propose a formal modeling language for the specification of
sequences of messages in terms of attribute grammars [10]
extended by assertions. Attribute grammars allow the high-
level specification of user-defined abstractions of message
sequences (e.g., their length) in terms of the attributes of
the grammars describing these sequences. SAGA supports
the run-time checking of assertions about these attributes
(e.g., that the length of a sequence is bounded). This in-

1JML uses model variables for interface specifications. How-
ever, a separate represents clause is needed for a full specifi-
cation, and such clauses can only be defined once an imple-
mentation has been given (and is not implementation inde-
pendent).

volves parsing the generated sequences of messages. These
sequences themselves are recorded by means of a fully auto-
mated instrumentation of the given program.

Constructors
Inheritance
Dynamic Binding
Overloading
Static Methods
Required Methods
Access Modifiers

Table 1: Supported features

Related Work.
This paper extends a previous workshop paper [7] as fol-
lows:

1. Significantly extended the tool to a much larger part
of Java (all features in table 1 are new, and more).

2. The specification language is much more expressive by
including assertions and conditional productions in at-
tribute grammars.

3. We applied and evaluated our tool on an industrial
case study.

There exist many other interesting approaches to monitor-
ing message sequences which however (as already remarked
above) do not address their integration with the general con-
text of run-time assertion checking. The experience report
in Section 5 contains an in-depth comparison with those.

Cheon and Perumandla present UTJML in [4] an exten-
sion of the JML compiler with call sequence assertions. Call
sequence assertions are regular expressions (proper context-
free grammars cannot be handled) over method names and
the data sent in calls and returns is not considered. Pro-
tocol properties (call sequence assertions) are handled sep-
arately from data properties, and as such are not integrated
into the general context of (data) assertions. The proposed
extension to call sequence assertions involves changing the
existing JML-compiler (in particular, both the syntax and
the semantics of JML assertions are extended), whereas in
our test suite integrating with JML consists only of a sim-
ple pre-processing stage. Consequently in our approach no
change in the JML-compiler is needed, and new versions
of the JML-compiler are supported automatically, as long
as they are backwards compatible. Hurlin [8] presents an
extension of the previous work to handle multi-threading
which however is not supported by run-time verification (in-
stead it discusses static verification). As in the previous
work, an integration of protocol properties with assertions
is not considered. Trentelman and Huisman [14] describe
a new formalism extending JML assertions with Temporal
Logic operators. A translation for a subset of the Tempo-
ral Logic formulae back to standard JML is described, and
as future work they intend to integrate their extension into
the standard JML-grammar which requires a corresponding
new compiler.

2. CASE STUDY

Fredhopper provides the Fredhopper Access Server (FAS).
It is a distributed concurrent object-oriented system that
provides search and merchandising services to e-Commerce
companies. Briefly, FAS provides to its clients structured
search capabilities within the client’s data. Each FAS in-
stallation is deployed to a customer according to the FAS
deployment architecture (See Figure 1(a)).

FAS consists of a set of live environments and a single
staging environment. A live environment processes queries
from client web applications via web services. FAS aims at
providing a constant query capacity to client-side web appli-
cations. A staging environment is responsible for receiving
data updates in XML format, indexing the XML, and dis-
tributing the resulting indices across all live environments
according to the Replication Protocol. The Replication Pro-
tocol is implemented by the Replication System. The Repli-
cation System consists of a SyncServer at the staging envi-
ronment and one SyncClient for each live environment. The
SyncServer determines the schedule of replication, as well as
its content, while SyncClient receives data and configuration
updates according to the schedule.

Replication Protocol

The SyncServer communicates to SyncClients by creating
Worker objects. Workers serve as the interface to the server-
side of the Replication Protocol. On the other hand, Sync-
Clients schedule and create ClientJob objects to handle com-
munications to the client-side of the Replication Protocol.
When transferring data between the staging and the live
environments, it is important that the data remains im-
mutable. To ensure immutability without interfering the
read/write access of the staging environment’s underlying
file system. The SyncServer creates a Snapshot object that
encapsulates a snapshot of the necessary part of the stag-
ing environment’s file system, and periodically refreshes it
against the file system. This ensures that data remains im-
mutable until it is deemed safe to modify it. The Sync-
Server uses a Coordinator object to determine the safe state
in which the Snapshot can be refreshed. Figure 1(b) depicts
a UML sequence diagram concerning parts of the replica-
tion protocol with the interaction between a ClientJob, a
Worker, a Coordinator and a Snapshot. The figure assumes
that a SyncClient has already established connection with a
SyncServer and that both a ClientJob from the SyncClient
and a Worker from a SyncServer have been instantiated for
interaction. For the purpose of this paper we consider this
part of the Replication Protocol as a session.

3. THE MODELING FRAMEWORK

Objects are not static parts of a system, but evolve through
interaction with their environment. Abstracting from the
implementation details, an execution of an object can be
represented by its communication history, i.e., the sequence
of messages corresponding to the invocations and comple-
tions of its methods (as declared by its interface).

In this section we describe our modeling framework in
Java for the behavioral description of an object interface, ex-
pressed in terms of its communication histories. Assertions
are integrated into attribute grammars for specifying prop-
erties of user-defined abstractions of communication histo-
ries. We explain the basic modeling concepts by formaliz-
ing three different properties of the interfaces shown in Fig-
ures 2(a) to 2(c) from the case study, each focusing on a

Configs updates

:ClientJob

establish(sn)

‘ :Worker ‘ ‘ :Coordinator

‘ :Snapshot

start(this) |

; refresh()

INTERNET
=

t_) [scheduleName != LIST]

reg(sn)

g Staging

List<ltem> items ‘ ‘

Data updates

Data and Config

loop [more items]

transfer(item)

- g
' ive

[scheduleName == LIST]

@

finish(this)

(b) clear()

Figure 1: (a) An example FAS deployment and (b) Replication interaction

different behavioral aspect:

e Snapshot: at the initialization of the Replication Sys-
tem, refresh should be called first to refresh the
snapshot. Subsequently the invocations of methods
refresh and clear should alternate.

e Coordinator: neither of the methods may be called
twice in a row with the same argument, and method
start must be called before finish.

e Worker: establish must be called first. Furthermore
reg may be called if the input argument of establish
is not “LIST” but the name of a specific replication
schedule, and that reg must take that name as an in-
put argument. Finally transfer may be called after
reg, one or more times, each time with a unique repli-
cation item, of type Item, from the list of replication
items, of type List<Item>, returned from reg.

interface Coordinator {
void start(Worker t);
void finish(Worker t);

interface Snapshot {
void refresh();
void clear();

} }

(a) Snapshot (b) Coordinator

interface Worker {

void establish(String sn);

List<Item> reg(String sn);
void transfer(Item item); }

(c) Worker

Figure 2: Interfaces of Replication System

Consider an instance of a class implementing the
Coordinator interface. The messages in the observ-
able communication history of this object are mod-
eled in our framework as instances of the message
types: call-start (Worker t), return-start(Worker t),
call-finish(Worker t) and return-finish(Worker t).
These message types uniquely identify invocations and
completions of the methods start and finish. Note that
message types distinguish between overloaded methods by
taking into account the parameter types of the method
in question. The return type is not needed to distinguish

methods since Java does not allow overloading on return
type.

In general, for every method signature T m(T; ui,...) the
modeling framework defines message types call-m(T7 ui,...)
and return-m(T; uy,...). Each call will be represented in
the communication history by an object which stores the ac-
tual parameters and each return is represented by an object
storing the return value. Henceforth we call the classes of
such objects token classes.

A communication view is a partial mapping from message
types to grammar terminal symbols. Communication events
of an unmapped message type are projected away. Naming
the relevant events allows the user to use intuitive names
for the selected messages and enables identifying two dis-
tinct messages by the same name (this is not used in the ex-
amples shown here). For example, the communication view
in Figure 3(b) introduces an abstraction of the communi-
cation history in terms of its projection onto the messages
which correspond to invocations of the start and finish
methods, using the names st and fn. We thus abstract
in this particular case from the returns of these methods.
Note that the communication views in Figures 3(a) to 3(c)
omit the types of the parameters. This is possible because
the interfaces shown above did not contain any overloaded
methods, hence each message type can be identified unam-
biguously even when type information is omitted. In general
SAGA supports multiple communication views for a given
interface which allow the developer to focus on the different
behavioral aspects of the interface.

view CoordinatorProc {
call-start st,
call-finish fn

view SnapshotProc {
call-refresh rf,
call-clear cl

(a) Snapshot (b) Coordinator

view WorkerProc {
call-establish et,
call-reg rg,
return-reg is,
call-transfer tr }

(c) Worker

Figure 3: Communication Views

The abstract behavior of a communication view can be de-
fined in terms of sets of sequences of the names introduced
in the view (i.e. sets of histories). Attribute grammars pro-
vide a powerful and high-level way to define such sets. The
names for the messages specified in the communication view
form the terminals of the grammar.

Figure 4(a) shows the property of the ’Snapshot’ inter-
face. The context-free grammar describes the prefix closure
of sequences of the terminals 'refresh’ and ’clear’ as given by
the regular expression (refresh clear)*. As the property does
not concern data, there are no attributes in the grammar.
Parse errors correspond to violations of the protocol as de-
fined by the grammar. Note that in general the specification
of the ongoing behavior of an object requires prefix closed
grammars. Furthermore, it is important to observe that a
grammar describes the protocol behavior of a single object.

We now turn to the second property described informally
in the beginning of this section, which features attributes. In
each attribute grammar, terminals have built-in attributes
given by their message type as defined in the communication
view, whereas non-terminals have user-defined attributes as
given in the grammar. More specifically, built-in attributes
for terminals corresponding to a message type ‘call-m’ store
the values of the actual parameters, and terminals corre-
sponding to a ‘return-m’ message type have a single built-in
attribute ‘result’ (if m does not have return type void) stor-
ing the return value. Actual parameters can be accessed in
the grammar by the names of their corresponding formal
parameters given in the interface.

The grammar in Figure 4(b) formalizes the Coordinator
property. The non-terminal T is extended with an inher-
ited attribute ‘ts’ of the Java type HashSet and records the
value of built-in attribute (in this case, a method param-
eter) ‘t’ from terminals ‘start’ and ‘finish’ Once the at-
tribute ‘ts’ is defined by setting 71 .ts =T .ts; (attribute
definitions are surrounded by parentheses), an assertion is
used to check the desired property on the data. Assertions
in a grammar production can be written at any position in
a production rule and are evaluated during parsing at the
position they were written and are surrounded by braces.
As an example, for this particular attribute grammar the
assertions are evaluated after the attributes have been set.
Assertions used in grammars assert data properties of parts
of the history. As a special case, assertions appearing di-
rectly before a terminal can be seen as a precondition of the
terminal, whereas post-conditions can be asserted directly
after the terminal. This is in fact a generalization of tradi-
tional pre- and post-conditions: a single terminal can appear
in multiple productions, each of which with potentially a dif-
ferent assertion. Hence different preconditions can be used
for the same method, depending on the context (grammar
production) in which the event corresponding to the method
call/return appears.

The grammar in Figure 4(c) formalizes the last prop-
erty described in the beginning of the section. The non-
terminal U has an inherited attribute ‘d’ of type String,
and the non-terminal W has an inherited attribute ‘m’ of
type ArrayDeque (a Java implementation of a stack), which
record input arguments and return values of method calls
respectively. However even in combination with assertions
this is not enough to obtain a faithful formalization of the de-
scribed property. In particular, since reg may be called only
depending on the value of the input argument of establish,

this particular protocol depends on data. We therefore con-
sider attribute grammars enriched by conditional produc-
tions [13]. In such an extended grammar, a production is
chosen only when the given condition (a boolean expression
over the attributes) for that production is true, hence condi-
tions are evaluated before any of the symbols in the produc-
tion are parsed, and before attributes are set and assertions
are evaluated. The first rule for the non-terminal U is a
conditional production which ensures that whenever method
reg is called, the input argument must be the name of the
replication schedule received in the method call establish.
Note that in contrast to assertions, conditions in produc-
tions affect the parsing process.

In summary, a communication view introduces a user-
defined abstraction of communication histories in terms of
the declaration of the terminals of the attribute grammar.
The given interface provides a name-space of the message
types of these terminals. The rules of the grammar define
invariant properties of the high-level protocol structure of
the corresponding abstraction. Assertions in the grammar
are introduced to specify data-oriented properties of (parts
of) the communication history. How SAGA updates the his-
tory of an object implementing any of the given interfaces
is described in the following section.

4. TOOL SUPPORT

Tool support is provided by SAGA, a 600 line meta-program
written in Rascal (a powerful meta-programming language).
SAGA has a component-based design, combining a parser
generator, a state-based assertion checker and a monitoring
tool for Java programs. Each of those components is instan-
tiated by a state-of-the-art tool, discussed in the remainder
of this section. An overview of the tool architecture is shown
in Figure 5.

JML
Asserts

Inter- ; Attr.
‘ face ‘ i:]‘ V|§w ‘ i:]‘Gra‘mm‘

ubisag

‘Boid elapy

DO | | | :
S¢ v v v Y
3o . Token Parser
@ g [|Debugger Inlsiteryy Classes Java Src
9a

sz | | |

©

Figure 5: Tool architecture of SAGA

ANTLR [12] is a popular parser generator which gen-
erates a recursive descent Java parser for a given attribute
grammar. Attributes are defined using semantic actions (a
Java statement executed whenever some production rule is
chosen during parsing) and there is support for streams of
custom token classes. ANTLR also supports conditional
productions (semantic predicates in ANTLR terminology),
which allow even certain context-sensitive grammars to be
parsed. Alas, it does not support general context-free gram-

S = ¢

i= €

| rf T
| cl S

(a) Snapshot

T (T.ts = new HashSet();)

st {assert ! T.ts.contains(st.t);}
(T.ts.adds(st.t);) Ty (Th.ts =T .ts;)

fn {assert T'.ts.contains(fn.t);}
(T.ts.removes(fn.t);) T1 (Th.ts =T .ts;)

(b) Coordinator

et U

is W
tr

s<con
i
M M M M

(U.d =et.sn;)

{!"LIST".equals(U.d);}? rg {assert rg.sn.equals(U.d);} V
(W .m = new ArrayDeque (is.result) ;)

{assert W .m.peek() .equals(tr.item);}

(W.m.popQ;) W1 (W1.m= W .m;)

(c) Worker

Figure 4: Attribute Grammars

mars (in particular, left recursive grammars are unsupported)
or incremental parsing. Incremental parsing allows reusing
(parts of) the parse tree of a prefix in parsing the whole
string which is of major importance for optimization pur-
poses. We have not been able to find any Java parser gener-
ator which supports general context-free grammars and in-
cremental parsing. The assertions occuring in the grammar
are evaluated by the standard java compiler, which serves
as the state-based assertion checker.

We investigated two alternatives for the monitoring com-
ponent: the Sun JDI Debugger and AspectJ. The Debugger
creates a wrapper for the main class of the Java program
under test. The wrapper starts the original program in-
side a new virtual machine and monitors any method calls
or returns executed on this virtual machine (i.e. it enables
tracing). The debugger does not modify the source code of
the original program and automatically ensures that the se-
mantic actions in the attribute grammar do not affect the
state of the program under test (since the program under
test is executed in a separate virtual machine). In contrast,
AspectJ modifies the source code (or bytecode, the actual
Java source code does not need to be available) of the origi-
nal program to intercept method calls or returns. Care must
be taken to write semantic actions in the attribute grammar
which do not have side-effects, since such actions modify the
state of the program under test. In principle both the De-
bugger and AspectJ suffice for our purposes, but AspectJ is
almost an order of magnitude faster than the debugger. We
have therefore chosen to use AspectJ in the implementation
of SAGA.

Rascal [9] is a domain specific language for meta pro-
gramming. SAGA uses its parsing, source code analysis,
source-to-source transformation and source code generation
features to instantiate the modeling framework. In particu-
lar SAGA generates ‘token classes’ for each message type (in
more detail, the fields of the class are the formal parameters,
together with the a caller and callee field and for return
messages types, a field result). It further generates Java
source code for a History class, which represents the current
history of the program as a list of token classes. Finally
SAGA generates AspectJ code to intercept method calls and
returns, and update the history accordingly. Whenever the
history is updated, the parser (generated by ANTLR) is
triggered by the history class to parse the new history, and
compute the corresponding new attribute values.

5. EXPERIENCE REPORT

query main ()
uses object Worker w; object String s;
matches {
w = Acceptor.getWorker();
s = SyncServer.getList();
w.establish(s); w.reg(s); }
executes Util.printStackTrace(*);

(a) PQL

trace worker {
eventset w { class="Worker" }
eventset r { method="reg"}

process main() {

w.ls.begin -> w.ls.end ->
w.et.begin -> w.et.end -> STOP
1

w.os.begin -> w.os.end ->
w.et.begin -> w.et.end ->
w.rg.begin -> STOP }}

(b) Jassda

Figure 6: PQL and Jassda

We applied SAGA to the Replication System, part of the
Fredhopper Access Server (FAS). The current Java imple-
mentation of FAS has over 150,000 lines of code, and the
Replication System has approximately 6400 lines of code, 44
classes and 5 interfaces. While we used standard Java asser-
tions in our case study, we have also experimented on inte-
grating SAGA with the run-time assertion checking facilities
provided by OpenJML?, which is one of the more actively
developed JML implementations. This has resulted in many
valuable improvements to the development of OpenJML.
Specifically the OpenJML compiler have had issues with
type checking synchronized blocks and enum types as well as
parsing and compiling the source code of FAS. See http://
sourceforge.net/tracker/?group_id=65346&atid=510629
for the kind of issues we have encountered when using Open-
JML. Due to these issues we have decided not to pursue in-
tegration with JML in our case study. Nevertheless, most of

*http://sourceforge.net/apps/trac/jmlspecs/wiki/
OpenJml

IMPORTS{ import java.util.*; }
GLOBAL {
FOREACH (Worker w) {
VARIABLES { String c¢ = null; ArrayDeque q = null;}
EVENTS{
et(String s, Worker wil) = {
wl.establish(s);} where {w = wi;}
is(String s, List is, Worker wl) = {
wl.reg(s)uponReturning(is);} where {w = wi;}
tr(Item i, Worker wi) = {
wl.transfer(i);} where {w = wi;}}
PROPERTY workers{
STATES {
STARTING{ start{} }
BAD{ regL{} transW{} }
NORMAL{ est{} regS{} transC{} }}
TRANSITIONS{
start -> est [et(O)\\c = s;]
est -> regl [is()\"LIST".equals(c)]
est -> regS [is()\! "LIST".equals(c)\q =
new ArrayDeque(is);]
regS -> transW [tr()\q.pop() != i]
regS -> transC [tr()\q.pop() == i] }}}}

(a) LARVA

import java.io.*; import java.util.*;
suffix HasNext(Worker w) {
event et before(Worker w):
call(* Worker.establish(String)) && target(w) {}
event rg before(Worker w):
call(*x Worker.reg(String)) && target(w) {}
event is after(Worker w) returning(List result):
call(* Worker.reg(String)) && target(w) {}
event tr before(Worker w):
call(* Worker.transfer(int)) && target(w) {}
cfg : S -> epsilon | et U, U -> epsilon | rg V,
V -> epsilon | is W, W -> epsilon | tr W
©fail { System.err.println("Protocol violation"); }}

(b) MOP
Figure 7: LARVA and MOP

the issues reported have been resolved in the latest version
of OpenJML.

We now proceed with a direct comparison of SAGA, PQL
[11], Jassda [1], LARVA [6] and MOP [3].

5.1 Expressiveness

Snapshot | Coordinator | Worker
PQL yes no no
Jassda yes no no
LARVA yes yes yes
MOP yes yes yes
SAGA yes yes yes

Table 2: Comparison of Expressiveness

We investigated the expressiveness of the specification lan-
guages of these tools by attempting to express and check
the SnapShot, Worker and Coordination properties (see Sec-
tion 3). Table 2 summarizes the results. Neither PQL nor
Jassda can express the Coordinator and Worker properties
since neither allows user-defined properties of data. LARVA
and MOP, on the other hand, support executing arbitrary
Java statements when an event occurs, hence it is possible

Specification | Execution
PQL 5 2
Jassda 4 2
LARVA 2 1
MOP 5 1
SAGA 3 1

Table 3: Duration per Activity

to define data-oriented properties such as Coordinator and
Worker. As such, user-defined properties of the data of a
single event are possible to express. It is not possible to
directly express properties of sequences of events (i.e. the
data-flow of the history). In LARVA, non-regular context-
free protocols cannot be expressed directly: one would have
to write the parser for a context-free grammar oneself. The
user would then essentially be writing their own run-time
checker in Java, bypassing MOP and Larva. This is clearly
unfeasible, and the resulting specifications are not declara-
tive anymore. Most importantly, in that degenerative sense
of expressiveness, AspectJ (on which MOP and LARVA are
based) would already be sufficient.

5.2 Learnability

Learnability is the capability of a software product to en-
able the user to learn how to use it. Table 3 shows the
number of hours spent on activities to specify and monitor-
ing properties defined in Figure 4.

Specification.

The most time spent at specification was for PQL; PQL
defines a new specification language for expressing queries
for (recursively) matching sequences of method invocations.
We find the language to be counter-intuitive as it does not
match any existing modeling or programming languages.
Moreover, it requires the user to specify invalid behavior
rather than valid ones and it is unclear how to specify method
invocations with specific input values. Similarly Jassda lacks
an integration into the general context of assertion check-
ing, which is needed to specify properties of variable val-
ues. LARVA provides an intuitive language for specify-
ing regular protocols. Specifications are finite state au-
tomata with optionally actions (arbitrary Java code) on
the transitions of the automaton. Actions can be used to
express data-oriented properties, though in an imperative
style. Context-free protocols are however much more cum-
bersome to express as noted previously. Despite the fact that
the Worker property has only been formalized partially in
LARVA due to requirements to express all invalid sequences
of method invocations, the full specification in SAGA is
much more concise. Though specifications in MOP look
intuitive (context-free grammars), their meaning is unclear.
We would have thought that Figure 7(b) partially expresses
the protocol behavior of the Worker (not taking account the
data properties, which cannot be expressed directly as men-
tioned), but the failure handler was triggered by MOP even
for correct programs. Whether this is intentional or due to a
bug in MOP remains unclear even after a thorough reading
of the documentation.

Execution.
For PQL, most time is spent identifying which Java state-

Documentation Maintenance | Support
PQL 1 paper, examples 2006 Minimal
Jassda | papers, (German) thesis, examples 2006 Minimal
LARVA | papers, manuals, examples 2011 Immediate
MOP | papers, manuals, examples 2011 Immediate
SAGA | papers, examples 2012 Immediate

Table 4: Adoptability

ments are supported and how variables can be manipulated.
The actual set-up of the run-time checking (compilation, in-
strumentation etc.) are carried by mirroring the setting in
the toy examples provided by the installation package. For
Jassda, time is spent at understanding the Java Debugger
Architecture, and in particular the proper settings in the
configuration files.

5.3 Adoptability

We evaluated how easily the frameworks can be adopted
or integrated into the the software development cycle in an
industrial context such as at Fredhopper. This includes op-
erational steps like installation, execution, and documenta-
tion and support. The quality assurance process at Fred-
hopper (as in many other software companies) includes au-

tomated testing. This type of testing requires a running
FAS instance and can be augmented with run-time assertion

checking techniques. We consider the following metrics: the

type of documentations available, how active the framework
has been maintained, and how easy to acquire support Lack

of support and maintenance (Table 4) reduces the confidence
in PQL and Jassda.

6.

We developed a general modeling framework SAGA which

CONCLUSION

seamlessly integrates attribute grammars for the specifica-
tion of user-defined abstractions of message sequences into
state-based assertion languages like JML. Our approach al-

lows a natural way to use assertions to specify declaratively

high-level data-oriented properties of these user-defined ab-

stractions.
based on a generative framework for run-time assertion check-

We discussed the corresponding tool-support

ing in Java and its application to an industrial case study.
The promising results of this case study provide a solid basis
for a further integration of SAGA into the software lifecycle
at Fredhopper.

7.

ACKNOWLEDGMENTS

We wish to express our gratitude to Behrooz Nobakht
for his help on the integration with the Java debugger and
Jurgen Vinju for the helpful discussions and major contri-
butions to our Rascal tool.

8.
1]

2]

REFERENCES

M. Broérkens and M. Moller. Dynamic event
generation for runtime checking using the JDI. Electr.
Notes Theor. Comput. Sci., 70(4), 2002.

L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R.
Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An overview of JML tools and applications.
International Journal on Software Tools for
Technology Transfer, 7(3):212-232, 2005.

3]

F. Chen and G. Rosu. Mop: an efficient and generic
runtime verification framework. In OOPSLA, pages
569-588, 2007.

Y. Cheon and A. Perumandla. Specifying and
checking method call sequences of Java programs.
Software Quality Journal, 15(1):7-25, 2007.

L. A. Clarke and D. S. Rosenblum. A historical
perspective on runtime assertion checking in software
development. ACM SIGSOFT Software Engineering
Notes, 31(3):25-37, 2006.

C. Colombo, G. J. Pace, and G. Schneider. Larva —
safer monitoring of Real-Time Java programs (tool
paper). In SEFM, pages 33-37, 2009.

F. S. de Boer, S. de Gouw, and J. Vinju. Prototyping
a tool environment for run-time assertion checking in
JML with communication histories. In Proceedings of
the 12th Workshop on Formal Techniques for
Java-Like Programs, FTFJP ’10, pages 6:1-6:7, New
York, NY, USA, 2010. ACM.

C. Hurlin. Specifying and checking protocols of
multithreaded classes. In ACM Symposium on Applied
Computing (SAC’09), pages 587-592. ACM Press,
2009.

P. Klint, T. van der Storm, and J. Vinju. Rascal: a
domain specific language for source code analysis and
manipulation. In A. Walenstein and S. Schupp,
editors, Proceedings of the IEEE International
Working Conference on Source Code Analysis and
Manipulation (SCAM 2009), pages 168-177, 2009.

D. E. Knuth. Semantics of context-free languages.
Mathematical Systems Theory, 2(2):127-145, 1968.
M. Martin, B. Livshits, and M. S. Lam. Finding
application errors and security flaws using PQL: a
program query language. In OOPLSLA, 2005.

T. Parr. The Definitive ANTLR Reference. Pragmatic
Bookshelf, 2007.

T. J. Parr and R. W. Quong. Adding semantic and
syntactic predicates to LL(k): pred-LL(k). In In
Computational Complexity, pages 263-277.
Springer-Verlag, 1994.

K. Trentelman and M. Huisman. Extending JML
specifications with temporal logic. In AMAST, pages
334-348, 2002.

