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Abstract. Wireless sensor networks (WSNs) consist of resource-con-
strained nodes; especially with respect to power. In most cases, the re-
placement of a dead node is difficult and costly. It is therefore crucial to
minimize the total energy consumption of the network. Since the major
consumer of power in WSNs is the data transmission process, we consider
nodes which cooperate for data transmission in terms of groups. A group
has a leader which collects data from the members and communicates
with the outside of the group. We propose and formalize a model for data
collection in which mobile entities, called data MULEs, are used to move
between group leaders and collect data messages using short-range and
low-power data transmission. We combine declarative and operational
modeling. The declarative model abstractly captures behavior without
committing to specific transitions by means of probability distributions,
whereas the operational model is given as a concrete transition system
in rewriting logic. The probabilistic, declarative model is not used to
select transition rules, but to stochastically capture the result of apply-
ing rules. Technically, we use probabilistic rewriting logic and embed our
models into PMaude, which gives us a simulation engine for the combined
models. We perform statistical quantitative analysis based on repeated
discrete-event simulations in Maude.

1 Introduction

Formal methods traditionally consider qualitative properties of models such as
various correctness properties. However, many communities (additionally) ex-
pect quantitative analysis results, which can be difficult to obtain for such
models. In contrast, approaches based on probability distributions over possible
transitions are able to provide numerical results; for example, the probability of
reaching a certain state with a given probability for message loss. Probabilistic
rewrite theories [17] form a semantic framework for system specification which
is capable of specifying both nondeterministic and probabilistic behaviors of sys-
tems, extending rewriting logic [21]. Probabilistic rewrite theories can be used
instead of traditional rewrite theories to model networks with different proba-
bilistic and nondeterministic behaviors. The execution of models given as prob-
abilistic rewrite theories can be simulated using the Maude rewriting tool [6],
which allows tool-supported analysis.



In this paper, we apply a combination of operational specifications of behav-
ior, given as a transition system, with declarative specifications, given by prob-
ability distributions, using probabilistic rewrite theories. Abstract declarative
specifications are used to underspecify behavior when it is difficult to predict the
exact behavior of the model in terms of specific transitions, whereas operational
specifications are used otherwise. This way, the probability distributions are not
associated with the choice of transitions rules, but rather with the outcome of
applying transitions. Combining declarative and operational specifications as a
means for underspecification can in some cases remove oversimplifying assump-
tions from the operational model; this makes the resulting specifications more
realistic while they can still be analyzed using quantitative techniques. Using
Maude to simulate the basic behavior of models given as probabilistic rewrite
theories, we apply a statistical quantitative analysis method based on discrete-
event simulation, in order to obtain numerical results about the combined model.

The proposed modeling approach is illustrated by a case study in the do-
main of underwater wireless sensor networks (UWSNs). WSNs consist of small
nodes with sensing, computing, and communication devices, which collabora-
tively monitor and collect data from the environment. Resource limitations in
WSNs raise the importance of efficient communication protocols among sensor
nodes. Especially, limitations of energy resources need to be considered in order
to improve the longevity of the nodes [26]. Data transmission is expensive with
respect to power, therefore, the management of communication between nodes is
an important factor for network power efficiency. In UWSNs [7], communication
uses acoustic data transmission through water. Due to its acoustic nature, trans-
mission costs more power than in usual WSNs, and message loss may occur. One
approach to UWSNs is Mobile Ubiquitous LAN Extension (MULE ) systems [29].
A (data) MULE is a mobile object, such as a vehicle with large and replaceable
energy resources. A MULE system consists of a three-tier architecture: (i) sensor
nodes, in the lower level, which gather data; (ii) mobile agents as MULEs, in the
middle level, which move around in the network area and collect nodes’ data
using single-hop short range transmission; and (iii) access points or sink nodes,
in the upper level, which receive the data from the MULEs. MULEs move inde-
pendently from the sensors, and in most cases randomly or following predefined
paths. The MULE architecture is an energy efficient solution for data gathering
in WSNs that is also scalable and flexible with respect to the network size [3].

This paper develops a probabilistic model that is a combination of declarative
and operational models for data collection in a MULE-based WSN, extending a
grouping protocol introduced in [16]. In this protocol sensor nodes form groups,
using coalitional game theory, in order to save energy in the network. A group
has a selected node called leader which is responsible for receiving data from
the group members and for communication with the outside of the group. To
further improve energy efficiency, MULEs gather the data from group leaders.
We model MULEs by using a probability distribution of the MULEs’ locations
in order to abstractly model their movement and the rate of message loss. We
combine this declarative specification of MULE-based communication with an



operational model of the grouping protocol in rewriting logic [21], and use the
Maude tool [6] to simulate the stochastic behavior of the resulting model. Com-
bining a series of Maude simulations, we obtain numerical insight about the
behavior of this protocol. The numerical results show that using the grouping
protocol is beneficial to MULE-based WSNs with respect to energy conservation.

Related work. Protocol validation is mostly done with simulation-based tools,
using NS, OMNeT+. Formal analysis techniques are much less explored in the
development and analysis of WSNs, but start to appear. Among automata-based
techniques, the TinyOS operating system has been modeled as a hybrid automa-
ton [9] and UPPAAL has been used for analyzing the LMAC protocol [11] and
the temporal configuration parameters of radio communication [30]. A recent
process algebra for active sensor processes includes primitives for, e.g., sens-
ing [8]. Ölveczky and Thorvaldsen show how a rich specification language like
Maude is well-suited to model WSNs, using Real-Time Maude to analyze the
performance of the OGCD protocol [24].

In this paper, we use probabilistic rewrite theories [17] as the formal mod-
eling language and the Maude tool to develop a grouping protocol for MULE-
based WSNs that exhibit probabilistic behavior, building on a protocol proposed
in [16], which applies coalitional game theory but does not consider message loss
and probabilistic modeling. From the modeling point of view, PRISM [19] is
another probabilistic modeling language that comes with probabilistic model-
checking and quantitative analysis tools [18]. Some process algebraic approaches
to modeling, verification, and analysis of probabilistic models are the PEPA [13]
and EMPA [5] frameworks, the Probabilistic KLAIM coordination language [25],
and the Stochastic π calculus [27]. PMaude, the probabilistic extension of Maude,
is a rewrite-based modeling language. PMaude offers a natural way to describe
the structures considered in Stochastic CLS, so from a modeling perspective, it
is more suitable for our purpose. In contrast to PRISM, PMaude cannot ver-
ify quantitative properties. The VeStA [28] tool, which support both PMaude
and PRISM, fails when running as big state spaces as we have in our model.
As a solution, we take Maude extended with probabilistic rules, using sam-
pling from given distributions, and add a tailor-made external layer producing
quantitative results by repeated probabilistic simulations. Consequently, we do
not perform stochastic model checking as VeStA offers, but our analysis can
provide some quantitative information as well as diagrams of attribute values
during one simulation and the average of the values of different simulations,
which are important for understanding and comparing a protocol’s efficiency.
The Real-Time Maude approach [24] has also been combined with probabilistic
model-checking to analyze the LMST protocol [15]. They use VeStA to perform
statistical model checking, while in our approach, a probabilistic rewrite theory
is used to build the combined declarative and operational model with a simple
discrete time model. The PVeStA tool [31] is a client-server-based paralleliza-
tion of VeStA. The CaVi tool combines simulation in Castalia with probabilistic
model-checking [10]. There are some works that follow the same approach as
ours, but in different fields. For instance, the authors of [4] use stochastic ab-



straction and model checking for the communication system of the airplanes. We
work on the higher layers of the network and use rewriting logic for our analysis,
in contrast to the BIP toolset that is a component-based framework.

Different aspects of UWSNs have recently been studied. In [7] several re-
search challenges in this area are discussed, while [26] provides an overview of
networking protocols for UWSNs. Recent studies on the energy conservation in
WSNs are surveyed in [3]. Cluster-based protocols have been studied in some re-
search such as [22], which proposes a cluster-based routing protocol for UWSNs,
regardless of the nodes’ locations. A well-known work related to energy efficiency
of WSNs is LEACH [12], a cluster-based protocol that uses randomized rotation
of local cluster-based stations to distribute the energy load among the sensors.
MULEs have not only been used in UWSNs, but also for other kinds of WSNs,
see, e.g., [14]. We combine a MULE-based architecture and grouping of nodes,
in order to increase the energy efficiency of WSNs.

Paper overview. Section 2 summarizes probabilistic rewrite theories. Section 3
describes the grouping protocol in MULE-based sensor networks, and Section 4
introduces our declarative model of MULE-based communication. Section 5 de-
scribes the proposed formal model, while the methods for statistical quantitative
analysis are introduced in Section 6. The paper ends with Section 7, containing
the conclusions and suggested future work.

2 Probabilistic Rewrite Theories and PMaude

Rewriting logic (RL) extends algebraic specification techniques with transition
rules: The dynamic behavior of a system is captured by rewrite rules supple-
menting the equations which define the term language. A rewrite theory is a
tuple (Σ,E,L,R) where the signature Σ defines the function symbols, E defines
equations between terms, L is a set of labels, and R is a set of labeled rewrite
rules. Rewrite rules apply to terms of given sorts. Sorts are specified in (member-
ship) equational logic (Σ,E). When modeling computational systems, different
system components are typically modeled by terms of suitable sorts defined in
the equational logic. The global state configuration is defined as a multiset of
these terms. From a computational viewpoint, a rewrite rule t −→ t′ may be
interpreted as a local transition rule allowing an instance of the pattern t to
evolve into the corresponding instance of the pattern t′. Formal models defined
in rewriting logic [21] are executable in Maude [6]. Maude provides a tool frame-
work that includes tools such as a reachability analyzer, an LTL model checker,
and InVa (invariant model checker for infinite state-spaces).

Probabilistic rewrite theories form a general semantic framework for the spec-
ification of systems with both nondeterministic and probabilistic behavior [17].
In [17] it is shown that probabilistic rewrite theories represent a unifying seman-
tic framework, i.e., that certain mappings exist between several different proba-
bilistic modeling formalisms and probabilistic rewrite theories. This framework is
an extension of rewrite theories [21], capturing the evolution of a system through
a series of conditional probabilistic rewrite rules with the syntax



t(~x) −→ t′(~x, ~y) if cond(~x) with probability ~y := π(~x), (1)

where ~x, ~y are sets of variables and t(~x), t′(~x, ~y) are terms in an algebra of
fully simplified terms, with respect to a membership equational theory and a
collection of structural axioms [21]. Also, cond(~x) is a condition that needs to be
met for the rewrite (1) to take place and π is a probability distribution over a
set of substitutions for ~y, possibly depending on the variables ~x of the term t(~x).
Such rules are nondeterministic, as the variables ~y in their right-hand side do
not also appear in the left-hand side. The notation := in (1) can be understood
as a standard let expression in functional languages, allowing us to specify the
probability distribution which the variables ~y follow.

PMaude is introduced in [1] as a specification language for general prob-
abilistic rewrite theories. In general, probabilistic rewrite rules such as (1) are
nondeterministic, as the variables ~y in their right-hand side do not appear in the
left-hand side, rendering them nonexecutable in Maude. However, Maude can be
used to simulate a PMaude specification, provided that all variables ~y in rules
like (1) are replaced with actual values sampled from the probability distribution
π(~x). Thus, the executable Maude conditional rewrite rules have the form

t(~x) −→ t′(~x,sampleFromPi(~x)) if cond(~x),

where sampleFromPi(~x) is an operation that samples from the probability
distribution π in (1). The same paper [1] introduces a technique, namely an
Actor PMaude module, which can be used to create executable PMaude spec-
ifications that are free from any source of nondeterminism. This is achieved by
considering the current state of the system as a multiset of objects and mes-
sages, in which, time is made explicit through a global floating point value. In
an executable PMaude specification all rewrite rules are scheduled to execute at
random moments of time, with the interval between two consecutive executions
following an exponential probability distribution. Recall that the exponential
distribution has cumulative distribution function F (x) = 1− e−λx, where λ ∈ R
is called the rate parameter. As shown in [1], a stochastic time model can be im-
plemented in the following manner: A Configuration is the sort of the state
of a subsystem, to which the rewrite rules typically apply. In order to handle
scheduling of the concurrent objects, time is added to the global configuration
of the system, and the sorts execution mark and scheduled execution mark are
added as subsorts of Configuration.
subsort Time ExecMark ScheduledExecMark < Configuration .
op time: Float → ExecMark .
op execute : Oid → ExecMark .
op [_,_] : Float ExecMark → ScheduledExecMark .

Here, Oid is the sort of object identifiers. The scheduled execution marks form
the main ingredient of the stochastic time model introduced in [1], making it
possible to quantify and resolve nondeterminism. A tick operation then makes
the system evolve by unwrapping the scheduled execution marks into unsched-
uled ones and rendering exactly one object active. Config is the sort of the



global system, obtained from terms of sort Configuration by adding a pair
of curly brackets:
op tick : Config → Config .
op {_} : Configuration → Config .

The motivation for having a global configuration sort is that, in order to specify
the scheduling mechanism, the whole current configuration of the model must be
considered. The semantics of the tick operation follows that of Actor PMaude
[1], selecting the next object for execution in chronological order:
op tickAux : Float ExecMark Configuration → Config .
var CF : Configuration . vars T T’ : Float . vars E E’ : ExecMark .

eq tick({[T, E] CF}) = tickAux(T, E, CF) .
eq tick({CF}) = {CF} [owise] .
ceq tickAux(T, E, [T’,E’] CF) = tickAux(T’, E’, [T,E] CF) if T’ < T .
eq tickAux(T, E, CF time(T’)) = {E CF time(T)} [owise] .

Here, owise equations are used only when no other equations apply and ceq
indicates conditional equations. The global system configuration will contain
exactly one time object time(T). Execution marks of form execute(O) are
added to the left-hand sides of all rewrite rules for an object O, as well as sched-
uled execution marks of form [T+δ,execute(O)] to their right-hand side, in
order to make the new subconfiguration active at a later time, after a random
interval of time δ has passed, following an exponential probability distribution
with some fixed rate parameter, in our case 0.1. The random length of this inter-
val is generated using a Maude operation denoted sampleExpWithRate (see
Section 5). In the current implementation, the rates corresponding to the expo-
nentially distributed waiting times of all scheduled execution marks are equal to
0.1. However, these rates can be given different values for each sensor, to simu-
late different sensor processor speeds. The tick rule { CF } −→ tick({ CF }),
used when CF contains no execution mark, is built into our analysis through the
script producing quantitative results. The tick rule advances time T and creates
an execution mark.

3 Grouping Nodes in MULE-based Sensor Networks

In WSNs, when a large number of sensor nodes are placed in the environment,
neighbor nodes may end up being very close to one another. In this case, the
transmission power level for communication with a neighbor can be kept low
by using short-range multi-hop communication. Since nodes can cooperate to
transmit data, multi-hop communication in sensor networks is expected to con-
sume less energy than traditional single-hop communication [2]. Furthermore,
multi-hop communication can effectively overcome some signal propagation ef-
fects experienced in long-distance wireless communication.

Grouping is a method of cooperation between nodes, to transfer data, in
which nodes belong to distinct groups [20]. Each group has a leader ; i.e., a node
which is responsible for receiving data from the group members to route it to the



sink, and also for communicating with other leaders. Outside the group, nodes
always use their maximum transmission power. Instead, by cooperating with the
group members, nodes can use their minimum transmission power to reach the
group leader, and consequently decrease the power consumed for communication
inside the group. There are different approaches to group formation. The group-
ing can be done based on distance. For better grouping, other factors such as
signal interference may also be considered. We use the grouping algorithm based
on coalitional game theory proposed in [16], considering the grouping problem
for WSNs as a coalitional game, in which the sensor nodes are the players and
the game is concerned with whether a node should join a group or not, as well as
which group is more beneficial to join. By using this algorithm, sensor nodes in
our model can find a suitable group to join after each movement. In the model,
nodes move to different locations according to a predefined set of movements.

4 A Declarative Model of MULE-based Communication

In WSNs, nodes gather data from the environment and transmit them to sink
nodes using data messages. We consider an extension of the grouping protocol
in [16], in which nodes send messages to their group leaders and MULEs are
responsible for moving around leaders to collect these messages and transmit
them to sink nodes, in order to decrease the overall energy consumption of
the network. Leaders always use their minimum power to communicate with
MULEs. Also, nodes can send data messages at different rates. In general, it
is better for the network to have a fair message propagation, in which nodes
have equal message transmission rates, as it causes fair distribution of the power
consumption in the network. Thus, in order to model the propagation of data
messages, we assume that the next node to send a data message is selected
uniformly from the set of all sensor nodes. According to this distribution, at
each time tick, a node can send a data message with the same probability as
the other nodes, namely 1/N where N is the number of nodes in the network.
Single nodes communicate directly with the MULE using the maximum amount
of power Pmax. However, the nodes which belong to groups can send their data
messages to the group leaders using minimum power Pmin, and the leaders will
send them to the MULE through short range communication.

Besides the modeling of data messages, the movements of MULEs are mod-
eled using an abstract probabilistic approach to underspecify their concrete
movements. The general assumption is that the MULE’s movement is either
random or mostly predefined [29]. Thus, we do not attempt to model a MULE’s
specific movements, but rather assume that the MULE always moves around
the leader nodes, to increase the chance of successfully receiving messages. More
precisely, Fig. 1 shows the type of probability density that we assume for locating
the MULE at different coordinates. In this example, we considered three leaders
at positions (2, 3), (10, 6), and (4, 9). This probability is equal to the probability
of successful message transmission between a data MULE and a leader. Outside
the communication range of the leaders, the probability density breaks down to a



Fig. 1. Three-dimensional plot of the probability density function fX,Y (x, y) giving the
probability of successful message transfer between a MULE found at position (x, y) and
one of the leaders.

small constant value (in our case study 0.02). Figure 2 shows a two-dimensional
density plot of the probability of successful message transfer between a data
MULE found at polar coordinates (r, θ) with respect to a leader which is the
pole of the polar coordinate system. The darker gray towards the center of the cir-
cle indicates higher values of the probability density function, while lighter gray
indicates lower values. Notice from this diagram how the distance r between the
leader and the MULE is calculated, as well as the angle θ between them. We may
write

Fig. 2. Two-dimensional plot of
the probability density function.

P = c

l∑
i=1

Wi, (2)

where c ∈ R is a normalizing constant and
Wi ∈ R is a weight corresponding to the
chance of the MULE to be in the commu-
nication range of leader i ∈ {1, 2, . . . , l}. We
suggest to define this weight through the fol-
lowing formula

Wi =

∫ 2π

0

∫ Rmaxi

0

wi(θ, r) dr dθ, (3)

with the intuition that the value wi(r, θ) ∈ R
corresponds to the chance of successful communication between leader i and the
MULE, where the polar coordinates of the MULE are given by (r, θ) ∈ [0,+∞)×
[0, 2π) and considering that the leader is the pole of the polar coordinate system.
Thus, the double integral in (3) calculates the “accumulated” weight associated
with the leader i over the interior of the circle centered at i, with radius equal



to Rmaxi, the communication range of i. The energy consumption of the leader
i, necessary to communicate with the MULE at a distance r > 0, is directly
proportional to r2 [23]. By making the natural assumption that the probability
pi of successful communication between i and the MULE is inversely proportional
to the consumed energy, we obtain that pi is inversely proportional to the squared
distance r2, which is the same order of magnitude as (1+r)2. We prefer the latter
expression since 1/(1 + r)2 is well-defined for all r ≥ 0, while 1/r2 is undefined
for r = 0. Thus, we consider the weight function

wi(r, θ) =
1

2π
· 1

(1 + r)2
(4)

where the factor 1/(2π) corresponds to the assumption that there is an equal
chance for the MULE to be located at any angle θ ∈ [0, 2π] around the leader i.
In this case, we obtain a closed form expression for the weight Wi in (3):

Wi =

∫ 2π

0

∫ Rmaxi

0

dr dθ

2π(1 + r)2
=

Rmaxi
1 +Rmaxi

(5)

The signal range of each node is limited by its transmission power Pi. Fol-
lowing [23], the maximum distance Rmaxi where the MULE can still receive
messages from node i, using transmission power Pi, is given by Rmaxi =

√
Pi.

When using the grouping protocol, we assume that Pi denotes the minimum
receiving power of leader i, otherwise we assume that it corresponds to its max-
imum receiving power. Replacing the maximum distance Rmaxi by

√
Pi in (5),

we obtain the following expression for the weight Wi:

Wi =

√
Pi

1 +
√
Pi

(6)

The constant c > 0 is calculated such that (2) holds, i.e., c = P /
(∑l

i=1Wi

)
,

which allows us to define the probability pi = cWi, where pi ∈ [0, P ], for the
MULE to be in the range of leader i and to successfully communicate with it.
We use these probabilities to model the behavior of the MULE when receiving or
dropping messages. The main advantage of using probability distributions is that
we obtain an abstract view of the MULE and ignore unnecessary details about
the actual movements of the MULE vehicle and its physical communication with
the sensors. In addition, our probabilistic approach for message propagation and
MULE movement allows us to collect useful quantitative information for network
analysis. Using discrete-event simulation, we obtain data related to the behavior
of the network and to the amount of lost messages. Furthermore our model is
flexible, i.e., it is easy to reuse it for different network configurations and MULE
scenarios by just replacing the probability distribution in our model with another
suitable distribution. In this sense, our formalism can be used as a framework
for testing different MULE scenarios and algorithms.

In this paper, we used probabilistic rewrite theories [17] to model our group-
ing protocol, the propagation of data messages and also to model MULE be-



haviors. The next section describes how we can use this formalism to model the
grouping protocol, while also incorporating probabilistic information.

5 Combining Declarative and Operational Models

In this section, we define a formal model of our proposed protocol in probabilistic
rewriting logic. Our assumptions are: messages do not expire, and the number of
nodes in the network is fixed, although they may move. The network is defined
as a system configuration, a multiset of objects and messages, allowing the spec-
ification of local rules, for example to send data messages, as well as global rules,
such as those used in the object scheduling mechanism. Following rewriting logic
conventions, whitespace denotes the associative and commutative concatenation
operator for configurations. The term 〈O : Node | leader : L, rpow : E, pow :
P, buf : B 〉 denotes a Node object, where O is the object identifier, L its leader,
E the remaining power, P the power capability, and B the message buffer.

As in [16], unicast messages have the form (M from O to O’) where M is
the message’s body (possibly with parameters), O the source and O’ the desti-
nation. A message will not reach its destination unless it is within the node’s
transmission range. Multicasting is modeled by allowing a set of destinations and
equations which expand the destination set. Wireless broadcasting uses messages
(M from O to all) where all is a constructor indicating that the message
is sent to all nodes within range. We abstract from the actual data content of
messages, and use a constant value for the message content.

In sensor networks, data is sensed from the environment continuously, and
it should be transferred to the sink node. This process starts as soon as the
network starts running and continues until all nodes run out of energy. Message
passing is modeled by rewrite rules that can be applied at any time while the
system is running, either during the grouping process or afterwards. These rules
nondeterministically apply to enabled nodes in the network, so the nodes have
an equal chance to pass messages to other sensor nodes.

If the selected node is a member of a group, then this node sends the data
message to its group leader, using minimum power. Otherwise, it will send the
message directly to the MULE, using maximum power. Fig. 3 describes the main
MULE-based message passing rules in our model. The other rules in our model,
such as those related to the underlying grouping protocol, are described in [16].

The MsgFromNode rule shows the message generated by a node. In this rule,
time(T) is the current time, while Pmin and Pmax are defined by two equations
that calculate minimum and maximum transmission power of nodes based on a
value P, specific to each node, which we call the power capability.

The leaders transfer the data messages which they have received from their
group members to the MULE. Rule MsgFromLeader represents the nondeter-
ministic selection of one of the leaders that will pass the data message to the
MULE. When a leader receives a data message from a node, it saves the message
in its buffer buf. As soon as the buffer becomes full, the leader sends all mes-
sages to the MULE. This sending is modeled by means of a function sendAll,



rl [MsgFromNode]: 〈O : Node | leader: L, rpow: E, pow: P 〉 execute(O) time(T)
−→ if (L 6= nil)
then 〈O: Node | leader: L, rpow: E-Pmin(P), pow: P 〉 (msg from O to L)
else 〈O: Node | leader: L, rpow: E-Pmax(P), pow: P 〉 (msg from O to "MULE") fi
[T+sampleExpWithRate(0.1), execute(O)] time(T).

rl [MsgFromLeader]: (M from O’ to O) execute(O) time(T)
〈O : Leader | rpow: E, pow: P, buf: B 〉
−→ if #B+1≥Buffersize
then sendAll(〈O: Leader | rpow: E-Prec(P), pow: P, buf: push(B,M) 〉 )
else 〈O : Leader | rpow: E-Prec(P), pow: P, buf: push(B,M) 〉 fi
[T+sampleExpWithRate(0.1), execute(O)] time(T).

rl [MuleReceiveMsg]: (M from O’ to "MULE") time(T) execute("MULE")
〈"MULE" : MULE | RecMsg: B, NumOfLostMsg: Y 〉
−→ if sampleBerWithP(probability)
then 〈"MULE": MULE | RecMsg: B, NumOfLostMsg: (Y+1) 〉
else 〈"MULE": MULE | RecMsg: push(B,M), NumOfLostMsg: Y 〉 fi
[T+sampleExpWithRate(0.1), execute("MULE")] time(T).

eq sendAll(〈O: Leader | buf: empty 〉 ) = 〈O: Leader | buf: empty 〉 .
eq sendAll(〈O: Leader | rpow: E, pow: P, buf: push(B,M) 〉 ) =
(M from O to "MULE") sendAll(〈O: Leader | rpow: E-Pmin(P), pow: P, buf: B 〉 ).

Fig. 3. Rules for MULE-based communication. Each rule considers an object ready
for execution, and reschedules the object using sampling. Irrelevant node attributes
are omitted. Buffer operations include the constructor push and # for length. As in
Maude, we assume multiset matching. Variables are capitalized. msg is here a constant.

defined by two equations, which gives immediate sending of all messages in the
buffer, since equations represent timeless actions in rewriting logic. In the rule,
Prec(P) is defined by an equation calculating the power that a specific node
consumes to receive a message, based on its power capability P.

The MULEs move and gather data messages which are sent by leaders or sin-
gle nodes. The movement of the MULE causes some message loss, captured by
the probability distribution of successful message passing (cf. Section 4). By us-
ing this probability distribution, we abstract from the movement of the MULE.
In our model, every message sent to the MULE is received with a probabil-
ity calculated by Equation 6 in Section 4, otherwise the message is lost (i.e.,
removed from the system configuration). Rule MuleReceiveMsg represents this
process, with the probability variable giving the actual probability of suc-
cessfully receiving a data message; i.e., pi = cWi, as defined in Section 4. The
sampleBerWithP operation samples from the Bernoulli distribution; i.e., it
returns true with a given probability p and false with probability 1− p.

We assume that a MULE transmits all the received messages to the sink. So
in our model, there is no need for additional rules capturing the communication
between the sink and the MULE. Further details about modeling the grouping
and the routing protocols in rewriting logic can be found in [16]. In the present
work, we extended all of the rules in the cited work to probabilistic rewrite
rules, as well as added new equations. The validation of the group membership



Fig. 4. The remaining energy of a node. Fig. 5. The remaining energy of a leader.

protocol can be achieved by using Maude’s model checking tools. In [16], Maude’s
search tool has been applied to verify the correctness of the grouping protocol.

6 Quantitative Analysis of the Combined Model

This section proposes an approach to obtain quantitative results by guiding and
monitoring Maude simulations. The basic idea is to control the run of the Maude
model and monitor the system configuration at each tick. The desired data is ex-
tracted from the configuration, including numerical data stored inside each node.
After the simulations, all the data extracted from the model is gathered and an-
alyzed. To automate this process, we have implemented a Python script which
extracts quantitative information from a system configuration of our model by
parsing the configuration after the application of each tick rule, and extracting
numerical data as queried by the user. This way, the script gathers data resulting
from the application of a specified number of ticks. Finally, the script analyzes
the data and provides a plot diagram showing the graph of a given system pa-
rameter against time. In addition, several simulations of the Maude model can be
combined, producing a graph which averages the data obtained from each sim-
ulation. More precisely, we use a modified linear interpolation procedure that is
able to precisely combine data from a set of graphs.

Thus, we used Maude to simulate our model of MULE-based WSNs, driven
by the grouping protocol proposed in [16]. Our topology contains a MULE and
two groups of six nodes each. Each node starts with 1000 units of energy. In the
beginning of the model execution, the nodes start sending data messages. During
the execution, they can move and join a new group. We capture the remaining
energy of each node at every tick of the simulation, as well as the number of sent
and received messages. We ran simulations for two distinct scenarios; namely,
when the WSN uses the grouping protocol vs. when it does not. Our purpose is to
compare the energy consumption of the nodes and the leaders, in each scenario.



Fig. 6. The graphs of the F factor (for 6 nodes), when the MULE-based WSN is using
(dashed line) and when it is not using the grouping protocol (solid line).

In addition, in order to obtain a better understanding of the network’s efficiency,
we define an efficiency factor F with the following expression F = 1

LM

∑N
n=1En,

where N is the total number of sensor nodes, En is the remaining energy of node
n and LM is the total number of messages that the MULE has lost. The efficiency
factor F represents a ratio between the energy consumption and the message
loss in the network. More efficient networks, in terms of energy consumption
and performance in message delivery, have higher values of F .

Figures 3 and 4 show the saved energy of a sensor node and of a leader,
respectively, in a MULE-based WSN with (dashed line) and without (solid line)
using the grouping protocol. We have also calculated the value of the F factor for
a run, as the average of 5 simulations, and displayed the results in Fig. 6, in the
case when the WSN uses the grouping protocol, as well as when it does not. By
comparing the two graphs in Fig. 6, we observe a considerable improvement in
the efficiency of the network when the grouping protocol is running. To generate
each of the graphs, we ran 5 simulations (each simulation lasting for 1000 ticks).

7 Conclusion

This paper applies a combination of declarative and operational specification,
using a probabilistic approach for underspecification in the operational model.
Technically, this is achieved using the framework of probabilistic rewriting logic
and PMaude. We demonstrate the approach on a grouping protocol for MULE-
based WSNs and show how the declarative specification provides an abstract and
flexible solution to model both fair message passing and underspecified MULE
behavior in WSNs. Furthermore we use a statistical method for quantitative
analysis of Maude models, which provides useful data sets and graphs for net-
work analysis and performance evaluation of protocols. The obtained numerical
results allow the energy efficiency of the network to be compared, with and



without using the considered protocol. We have shown that using the grouping
protocol improves the energy efficiency of the network. The particular choice of
parameter values used in the probabilistic modeling is based on our preliminary
experience, and can easily be readjusted to fit better with reality. The approach
taken provides a framework for further experimentation.

In future work, we intend to build on our current Maude model as well
as to extend it, to capture real-time aspects of WSNs. Furthermore, we plan
to subject our model to statistical model checking, to be able to statistically
prove the correctness of large models. It is known that, due to their huge state
space, it is practically impossible to verify such models using traditional model
checking techniques. We also plan to make an integration of our current Maude
implementation with the VeStA/PVeStA tool, which allows for probabilistic
reasoning via statistical model checking and statistical quantitative analysis. Us-
ing VeStA, we would be able to verify the statistical correctness of the protocol
proposed in this paper, as well as to make more precise quantitative analysis.
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