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Creol is an object-oriented modeling language in which inherently concurrent objects ex-
change asynchronous method calls. The operational semantics of Creol is written in an
actor-based style, formulated in rewriting logic. The operational semantics yields a language
interpreter in the Maude system, which can be used to analyze models. Recently, Creol has
been applied to the modeling of systems with radio communication, such as sensor systems.
With radio communication, messages expire and, if sent simultaneously, they may collide in
the air. In order to capture these and other properties of distributed systems, we extended
Creol’s operational semantics with a notion of time. We exploit the framework of a language
interpreter to use a lightweight notion of time, in contrast to that needed for a general pur-
pose specification language. This paper presents a timed extension of Creol, including the
semantics and the implementation strategy, and discusses its properties using an extended
example. The approach can be generalized to other concurrent object or actor-based systems.

1 Introduction

Actor-based systems consist of autonomous “actors” with explicit identity, which execute local
tasks and asynchronously exchange messages [1,2]. Actor-based systems are attractive for the
modeling of distributed computing systems due to their separation of concerns between local
computation on the one hand and communication and synchronization on the other hand, which
fits with a natural way of understanding distributed systems. Creol is an object-oriented mod-
eling language in which inherently concurrent objects exchange asynchronous method calls [12].
The semantics of Creol is defined in rewriting logic [17]; in fact, we have used Maude [8] as an
underlying simulation platform for Creol models and extended the interpreter for visualizing the
runtime state as well as for dynamic symbolic execution [11]. A novel feature of Creol is that
method activations may explicitly suspend execution while waiting for some condition; e.g., the
answer to a method call. This results in a very intuitive model of a computation unit which
combines active and reactive behavior. In the semantics of Creol, asynchronous method calls
are encoded using asynchronous message passing. Ignoring object-oriented features such as the
late binding of method calls, a concurrent object in Creol may be understood as an actor in
which tasks are executed using cooperative scheduling. Due to its close relationship with ac-
tor systems, Creol is a concurrent imperative language which actually supports compositional
reasoning [7], in contrast to object-oriented languages like, e.g., Java.

In many cases, time influences the desired (or actual) behavior of systems. As an interesting
example, wireless sensor systems behave according to timing properties. The radio unit of a
sensor typically has different modes; the radio may be receiving, sending, or dormant. Unless
the radio is in receiving mode, a message sent to the sensor will be lost. If two concurrently
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running sensors send messages at the same time, the messages may interfere with each other and
their content is lost. These properties of wireless sensor networks introduce many interesting
challenges for formal methods. A sensor radio with explicit timing parameter settings has been
modeled and analyzed in Uppaal [21]. A plethora of new network protocols have been proposed
for wireless sensor networks, due to their ad-hoc and self-organizing nature. Olveczky et al.
have shown how such protocols may be modeled and analyzed [14}[20], based on Real-Time
Maude [18,[19].

For timed distributed systems, time is either modeled by a global clock (or equivalently, local
clocks which evolve with the same rate), or by local clocks. For simplicity we use a so-called
fictitious clock model [4] based on a global clock, which allows us to ignore clock synchronization
between objects. When modeling timed systems, one may consider different time domains from a
partial ordering of events, via a discrete time domain to the detailed continuous time. Increasing
the level of granularity of the time domain leads to an increased complexity of the models. For
our purpose of grouping simultaneous (communication) events with an interleaving semantics,
it suffices to consider a discrete time domain. The values need not correspond to values of real
clocks, and are therefore usually chosen to be natural numbers that count steps. Effects such as
radio broadcast are confined to a particular instance of time, and broadcast messages disappear
as soon as time advances.

In this paper we present a timed version of Creol based on a fictitious clock model. The model
is without local clocks. At the language level no additional syntax is needed apart from read-only
access to the global clock, using the variable now. The major argument for keeping the time
model lightweight is to keep the state space as small as possible for model checking purposes.
As a case study we present a model of a wireless sensor network together with execution results.
We will compare our time model for Creol to other formalisms such as Real-Time Maude.

The paper is structured as follows: Section [2] presents the modeling language Creol. In
Section [3] Creol is extended with time. Both syntax and semantics are presented. An example
is shown in Section [d] Section [f] gives a comparison of timed Creol to other timed models.
Section [6] concludes the paper.

2 A Short Introduction to Creol

We first introduce the features of the object-oriented modeling language Creol which are neces-
sary to understand the approach presented in this paper. A more detailed introduction to Creol
can be found in, e.g., [7,{12].

Creol features imperative programming constructs for distributed active objects, based on
asynchronous method calls and processor release points. Asynchronous method calls may be
seen as triggers of concurrent activity, resulting in new activities (processes) within the called
object. Objects are dynamically created instances of classes, an init method is used to initialize
the object’s fields at creation time. Active objects encapsulate a current activity (a thread)
and an internal activity pool. Active behavior, triggered by a run method, is interleaved with
passive behavior (triggered by method calls) by means of processor release points. At each point
in time at most one thread is active in each object. The scheduling of threads is by default
non-deterministic, but more refined scheduling strategies may be given, as in [6]. The modeling
language includes a functional expression language for values of basic data types, which will
not be explained in detail. Objects are uniquely identified; communication takes place between
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Syntactic Definitions.

categories. IF := interface ] begin [with I {Sg¢}| end

C,I,m in Names CL := classC|[({zx:I})]

t in Tag [implements{/}|begin {varz: I[:=¢|}{[withI]|{M}}end
g in Guard M == Sg==|[var {{z}:I[:=¢€]};] s

s in Stmt Sg = opm ([in {z: I}][out {z:I}])

x in Var g == b|t?|gNhglgVyg

s;s|8[]s|z:=e|x:=new C[({e})]
if b then s [else s] end|while b do s end| await g

[t![o]m({e}) [£7[({x})] | [await][o.Jm({e}; {z})

e in Expr s
o in ObjExpr
b in BoolExpr

Figure 1: A simplified language syntax. Terms such as {e} and {z} denote lists over the
corresponding syntactic categories and square brackets denote optional elements.

named objects, and object references may be exchanged between objects. Object variables are
typed by interfaces. The language is strongly typed: for well-typed programs, invoked methods
are supported by the called object (when not null), such that formal and actual parameters
match. This also includes call-backs from objects to their environment via the special caller
variable.

Basic statements. Figure [1| displays a simplified formal syntax of Creol programs. Inheri-
tance in both interfaces and classes is omitted for brevity. A program consists of interface and
class definitions. Classes C'L contain definitions of attributes  (with initial values) and methods
M. A method contains a list of local variable declarations, and a statement s, which may access
class attributes, locally defined variables, and the formal parameters of the method (given after
the keywords in and out). An interface definition IF' contains method signatures Sg associated
with co-interfaces I given by a with clause. The co-interface I specifies the type of a client of
IF and enables to express requirements on call-backs. Finally, a class implements a list of inter-
faces, thereby specifying the type of its instances. In order to allow call-backs, a method may
use the implicit caller parameter typed by the co-interface of the method. Class parameters,
input parameters, and the self-reference this, are read-only. Remote access to attributes is not
allowed, method interaction is the only means of communication between objects. Assignment,
if-, and while-constructs are standard. The box [] is the non-deterministic choice operator.
Creol also includes standard string, numeric, and Boolean datatypes, as well as lists, sets, maps
and tuples, and their standard operators.

The guard g controls processor release in the statement await g, and consists of Boolean
conditions that contain return tests (see below). If g evaluates to false, the current activity
is suspended and the execution thread becomes idle. When the execution thread is idle, any
enabled activity may be chosen from the pool of suspended activities. Explicit signaling is
therefore redundant. The run method of an object is called after initialization, and initiates
active behavior. Release points in the run method allow activities in the activity pool to be
scheduled.

Communication. After making an asynchronous method call tlo.m({e}), the caller may pro-
ceed with its execution without blocking on the method reply. Here o is an object expression
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and {e} are (data value or object) expressions. The tag ¢ will be assigned a unique value that
identifies the call, which may later be used to refer to that call in two different ways: First,
the guard await t? suspends the active activity unless a return to the call associated with
t has arrived. Second, the return values are retrieved by the reply statement t7(x), which is
blocking the object until the return values are present. Local calls are written t!m({e}). If no
return values are desired by the caller, the tag may be omitted; e.g., lo.m({e}). The sequence
tlo.m({e}); t?(z) encodes a blocking call, abbreviated o.m({e};x) (often referred to as a syn-
chronous call), whereas the call sequence tlo.m({e}); await t?; t?(x) encodes a non-blocking,
preemptable call, abbreviated await o.m({e};x).

3 A Time Model for Creol

In order to reason about time in a Creol model, the concept of time has to be introduced to the
language. Our timed Creol interpreter adds a datatype Time and its accompanying operations
to the language.

A value of type Time can be obtained by evaluating the expression now, which returns the
current time, i.e., the value of the global clock. Given a time value, other time values can be
constructed by adding and subtracting duration values.

Time values form a total order, with the usual less-than operator semantics. Hence, two
time values can be compared with each other, resulting in a Boolean value suitable for guards
in await statements. While all other time values are constant, the result of comparing the
expression now with another time value will change with the passage of time. As an example,
given a tag 1, the following Creol fragment

var t :Time :=now;
await 1? Anow <t +10 ; SL
[1

await now >t +10 ; EL
models both the normal (SL) and the timeout (EL) behavior of the synchronization with the
method invocation associated with 1. The box [] is the non-deterministic choice operator, which
chooses one of its two statements if both are enabled, and blocks until at least one statement
is enabled. (In the example above, the choice operator does not add non-deterministic behavior
to the model, since the two guards are mutually exclusive.)

In this model of timed behavior, the passage of time needs never be made explicit in the
model, as with e.g. a tick statement. Instead, passage of time is observed within await
statements, and time is advanced when no other activity may occur. Note, though, that the
semantics of this model of time, combined with Creol’s blocking and non-blocking synchroniza-
tion semantics, are powerful enough to express both activity- and object-wide t ick statements:
given the following method definition:

op tick(in duration: Int) == var t :Time :=now ; await now >t -+duration,

The following two lines of timed Creol express activity- and object-wide tick, respectively, by
using non-blocking and blocking synchronization on the tag 1:

1'tick(1l); await 17

1itick (1); 12

The remainder of this section describes the implementation of this Creol time model as an
operational semantics expressed in Maude.
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3.1 Operational semantics

We introduce a clock that holds the current global time value. This value is accessible to Creol
models via the now expression. The global clock is a structure containing an identifier and two
natural numbers:

(0 :Clock |time: T, limit: B)

The first number, T, is the current time. B provides an upper time bound for model execution.
0 is a unique identifier for this clock object. The identifier is superfluous as models should only
contain one clock object, but is included to allow the clock to follow standard object notation
in Maude.

Each Creol object is represented as a Maude structure containing instance variable bindings,
the currently running process, the process queue, and some housekeeping values. Maude equa-
tions and rewrite rules operate on these structures and implement the operational semantics of
Creol.

As an example, here is an outline of the rule in the untimed interpreter that implements the
caller side of asynchronous method calls (simplified for demonstration purposes — we leave out
some details, such as generating the unique identifier N for the fresh future structure):

rl

(0 :Cc|Att: A, Pr: { L|F :=call(0l, M, PL) ; SL }, PrQ: W)
—

(0 :Cc|Att: A, Pr: { L ::F —N|SL }, PrQ: W)

(N : Future |Completed: false, Ref: 1, Value: emp)

invoc (01, M, eval(PL, A ::L), O, N)
[label async-call] .
The object 0O of class C (with attributes A) has an active process with a state L and a first
statement call to the method M of object O1. The result of that statement is to be stored in
the local variable F. The rule async—call removes the call statement from the active process
and updates the binding of the tag F with a reference to a new future N that holds the status of
the method invocation (completed or not) and its return value. (A separate structure is necessary
since Creol’s Futures are first-class values that can be referenced from multiple objects.) Finally,
the rule also generates an invoc structure for 01 that will, in the rule message-receive,
cause a process to be inserted into the callee’s (01’s) process queue PrQ.

rl
(O :C|Att: A, Pr: P, PrQ: W)
(C :cClass |Mtds: (MS, (M :Method |Param: L, Code: SL ) )
invoc (O, M, DL, 01, N)
E—
(0 :C|Att: A, Pr: P, PrQ: (W, { L — DL, caller ~ 01, .result ~ N|SL } ))
(C :cClass |Mtds: (MS, (M :Method |Param: L, Code: SL ) )
[label message-receive]

The message-receive rule, presented above, appends a new process into the receiving
object’s process queue. Method lookup is done by name in the class of the object (we elide
handling of method inheritance for reasons of brevity); argument values DL are bound to the
method’s parameters L. Additionally, the caller attribute is set to a reference of the calling
object 01 and an internal field .result stores a reference to the future N that will store the
result of the method invocation. Finally, the statement list of the process is initialized with the
statement list ST of the method definition.

All rules for executing statements follow this general pattern. Specifically, note that these
rules can execute mostly independently of the global clock value. The only exception is the Creol
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expression now which, given the presence of a clock (O : Clock |[time: T, limit:B ), will
evaluate to a term time (T). This in turn will influence Boolean guards involving the global
time, hence the readiness of processes waiting on such a guard becoming true.

For instance, the timed version of the rule async-call looks as follows:

rl

(0" :cClock |[time: T, limit: B)

(0 :Cc|Att: A, Pr: { L|F :=call(0l, M, PL) ; SL }, PrQ: W)
—

(0" :Clock |[time: T, limit: B)

(0 :Cc|Att: A, Pr: { L ::F —N|SL }, PrQ: W)

(N :Future |Completed: false, Ref: 1, Value: emp)

invoc (01, M, eval(PL, A ::L, T), O, N)
[label timed-async-call]
The only difference to the untimed version is that the eval function gets an additional argument,
namely the time value. Rule message-receive does not need to be changed for timed Creol
at all, since no evaluation of expressions takes place in that rule.

Consequently, for the timed interpreter the global clock has to be added both to the left-

hand and right-hand side of any rule that involves evaluating an expression. Here is the rule for

evaluating an await statement in the timed interpreter:

crl
(0 :Cc|Att: A, Pr: { L|await E ; SL }, PrQ: W)
(0" :Clock |time: T, limit: B)
CN
—
(0 :C|Att: A, Pr: { L|SL }, PrQ: W)
(0" :Clock |[time: T, limit: B)
CN
if evalGuard(E, (A ::L), CN, T) asBool

[label await]

If the condition E holds, as determined by the auxiliary equation evalGuard, then the await
statement simply reduces to a skip. In contrast to the eval function above, evalGuard may
need to consider futures in the environment, and gets the additional parameter CN. In contrast
to the tick rule presented below, there is no necessity of referencing the whole system in CN
here, since Maude will choose a subset as needed. Another rule in the interpreter, not presented
here, has the task of suspending the active process if E evaluates to false.

Clock advancement. The global clock cannot advance freely. We specify run-to-completion
semantics, requiring all objects to finish their actions as soon as possible. Hence, there are
several restrictions to when the global clock may advance. Clock advancement is blocked if:

e An object has an active non-blocked process.
e Some process in the process queue of an object is enabled and ready to run.
e A message (method invocation) is “in flight” between objects.

We define a Maude operator canAdvance that traverses the configuration of objects and
returns false if any of these conditions are true. A sketch of the its semantics, with some
implementation details elided, looks as follows:
op canAdvance :Configuration Time— Bool .

eq canAdvance ({ O :C|Att: A, Pr: P, PrQ: W)CN, T) =
blocked (P, A, CN, T) and canAdvance (CN, T)
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eq canAdvance (( O :C |Att: A, Pr: idle, PrQ: W)CN, T) =
allBlocked (W, A, CN, T) and canAdvance (CN, T)

eq canAdvance ({ M:Msg|)CN, T) =false .
eq canAdvance (CN, T) =true [owise]

The blocked operator reduces to true if the process P given as its first argument is not enabled.
allBlocked returns true if all of the processes in the process queue W are blocked. Both these
operators need the current configuration to determine the status of processes currently waiting
on futures, which is why the configuration is an argument to blocked and al1lBlocked.

With the canAdvance equation, the tick rule of the global clock is straightforward. We
increase the time by one time unit if the clock can advance, as long as the time limit is not ex-
ceeded. The definition of the tick rule is shown below (with {} enclosing the whole configuration
to produce a system, in the same manner as in Real-time Maude).

crl
{ CN (O :Clock |time: T, limit: B )}
—
{ CN (O :Clock |time: T 41, limit: B)}
if canAdvance (CN, T) and T < B
[label tick]
Here the importance of the 1imit attribute of the clock becomes clear: If all object activity
has ceased, the clock is free to advance without any bound. The limit, which can be arbitrarily

large, ensures that an unbounded Maude rewrite command terminates.

4 Example: A Model of a Wireless Sensor Network

We used timed Creol to model the behavior of a wireless sensor network. A typical sensor
network consists of a number of sensors, and a sink which collects data. The sensors record
some sort of data and send it towards the sink via wireless links. Due to the limited power of
the wireless signals, some sensors may not be directly connected to the sink; these sensors are
dependent on other sensors to forward their messages. The routing of messages towards the sink
may be done in many different ways to limit time consumption, energy consumption, number
of messages sent etc. The example in this section uses a simple flooding algorithm: when a
sensor senses data, it broadcasts it to all other nodes within range. When a sensor receives a
message that it has not seen before, it is rebroadcast to all its neighbors. More involved routing
algorithms exist where sensors selectively rebroadcast messages depending on whether they are
on the path to the sink, but this simple algorithm suffices to show our results. A more complex
routing protocol modeled in Creol is investigated in [16].

In our model, the nodes are not directly connected to each other. Instead, each node has a
reference to a Network object which models the behavior of the transmission medium between
nodes. This structure enables us to model collisions, message loss, selective retransmission, and
the node topology (which nodes can be reached from each node) without local knowledge inside
the node objects.

Figure [2] shows the interfaces of both the nodes and the network. The broadcast method
of the network gets called by nodes when they wish to broadcast data; the receive method of
a node is called by the network with data that is broadcast by another node.

The run method of a Main class (not given here) sets up the sensor network by creat-
ing all Sensor objects, one Network object, and establishing the topology. The sensors
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interface Node

begin
with Network
// Receive data from network. data format: (id of originator, sequence no)
op receive(in data: [Int,Int])
end

interface Network
begin
with Any
// Register ‘node’ as part of the network and as able to send to the
// nodes in ‘connections’
op register (in node: Node, connections: List[Node])
with Node
op broadcast (in data: [Int,Int])
end

Figure 2: The interfaces of the sensor network

are created by statements such as nl :=new SensorNode (1, nw, 3);. This statement
results in the creation of a SensorNode object with id 1. It will belong to the network nw
and do three sensings. Later the sensor will be registered in the network by a command like
nw.register (nl, [n2,n3];); which states that the sensor n1 should have a link to the
nodes n2 and n3. These links are not necessarily symmetrical; it is possible for a sensor to
receive messages from another sensor but not be able to send to it in turn.

When an object of class SensorNode, shown in Figure [, is generated, its run method
executes (shown in line 29| ff.), choosing one of two behaviors. If the sensor has not yet done
the number of sensings it is supposed to do, it may do a call to its own sensing method (line
ff.). The sensor data, which for simplicity is just a counter, is added to the sendqueue list
together with the sensor’s id. The sendqueue list contains all messages waiting to be sent by
the sensor.

If there are elements in the sendqueue list, the sensor’s run method may also call its own
sendOrForward method (line [10|ff.). A call to this method will result in the broadcasting of
the first message in the sendqueue list by a call to the broadcast method of the network
object. If both sensing and sending is possible, then the node will perform a non-deterministic
choice between the two actions. If none of these actions are possible, it will release the processor
and wait.

When a sensor receives a message from another sensor, a call to the receive method is made
by the network. If the sensor has not seen this message before, it is added to the received
list, and additionally queued for re-sending.

Timed behavior was added to the node class by modifying the sendOrForward method.
When executing that method, the current time is stored. We specify that sending a message
takes one unit of time, so after broadcasting (and after synchronizing with the network to
ensure broadcasting has finished), line waits until that amount of time has passed before
terminating the method. The sending field serves as a mutual exclusion flag (only one sending
call can be active at any time); note how the cooperative scheduling of Creol makes this style of
programming both safe and easy to understand. Also note that blocking the sending method in
this way does not preclude the sensor from receiving messages, even while it is waiting for the
network to accept its message.

The SinkNode class given in Figure [d] implements the same interface as the sensor nodes,
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1 class SensorNode (id: Int, network: Network, noSensings: Int)
2 implements Node

3 begin

4 var received: List[[Int,Int]] :=nil; // All previously received messages
5 var sendqueue: List[[Int,Int]] :=nil; // Messages waiting to be sent
6 var segNo: Int :=0; // Running package seq. no

7 var sending: Bool :=false;

8

9 // Forward (or send) a single message from the queue

10 op sendOrForward ==

11 var t: Time :=now;

12 var 1l: Tag[ ];

13 await sending = false;

14 sending :=true;

15 l!network.broadcast (head (sendqueue)) ;

16 sendqueue :=tail (sendqueue);

17 await 17?;

18 await now >t;

19 sending :=false

20

21 op store(in data: [Int,Int]) ==

22 sendqueue :=sendqueue Fdata

23

24 // Produce a sensing (of the environment) and store it locally
25 op sense ==

26 store((id, segNo) ;) ;

27 segNo :=segNo —+1

28

29 op run ==

30 await start = true;

31 while true do

32 await segNo < noSensings; sense(;)

33 []

34 await # (sendqueue) >0; sendOrForward(;)

35 end

36 with Any

37 op start == start :=true

38
39 with Network

40 op receive (in data: [Int,Int]) ==

41 await start = true;

42 if —(data in received) then // re-send if not seen before
43 received :=received Fdata;

44 store (dataj)

45 end

46

47 end

Figure 3: The implementation of the sensor nodes

but has a different behavior. The major difference is that the sink has no run method, and hence
no activity of its own. The store method of the sink counts the number of unique messages
received, the receive method notes the time when the last message was received.

Figure [5] shows the implementation of the network. Its behavior is implemented by the
broadcast method (line [15| ff.). We implemented different behavior for that method in the
case of multiple senders in a time slot:

e No message collision (broadcast all messages)
e (Collision sensing and re-send

e Message loss
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class SinkNode (network: Network)
implements Node

begin
var noStored: Int :=0;
var received: List[[Int,Int]] :=nil;

var lastReceived: Time;

op init ==
lastReceived :=now

op store(in data: [Int,Int]) ==
noStored :=noStored +1

with Network
op receive (in data: [Int,Int]) ==

if (lastReceived <now) then lastReceived :=now end;

if —(data in received) then // store if not seen before
received :=received Fdata;
store (dataj)

end

end

Figure 4: The implementation of the sink node

. . No. received Timestamp of
Collision behavior | Topology by sink last transmission
linear 12 14
no interference mixed 12 14
star 12 2
linear 12 60
resend mixed 12 38
star 12 12
linear 0 -
drop mixed 2 4
star 2 2

Table 1: Timing results for different network behavior

The broadcast implementation of Figure |5 shows the second behavior (re-sending messages).
Conceptually, re-sending means that the sensor broadcasts the message until it is successful (no
collisions happened). This is implemented by the field lastTransmission in the network,
which in conjunction with line only lets one broadcast method call complete per time
slot. (We make the optimistic assumption that the first broadcast actually succeeds — i.e. the
sensors’ antennas sense another transmission going on and the sensors abort their own attempt
at sending.)

The model’s behavior for message collision can be adapted easily. If line is removed,
multiple sensors can send at the same time. If line [23]is changed to

if lastTransmission = now then recs :=nil end;

all messages sent in a time slot after the first one are dropped.

Table [I] shows the effect of these different network behaviors on a network consisting of four
sensor nodes sending three messages each. Three different topologies were simulated: the edge
cases of each node having a direct connection to the sink in a star shaped network, and all nodes
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class BroadcastNetwork ()
implements Network

begin
var nodesConns: Map[Node, List[Node]] :=empty();
var lastTransmission: Time;

op init ==
lastTransmission :=now

with Any
op register (in node: Node, connections: List[Node]) ==
nodesConns :=insert (nodesConns, node, connections)
with Node

op broadcast (in data: [Int,Int]) ==
var rec: Node;
var recs: List[Node] :=nil;

if caller in nodesConns then
recs :=get (nodesConns, caller)
end;

await now >lastTransmission;
lastTransmission :=now;

while —isempty(recs) do
rec :=head(recs);
recs :=tail (recs);
if rec #caller then

!rec.receive (data)

end

end

end

Figure 5: The implementation of the network

77

being arranged in a linear fashion, and a more typical “mixed” network, with two nodes being
able to reach the sink, the other nodes having to send through them (see Figure @ For the
mixed topology, only two messages manage to reach the sink at all in case of message loss upon
collision; interference without message loss more than doubles the time until all messages reach
the sink. The linear configuration exhibits the worst behavior, with potentially no message

reaching the sink at all without re-sending messages upon collision.

5 Related Work

Actor systems have been used to model mobile ad-hoc networks, which are similar to our biomed-
ical sensor networks, in [9], but this work does not include a notion of time in its model. Many

6
D00 O

m

Figure 6: Network topologies: linear, star, mixed (from left to right)

ﬂ
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approaches to timed modeling, for example the UPPAAL tool [5] use variants of timed au-
tomata [3]. We decided to take a different approach, namely to augment existing behavioral
models with timing properties. Kyas and Johnsen |15] describe a timed extension to Creol that
is similar to the one proposed in this paper. Their approach is a bit more expressive, since time
constraints can be expressed as intervals in the model, compared to our approach, where only a
minimum passed time can be declared and the semantics do not enforce progress. On the other
hand, we give an operational semantics of timed Creol instead of a denotational one, along with
an interpreter that implements “earliest possible completion” semantics for the language.

5.1 Real-time Maude

Real-time Maude is an extension of Full Maude [8] introducing a concept of time to support
real-time rewrite theories. It supports both discrete and dense time domains. New datatypes
for time are introduced, and the user must specify what time model to use, or make a new one.
In order to make time advance at the same pace throughout the system, an encapsulation of the
configuration is required, and the sort GlobalSystem is introduced as follows:

op {_} :System — GlobalSystem .

Time advances by applying a tick rule. A typical tick rule would be something like:

crl [tick] : {SYSTEM} — {delta(SYSTEM, R)} in time R if R <mte (SYSTEM)

The delta function propagates the time elapse throughout the configuration and the mte function
calculates the maximum time elapse. Both these functions must be defined by the user. R is of
type Time and is a random number not greater than the maximum time elapse of the system.
If it is desired, the time may advance with a fixed number of time steps by replacing R with a
number, and omitting the if part of the tick rule.

In contrast to Real-time Maude, our extension of Creol is targeting distributed concurrent
objects with a simple notion of abstract discrete time. This gives a lightweight formalization of
time which is strong enough to model time-outs as well as synchronized behavior suitable for
wireless communication. In our setting the tick rule is simpler than in Real-time Maude in the
sense that it can be formulated without use of auxiliary functions depending on user-defined
equations. Thus the Creol programmer needs not understand the technicalities of the tick rule
nor the time model. The notion of time is fully predefined, and the programmer’s role is to use
time-outs when modeling timed systems.

Our time model could in principal be implemented in Real-time Maude, but the delta and
mte equations would be complicated due to the internal structure of Creol objects, and take into
account time-outs, await statements and blocking calls appearing in the imperative code in the
objects and also in the object’s internal process queue.

Previous work on wireless sensor modeling in Real-Time Maude includes statistical model
checking of wireless sensor network algorithms, and has demonstrated that this approach can
be used to detect flaws in non-trivial wireless sensor network algorithms [14,20]. The present
work is not considering probabilistic modeling; however, in current work towards probabilistic
Creol semantics we are trying to exploit this approach.
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6 Conclusions

We have presented an extension of Creol with a lightweight model of time which supports the
modeling of radio communication and time-dependent cooperative scheduling of tasks. Tech-
nically, this is done by allowing read-only access to a global clock, and thereby time related
guards including lower and upper timer bounds. Currently, the time model does not support
continuous time. Exploiting Creol’s concept of asynchronous methods calls, time-outs may be
used to model the passing of time while blocking the processor, as well as the passing of time
while releasing the processor. This means that the passing of time can be tightly integrated into
a Creol program. Due to the non-determinism in Creol, it is easy to capture distributed systems
where the concurrent objects are progressing at independent speeds. This allows the modeling
of “best-effort” systems where a time-out may be chosen some time after the given time limit.

The model presented here is a simplification of earlier timed versions of Creol [13], where
both local and global time were modeled. Local time allowed a more direct implementation
of objects progressing at independent speeds and of timing of communication events [13]. The
present model is without local clocks and gives the programmer more freedom to model the
progression of time. Another advantage is the ease with which timing information can be added
to existing models. The model in Section [4] started out as an untimed model; augmenting it
with timing constraints was a matter of adding less than 10 lines of code in total. We believe
that this ease of expressing timing constraints is a valuable tool for the modeler.

Our semantic model of timed Creol is not suitable for modeling of systems where clock
drift is relevant. It is suitable when one may assume perfect clock synchronization between
nodes. Experiences with the more low-level semantics with local clocks given in [13] showed
that this model was difficult to analyze with the Maude tools due to the large state space. The
motivation behind the current approach was to achieve a model with a smaller state space, and
still expressive enough to cover interesting Creol models. The investigation of the applicability
of Maude analysis tools is still future work.

The simplicity of our model seems promising with respect to automated analysis including
state space exploration and model checking tools. In fact, timed simulation of an untimed
model will in many cases have less states than the corresponding untimed simulation, due to
the constraints imposed by the global clock. A main motivation behind the design of Creol
is simplicity of reasoning and simplicity of composition rules. In contrast to the standard
multi-threaded concurrency model of object-oriented systems, Creol has a compositional proof
system [7]. For partial correctness, the simplicity of the reasoning system for Creol can be
preserved for the extension of Creol with time-outs. The time-outs can be handled in the
reasoning system as a special kind of await statements, using the approach outlined in [10].

The extension of Creol with time does not depend on very specific features of the language.
Creol was chosen as a base language to allow exploitation of its executable Maude interpreter by
extending it with time and experimenting with case studies. The presented lightweight model
of time seems applicable to the wider setting of distributed concurrent object or actor-based
systems where communication is by message passing.
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