
Dynamic Resource Reallocation
Between Deployment Components ?

Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and S. Lizeth Tapia Tarifa

Department of Informatics, University of Oslo, Norway
{einarj,olaf,rudi,sltarifa}@ifi.uio.no

Abstract. Today’s software systems are becoming increasingly config-
urable and designed for deployment on a plethora of architectures, rang-
ing from sequential machines via multicore and distributed architectures
to the cloud. Examples of such systems are found in, e.g., software prod-
uct lines, service-oriented computing, information systems, embedded
systems, operating systems, and telephony. To model and analyze sys-
tems without a fixed architecture, the models need to naturally cap-
ture and range over relevant deployment scenarios. For this purpose,
it is interesting to lift aspects of low-level deployment concerns to the
abstraction level of the modeling language. In this paper, the object-
oriented modeling language Creol is extended with a notion of dynamic
deployment components with parametric processing resources, such that
processor resources may be explicitly reallocated. The approach is com-
positional in the sense that functional models and reallocation strategies
are both expressed in Creol, and functional models can be run alone or in
combination with different reallocation strategies. The formal semantics
of deployment components is given in rewriting logic, extending the se-
mantics of Creol, and executes on Maude, which allows simulations and
test suites to be applied to models which vary in their available resources
as well as in their resource reallocation strategies.

1 Introduction

Software systems today are increasingly being developed to be highly config-
urable, not only with respect to the functionality provided by a specific instance
of the system but also with respect to the targeted deployment architecture. An
example of a development method which attempts to systematize this variability,
is software product line engineering [23]; in a product line, different software sys-
tems (or products) may be instantiated with different features and for different
architectures. Deployment variability may be found in operating systems, which
can be adapted to specific hardware and even to different numbers of available
kernels; web shops, which are deployed on a varying number of servers and may
even dynamically perform load balancing between these servers; and information
systems within, e.g., healthcare or finance, which may run on a single computer,
? Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Methods (http://www.hats-project.eu).

in a distributed set-up, or even in the cloud. Software product lines raise new
challenges for the performance analysis of component-based applications [27].
In this paper, we consider the performance analysis of object-oriented compo-
nent or system models in deployment scenarios where the amount of processing
resources available to a component may vary over time.

Our work is based on Creol [10, 17], a modeling language for concurrent ob-
jects communicating by asynchronous method calls. Creol has an operational
semantics in rewriting logic [21] which is executable on Maude [9]. Concurrent
objects resemble Actors [2] and Erlang [4] processes: Objects are inherently con-
current, conceptually each object has a dedicated processor, and there is at
most one activity in an object at any time. This concurrency model is attract-
ing attention as an alternative to multi-thread concurrency in object-orientation
(e.g., [6]), and been integrated with, e.g., Java [26] and Scala [13]. Concurrent
objects support compositional verification of concurrent software [3,10], in con-
trast to multi-threading [1]. A distinguishing feature of Creol is its cooperative
scheduling of method activations inside concurrent objects. Recently, Creol’s
notion of cooperative scheduling and asynchronous method calls has been inte-
grated in Java by means of concurrent object groups [24].

This paper generalizes the idea of concurrent object groups to dynamic de-
ployment components which are parametric in the amount of concurrent activity
they allow within a time interval, and between which resources may be reallo-
cated. Creol is extended with notions of timed execution and deployment compo-
nents, which are integrated into Creol’s operational semantics. This integration
is non-trivial in that it must capture parametric concurrent activities within time
intervals in terms of an interleaving concurrency semantics in order to execute
the models on Maude. Deployment scenarios varying in the resources available
to the deployment components, may be validated by means of test suites, ex-
ecuted on Maude. This allows the timed behavior of concurrent object models
under restricted concurrency assumptions, as well as load balancing and process
migration strategies between components, to be validated and compared.

Paper overview. Sect. 2 presents a timed version of Creol and Sect. 3 the dy-
namic deployment components. Sect. 4 illustrates this extension by the modeling
and simulation of an example. Sect. 5 explains the operational semantics of the
extended language and Sect. 6 discusses related work, and Sect. 7 concludes.

2 Concurrent Objects in Creol

Creol is an abstract behavioral modeling language for distributed active objects,
based on asynchronous method calls and processor release points. In Creol, ob-
jects conceptually have dedicated processors and live in a distributed environ-
ment with asynchronous and unordered communication between objects. Com-
munication is between named objects by means of asynchronous method calls;
these may be seen as triggers of concurrent activity, resulting in new activities
(so-called processes) in the called object. This section briefly introduces Creol
(for further details see, e.g., [10,17]). Objects are dynamically created instances of

Syntactic categories.
C, I,m in Names
g in Guard
s in Stmt
x in Var
e in Expr
b in BoolExpr

Definitions.
IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x;]M}
Sg ::= I m ([I x])

M ::= Sg == [I x;] { s }
g ::= b | x? | g ∧ g
s ::= s; s | x := rhs | release | await g | return e
| if b then { s } [else { s }] | while b { s } | skip

e ::= x | b | this | now | null
rhs ::= e | new C (e) | [e]!m(e) | [e.]m(e) | x.get

Fig. 1. The syntax of core Timed Creol. Terms such as e and x denote lists over the
corresponding syntactic categories, square brackets [] denote optional elements. Ex-
pressions e and guards g are side-effect free; Boolean expressions b include comparison
by means of equality, greater- and less-than operators. Expressions on other datatypes
(strings, numbers) are written in the usual way and not contained in this figure.

classes, declared attributes are initialized to some arbitrary type-correct values.
An optional init method may be used to redefine the attributes. Active behav-
ior, triggered by an optional run method, is interleaved with passive behavior,
triggered by method calls. Thus, an object has a set of processes to be executed,
which stem from method activations. Among these, at most one process is ac-
tive and the others are suspended on a process queue. Process scheduling is by
default non-deterministic, but controlled by processor release points in a coop-
erative way. Creol is strongly typed: for well-typed programs, invoked methods
are supported by the called object (when not null), such that formal and actual
parameters match. This paper assumes that programs are well-typed.

Figure 1 gives the syntax for a core subset of Timed Creol (omitting, e.g.,
inheritance). A program consists of interface and class definitions and a main
method to configure the initial state. IF defines an interface with name I and
method signatures Sg . A class implements a list I of interfaces, specifying types
for its instances. CL defines a class with name C, interfaces I, class parameters
and state variables x (of type I), and methods M . (The attributes of the class
are both its parameters and state variables.) A method signature Sg declares
the return type I of a method with name m and formal parameters x of types
I. M defines a method with signature Sg, a list of local variable declarations x
of types I, and a statement s. Statements may access class attributes, locally
defined variables, and the method’s formal parameters.

Statements. Assignment x := rhs, sequential composition s1; s2, and if,
skip, while, and return constructs are standard. The statement release
unconditionally releases the processor by suspending the active process. In con-
trast, the guard g controls processor release in the statement await g, and
consists of Boolean conditions b and return tests x? (see below). If g evaluates
to false, the current process is suspended and the execution thread becomes
idle. When the execution thread is idle, any enabled process from the pool of
suspended processes may be scheduled. Explicit signaling is therefore redundant.

Expressions rhs include declared variables x, object identifiers o, Boolean
expressions b, and object creation new C(e) and null. The specially reserved
read-only variable this refers to the identifier of the object and now refers to the
current clock value (explained below). Note that pure expressions are denoted by
e and that remote access to attributes is not allowed. (The full language includes
a functional expression language with standard operators for data types such as
strings integers lists, sets, maps, and tuples. These are omitted in the core syntax,
and explained when used in the examples.)

Communication in Creol is based on asynchronous method calls, denoted
o!m(e), and future variables. (Local calls are written !m(e).) After making an
asynchronous call x := o!m(e), the caller may proceed with its execution without
blocking on the call. Here x is a future variable, o is an object expression, and e
are (data value or object) expressions. A future variable x refers to a return value
which has yet to be computed. There are two operations on future variables, con-
trolling external synchronization in Creol. First, the guard await x? suspends
the active process unless a return to the call associated with x has arrived (allow-
ing other processes in the object to be scheduled). Second, the return value is re-
trieved by the expression x.get, which blocks all execution in the object until the
return value is available. The statement sequence x := o!m(e); v := x.get en-
codes a blocking call, abbreviated v := o.m(e) (often referred to as a synchronous
call), whereas the statement sequence x := o!m(e); await x?; v := x.get en-
codes a non-blocking, preemptable call.

Time. We consider a discrete time model, comparable to a system clock
which updates every n milliseconds. With this granularity of time, an object
which executes a statement may, but need not observe that time has advanced.
The expression now returns the present time, i.e., the global clock’s value in
the current state. Time values are totally ordered by the less-than operator;
comparing two time values result in a Boolean value which may be used as a
guard in await statements. From an object’s local perspective the passage of
time is indirectly observable; time can advance by either evaluating statements,
blocking, or simply awaiting the passage of time. This model of time combined
with Creol’s blocking and non-blocking synchronization semantics, is powerful
enough to express both process- and object-wide progress statements.

3 Dynamic Deployment Components

Creol’s object model is inherently concurrent, which means that for the actual
deployment of a program it is necessary to map the logical concurrency of the
model to physical computing resources. For this purpose, we introduce a notion
of deployment component into the modeling language, which abstracts from the
number and speed of the physical processors available to the component by a
notion of concurrent resource. The granularity of the global time model defines
the points in time when the executing system is observable. Concurrent resources
may be consumed in parallel or in sequential order, which reflects the number
of processors and their speeds relative to the granularity of the time intervals

s ::= . . . | transfer(e, e)
e ::= . . . | mycomp | available | load(e)

rhs ::= . . . | component(r) | new C (e) in e

Fig. 2. Extension of the syntax for deployment components (r in Resources) in Fig. 1.

of the model. Thus, the logical concurrency model of the concurrent objects is
controlled by their associated deployment component. A deployment component
is parametric in the computational resources it offers to a group of dynamically
created objects, which allows easy configuration of concurrent resources.

The execution inside a deployment component can be understood as follows.
Let n be a natural number. Resources are modeled by a data type Resource
which extends the natural numbers with an “unlimited resource” ω, such that
resource consumption is captured by subtraction, where ω−n = ω. Within a time
interval, a deployment component with r concurrent resources may execute up
to n execution steps in parallel, where n ≤ r. Consider a deployment component
D instantiated with r resources and let G be the set of concurrent objects which
currently reside in the deployment component. Let A ⊆ G be a subset of the
concurrent objects on the component, such that objects in A are able to perform
an execution step in their current state. Provided |A| ≤ r, every object in A may
consume a resource, leaving r′ = r − |A| resources available on the component.
If there are remaining resources (i.e., r′ > 0) , another set of execution steps is
performed if possible within the same time interval by repeating this procedure.

In the modeling language, an object exists in the context of a deployment
component with a given amount of resources, and may have variables x of type
Component which refer to deployment components. A new deployment com-
ponent is created by the statement x:=component(r), which allocates a given
quantity of concurrent resources r to the component x (capturing the actual pro-
cessing capacity of x) by correspondingly reducing the resources of the current
deployment component. The set of concurrent objects residing on the compo-
nents, representing the logically concurrent activities, may grow dynamically.
When objects are created, they must reside inside a deployment component.
The syntax for object creation is extended with an optional clause to specify
the targeted deployment component in the expression new C(e) in x. This
expresses that the new C object will reside in the component x. Objects gener-
ated by a parent object residing in a component x will also reside in x unless
otherwise specified by an in clause. Thus the behavior of a Creol model which
does not statically declare additional deployment components can be captured
by a root deployment component with ω resources.

In the context of a given deployment component dc, the expression mycomp
returns dc, available returns the number of resources currently allocated to
dc, and load(e) returns the average number of used resources in dc during the
last e time intervals. The statement transfer(x, r) reallocates r resources from
dc to a component x. The language extension is summarized in Fig. 2.

1 interface TelephoneService { Void call(Int duration); }
2

3 interface SMSService { Void sendSMS(); }
4

5 class TelephoneService implements TelephoneService {
6 Void call(Int duration) {
7 Time t; t := now;
8 await now >= t + duration;
9 }

10 }
11 class SMSService implements SMSService {
12 Void sendSMS() { skip; }
13 }

Fig. 3. Creol interfaces and classes for the telephony and SMS services.

4 Example: Phone Services During New Year’s Eve

At midnight on new year’s eve the behavior of cellphone users briefly changes
from normal usage (i.e., a fairly low number of calls and messages) to sending
large numbers of SMS messages. We use this phenomenon to motivate and illus-
trate resource reallocation by means of two cooperating deployment components.
The model consists of two services, TelephoneService and SMSService,
and a number of handset clients interacting with either the telephony or mes-
saging service. The interfaces and implementations of the two services are given
in Fig. 3. The method call will be called synchronously; as a parameter the
client provides a duration for the call. The method sendSMS will be called asyn-
chronously. Note that this model abstracts from many details (e.g. data model,
bandwidth, server internals), which can be added as needed. The model of the
handset clients interoperating with the services is given in Fig. 4. Client behavior
is regulated by a parameter cycle, which determines the frequency of phone
calls and messages of the handset. Between time t = 50 and 70, Handset objects
change behavior and send SMS messages in a rapid pace.

Simulating this model in a scenario with ω resources leads to a purely behav-
ioral model, in which each object acts according to its specification (as in normal
Creol). Placing the SMS service in an environment with restricted resources will
lead to observable overload during the midnight window, given sufficient clients
to consume all its resources. (Recall that the load history of a deployment com-
ponent over time can be extracted from a simulation run via its Load attribute.)

The proposed resource-related language constructs (i.e., available, load,
and transfer) allow different load balancing schemes to be expressed. In Fig. 5
the main method defines an example scenario where each service runs in its own
deployment component, created with 50 resources, and three client objects run
in the unrestricted root component. Dynamic load balancing is captured by
the Balancer class, an instance of which runs in parallel with the service in
each component. This class implements a simple balancing strategy, transfer-
ring resources to its partner deployment component when receiving a request
message (Line 12), and monitoring its own load and requesting assistance when

1 class Handset (Int cycle, TelephoneService ts, SMSService smss) {
2 Time created := now;
3 Bool call := false;
4

5 Void normalBehavior() {
6 Time t := now;
7 if (now > created + 50 ∧ now < created + 70) {
8 !midnightWindow();
9 } else {

10 if (call) ts.call(1;) else smss!sendSMS()
11 call := ¬call;
12 await now >= t + cycle;
13 !normalBehavior(); } }
14

15 Void midnightWindow() {
16 Time t := now;
17 Int i := 0;
18 if (now > created + 70) {
19 !normalBehavior();
20 } else {
21 while (i < 10) { smss!sendSMS(); i := i+1; }
22 await now > t;
23 !midnightWindow(); } }
24

25 op run() { !normalBehavior(); }
26 }

Fig. 4. The Handset class, implementing “Happy New Year” behavior. Before and after
midnight, users alternate between short calls and sending single messages. During the
midnight window (50 ≤ t ≤ 70), ten SMS per interval are sent.

needed (Line 9). Different, more involved or hierarchical, schemes for distributing
resources among deployment components can be implemented similarly.

Figure 6 presents simulation results for this example scenario and for a sce-
nario without load balancing, which shows that the available resources are suffi-
cient for normal client behavior. In the load balancing scenario, the SMS service
is overloaded between t = 50 and 53, at which time enough resources have been
transfered from the telephony service to process the increased workload. After
the load peak, the telephony service operates at capacity for one interval before
receiving resources back from the SMS service. In the scenario without load bal-
ancing, the SMS service is overloaded during the whole load peak and another
12 time intervals while catching up with the backlog of delayed messages. Note
that the functional part of the model was not changed between the two scenarios,
and that more elaborate load balancing strategies can be added in similar ways.

5 Operational Semantics

The semantics of Creol is defined in rewriting logic (RL) [21], and Creol models
can be analyzed using the rewrite tool Maude [9]. In a rewrite theory (Σ,E,L,R),
the signature Σ defines the ground terms, E defines equations between terms,
L is a set of labels, and R a set of labeled rewrite rules. Rewrite rules ap-

1 interface Balancer { Void setPartner(Balancer p);
Void request(Component comp); }

2

3 class Balancer {
4 Balancer partner := null;
5 Void run () {
6 Time t := now;
7 await now > t;
8 if (partner 6=null ∧ available<load(1)*0.9) {
9 partner.request(mycomp);}

10 !run(); }
11 Void request(Component comp) {
12 if (load(1)<available−10) {transfer(comp,available/2);} }
13 Void setPartner(Balancer p) { partner := p; }
14 }
15

16 Void main() {
17 Component smscomp := component(50);
18 Component telcomp := component(50);
19 SMSService sms := new SMSService() in smscomp;
20 TelephoneService tel := new TelephoneService() in telcomp;
21 Balancer smsb := new Balancer in smscomp;
22 Balancer telb := new Balancer in telcomp;
23 smsb.setPartner(telb); telb.setPartner(smsb);
24 Client c := new Handset(1,tel,sms); c := new Handset(1,tel,sms);
25 c := new Handset(1,tel,sms); c := new Handset(1,tel,sms);
26 }

Fig. 5. A resource reallocation strategy and deployment configuration. Lines 21-23
initiate resource balancing; without these lines, the model runs with no functional
changes but it has a different timing behavior due to overload in the SMS deployment
component. Since Handset objects are active, references to them are not needed.

ply to terms of given sorts, specified in (membership) equational logic (Σ,E).
When modeling computational systems, different system components are typi-
cally modeled by terms of suitable sorts and the global state configuration is a
set of these terms. RL extends algebraic specification techniques with transition
rules which capture the dynamic behavior of a system. A conditional rewrite
rule crl [name] : t −→ t′ if cond transforms an instance of the pattern t to
evolve into the corresponding instance of the pattern t′, where the condition
cond is a conjunction of rewrites and equations that must hold for the main
rule to apply (the name identifies the rule). When auxiliary functions are needed,
these can be defined in equational logic, and thus evaluated in between the state
transitions [21]. In a conditional equation ceq t = t′ if cond the condition
must similarly hold for the equation to apply. Unconditional rewrite rules and
equations are denoted by the keywords rl and eq, respectively. Given an ini-
tial configuration, Maude supports simulation and breadth-first search through
reachable states and model checking of finite reachable states for desired prop-
erties. In this paper, Maude is used as an interpreter for Creol’s operational
semantics to simulate and test Creol models.

Fig. 6. Simulation of New Year’s Eve behavior (SMS load spike between t=50 and
t=70), with (top) and without resource balancing (bottom). The strategy of Fig. 5
distributes resources as needed between SMS component and telephony component.

The States. Following Maude conventions runtime objects are represented by
terms 〈o : C| . . . , Atti: xi, . . .〉, where o is the identifier, C the class, and the
object contains a set of attributes such that Atti is the name and xi the current
value of the i’th attribute. Variables are slanted, whereas constant parts of a
term’s syntax are in typewriter style. As before, t denotes a collection of
terms t, either a list or a set depending on the context. Let Emp be the empty
list and ∅ the empty set. In the rules below, all numbers are natural numbers
(e.g., for time) except resources which are of sort Resource.

A state configuration is a set which consists of a global clock, deployment
components, objects, classes, invocation messages, and futures. The associative
and commutative union operator on configurations is denoted by whitespace
and the empty configuration by none. The entire configuration lives inside curly
brackets; thus, in the term {cn} the variable cn captures the entire configuration.
The global clock is a term 〈 t : Clock | limit : l 〉 where t is the current time
and l the time limit considered in an execution. A deployment component is a
term 〈 dc : Comp | Free : r,Limit : max, Next : next, Load : m 〉 where dc is the
identifier of the component, r the (non-negative) number of available computing
resources,max the maximum number of resources which can be consumed before
time advances, next the maximum for the next time interval, and m the history
of resource consumption over past time intervals.

An object is a term 〈 o : C | Att : a, Pr : {l | s}, PrQ : w, Lcnt : f 〉 where o is
the identifier and C the object’s class, its state is given by the attribute mapping

crl [skip] : 〈 o : C | Pr : {l | skip;s} 〉 〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Pr : {l | s} 〉 〈 dc : Comp | Free : r − 1 〉 if dc = a[mycomp] .

crl [assign] : 〈 o : C | Att : a, Pr : {l | x:=e;s} 〉 〈 t : Clock | 〉 〈 dc : Comp | Free : r 〉
−→ if x ∈dom(l) then 〈 o : C | Att : a, Pr : {l[x 7→ [[e]]none

(a◦l),t
] | s} 〉

else 〈 o : C | Att : a[x 7→ [[e]]none
(a◦l),t

], Pr : {l | s} 〉 fi
〈 t : Clock | 〉 〈 dc : Comp | Free : r − 1 〉 if dc = a[mycomp].

crl [return] : 〈 o : C | Att : a, Pr : {l | return(e);s} 〉 〈 t : Clock | 〉
〈n : Fut | Done : false, Value : ⊥ 〉 〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Att : a, Pr : {l | s} 〉 〈n : Fut | Done : true, Value : [[e]]none

(a◦l),t
〉

〈 t : Clock | 〉 〈 dc : Comp | Free : r − 1 〉 if n = l(destiny) ∧ dc = a[mycomp] .

rl [release] : 〈 o : C | Pr : {l | release;s}, PrQ : w 〉
−→ 〈 o : C | Pr : idle, PrQ : enqueue({l | s}, w) 〉 .

crl [await1] : {〈 o : C | Att : a, Pr : {l | await e;s} 〉 cn 〈 t : Clock | 〉 }
−→ {〈 o : C | Att : a, Pr : {l | s} 〉 cn 〈 t : Clock | 〉 } if [[e]]cn

(a◦l),t
.

crl [await2] : {〈 o : C | Att : a, Pr : {l | await e;s} 〉 cn 〈 t : Clock | 〉 }
−→ {〈 o : C | Att : a, Pr : {l | release;await e;s} 〉 cn 〈 t : Clock | 〉 } if ¬[[e]]cn

(a◦l),t
.

crl [activate] : {〈 o : C | Att : a, Pr : idle, PrQ : w ∪{{l | s}} 〉 cn 〈 t : Clock | 〉 }
−→ {〈 o : C | Att : a, Pr : p, PrQ : dequeue(w, p)〉cn 〈 t : Clock | 〉}
if p = select(w, a,cn, t) .

crl [async-call] : 〈 o : C | Att : a, Pr : {l | x:=e!m(e);s}, Lcnt : f 〉 〈 t : Clock | 〉
〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Att : a, Pr : {l[x 7→ n] | s}, Lcnt : next(f) 〉 〈 dc : Comp | Free : r − 1 〉
invoc([[e]]none

(a◦l),t
,n,m,[[e]]none

(a◦l),t
) 〈n : Fut | Done : false, Value : ⊥ 〉 〈 t : Clock | 〉

if n = label(o, f)∧ o 6= [[e]]none
(a◦l),t

∧ dc = a[mycomp] .

rl [bind-method] : invoc(o,n,m,d) 〈 o : C | PrQ : w 〉
〈C : Class | Mtds : (M ∪{〈m : Mtd | Prm : x, Att : l, Code : s 〉 })〉
−→ 〈 o : C | PrQ : w ∪{{l[destiny 7→ n,x 7→ d] | s}} 〉
〈C : Class | Mtds : (M ∪{〈m : Mtd | Prm : x, Att : l, Code : s 〉 })〉 .

crl [receive-comp] : 〈 o : C | Att : a, Pr : {l | x:=e.get;s} 〉
〈n : Fut | Done : true, Value : d 〉 〈 dc : Comp | Free : r 〉
−→ 〈 o : C | Att : a, Pr : {l | x:=d; s} 〉 〈n : Fut | Done : true, Value : d 〉
〈 dc : Comp | Free : r − 1 〉 if n = [[e]]none

(a◦l),t
∧ dc = a[mycomp] .

crl [object-creation] : 〈 o : C | Att : a, Pr : {l | x:=new B(e);s} 〉 〈 t : Clock | 〉
〈 dc : Comp | Free : r 〉 〈B : Class | Prm : x, Att : a1,
Mtds : M ∪{〈init : Mtd | Prm : Emp, Att : ∅, Code : s1 〉 }, Ocnt : g 〉
−→ 〈 o : C | Att : a, Pr : {l | x:=newId(B, g);s} 〉 〈B : Class | Prm : x, Att : a1,
Mtds : M ∪{〈init : Mtd | Prm : Emp, Att : ∅, Code : s1 〉 }, Ocnt : next(g) 〉
〈newId(B, g) : B | Att : a1[mycomp7→ dc, this7→newId(B,g),x 7→ [[e]]none

a◦l,t
],

Pr : {∅ | s1}, PrQ : ∅, Lcnt : 0 〉 〈 t : Clock | 〉 〈 dc : Comp | Free : r − 1 〉
if dc = a[mycomp] .

Fig. 7. A timed rewriting logic semantics for Creol. In the rewrite rules, the variable r
ranges over non-zero natural numbers to ensure that resource values are non-negative.
The rules for the if and while statements are standard and not shown in this figure.

a (i.e., a single binding a binds a value to a declared variable), a process {l |s}
consists of a mapping l of local variable bindings and a list s of statements. The
set w of (suspended) processes represents the process queue and the attribute
f is used to ensure that futures created by the object have unique identifiers
(next(f) provides a new fresh value).

A class is a term 〈C : Class | Prm : x, Att : a, Mtds : M, Ocnt : g 〉 where C
is the identifier, x the list of formal parameters, a maps declared attributes to
default values, and M is the set of method definitions of the form 〈m : Mtd |
Prm : x, Att : l, Code : s 〉. Here, m is the method name, x the formal parameter
list, l the mapping of local variables to initial (default) values, and s a sequence
of statements. The attribute g is used to create objects with unique identifiers.

An invocation message is a term invoc(o, n,m, d) where o is the callee, n
the future to which the call’s result is returned, m the method name, and d the
call’s actual parameter values. A future is a term 〈n : Fut | Done : b, Value : d 〉
where n is the identifier, b a Boolean flag indicating whether the future’s reply
value has been received, and d the reply value.

Evaluating Expressions. Given a substitution σ, a time t and a configuration cn,
we denote by [[e]]cnσ,t a confluent and terminating reduction system which reduces
an expression e to a data value. Let [[now]]cnσ,t = t, [[mycomp]]cnσ,t = σ[mycomp], the
equations below define availability and resource load:

ceq [[available]]cn<dc :Comp|Limit: r>
σ,t = r if dc = σ[mycomp]

ceq [[load(n)]]cn<dc :Comp|Load: m>
σ,t = avg(m,n) if dc = σ[mycomp]

eq avg(emp, n) = 0
eq avg(m ◦m,n) = if n > 0 then avg(m,n− 1) +m/min(n, length(m))

else 0 fi

where avg(m,n) calculates the average number of used resources during the last
n time intervals (or the average ofm if its length is shorter than n). Let [[x?]]cnσ,t =
true if [[x]]cnσ,t = n and there is a future 〈n : Fut | Done : true, Value : d 〉 in cn
(for some value d), otherwise [[x?]]cnσ,t = false. The remaining cases of [[e]]cnσ,t are
fairly straightforward, looking up values for declared variables in σ. Expressions
are always reduced inside an object in a given state configuration. Thus, σ =
a ◦ l, the composition of the object state a and the local variable bindings l,
the time t is the current global time, and the configuration cn is the current
global configuration (ignoring the object itself). This ensures that now, mycomp,
available, and load(n), as well as reply guards and declared variables, are
evaluated correctly in the state of the program.

Transitions. Rewrite rules transform state configurations into new configura-
tions, and are given in Fig. 7. In the presentation of a rule, we follow the con-
vention of Full Maude [9] and hide attributes in runtime objects unless they are
needed for that specific rule. Rule skip consumes a skip in the active process
and a resource in its deployment component. Rule assign evaluates an expression
e and assigns the value to a variable x in the local state l or in the attributes a,

as appropriate, consuming a resource in its deployment component. (The rules
for if and while statements are omitted from the presentation.)

Process suspension and activation. Three operations are used to manipulate
the process queue w: enqueue(p, w) adds a process p to w, select(w, a, cn, t) se-
lects a process from w (if w is empty or no process is ready [17], this is the idle
process), and dequeue(w, p) removes the process p from w. The actual defini-
tions of enqueue and select are left undefined; different definitions correspond
to different scheduling policies for processes and can be used to locally express,
e.g., priority or fairness. Rule release suspends the active process to the process
queue. We denote by idle the idle process. Rule await1 consumes the await
statement if the guard evaluates to true in the current state, rule await2 adds
a release statement in order to suspend the process if the guard evaluates to
false. Rule activate selects a process from the process queue for execution if this
process is ready to execute, i.e., if it would not directly be resuspended or block
the processor [17].

Communication and object creation. Rule async-call sends an invocation mes-
sage to a callee with the actual method parameters and the identity of a future
in which to place the method’s return value. The caller creates the future asso-
ciated with the call, with a unique identity label(o, f) constructed from the
caller’s own identity o and the local attribute f . The future’s Done attribute
is initially false and the return value is undefined (i.e., ⊥). This operation
consumes a resource. Rule bind-method transforms a method invocation into a
corresponding process, placed in the process queue of the callee. The reserved
local variable destiny stores the identity of the call’s future. Rule return puts
the return value into the future associated with the call (the destiny-variable
refers to the appropriate future) and sets the future’s done attribute to true.
This operation consumes a resource. Rule receive-comp dereferences the future
variable n in the case where the future’s Done attribute is true. Note that
if this attribute is false the reduction in this object is blocked. This opera-
tion consumes a resource. Finally, object-creation creates a new object with a
unique identifier newId(B, g) constructed from the class identifier B and the
local attribute g. The object’s state is generated from default values for state
attributes, extended with the actual values for this and the class parameters.
The init method is loaded (we assume that this method reduces to skip if
unspecified and that it asynchronously calls run if the latter is specified). This
operation consumes a resource. Note that the new object inherits the deployment
component of its creator. The rule for object creation in a named deployment
component differs from object-creation only on this point, and is not presented.

Advancing time. We define a run-to-completion semantics for execution with the
resource bounds of deployment components: objects must execute when possi-
ble if resources are available. To capture timed concurrent execution with an
interleaving semantics, time cannot advance freely but is restricted as follows:

– For simplicity, we assume that invocation messages do not take time. There-
fore, time may not advance while a message is on its way.

eq canAdv(cn′,t) = true . //cn’ contains no objects or messages
eq canAdv(msg cn,t) = false . //messages are instantaneous
eq canAdv(〈 o : C | 〉 〈 dc : Comp | Free : 0 〉 cn,t) //no more resources

= canAdv(〈 dc : Comp | Free : 0 〉 cn,t).
eq canAdv(〈 o : C | Pr : {l | n.get;s)}〉 //o is blocked, value not available
〈n : Fut | Done : false 〉 cn,t) = canAdv(〈n : Fut | Done : false 〉 cn,t).

ceq canAdv(〈 o : C | Att : a,Pr : idle,PrQ : w 〉 cn,t) //no ready processes
= canAdv(cn,t) if select(w, a,cn, t) = idle.

eq canAdv(〈 o : C | 〉 cn,t) = false [owise] .

eq Adv(〈 dc : Comp | Free : r,Limit : max, Next : next, Load : m 〉 cn) =
〈 dc : Comp | Free : next,Limit : next, Next : next, Load : m ◦max− r 〉 Adv(cn).
eq Adv(cn) = cn [owise] .

crl [progress] : {cn 〈 t : Clock | limit : l 〉} −→ {Adv(cn) 〈 t+ 1: Clock | limit : l 〉}
if canAdv(cn,t)∧ t < l .

crl [resource-transfer] : 〈 o : C | Att : a, Pr : {l | transfer(e,e1);s} 〉
〈 dc1 : Comp | Next : nl 〉 〈 dc2 : Comp | Next : nl1 〉 cn 〈 t : Clock | 〉
−→ 〈 o : C | Att : a, Pr : {l | s} 〉 cn 〈 t : Clock | 〉 〈 dc1 : Comp | Next : nl − d 〉
〈 dc2 : Comp | Next : nl1 + d 〉 if [[e]]cn

a◦l,t
= dc2 ∧ [[e1]]cn

a◦l,t
= d ∧ nl ≥ d ∧ dc1 = a[mycomp] .

Fig. 8. Advancing time and transferring resources. The variable msg denotes a message,
r a non-zero natural number, and cn’ a message- and object-free configuration.

– If a deployment component has run out of resources, none of its objects may
proceed, and time can advance.

– If a deployment component has remaining resources and one of the compo-
nent’s objects o may execute, time may not advance. There are three cases:
1. The active process in o is blocked, but the value has become available.
2. The active process in o is idle, but a suspended process can be activated.
3. The active process in o is not blocked.

A predicate canAdv, defined recursively over configurations (see Fig. 8), for-
malizes these restrictions on time advance in an interleaving semantics for timed
concurrent execution. Time may not advance if some object can execute, ex-
pressed by the owise equation for canAdv. (The keyword owise in Maude
expresses that an equation is chosen only when no other equation applies.) Fi-
nally time may advance if no object can execute and there are no messages,
which is captured by the first equation for canAdv. Once time advances, the
global clock is updated and the deployment components get their resources re-
freshed for the next time interval. This is done by an auxiliary function Adv
defined in Fig. 8, which updates a configuration by resetting the free resources
of each deployment component to the limit specified by next and extending the
load history of the components. (Here, m ◦m appends m to the sequence m.)

The advancement of time is captured by the rewrite rule progress in Fig. 8.
Observe that for simplicity time advances with a single unit. It would be straight-
forward to allow larger increments. In order to ensure termination of model exe-
cution, a limit has been added to the global clock and we only consider execution
sequences up to this limit in time.

6 Related Work

Concurrent objects and Actors, in which software units with encapsulated pro-
cessors communicate asynchronously, increasingly attract attention due to an
intuitive and compositional concurrency model [2–4,6,10,13,26]. Creol proposes
cooperative scheduling between asynchronously called methods [17], which allows
active and reactive behavior to be combined within objects as well as composi-
tional verification of partial correctness properties [3, 10]. This model of coop-
erative scheduling has recently been generalized to concurrent object groups in
Java [24]. This paper further generalizes concurrent object groups to resource-
constrained deployment components, where group activity per time interval is
parametric in concurrent resources, using a time model which simplifies previ-
ous work [18]. The approach abstractly models the effect of deploying concurrent
object groups on deployment components which vary in processing capacity.

Techniques and methodologies for predictions or analysis of non-functional
properties are based on either measurement ormodeling. Measurement-based ap-
proaches apply to existing implementations, using dedicated profiling or tracing
tools like, e.g., JMeter or LoadRunner. Model-based approaches allow abstrac-
tion from specific system intricacies, but depend on parameters provided by
domain experts [11]. A survey of model-based performance analysis techniques
is given in [5]. Formal approaches using process algebra, Petri Nets, game theory,
and timed automata (e.g., [7,8,12,15,19,20]) have been applied in the embedded
software domain, but also to the schedulability of tasks in concurrent objects [16].
That work complements ours as it does not consider resource restrictions on the
concurrency model, but associates deadlines with method calls.

Work on modeling object-oriented systems with resource constraints is more
scarce. Using the UML SPT profile for schedulability, performance and time,
Petriu and Woodside [22] informally define the Core Scenario Model (CSM) to
solve questions that arise in performance model building. CSM has a notion
of resource context, which reflects the set of resources used by an operation.
CSM aims to bridge the gap between UML specifications and techniques to
generate performance models [5]. UML models with stochastic annotations for
performance prediction have been proposed for components [14]. Closer to our
work is M. Verhoef’s extension of VDM++ for simulation of embedded real-
time systems [25], in which architectures are explicitly modeled using CPUs and
buses, and resources are statically bound to the CPUs. Our work extends these
ideas with dynamic load balancing strategies expressed in the modeling language
and running in parallel with the behavioral parts of the model.

7 Conclusions and Future Work

We present a modeling framework which formalizes a high-level understanding
of deployment concerns, reflecting the execution capabilities of underlying archi-
tectures. This framework is based on an abstract notion of execution resource,
such that each component has an associated amount of available resources which

can be used within a time interval. The framework is given as an extension of
the object-oriented language Creol, allowing the dynamic creation of deployment
components and the dynamic reallocation of resources, such that redistribution
strategies can be expressed in terms of the load and the available resources of
components. Resources and deployment components have been naturally inte-
grated as first-class values at the abstraction level of the modeling language,
including constructs to transfer resources, create deployment components and
place new objects in given deployment components, as well as to check the cur-
rent load of a component and its available resources. The extended language has
been formalized by a timed operational semantics in rewriting logic. Rewriting
logic semantics are directly executable in Maude, which allows the tool-supported
simulation and analysis of models directly based on the operational semantics.

As shown by an example, the approach is compositional in the sense that
the software controlling allocation and reallocation of resources can (but need
not) be completely separated from the rest of the code. Classes express particular
reallocation strategies, and one strategy object is created in each component that
should be controlled by that strategy. It is easy to replace a strategy by another,
to reuse strategies, and to apply different strategies to different components. This
flexibility is valuable for software development with high needs for deployment
configurability; for example in software product lines, variability in resources and
reallocation strategies allow products to be deployed on different architectures
while maintaining, e.g., response time requirements.

The proposed notions of resource and time stem from the need for abstract
models which do not assume a fixed deployment scenario, yet support tool-based
formal analysis and model exploration. However, our approach may be extended
with more fine-grained notions of resources and resource consumption; e.g., using
resource profiles for specific deployment scenarios. In future work, we plan to de-
velop case studies using reallocation strategies based on gossiping, peer-to-peer,
and hierarchical structures, as well as object migration. Furthermore, it is inter-
esting to combine the simulation-based approach with concrete values in Maude
with symbolic execution techniques for resource consumption and reallocation.

References

1. E. Ábrahám-Mumm, F. S. de Boer, W.-P. de Roever, and M. Steffen. Verification
for Java’s reentrant multithreading concept. In Proc. FOSSACS’02, LNCS 2303,
pages 5–20. Springer, Apr. 2002.

2. G. A. Agha. ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. The MIT Press, Cambridge, Mass., 1986.

3. W. Ahrendt and M. Dylla. A verification system for distributed objects with
asynchronous method calls. In K. Breitman and A. Cavalcanti, editors, Proc.
ICFEM’09, LNCS 5885, pages 387–406. Springer, 2009.

4. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

5. S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based performance
prediction in software development: A survey. IEEE Trans. on Software Engineer-
ing, 30(5):295–310, 2004.

6. D. Caromel and L. Henrio. A Theory of Distributed Object. Springer, 2005.
7. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource inter-

faces. In Proc. EMSOFT’03, LNCS 2855, pages 117–133. Springer, 2003.
8. X. Chen, H. Hsieh, and F. Balarin. Verification approach of metropolis design

framework for embedded systems. Intl. J. Parallel Programming, 34(1):3–27, 2006.
9. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F.

Quesada. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 285:187–243, Aug. 2002.

10. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
R. de Nicola, editor, Proc. 16th European Symposium on Programming (ESOP’07),
LNCS 4421, pages 316–330. Springer, Mar. 2007.

11. I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by run-
time parameter adaptation. In Proc. ICSE’09, pages 111–121. IEEE, 2009.

12. E. Fersman, P. Krcál, P. Pettersson, and W. Yi. Task automata: Schedulability,
decidability and undecidability. Inf. and Comp., 205(8):1149–1172, 2007.

13. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2–3):202–220, 2009.

14. J. Happe, H. Koziolek, and R. Reussner. Parametric performance contracts for
software components with concurrent behaviour. In Proc. 3rd Intl. Workshop on
Formal Aspects of Component Software (FACS’06), ENTCS 182:91–106, 2007.

15. M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous
pi-calculus. ACM Trans. on Prog. Languages and Systems, 24(5):566–591, 2002.

16. M. M. Jaghoori, F. S. de Boer, T. Chothia, and M. Sirjani. Schedulability of
asynchronous real-time concurrent objects. Journal of Logic and Algebraic Pro-
gramming, 78(5):402–416, 2009.

17. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, Mar. 2007.

18. E. B. Johnsen, O. Owe, J. Bjørk, and M. Kyas. An object-oriented component
model for heterogeneous nets. In Proc. Formal Methods for Components and Ob-
jects (FMCO 2007), LNCS 5382, pages 257–279. Springer, 2008.

19. M. Katelman, J. Meseguer, and J. C. Hou. Redesign of the lmst wireless sen-
sor protocol through formal modeling and statistical model checking. In Proc.
FMOODS’08, LNCS 5051, pages 150–169. Springer, 2008.

20. J.-P. Katoen, C. Baier, and D. Latella. Metric semantics for true concurrent real
time. Theoretical Computer Science, 254(1–2):501–542, 2001.

21. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

22. D. B. Petriu and C. M. Woodside. An intermediate metamodel with scenarios
and resources for generating performance models from UML designs. Software and
System Modeling, 6(2):163–184, 2007.

23. K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005.

24. J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In Proc. ECOOP 2010, LNCS 6183. Springer, June 2010.

25. M. Verhoef, P. G. Larsen, and J. Hooman. Modeling and validating distributed
embedded real-time systems with VDM++. In Proc. Formal Methods (FM’06),
LNCS 4085, pages 147–162. Springer, 2006.

26. A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In Proc. OOP-
SLA’05, pages 439–453. ACM, 2005.

27. S. M. Yacoub. Performance analysis of component-based applications. In Proc.
Software Product Lines (SPLC’02), LNCS 2379, pages 299–315. Springer, 2002.

