
Dating Concurrent Objects: Real-Time
Modeling and Schedulability Analysis ?

Frank S. de Boer1,2, Mohammad Mahdi Jaghoori2,1, and Einar Broch Johnsen3

1 CWI, Amsterdam, The Netherlands
2 LIACS, Leiden, The Netherlands

3 University of Oslo, Norway

Abstract. In this paper we introduce a real-time extension of the con-
current object modeling language Creol which is based on duration state-
ments indicating best and worst case execution times and deadlines. We
show how to analyze schedulability of an abstraction of real-time con-
current objects in terms of timed automata. Further, we introduce tech-
niques for testing the conformance between these behavioral abstractions
and the executable semantics of Real-Time Creol in Real-Time Maude.
As a case study we model and analyze the schedulability of thread pools
in an industrial communication platform.

1 Introduction

In the object-oriented modeling language Creol [9, 3], objects are concurrent; i.e.,
conceptually, each object encapsulates its own processor. Therefore, each object
has a single thread of execution. Creol objects communicate by asynchronous
message passing. The message queue is implicit in the objects. Furthermore,
the scheduling policy is underspecified; i.e., messages in the queue are processed
in a nondeterministic order. The running method can voluntarily release the
processor using special primitives, allowing another message to be scheduled. For
example, a method can test whether an asynchronous call has been completed,
and if not, release the processor; thus modeling synchronous calls.

In this paper we extend Creol with real-time information about the deadlines
of messages and the best and worst execution times of the (sequential) control
statements. We formalize the semantics of Real-Time Creol with respect to given
intra-object scheduling policies in the real-time extension of Maude [5]. This
formalization of a Real-Time Creol model provides a refinement of the underlying
untimed model in the sense that it only restricts its behaviors.

Schedulability analysis In general analyzing schedulability of a real time system
consists of checking whether all tasks are accomplished within their deadlines.

? This research is partly funded by the EU projects IST-33826 CREDO:
Modeling and Analysis of Evolutionary Structures for Distributed Services
(http://credo.cwi.nl) and FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Methods (http://www.hats-project.eu).

We employed automata theory in our previous work [7, 8] to provide a high-
level framework for modular schedulability analysis of concurrent objects. In
order to analyze the schedulability of an open system of concurrent objects,
we need some assumptions about the real-time arrival patterns of the incoming
messages; in our framework, this is contained in the timed automata [1] modeling
the behavioral interface of the open system. A behavioral interface captures the
overall real-time input/output behavior of an object while abstracting from its
detailed implementation in its methods; a deadline is assigned to each message
specifying the time before which the corresponding method has to be completed.
Further, we use timed automata to describe an abstraction of the system of
objects itself including its message queues and a given scheduling policy (e.g.,
Earliest Deadline First). The analysis of the schedulability of an open system of
concurrent objects can then be reduced to model-checking a timed automaton
describing the interactions between the behavioral abstraction of the system and
its behavioral interface (representing the environment).

Conformance We test conformance between the Real-Time Creol model of an
open system of concurrent objects and its behavioral abstraction in timed au-
tomata with respect to a given behavioral interface. Our method is based on
generating a timed trace (i.e., a sequence of time-stamped messages) from the au-
tomaton constructed from its behavioral abstraction and interface. Using model-
checking techniques we next generate for each time specified in the trace addi-
tional real-time information about all possible observable messages. This addi-
tional information allows us to find counter-examples to the conformance. To
do so, we use the Real-Time Maude semantics as a language interpreter to ex-
ecute the real-rime Creol model driven by the given trace. Then we look for
counter-examples by incrementally searching the execution space for possible
timed observations that are not covered in the extended timed trace.

Case Study Thread pools are an important design pattern used frequently in
industrial practice to increase the throughput and responsiveness of software
systems, as for instance in the ASK system [2]. The ASK system is an industrial
communication platform providing mechanisms for matching users requiring in-
formation or services with potential suppliers. A thread pool administrates a
collection of computation units referred to as threads and assigns tasks to them.
This administration includes dynamic creation or removal of such units, as well
as scheduling the tasks based on a given strategy like ‘first come first served’ or
priority based scheduling.

The abstraction from the internal message queue of each object and the
related scheduling policies is one of the most important characteristics of Creol
which allows for abstractly modeling a variety of thread pools. In this paper, we
give an example of an abstract model in Creol of a basic pool where the threads
share the task queue. The shared task queue is naturally represented implicitly
inside a Creol object (called a resource-pool) that basically forwards the queued
tasks to its associated threads also represented as Creol objects. We associate

2

real-time information to the tasks concerning their deadlines and best and worst
case execution times.

We perform schedulability analysis on a network of timed automata con-
structed from the automata abstraction and behavioral interface of the thread
pool model in order to verify whether tasks are performed within their deadlines.
In the context of the ASK system, schedulability ensures that the response times
for service requests are always bounded by the deadlines. We use Uppaal [12]
for this purpose. Further, we test conformance between the Real-Time Creol
model of a thread pool and its behavioral abstractions as described above.

Related work We extend Creol with explicit scheduling strategies and a du-
ration statement to specify execution delays. CreolRT [11] is another real-time
extension of Creol with clocks and time-outs. Our work follows a descriptive
approach to specifying real-time information suitable for schedulability analy-
sis, whereas the prescriptive nature of time in CreolRT can affect the functional
behavior of an object.

Schedulability analysis in this paper can be seen as the continuation of our
previous work [7] on modular analysis of a single-threaded concurrent object with
respect to its behavioral interface. In this paper, we extend the schedulability
analysis to an open system of concurrent objects in a way similar to [4].

The work of [6, 10] is based on extracting automata from code for schedula-
bility analysis. However, they deal with programming languages and timings are
usually obtained by profiling the real system. Our work is applied on high-level
models. Therefore, our main focus is on studying different scheduling policies
and design decisions.

We test conformance between a Creol implementation and abstract automata
models. Our notion of conformance is similar to tioco introduced by Schmaltz
and Tretmans [16, 15], but we do not directly work with timed input/output
transition systems; an innovation of our work is dealing with conformance be-
tween different formalisms, namely Creol semantics in rewrite logic on one hand
and timed automata on the other hand. Furthermore, we focus on generating
counterexamples during testing along the lines of our previous work [8], which
is novel in testing.

Outline The real-time extension of the concurrent object language Creol is
explained in Section 2. As explained in Section 3, abstract models of concurrent
objects, specified in timed automata, are analyzed to be schedulable. To be
able to argue about the schedulability of Real-Time Creol models, we need to
establish conformance between our Creol and automata models; this is explained
in Section 4. We conclude in section 5.

2 Concurrent Objects in Real-Time Creol

Creol is an abstract behavioral modeling language for distributed active objects,
based on asynchronous method calls and processor release points. In Creol, ob-

3

Syntactic
categories.
g in Guard
s in Stmt
x in Var
e in Expr
o in ObjExpr
b in BoolExpr
d in Time

Definitions.

IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x;]M}
Sg ::= I m ([I x])

M ::= Sg { [I x;] s }
g ::= b | x? | g ∧ g | g ∨ g
s ::= x := e | x := e.get | skip | release | await g | return e
| s; s | [o]!m(e, d) | if b then { s }else { s } | duration(d, d)

e ::= x | o | b | new C (e) | [o]!m(e, d) | this | deadline

Fig. 1. Syntax of the Real-Time Creol kernel. Terms such as e and x denote lists over
the corresponding syntactic categories and square brackets denote optional elements.

jects conceptually have dedicated processors and live in a distributed environ-
ment with asynchronous and unordered communication between objects. Com-
munication is between named objects by means of asynchronous method calls;
these may be seen as triggers of concurrent activity, resulting in new activities
(tasks) in the called object. Objects are dynamically created instances of classes,
declared attributes are initialized to some arbitrary type-correct values. An op-
tional init method may be used to redefine the attributes during object creation.
An object has a set of tasks to be executed, which stem from method activations.
Among these, at most one task is active and the others are suspended on a task
queue. The scheduling of tasks is by default non-deterministic, but controlled
by processor release points in a cooperative way. Creol is strongly typed: for
well-typed programs, invoked methods are supported by the called object (when
not null), such that formal and actual parameters match. In this paper, pro-
grams are assumed to be well-typed. This section introduces Real-Time Creol,
explaining Creol constructs (for further details, see, e.g., [9, 3]) and their relation
to real-time scheduling policies.

Figure 1 gives the syntax for a kernel of Real-Time Creol, extending a subset
of Creol (omitting, e.g., inheritance). A program consists of interface and class
definitions and a main method to configure the initial state. Let C, I, and m
be in the syntactic category of Names. IF defines an interface with name I and
method signatures Sg . A class implements a list I of interfaces, specifying types
for its instances. CL defines a class with name C, interfaces I, class parameters
and state variables x (of types I), and methods M . (The attributes of the class
are both its parameters and state variables.) A method signature Sg declares
the return type I of a method with name m and formal parameters x of types I.
M defines a method with signature Sg and a list of local variable declarations
x of types I and a statement s. Statements may access class attributes, locally
defined variables, and the method’s formal parameters. Statements for assign-
ment x := e, sequential composition s1; s2, skip, if, while, and return e
are standard. The statement release unconditionally releases the processor by
suspending the active task. In contrast, the guard g controls processor release in
the statement await g, and consists of Boolean conditions which may contain

4

return tests x? (see below). If g evaluates to false, the current task is suspended
and the execution thread becomes idle. When the execution thread is idle, an
enabled task may be selected from the pool of suspended tasks by means of a
user-provided scheduling policy.

Expressions e include declared variables x, object identifiers o, Boolean ex-
pressions b, and object creation new C(e). As usual, the reserved read-only
variable this refers to the identifier of the object. Note that remote access to
attributes is not allowed. (The full language includes a functional expression lan-
guage with standard operators for data types such as strings integers lists, sets,
maps, and tuples. These are omitted in the core syntax, and explained when
used in the examples.)

Time. In Real-Time Creol, the local passage of time is expressed in terms
of duration statements. We consider a dense time model represented by the
sort Time which ranges over non-negative real numbers and is totally ordered by
the less-than operator. Furthermore, we denote by ∞ a term of sort Time such
that for all t1, t2 6= ∞, t1 + t2 < ∞. The statement duration(b, w) expresses
the passage of time, given in terms of an interval between the best case b and
the worst case w (assuming b ≤ w). All other statements are assumed to be
instantaneous, except the get statement which lets time pass while it is blocking
(see below).

Communication in Real-Time Creol is based on asynchronous method calls,
denoted by expressions o!m(e, d), and future variables. (Local calls are written
!m(e, d).) Thus, after making an asynchronous method call x := o!m(e, d), the
caller may proceed with its execution without blocking on the method reply.
Here x is a future variable, o is an object expression, e are (data value or object)
expressions, and d is a deadline for the method invocation. This deadline speci-
fies the relative time before which the corresponding method should be scheduled
and executed. The local variable deadline refers to the remaining permitted
execution time of the current method activation. We assume that message trans-
mission is instantaneous, so the deadline expresses the time until a reply is re-
ceived; i.e., it corresponds to an end-to-end deadline. As usual, if the return value
of a call is of no interest, the call may occur as a statement. The future variable
x refers to a return value which has yet to be computed. There are two opera-
tions on future variables, which control synchronization in Creol. First, the guard
await x? suspends the active task unless a return to the call associated with
x has arrived, allowing other tasks in the object to execute. Second, the return
value is retrieved by the expression x.get, which blocks all execution in the ob-
ject until the return value is available. Standard usages of asynchronous method
calls include the statement sequence x := o!m(e, d); v := x.get which encodes
a blocking call, abbreviated v := o.m(e, d) (often referred to as a synchronous
call), and the statement sequence x := o!m(e, d); await x?; v := x.get which
encodes a non-blocking, preemptible call, abbreviated await v := o.m(e, d).

5

class Thread(ResourcePool myPool) implements Thread {
Void run() { myPool!finish(this) }
Void start() { skip; duration(5,6); myPool!finish(this) }

}

class ResourcePool(Int size) implements ResourcePool {
Set[Thread] pool;

Void init() { Thread thr; pool := {};
while (size>0) { thr := new Thread(this); size := size-1 }

}
Void invoke() {
Thread thread; await ¬isempty(pool);
thread := choose(pool); pool := remove(pool,thread);
thread!start(deadline)

}
Void finish (Thread thr) { pool := add(pool,thr) }

}

Fig. 2. The thread pool

2.1 Object-Oriented Modeling of Thread-Pools

Figure 2 shows a Creol model of a thread pool. The model defines a Thread
class and the ResourcePool class. The task list is modeled implicitly in terms
of the message queue of an instance of the ResourcePool class. The variable
size represents the number of available threads, i.e., instances of the Thread
class. The variable pool is used to hold a reference to those threads that are
currently not executing a task. Tasks are modeled in terms of the method start
inside the Thread class. For our analysis the functional differences between
tasks is irrelevant, so the method is specified in terms of its duration only and
a subsequent call to the method finish of the ResourcePool object which
adds that thread to its pool of available threads.

Tasks are generated (by the environment) with (asynchronous) calls of the
invoke method of the ResourcePool object. In case there are no available
threads, the execution of the invoke method suspends by the execution of the
await statement which releases control (so that a call of the finish method
can be executed). When multiple tasks are pending and a thread becomes avail-
able, the scheduling strategy of the ResourcePool object determines which
task should be executed next when the current task has been completed.

2.2 Real-Time Execution in Real-Time Maude

Real-Time Maude [14] defines real-time rewrite theories (Σ,E, IR, TR), where:

– (Σ,E) is a theory in membership equational logic [13] with a signature Σ
and a set E of conditional equations. The system’s state space is defined as
an algebraic data type in (Σ,E), which is assumed to contain a specification
of a sort Time capturing the (dense or discrete) time domain.

6

– IR is a set of labeled conditional instantaneous rewrite rules specifying the
system’s local transitions, written crl [l] : t −→ t′ if cond , where l is a
name for the rule. Such a rule specifies a one-step transition (in zero-time)
from an instance of a pattern t to the corresponding instance of a pattern t′,
provided the condition cond holds. As usual in rewriting logic [13], the rules
are applied modulo the equations in E.

– TR is a set of timed rewrite rules (or tick rules) capturing the progression
of time, written crl [l] : {t} −→ {t′} in time τ if cond where τ is
a term of sort Time which denotes the duration of the rewrite. Observe that
{_} is the built-in constructor of sort GlobalSystem, so tick rules apply
to the entire state of the system which allows time to advance uniformly.

Initial states must be ground terms of sort GlobalSystem, which reduce
to terms of the form {t} by the equations in E. The form of the tick rules then
ensures that time advances uniformly throughout the system. Real-time rewrite
theories are executable under reasonable assumptions and Real-Time Maude
provides different analysis methods [14]. For example, timed “fair” rewrite sim-
ulates one behavior of the system up to a certain duration and is written

(tfrew t in time ≤ τ .)

for an initial state t and a ground term τ of sort Time. Furthermore, timed
search searches breadth-first for states that are reachable from a given initial
state t within time τ , match a search pattern, and satisfy a search condition.
The command which searches for one state satisfying the search criteria is written

(tsearch [1] t −→∗ pattern such that cond in time ≤ τ .)

Creol’s semantics in Maude. Creol has a semantics defined in Rewriting logic [13]
which can be used directly as a language interpreter in Maude [5]. The semantics
is explained in detail in [9] and can be used for the analysis of Creol programs.
In this section we focus on the extension of Creol’s semantics in order to define
a semantics for Real-Time Creol in Real-Time Maude.

The state space of Creol’s operational semantics is given by terms of the
sort Configuration which is a set of objects, messages, and futures. The
empty configuration is denoted none and whitespace denotes the associative and
commutative union operator on configurations. Objects are defined as tuples

〈 o, a, q 〉

where o is the identifier of the object, a is a map which defines the values of the
attributes of the object, and q is the task queue. Tasks are of sort Task and
consist of a statement s and the task’s local variables l. We denote by {l|s} ◦ q
the result of appending the task {l|s} to the queue q. For a given object, the first
task in the queue is the active task and the first statement of the active task to
be executed is called the active statement.

Let σ and σ′ be maps, x a variable name, and v a value. Then σ(x) denotes
the lookup for the value of x in σ, σ[x 7→ v] the update of σ such that x maps
to v, σ ◦ σ′ the composition of σ and σ′, and dom(σ) the domain of σ. Given

7

rl [skip] : 〈 o, a, {l | skip;s} ◦ q 〉 −→ 〈 o, a, {l | s} ◦ q 〉 .

rl [assign] : 〈 o, a, {l | x:=e;s} ◦ q 〉
−→ if x ∈ dom(l) then 〈 o, a, {l[x 7→ [[e]]none

a◦l] | s} ◦ q 〉
else 〈 o, a[x 7→ [[e]]none

a◦l], {l | s} ◦ q 〉 fi .

rl [release] : 〈 o, a, {l | release;s} ◦ q 〉 −→ 〈 o, a, schedule({l | s},q) 〉 .

crl [await1] : {〈 o, a, {l | await e;s} ◦ q 〉 c}
−→ {〈 o, a, {l | s} ◦ q 〉 c} if [[e]]ca◦l .

crl [await2] : {〈 o, a,{l | await e;s} ◦ q 〉 c}
−→ {〈 o, a, {l | release;await e;s} ◦ q 〉 c} if ¬[[e]]ca◦l .

Fig. 3. The semantics of Creol in Maude.

a mapping, we denote by [[e]]cσ the evaluation of an expression e in the state
given by σ and the global configuration c (the latter is only used to evaluate the
polling of futures; e.g., await x?).

Rewrite rules execute statements in the active task in the context of a con-
figuration, updating the values of attributes or local variables as needed. For
an active task {l | s}, these rules are defined inductively over the statement s.
Some (representative) rules are presented in Figure 3. Rule skip shows the gen-
eral set-up, where a skip statement is consumed by the rewrite rule. Rule assign
updates either the local variable or the attribute x with the value of an expres-
sion e evaluated in the current state. The suspension of tasks is handled by rule
release, which places the active task in the task queue. The auxiliary function
schedule in fact defines the (local) task scheduling policy of the object, for
example first in first out (FIFO) or earliest deadline first (EDF). Rules await1
and await2 handle conditional suspension points.

Real-Time Creol’s semantics in Real-Time Maude. The rewrite rules of the
Real-Time Creol semantics are given in Figure 4. The first rule ensures that
a duration statement may terminate only if its best case execution time has
been reached. In order to facilitate the conformance testing discussed below, we
define a global clock clock(t) in the configurations (where t is of sort Time)
to time-stamp observable events. These observables are the invocation and re-
turn of method calls. Rule async-call emits a message to the callee [[e]]none(a◦l) with

method m, actual parameters [[e]]none(a◦l) including the deadline, a fresh future iden-

tifier n, which will be bound to the task’s so-called destiny variable [3], and,
finally, a time stamp t. In the (method) activation rule, the function task trans-
forms such a message into a task which is placed in the task queue of the callee
by means of the scheduling function schedule. The function task creates a
map which assigns the values of the actual parameters to the formal parameters
(which includes the deadline variable) and which assigns the future identity
to the destiny variable. The statement of the created task consist of the body
of the method. Rule return adds the return value from a method call to the

8

crl [duration] : 〈 o, a, {l | duration(b, w); s} ◦ q 〉
−→ 〈 o, a, {l | s} ◦ q 〉 if b ≤ 0 .

crl [async-call] : 〈 o, a,{l | x:=e!m(e);s} ◦ q 〉 clock(t)
−→ 〈 o, a,{l[x 7→ n] | s} ◦ q 〉 m(t, [[e]]none

a◦l , [[e]]none
a◦l , n) n if fresh(n) .

crl [activation] : 〈 o, a,{l | s} ◦ q 〉 m(t, o, v̄)
−→ 〈 o, a,{l | s} ◦ schedule(task(m(o, v̄)),q) 〉 .

crl [return] : 〈 o, a,{l | return(e);s} ◦ q 〉 n clock(t)
−→ 〈 o, a, {l | s} ◦ q 〉 clock(t) 〈n,[[e]]none

(a◦l),t 〉 if n = l(destiny) .

crl [get] : 〈 o, a,{l | x := e.get;s} ◦ q 〉 〈n,v,t 〉
−→ 〈 o, a,{l | x := v;s} ◦ q 〉 〈n,v,t 〉 if [[e]]none

a◦l = n .

crl [tick] : {C} −→ {δ(C)} in time t if t < mte(C) ∧ canAdvance(C) .

Fig. 4. The semantics of Real-Time Creol in Real-Time Maude.

op canAdvance : Configuration → Bool .
eq canAdvance(C1 C2) = canAdvance(C1) ∧ canAdvance(C2) .
eq canAdvance(〈 o, a, {l | duration(b, w); s} ◦ q 〉) = w > 0 .
eq canAdvance(〈 o, a,{l | x := e.get; s} ◦ q 〉 n) = true if n = [[x]]none

(a◦l)
.

eq canAdvance(C) = false [owise] .

op mte : Configuration → Time .
eq mte(C1 C2) = min(mte(C1), mte(C2)) .
eq mte(〈 o, a,{l | duration(b, w); s} ◦ q 〉) = w .
eq mte(C) =∞ [owise] .

op δ1 : Task Time → Task .
eq δ1({l | s}, t) = {l[deadline 7→ l(deadline)− t]|s} .

op δ2 : TaskQueue Time → TaskQueue .
eq δ2({l|s} ◦ q, t) = δ1({l|s}, t) ◦ δ2(q, t) .
eq δ2(ε, t) = ε

op δ3 : Task Time → Task .
eq δ3({l|duration(b, w); s}, t)

= {l[deadline 7→ l(deadline)− t] | duration(b− t, w − t); s}.
eq δ3({l|s}, t) = {l[deadline 7→ l(deadline)− t]|s} [owise] .

op δ : Configuration Time → Configuration .
eq δ(C1 C2, t) = δ(C1,t) δ(C2,t) .
eq δ(clock(t′),t) = clock(t′ + t) .
eq δ(〈 o, a, {l|s} ◦ q 〉,t) = 〈 o, a, δ3({l|s}) ◦ δ2(q) 〉 .
eq δ(C, t) = C [owise] .

Fig. 5. Definition of Auxiliary Functions

9

future identified by the task’s destiny variable and time stamps the future at
this time. Rule get describes how the get operation obtains the returned value.

The global advance of time is captured by the rule tick. This rule applies
to global configurations in which all active statements are duration statements
which have not reached their worst execution time or blocking get statements.
These conditions are captured by the predicate canAdvance in Figure 5. When
the tick rule is applicable, time may advance by any value t below the limit
determined by the auxiliary maximum time elapse [14] function mte, which
finds the lowest remaining worst case execution time for any active task in any
object in the configuration. Note that the blocking get operation allows time
to pass arbitrarily while waiting for a return.

When time advances, the function δ, besides advancing the global clock,
determines the effect of advancing time on the objects in the configuration,
using the auxiliary functions δi, for i = 1, 2, 3, defined in Figure 5, to update the
tasks. The function δ1 decreases the deadline of a task. The function δ2 applies
δ1 to all queued tasks; δ2 has no effect on an empty queue ε. The function δ3
additionally decreases the current best and worst case execution times of the
active duration statements.

3 Schedulability Analysis

Schedulability analysis consists of checking whether tasks can be accomplished
before their deadlines. For analysis, Real-Time Maude uses tick rules that ad-
vance time in discrete time steps, therefore verification of dense time models in
Real-Time Maude is incomplete. Timed automata verification tools, e.g., Up-
paal, use symbolic time and thus cover the whole dense time space. In this
section, we explain how to use timed automata for abstractly modeling concur-
rent objects and performing schedulability analysis. In this abstract modeling,
infinite Creol programs are mapped to finite state automata.

We present a generalization of the automata-theoretic framework in [7] for
schedulability analysis of concurrent objects. The overall real-time input/output
behavior of an object is to be specified in an automaton called its behavioral
interface. A behavioral interface abstracts from the detailed implementation of
the object, which is in turn given in terms of its output behavior, given in the
automata modeling the methods; and, the input enabled scheduler automaton
that includes a queue to buffer the messages waiting to be executed.

In this paper we extend the schedulability analysis to an open system of
concurrent objects. We explain this extension in terms of the thread pool example
introduced in Section 2.1. Such a model can be synthesized from the sequence
diagram in Figure 6 which depicts the life-cycle of a task from its generation
until its completion. To allow communication between different automata, we
define a channel for each action in this diagram: Channel invoke has three
parameters; namely, task name, the receiver and the sender. The parameters to
channel start capture the task to be executed, the thread assigned to it, and the
current object’s identifier. Channel finish is parameterized in the identifiers of

10

Env ResourcePool Thread

Behavioral
Interface

Scheduler/ TaskCorresponding
Automata:

invoke
start

finish

Creol Classes:

Queue

Fig. 6. Sequence diagram of a scenario from generation until completion of a task

c1 >= 3
invoke!
deadline=D2, c1 = 0

c1 >= 2

invoke!
deadline=D1, c1 = 0

Fig. 7. Modeling a task generation pattern (right)

the executing thread and object. Next we discuss the different automata models
corresponding to the three different life-lines in Figure 6.

Behavioral interfaces The behavioral interface captures the overall real-time in-
put/output behavior of an object while abstracting from its detailed implemen-
tation. Figure 7 shows a possible behavioral interface for our model of thread
pools. This automaton is parameterized in the identifier of the thread pool, writ-
ten self, and an identifier Env that represents any entity that may invoke a
task on the thread pool. Since we only assume one task type in this example, we
define a global constant task that will be used to identify this task.

We use a clock c1 for modeling inter-arrival times and the global variable
deadline is used for associating deadlines to each task generated. The tasks
with different deadlines are interleaved and there is at least 2 and 3 time units of
inter-arrival time between two consecutive task instances. This shows an example
of non-uniform task generation pattern.

Scheduler and queue The queue and the scheduling strategy are modeled in
separate automata; together they represent the ResourcePool class. To model
the ResourcePool, every thread is assumed to have a dedicated processing unit,
but they share one task queue. We assume a fixed number TRD of threads given
a priori. We separate the task queue in two parts: an execution part, consisting
of the slots 0 to TRD-1, and a buffer part consisting of the rest of the queue.
The execution part includes the tasks that are being executed. This part needs
one slot for each thread and is therefore as big as the number of threads. The
selection of a task from the buffer part to start its execution is based on a given
scheduling strategies, e.g., EDF, FPS, etc.; in our example, we use EDF.

11

Error

tail < MAX
invoke?
insertInvoke() tail == MAX

i : int[0,MAX-1]
busy[i] &&
x[i]>d[i]

tail <= TRD
finish[t]?

contextSwitch(t,TRD)

start[q[t]][t] !i:int[TRD,MAX-1]
i < tail &&
forall (m : int[TRD,MAX-1])
(x[ca[i]]-x[ca[m]]>d[ca[i]]-d[ca[m]])

finish[t]?
contextSwitch(t, i)

(a) A queue shared between threads (b) An EDF scheduler for each thread

Fig. 8. Allowing parallel threads to share a queue

Figure 8(a) shows a queue of size MAX which stores the tasks in the order of
their arrival; the queue is modeled by the array q and tail points to the first
empty element in the queue. This automaton is parameterized in s which holds
the identity of this object. This automaton can accept any task (whose identifier
is between 0 and the constant MSG) by any caller (whose identifier is between 0
and the constant OBJ); this is seen as the Uppaal ‘select’ statement over msg
and caller on the invoke channel. This transition is enabled if the queue is
not yet full (tail < MAX). To check for deadlines, a clock x is assigned to each
task in the queue, which is reset when the task is added, i.e., in insertInvoke
function. The queue goes to Error state if a task misses its deadline (x[i] >
d[i]) or the queue is full (tail == MAX).

Figure 8(b) shows how a scheduling strategy can be implemented. This au-
tomaton should be replicated for every thread, thus parameterized in thread
identity t as well as the object identity s. There will be one instance of this
automaton for each slot q[t] in the execution part of the queue. This exam-
ple models an EDF (earliest deadline first) scheduling strategy. The remain-
ing time to the deadline of a task at position i in the queue is obtained by
x[ca[i]]-d[ca[i]]. When the thread t finishes its current task (i.e. a syn-
chronization on finish[t][s]), it selects the next task from the buffer part
of the queue for execution by putting it in q[t]; this task is then immediately
started (start[q[t]][t][s]).

To perform schedulability analysis by model checking, we need to find a
reasonable queue length to make the model finite. The execution part of the
queue is as big as the number of threads, and the buffer part is at least of size
one. As in single-threaded situation of objects [7], a system is schedulable only
if it does not put more than dDmax/Bmine messages in its queue, where Dmax

is the biggest deadline in the system, and Bmin is the best-case execution time
of the shortest task. As a result, schedulability is equivalent to the Error state
not being reachable with a queue of length dDmax/Bmine.

Tasks A simple task model is given in Figure 9. In this model, the task has a
computation time of between 5 to 6 time units. This corresponds to the model
of the task given in the Creol code, which is defined in the start method of the
Thread class and contains a skip statement followed by a duration. In general,
a task model may be an arbitrarily complex timed automaton.

12

completeexecute
x <= 6

finish [r]!

start[task][r]?
x = 0

x >= 5

Fig. 9. Modeling a task

For schedulability analysis, one can experiment with different parameters. For
example, one can choose different scheduling policies, like FCFS, EDF, etc. Since
we assume that threads run in parallel, with more threads, we can handle more
task instances (i.e., smaller inter-arrival times). Furthermore, if deadlines are
too tight, schedulability cannot be guaranteed. Schedulability analysis amounts
to checking whether the Error location in the queue automaton is reachable.
Analysis shows that in the chosen settings, i.e., the selected inter-arrival times
for the tasks and an EDF scheduler, this model cannot be schedulable with 2
parallel threads, no matter how big the deadlines are. Intuitively, every 5 time
units, two instances of the task may be inserted in the queue, and each task may
take up to 6 time units to compute. With three parallel threads, these tasks can
be scheduled correctly even with the deadline value of 6 time units for each task
instance.

4 Conformance Testing

Our overall methodology for the schedulability analysis of a Real-Time Creol
model consists of the following: We model the real-time pattern of incoming
messages in terms of a timed automaton (the behavioral interface of the Creol
model). Next we develop on the basis of sequence diagrams, which describe the
observable behavior of the Creol model, automata abstractions of its overall real-
time behavior. We analyze the schedulability of the product of this abstraction
and the given behavioral interface (in for example Uppaal). Further, we define
conformance between the Real-Time Creol model and its timed automaton ab-
straction with respect to the given behavioral interface in terms of inclusion of
the timed traces of observable actions.

More specifically, let C denote a Creol model, i.e., a set of Creol classes, B
a timed automaton specifying its behavioral interface and A a timed automata
abstraction of the overall behavior of C. We denote by O(A ‖ B) the set of timed
traces of observable actions of the product of the timed automata A and B. The
set of timed traces of the timed automaton B we denote by T (B). Further, given
any timed trace θ ∈ T (B), the Creol class Tester(θ) denotes a Creol class which
implements θ (see, for example, the class Tester in Figure 11). This class simply
injects the messages at the times specified by θ. We denote by O(C,Tester(θ))
the set of timed traces of observable actions generated by the Real-Time Maude

13

R6 R5 R4

FINAL
global <= 7global <= 5global <= 2

r:int[0,TRD-1]

12 < global && global < 15
finish[r]?

r:int[0,TRD-1]

10 < global && global < 12
finish[r]?

r:int[0,TRD-1]

8 < global && global < 10
finish[r]?

finish[2]! global == 12
finish[2]?

finish[1]! global == 10
finish[1]?

finish[0]! global == 8
finish[0]?

global == 7
invoke!
deadline = D1

global == 5
invoke!
deadline = D2

global == 2
invoke!
deadline = D1

Fig. 10. Generating ready sets.

semantics of the Creol model C driven by θ. We now can define the conformance
relation C ≤B A by

O(C,Tester(θ)) ⊆ O(A ‖ B),

for every timed trace of observable actions θ ∈ T (B).
In this section we illustrate a method for testing conformance by searching for

counter-examples to the conformance in terms of our running example. Note that
a counter-example to the above conformance consist of a timed trace θ ∈ T (B)
such that O(C,Tester(θ)) \O(A ‖ B) 6= ∅.

4.1 Generating a Test Case

We first generate a timed trace θ = (t1, a1), . . . , (tn, an) by simulating the ab-
stract timed automaton model A together with the behavioral interface B. To
this end, we add a dummy automaton with a fresh clock global and an integer
time which is incremented every time unit. This way we can find the absolute
time interval in which every action in the trace has happened. In order to be
able to search for a counter-example to conformance, we generate ready sets of
observable actions generated by the behavioral abstraction of the Creol model.
For each time interval between ti−1 and ti in this trace and for every observable
action a, we are interested in the following timed reachability property:

“E<> ti−1 <= global && global < ti && a_f”,

where a_f denotes whether the observable action a has occurred in this interval.
Instead of checking this property directly for every action, we encode it into one
automaton as explained below (see Figure 10). This way, we avoid the need to
add flags like a_f for every observable action and to go deep in the model to set
it true when the corresponding action happens.

The algorithm to construct the automaton in Figure 10 for generating ready
sets is as follows. Given a trace θ = (t1, a1), . . . , (tn, an), we first create a linear
timed automaton Tθ with the locations L = {li | 1 ≤ i ≤ n + 1}. By going
from li to li+1, this automaton should ensure that action ai happens at time
x == ti. This is done differently for inputs and outputs. Since the abstract
Uppaal model A (i.e., excluding the behavioral interface) is input-enabled, the

14

input actions only need to inject the task at the required time; namely with a
transition from li to li+1 with an invoke action. This transition should provide
the required deadline. The output action finish is, however, produced by a
task and consumed by the scheduler. To intercept this action, this automaton
first mimics the scheduler by accepting the action, i.e., finish?, and then it
mimics the task by issuing finish!.

We add to Tθ a location Rij for each time interval between ti−1 and ti and
for each observable output action oj ∈ O(A ‖ B), with one transition from li to
Rij with a guard global ≤ ti accepting the output action oj ; if ai is the same
as oj , this transition is guarded by global < ti. In our example, there is only
one observable output action namely finish, but since a task can be taken by
different threads, the finish action can be issued by different threads; there-
fore, the transitions for receiving this action should allow any thread identity r
between 0 and TRD-1.

Finally, the reachability of the location Rij implies that oj must be included
in the ready set Ri. We observe that in our example, only R3 and R4 are reach-
able; this is due to the possibility of finishing the first task instance in the
interval [7, 8]. The consequent task instances can finish in the intervals [10, 11]
and [12, 13], therefore, their completion does not contribute to an action in the
ready sets. The test case including the ready sets and deadlines is:
(2, invoke(D1), {}) (5, invoke(D2), {}) (7, invoke(D1), {finish}) (8, finish, {finish})
(10, finish, {}) (12, finish, {})

4.2 Executing a Test Case in RT-Maude

Executing a test case amounts to injecting the inputs at the right times and
looking for the right outputs at the right times. The system is input-enabled, so
it accepts all the inputs. If the system under test cannot produce the expected
output at the right time, the test fails. If along the test execution, the system
under test can do an observable action that is neither the expected output nor in
the ready-set, it is a counter-example to conformance. If the system can produce
all expected outputs and no counter-example is found, the test passes in the sense
that we are more confident that refinement holds and that the Creol model is
schedulable. Notice that a counterexample to refinement does not necessarily
imply non-schedulability in itself, but it shows an execution path that is likely
to miss a deadline. We demonstrate this with the test-case from the previous
subsection, repeated below:
(2, invoke(D1), {}) (5, invoke(D2), {}) (7, invoke(D1), {finish}) (8, finish, {finish})
(10, finish, {}) (12, finish, {})

We encode the input behavior given in the test-case as a complementary
class that calls the methods of the model under test at the required times. For
our running example, the code for the trace from previous subsection is given in
Figure 11 (assuming D1 = D2 = 6).

By generating one instance of the ResourcePool class (with size 3 which gives
us a schedulable Uppaal model, cf. Section 3) and one instance of the Tester

15

class Tester (mut:ResourcePool){
Void run(){
duration(2,2);
mut!invoke(6);
duration(3,3); // 5-2 = 3
mut!invoke(6);
duration(2,2); // 7-5 = 2
mut!invoke(6);

}
}

Fig. 11. Tester Class

tsearch [1] { init} −→∗ {Conf1 finish(T,M,E,N)} in time ≤2
If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] { init} −→∗ {Conf1 invoke(2,M,E,N)} in time ≤2
If this search is not successful, then the test fails; otherwise, if Maude answers
C1 → Conf1 then we continue with the following search:

tsearch [1] {C1 invoke(2,M,E,N)} −→∗ {Conf2 finish(T,M,E,N)} in time ≤3
If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] {C1 invoke(2,M,E,N)} −→∗ {Conf2 invoke(5,M,E,N)} in time ≤3
If this search is not successful, then the test fails; otherwise, if Maude answers
C2 → Conf2 then we continue with the following search:

tsearch [1] {C2 invoke(5,M,E,N)} −→∗ {Conf3 invoke(7,M,E,N)} in time ≤2
If this search is not successful, then the test fails; otherwise, if Maude answers
C3 → Conf3 then we continue with the following search:

tsearch [1] {C3 invoke(7,M,E,N)} −→∗ {Conf4 finish(8,M,E,N)} in time ≤1
If this search is not successful, then the test fails; otherwise, if Maude answers
C4 → Conf4 then we continue with the following search:

tsearch [1] {C4 finish (8,M,E,N)} −→∗ {Conf5 finish(T,M,E,N)} in time <2
If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] {C4 finish (8,M,E,N)} −→∗ {Conf5 finish(10,M,E,N)} in time ≤2
If this search is not successful, then the test fails; otherwise, if Maude answers
C5 → Conf5 then we continue with the following search:

tsearch [1] {C5 finish(10,M,E,N)} −→∗ {Conf6 finish(T,M,E,N)} in time <2
If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] {C5 finish(10,M,E,N)} −→∗ {Conf6 finish(12,M,E,N)} in time ≤2

Fig. 12. Executing the test-case for the thread-pools

16

class, we can check the output behavior of the Creol model against the test-
case with consecutive search commands in Real-Time Maude as shown in Figure
12. In our case, the only observable output action is finish. To find a counter-
example along this trace, we need to check whether a finish action can happen
when it is not expected in the ready set, i.e., before time 2, between 2 and 5,
between 8 and 10, or between 10 and 12. For each search command, we need to
specify as time bound the duration since its start configuration, e.g., to search
from C2 which is at time 5, we only need to search for another 2 time units to
reach time 7.

It is possible to write a meta-level Maude script to automate the consecutive
execution of these search commands, such that each search starts from the re-
sulting configuration of the previous one. The technical details of how this can
be done is beyond the scope of this paper.

5 Conclusion

We bridge the gap between automata theory and object orientation. We exploit
the expressive power of Real-Time Maude to define the semantics of Real-Time
Creol. We complement it with the analytical power of timed automata analysis
tools like Uppaal. Based on this, we explained a methodology for schedulability
analysis of open concurrent systems and applied it to the design and analysis
of thread pools in an industrial communication platform. This methodology
provides a separation of concerns between high-level modeling of architectural
features of concurrent systems (in Creol) and their analysis for schedulability
(using timed automata).

Behavioral interfaces are central to the analyses. Thread pools are analyzed
for schedulability with respect to the task generation pattern given in the be-
havioral interfaces modeling the work-load. We also derive test cases from the
behavioral interfaces for checking conformance between the timed automata ab-
stractions and the Creol models, thus bridging the gap between the two levels
of abstraction. We described a testing technique that is able to find counter-
examples to conformance.

Future work consists, first of all, of an implementation of the method for
testing conformance between a Creol model of a thread-pool and the timed
automata models. Another line of future research consists of real-time extensions
of the Creol language itself to support a full development cycle, so that one can
generate code for application-specific schedulers from Creol models.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

2. The ASK community systems. http://www.ask-cs.com/
3. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In:

de Nicola, R. (ed.) Proc. 16th European Symposium on Programming (ESOP’07).
LNCS, vol. 4421, pp. 316–330. Springer-Verlag (Mar 2007)

17

4. de Boer, F.S., Grabe, I., Jaghoori, M.M., Stam, A., Yi, W.: Modeling and analysis
of thread-pools in an industrial communication platform. In: Proc. 11th Interna-
tional Conference on Formal Engineering Methods (ICFEM’09). LNCS, vol. 5885,
pp. 367–386. Springer (2009)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: specification and programming in rewriting logic. Theoretical
Computer Science 285(2), 187–243 (2002)

6. Closse, E., Poize, M., Pulou, J., Sifakis, J., Venter, P., Weil, D., Yovine, S.:
TAXYS: A tool for the development and verification of real-time embedded sys-
tems. In: Berry, G., Comon, H., Finkel, A. (eds.) Proc. Computer Aided Verification
(CAV01). LNCS, vol. 2102, pp. 391–395. Springer (2001)

7. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. J. Logic and Alg. Prog. 78(5), 402 – 416
(2009)

8. Jaghoori, M.M., Longuet, D., de Boer, F.S., Chothia, T.: Schedulability and com-
patibility of real time asynchronous objects. In: Proc. Real Time Systems Sympo-
sium. pp. 70–79. IEEE CS (2008)

9. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

10. Kloukinas, C., Yovine, S.: Synthesis of safe, QoS extendible, application specific
schedulers for heterogeneous real-time systems. In: Proc. 15th Euromicro Confer-
ence on Real-Time Systems (ECRTS 2003). pp. 287–294. IEEE Computer Society
(2003)

11. Kyas, M., Johnsen, E.B.: A real-time extension of creol for modelling biomedical
sensors. In: Proc. FMCO’08. LNCS, vol. 5751, pp. 42–60. Springer (2009)

12. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152
(1997)

13. Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

14. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1–2), 161–196 (June 2007)

15. Schmaltz, J., Tretmans, J.: On conformance testing for timed systems. In: Cassez,
F., Jard, C. (eds.) FORMATS. LNCS, vol. 5215, pp. 250–264. Springer (2008)

16. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer (2008)

18

