
Dynamic Symbolic Execution
for Testing Distributed Objects ?

Andreas Griesmayer 1, Bernhard Aichernig 1,2,
Einar Broch Johnsen 3, and Rudolf Schlatte 1,2

1 International Institute for Software Technology, United Nations University
(UNU-IIST), Macao S.A.R., China

{agriesma,bka,rschlatte}@iist.unu.edu
2 Institute for Software Technology, Graz University of Technology, Austria

{aichernig,rschlatte}@ist.tugraz.at
3 Department of Informatics, University of Oslo, Norway

einarj@ifi.uio.no

Abstract. This paper extends dynamic symbolic execution to distribu-
ted and concurrent systems. Dynamic symbolic execution can be used
in software testing to systematically identify equivalence classes of in-
put values and has been shown to scale well to large systems. Although
mainly applied to sequential programs, this scalability makes it interest-
ing to consider the technique in the distributed and concurrent setting as
well. In order to extend the technique to concurrent systems, it is neces-
sary to obtain sufficient control over the scheduling of concurrent activi-
ties to avoid race conditions. Creol, a modeling language for distributed
concurrent objects, solves this problem by abstracting from a particular
scheduling policy but explicitly defining scheduling points. This provides
sufficient control to apply the technique of dynamic symbolic execution
for model based testing of interleaved processes. The technique has been
formalized in rewriting logic, executes in Maude, and applied to non-
trivial examples, including an industrial case study.

1 Introduction

Distributed and concurrent systems, e.g. web services, are becoming increas-
ingly important for long-running infrastructure and applications. They typically
consist of loosely coupled components which communicate asynchronously, po-
tentially running on different hardware systems. For critical distributed systems,
the use of formal methods, both for design and verification, remains a challenge.
In the general case, the complexity of such systems makes full verification seem
impossible, even for medium sized examples. In this paper we consider model-
based testing of distributed concurrent systems, where we use an object oriented,
distributed model as specification.
? This research was carried out as part of the EU FP6 project Credo: Modeling and
analysis of evolutionary structures for distributed services (IST-33826).

We present a tool which identifies adequate test cases from such a formal
model. In order to test the different communication patterns, we focus on archi-
tectural models which reflect the distributed nature of the systems under test.
Hence, the models themselves are complex in the sense that they have to capture
distribution, concurrency, and asynchronous communication. The challenge is to
find a test generation technique that scales to the combinatorial explosion in the
number of possible runs in such models. A promising technique that seems to
scale well to large systems is dynamic symbolic execution [2, 8, 18, 19]. The idea
is to calculate a symbolic execution in parallel with the concrete test run of a
given formal model. The result is a set of conditions over symbolic input values
representing the path of the last run. The conjunction of these conditions form
the equivalence class of inputs that could take the same path.

The problem is that dynamic symbolic execution cannot deal with common
concurrency models as present in today’s programming languages. The reason is
that dynamic symbolic execution does not work in the context of arbitrary non-
deterministic interleavings of executions. Hence, its main application so far has
been limited to single-threaded (sequential) programs and to client-server appli-
cations with simple serialized communication flows. In this work we overcome
this limitation by choosing a modeling language that provides the appropriate
level of concurrency control: Creol [10].

Creol is an executable object oriented modeling language whose execution
model was designed to assist in the development of distributed systems. An ob-
ject in Creol describes an execution unit that executes a dynamic number of
processes, a single process at a time. Features like asynchronous method calls
and conditional release points allow to model complex interactions between dis-
tributed components or objects.

We have implemented the dynamic symbolic execution technique in Maude [4],
which is the execution platform of Creol, allowing us to perform the symbolic
run dynamically while the concrete run is executed. The tool computes the
equivalence classes of test inputs covering the paths already taken, allowing the
tester to systematically find new test stimuli for non-covered parts. The gen-
erated test cases are used to check the conformance of implementations of the
distributed systems with their Creol models as presented in previous work in [1].
The presented technique forms part of a new design process for distributed sys-
tems that has been developed in the EU FP6 CREDO project. The feasibility of
the approach has been shown by application to the ASK system, an industrial
distributed agent-based information system.

To summarize, the contributions of this work are as follows:

– This is the first time dynamic symbolic execution is applied to distributed
systems involving asynchronous method calls and non-deterministic schedul-
ing of interleaved processes.

– The technique has been formalized in terms of rewriting logic and imple-
mented in the Maude rewriting system.

– It has been applied to an industrial case study.

2

In the remainder of this section we give an overview of related work, followed
by a short introduction to dynamic symbolic execution in the next section and
an introduction to Creol in Section 3. Dynamic symbolic execution is extended
to distributed systems in Section 4 and applied to testing in Section 5, before
showing examples in Section 6. Finally, in Section 7 we draw our conclusions.

1.1 Related Work

Symbolic execution is a widely used program analysis technique that represents
the values of variables as symbolic expressions instead of concrete data. An
execution of a program is performed by manipulating those expressions instead
of computing concrete values. Application of symbolic execution to testing was
already proposed in 1976 by King [12], who shows symbolic execution for a
simple sequential language and presents an interactive tool EFFIGY to traverse
the execution tree.

Much more recently, symbolic execution has been used for various appli-
cations in the area of testing. Khurshid et al. [11] perform source to source
transformation on Java programs to allow explicit state model checkers like the
Java PathFinder [21] to exploit the succinct representation of the state space by
symbolic representation. They generate test cases by checking the reachability
of a testing criterion. Analysis of the counter example gives the input for test
cases similar to [22, 7, 9]. In [23], Xie et al. introduce SYMSTRA, a tool that
uses symbolic execution to explore different sequences of method calls in order
to generate unit tests for object oriented systems. These applications use sym-
bolic execution mainly to compress the representation of the state space while
performing an exhaustive search. However, there are limits to the feasibility
of executing complex concurrent systems purely symbolically, due to the sheer
number of possible execution paths induced by non-determinism.

There are basically two possibilities to make the process feasible for large
systems: (1) reducing the amount of information which needs to be tracked and
(2) reducing the number of paths to search. An example for the first kind are
static analysis tools like ARCHER from Engler et al. [24], which very successfully
concentrate on certain properties of interest for the analysis (memory and array
access). To derive input values that drive a run to certain areas in the program,
however, we want to consider all information available. We therefore reduce the
number of paths that are searched at the same time to make symbolic execution
feasible. The latter technique is called dynamic symbolic execution (DSE).

To our knowledge, the first to use symbolic execution on single runs were
Boyer et al. in 1975 [2] who developed the interactive tool SELECT that com-
putes input values for a run selected by the user. One of the first automated
DSE tools for testing was DART (Directed Automated Random Testing) from
Godefroid et al. [8]. DART automatically extracts a program’s interface and
generates a test driver to perform random testing. While DART only evaluates
integer variables, the CUTE and jCUTE tools from Sen at al. [18] extend this
approach to include pointers and generate dynamic data structures. Several ex-
tensions to these approaches exist, among the most notable the PEX tool from

3

Tillmann et al. [19] for computing test cases using parameterized unit tests for
single-threaded .NET programs.

We extend this approaches to a model-based testing method that targets dis-
tributed and concurrent systems and deals with interacting processes and asyn-
chronous communication between components. Model-based testing uses mod-
els of the system under test (SUT) to derive test cases. Evaluations, e.g., from
Pretschner et al. [17], have shown their usefulness in software development. Tools
for reactive systems, like TorX from Tretmans et al. [20], observe the inputs of
the SUT and perform on-the-fly testing by generating new inputs for the SUT
according to the model and a test purpose. In contrast to this applications, dis-
tributed systems are only loosely coupled, close synchronization between SUT
and tester is not useful as we discussed in more detail in previous work [1]. In our
setting, the specification is given as Creol model. Creole is a modeling language
whose semantics is defined in rewrite logic, which is executable in Maude. The
definition of the language in rewrite logic therefore directly gives an interpreter,
an approach that also was used by Chen et al. [3] for their framework for “rapid
prototyping” of new languages. In this work, we extend the semantic rules to
perform DSE on Creol models in order to find test cases with optimal coverage
of this specification. We compute test suites to check the conformance between
an implementation and the specification. Our previous work [1] also shows how
to use a Creol model as an oracle for a test run on the implementation.

Recent work from Kirner [13] gives criteria to ensure that a coverage metric
on the model also holds on the actual implementation. In this work we assume
that these criteria hold. There are a number of techniques that help in testing
of concurrent systems by either controlling the scheduling to make the test re-
sults more deterministic [14, 16] or by repeating test cases multiple times with a
different (randomized) scheduling to gain a good coverage of the code [6]. These
methods are complementary to the approach shown here as they handle the
actual test execution rather then the computation of test cases and should be
combined with the test case generation shown in this paper for optimal results.

2 Dynamic Symbolic Execution for Testing

This section gives a brief introduction to dynamic symbolic execution (DSE) and
its application to conventional test case generation, before we proceed with exten-
sions for distributed and concurrent systems. Conventional symbolic execution
uses symbols to represent arbitrary values during execution. When encountering
a conditional branch statement, the run is forked. This results in a tree covering
all paths in the program. Decisions on branch statements are recorded, resulting
in a set of conditions over the symbolic values that have to evaluate to true for a
path to be taken. We call the conjunction of these conditions the path condition;
it represents an equivalence class of concrete input values that could have taken
the same path. In contrast, dynamic symbolic execution calculates the symbolic
execution in parallel with a concrete run that is actually taken, avoiding the

4

usual problem of eliminating infeasible paths and maintaining the call stack of
the whole run tree.

We use DSE to compute test cases on the model that are then used on
the actual implementation. The inputs of the model are treated as symbolic
values and a path condition describing the equivalence class of inputs that can
perform the same run is computed. Concrete input values from outside this
equivalence class are selected to force new execution paths, and thereby new
test cases. Consider the following piece of code from an agent system calculating
the number of threads needed to handle job requests (taken from Figure 5).

1 amountToCreate := tasks −idlethreads + . . . ;
2 if (amountToCreate > (maxthreads −threads)) then
3 amountToCreate := maxthreads −threads;
4 end;
5 if (amountToCreate > 0) then . . . end;

Testers usually analyze the control flow in order to achieve a certain coverage.
For example, a run evaluating both conditions above to true is sufficient to
ensure statement coverage; branch coverage needs at least two cases and path
coverage all four combinations. Dynamic symbolic computation gives a condition
for each conditional statement in terms of symbolic input values. For better
readability, we mark the symbolic values of an input parameter by appending
S to the parameter’s variable name. Let threads, idlethreads, and tasks
denote the input parameters for testing, and maxthreads being a constant
with a concrete value. Assume that we have a first concrete run in which both
conditions evaluate to true. This single run already fulfills statement coverage.
DSE gives us following path condition that has to be fulfilled to obtain the run
(for constant maxthreads = 10)
(tasksS-idlethreadsS)>(10-threadsS)
∧(maxthreadsS-threadsS)>0
In this example, DSE replaces the variable amountToCreate by its symbolic
value maxthreadsS -threadsS . To create a new test case that follows a dif-
ferent path, one or more of the sub-conditions are negated and inputs that
fulfill the new condition are selected. If the path condition is not satisfiable,
the corresponding path is infeasible. In this case, we continue negating differ-
ent sub-conditions until no more valid inputs are found. For example, inputs
satisfying

(tasksS-idlethreadsS)≤(10-threadsS)
∧(maxthreads-threadsS)>0
will avoid the first then-branch, resulting in a different execution path.

The strategy how to select sub-conditions to negate determines the kind of
coverage metric obtained. Note that the fraction of the program that can be
covered depends on the program, the used coverage metric, and the symbolic
values used. For example, the presence of unreachable code obviously makes full
statement coverage impossible. The concrete test values from symbolic input
vectors can be found by, e.g., using a constraint solver.

5

3 The Modeling Language Creol

Creol is a high-level executable modeling language targeting distributed sys-
tems in which concurrent objects communicate asynchronously [10]. The lan-
guage decouples communication from synchronization. Furthermore, it allows
local scheduling to be left underspecified but controlled through explicitly de-
clared process release points. The language has a formal semantics defined in
rewriting logic [15] and executes on the Maude platform [4]. In the remainder of
this section, we present Creol and point out its essential features for DSE.

A concurrent object in Creol executes a number of processes that have ac-
cess to its local state. Each process corresponds to the activation of one of the
object’s methods; a special method run is automatically activated at object cre-
ation time, if present, and captures the object’s active behavior. Objects execute
concurrently: each object has a processor dedicated to executing the processes
of that object, so processes in different objects execute in parallel. In contrast
to, e.g., Java, each Creol object strictly encapsulates its state; i.e., external ma-
nipulation of the object state happens via calls to the object’s methods only.

Only one process can be active in an object at a time; the other processes in
the object are suspended. We distinguish between blocking a process and releasing
a process. Blocking causes the execution of the process to stop, but does not
let a suspended process resume. Releasing a process suspends the execution of
that process and lets another (suspended) process resume. Thus, if a process
is blocked there is no execution in the object, whereas if a process is released
another process in the object may execute. The execution of several processes
within an object can be combined using release points within method bodies. At
a release point, the active process may be released and some suspended process
resumes. This way, (non-terminating) active and reactive behavior are easily
combined within a concurrent object in Creol.

Communication in Creol is based on method calls. These are a priori asyn-
chronous; method replies are assigned to labels (also called future variables,
see [5]). There is no synchronization associated with calling a method. Reading
a reply from a label, however, is a blocking operation and allows the calling ob-
ject to synchronize with the callee. A method call that is directly followed by a
read operation models a synchronous call. Thus, the calling process may decide
at runtime whether to call a method synchronously or asynchronously. The local
scheduling of processes inside an object is given by conditions associated with
release points. These conditions may depend on the value of the local state, al-
lowing cooperative scheduling between the processes within an object, but may
also depend on the object’s communication with other objects in the environ-
ment. Guards on release points include synchronization operations on labels, so
the local scheduling can depend on both the object’s state and the arrival of
replies to asynchronous method calls.

To sum up: only one process is executing on each object’s local state at a time,
and interleaving of processes is flexibly controlled via (guarded) release points.
Together with the fact that objects communicate exclusively via messages (strict

6

T::= C | Bool | Void L ::= class C(v) begin var f : T ;M end
| Int | String | ... M::= op m(in x : T out x : T) == var x : T ; s end

v::= f | x e ::= v | new C(v) | null | this | v + v | ...
b ::= true | false | v s ::= l!e.m(e) | !e.m(e) | l?(v) | e.m(e; v) | await g

g::= b | v? | g ∧ g | v := e | skip | release | await e.m(e; v)

| while g do s end | if g then s end

Fig. 1. Language syntax of a subset of Creol.

encapsulation), this gives us the concurrency control necessary for extending
DSE to the distributed paradigm.

Syntax. The language syntax of the subset of Creol used in this paper is pre-
sented in a Java-like style in Figure 1. In this overview, we omit some features
of Creol, including interfaces, inheritance, non-deterministic choice and many
built-in data types and their operations. For a full overview of Creol, see for
example [10]. In the language subset used in the examples of this paper, classes
L are of type C with a set of methods M . Expressions e over variables v (either
fields f or local variables x) are standard. Statements s are standard apart from
the asynchronous method call l!e.m(e) where the label l points to a reference to
the reply, the (blocking) read operation l?(v), and release points await g and
release. Guards g are conjunctions of Boolean expressions b and synchroniza-
tion operations l? on labels l. When the guard in an await statement evaluates
to false, the statement is disabled and becomes a release, otherwise it is en-
abled and becomes a skip. A release statement suspends the active process
and another suspended process may be rescheduled. The guarded call await
e.m(e; v) is a typical pattern which suspends the active process until the reply
to the call has arrived and abbreviates l!e.m(e);await l?; l?(v).

3.1 Representation of a Run

A run of a Creol system captures the parallel execution of processes in different
concurrent objects. Such a run may be perceived as a sequence of execution steps
where each step contains a set of local transitions on a subset of the system’s
objects. However, only one process may be active at a time in each object and
different objects operate on disjoint data. Therefore, the transitions in each exe-
cution step may be performed in a truly concurrent manner or in any sequential
order, so long as all transitions in one step are completed before the next execu-
tion step commences. For the purposes of dynamic symbolic execution the run
is represented as a sequence of statements which manipulate the state variables,
together with the conditions which determine the control flow, as follows.

The representation of an assignment v := e is straightforward: Because fields
and local variables in different processes can have the same name and statements
from different objects are interleaved, the variable names are expanded to a
unique identifier by adding the object id for fields and the call label for local
variables. This expansion is done transparently for all variables and we will omit
the variable scope in the following.

7

An asynchronous method call in the run is reflected in four execution steps
(the label value l uniquely identifies the steps that belong to the same method
call): o1

l
⇀ o2.m(e) represents the call of method m in object o2 from object

o1 with arguments e; o1
l
⇁ o2.m(v) represents when the called objects starts

execution, where v are the local names of the parameters for m; o1
l
↼ o2.m(e)

represents the emission of the return values from the method execution; and
o1

l
↽ o2.m(v) represents the corresponding reception of the values. These four

events fully describe method calling in Creol. In this execution model the events
reflecting a specific method call always appear in the same order, but they can
be interleaved with other statements.

Object creation, new C(v), is similar to a method call. The actual object
creation is reduced to generating a new identifier for the object and a call to the
object’s init and run methods, which create the sequences as described above.

Conditional statements in Creol do not change the values of the variables and
therefore can be treated as skip in DSE. For the sake of computing the input
values, however, the condition of the taken branch is recorded as 〈g〉 (E.g., if the
concrete execution selects the then branch of an statement if g, the condition
〈g〉 is recorded. If the else branch is selected, then the negated condition 〈¬g〉
is recorded). Remark that statements await g requires careful treatment: if
it evaluates to false, no code is executed. To reflect the information that the
interpreter failed to execute a process because the condition g of the await
statement evaluated to false, the negated condition 〈¬g〉 is recorded and the
interpreter proceeds by selecting another process.

4 Dynamic Symbolic Execution of Distributed Objects

This section presents the rules to actually compute the symbolic values for a
given run. The formulas given in this section very closely resemble the rewrite
rules of Creol’s simulation environment [10], defined in rewriting logic [15] and
implemented in Maude [4]. A rewrite rule t =⇒ t′ may be interpreted as a local
transition rule allowing an instance of the pattern t in the configuration of the
rewrite system to evolve into the corresponding instance of the pattern t′ (where
t and t′ denote states of the model). When auxiliary functions that do not change
the state are needed in the semantics, these are defined in equational logic, and
are evaluated in between the state transitions [15]. The rules are presented here
in a slightly simplified manner to improve readability.

Denote by s the representation of program statements. Let σ = 〈v1 �e1, v2 �

e2, . . . vn �en〉 = 〈v�e〉 be a map which records key–value entries v�e, where a
variable v is bound to a symbolic value e. The value assigned to key v is accessed
by vσ. For an expression e and a map σ, define a parallel substitution operator
eσ which replaces all occurrences of every variable v in e with the expression vσ
(if v is in the domain of σ). For simplicity, let eσ denote the application of the
parallel substitution to every expression in the list e. Furthermore, let the oper-
ator σ1]σ2 combine two maps σ1 and σ2 such that, when entries with the same

8

v := e; s
ˆ
Θ, σ, C

˜
=⇒ s

ˆ
Θ, σ] 〈v � (eσ)〉, C

˜
(assign)

o1
l
⇀ o2.m(e); s

ˆ
Θ, σ, C

˜
=⇒ s

ˆ
Θ] 〈l � eσ〉, σ, C

˜
(call)

o1
l
⇁ o2.m(v); s

ˆ
Θ, σ, C

˜
=⇒ s

ˆ
Θ, σ] 〈v � lΘ〉, C

˜
(bind)

〈g〉; s
ˆ
Θ, σ, C

˜
=⇒ s

ˆ
Θ, σ, C 〈̂gσ〉

˜
(cond)

Fig. 2. Rewrite rules for symbolic execution of Creol statements.

key exist in both maps, the entry in σ2 is taken. These operators are defined
as equations in rewriting logic and are evaluated in between the rewrite steps.
In the symbolic state σ, all expanded variable names are bound to symbolic ex-
pressions. However, operations for method calls do not change the value of the
symbolic state, but generate or receive messages that are used to communicate
actual parameter values between the calling and receiving objects. Similar to the
expressions bound to variables in the symbolic state σ, the symbolic representa-
tions of these actual parameters are bound in a map Θ to the actual and unique
label value l provided for each method call by Creol’s operational semantics. Fi-
nally, the conditions of control statements along an execution path are collected
in a list C; the concatenation of a condition c to C is denoted by C ĉ.

The configurations of the rewrite system for dynamic symbolic execution are
given by s

[
Θ, σ, C

]
, where s is a run represented as a sequence of statements

that still have to be executed, Θ and σ are the maps for messages and symbolic
variable assignments as described above, and C is the list of conditions. Recall
that the run s (as described in Section 3.1) is in fact generated on the fly by the
concrete rewrite system for Creol executed in parallel with the dynamic symbolic
execution. Thus, the rules of the rewrite system have the form

s
[
Θ, σ, C

]
=⇒ s′

[
Θ′, σ′, C′

]
The primed versions are updated results from the execution rule. The rules are
given in Figure 2 and explained below.

Rule assign defines the variable updates that are performed for an assign-
ment. All variables in the right hand side are replaced by their current values in
σ, which is then updated by the new expressions. Note that we do not handle
variable declarations, but work in the runtime-environment. We expect that a
type check already happened during compile time and insert variables into σ the
first time they appear. A method call as defined by Rule call emits a message
that records the expressions that are passed to the method. Because of the asyn-
chronous behavior of Creol, the call might be received at a later point in the
run (or not at all if the execution terminates before the method was selected for
execution) by Rule bind, which handles the binding of a call to a new process
and assigns the symbolic representation of the actual parameter values to the
local variables in the new process. The emission and reception of return values
are handled similarly to call statements and call reception.

Object creation is represented as a call to the constructor method init of the
newly created object. In this case there is no explicit label for the call statement,

9

so the object identifier is used to identify the messages to call the init and run
methods, which are associated to the new statement. For conditionals, the local
variables in the condition are replaced by their symbolic values (Rule cond).
This process is analogous for the different kinds of conditional statements (if,
while, await). The statement itself acts as a skip statement; it changes no
variables and does not produce or consume messages. The resulting expression
gσ directly characterizes the equivalence class of input values that reach and
fulfill the condition. The conjunction of all conditions found during symbolic
evaluation give the set of input values that can perform that run. The tool
records the condition that evaluated to true during runtime. Therefore, if the
else branch of an if statement is entered or a disabled await statement with
g approached, the recorded condition will be ¬g.

5 Testing Distributed Systems

Approaches to test case generation for structural coverage intend to find test a
set that performs runs in the system for a specific coverage criterion. Two runs
that cover the same parts of a system are considered equivalent. A good test set
should maximize the coverage, while minimizing the number of equivalent runs
in order to avoid superfluous efforts in executing the tests.

The execution of a distributed system is not fully controllable through its
interface. One and the same test case can lead to arbitrarily different runs on
the system under test (SUT). In practice, tools like ConTest [6] are used to
execute single test cases multiple times on the SUT with different schedulings.
For the model, on the other hand, it is straightforward to introduce additional
variables to resolve the nondeterminism for the sake of examining all possible
paths to build the optimal set of test cases. These techniques are complementary
to the computation shown in this paper and should be applied additionally.

It is the responsibility of a testing engineer to write test objects (analogous
to unit tests) that set up the system and perform interactions that will drive an
interesting execution of the system. Presupposing this test scenario, we enhance
the coverage by introducing symbolic values tS in the test object and compute
new values such that new, non-equivalent runs are performed.
Constructing the Test Set. Dynamic symbolic execution on a run gives the set
of conditions that are combined to the path condition C =

∧
1≤i≤n ci (for n

conditions), characterizing exactly the equivalence class of tS that can repeat
the same execution path. Only one test case that fulfills C is selected. A new
test case is then chosen to specifically avoid that a particular branch is taken by
violating the respective ci. To maximize decision coverage (DC), for instance,
test cases have to be created such that for each of the conditions ci, there is also
a test case that violates this condition. The process of generating new test cases
ends after all combinations required for the coverage criteria are explored.

In the case of concurrent distributed systems, however, we frequently deal
with scenarios in which the naive approach does not terminate. Most impor-
tantly, distributed systems usually contain active objects that do not terminate

10

and thus creates an infinite run. In this case, execution on the model has to be
stopped after exceeding some threshold (ideally after detecting a loop). The com-
putation of the condition can be performed as before and will prohibit the same
partial run in future computations. Creol also supports infinite datatypes. There-
fore, for a code sample like while (i > 0) do i := i - 1 end, there is
a finite run for each i, but there are infinitely many of them. To make sure that
the approach terminates, an artificial limiting condition has to be introduced,
e.g., by creating an equivalence class for all i greater than a constant k.
Running a Test Case. A test case as generated in this paper is used to test
implementations of distributed systems by checking if the implementation under
test complies to the model as described in previous work [1]. The test execution
approach of that paper handles the difficulties of testing a distributed system by
defining a set of actions and events that are used to control the implementation
as well as the model, and to monitor the behavior of the implementation. So
far the execution has not been monitored online, rather a log is generated that
has been verified by using the model. A run of the implementation is considered
successful if the model is able to reproduce the run.

The model is a direct specification of the implementation, and both systems
share their internal control structure. Test cases optimized for structural cov-
erage in the model will therefore also improve the structural coverage in the
implementation.

6 Examples

This section shows the feasibility of the approach by means of two examples:
The peer to peer example presents the exploration of existing test cases with
respect to coverage, during which an important special case was discovered. The
second example demonstrates how to derive new test cases on example of the
ASK system, an industrial case study.

The dynamic symbolic interpreter allows to identify variables that are treated
as normal variables for the concrete run, and as a symbolic value for the dynamic
symbolic execution. These variables are identified by a special naming scheme,
here denoted by the subscript S . This enables the flexible monitoring of symbolic
values of variables at any arbitrary level in the code.

6.1 Peer to Peer

A peer to peer system connects several coequal components (peers) with the aim
to share data between them. Each peer works both as client and as server holding
local files. A client can search the network to find the location of a file, connect to
the respective server and download the document. Communication between the
components is established via channels. We use a sophisticated model describing
such a system, which stems from the CREDO project to demonstrate various
techniques for modeling distributed systems. It consists of 23 classes (not shown
in this paper due to lack of space) and already comes with a small set of test

11

1 class Test(cl :Client,b :Peer)
2 begin
3 var reply :Data
4 op run ==
5 await
6 cl.search("f1";reply)
7

8

9 end

Fig. 3. Predefined test case

1 class TestDSE(cl :Client,b :Peer)
2 begin
3 var reply :Data
4 op run ==
5 var reqkeyS :Data;
6 reqkeyS := "f1" ;
7 await
8 cl.search(reqkeyS;reply)
9 end

Fig. 4. Test case for DSE

cases that model a net consisting of three nodes with some files each. One of
this test cases is given in Figure 3. Class Test models a user that communicates
with one of the Peers through the user interface and searches for a file document
named "f1"; the result is stored in the variable reply.

In order to examine the paths generated by this test case, we adapt the class
by replacing the constant "f1" with the symbolic variable reqkeyS (Figure 4).
Recall that DSE performs a concrete and a symbolic run in parallel. The DSE
interpreter of Creol therefore treats reqkeyS as normal variable for the concrete
run, but as symbolic value in the symbolic execution. The assign of the original
value in Line 6 is only executed to generate the concrete run, the symbolic execu-
tion passes the symbolic value reqkeyS to the method cl.search. Running
the DSE interpreter on this program gives us two decisions in if statements
within the peers that depend on reqkeyS :

{"ifthenelse" : not(in(reqkeyS, ["f2"])) }
{"ifthenelse" : in(reqkeyS, ["f1"]) }

The conditions represent checks if reqkeyS is in the list of files that are
stored at a server. The first server (Condition 1) has the file list ["f2"], which
does not contain "f1". The concrete run therefore proceeds to the branch of
the conditional where not(in(reqkeyS , ["f2"])) is true (the else branch). The
check at the second server is successful (Condition 2). Manual examination of
all predefined test cases quickly shows that this pattern repeats for each test
case. For proper coverage, we are interested in concrete values of reqkeyS not
satisfying the already taken decisions. In our example this means that we need a
value executing a path that does not end in finding a file. Hence, a new concrete
value (e.g. "f0") that is not contained in any of the three servers is assigned to
reqkeyS , what leads to the following path condition:

{"ifthenelse" : not(in(reqkeyS,["f2"])) }
{"ifthenelse" : not(in(reqkeyS,["f1"])) }
{"ifthenelse" : not(in(reqkeyS,["f1", "f2", "f3"])) }

This new test case represents the important case that ensures that all servers
are contacted and the client performs properly even if no file was found.

12

6.2 The ASK System

ASK is an industrial software system for connecting and organizing people, de-
veloped by the research company Almende and marketed by ASK Community
Systems. The ASK system provides mechanisms for matching users requiring
information or services with potential suppliers and is used by various organi-
zations for applications like workforce planning and emergency response. The
number of people connected varies from several hundred to several thousands.

A Creol reference model for ASK systems has been developed by Almende [1].
The ASK system consists of a number of components to receive and process
requests. Each of these components is itself multi-threaded. The threads in-
side a component act as workers in a thread pool, the executing tasks are put
into a component-wide shared task queue. A balancer is used to create and
destroy worker threads depending on a given maximal number of threads, the
currently existing number of threads and on the number of remaining tasks.
Figure 5 shows one central part of this balancing task: the tail-recursive method
createThreads. This method and its opponent in the model, killThreads,
are responsible for creating and killing threads when appropriate. The balancer
is initialized with the symbolic value maxthreadsS , the maximum number of
threads that are allowed in the thread pool. Inside the balancer, the local vari-
able maxthreads is then set to maxthreadsS + 1 to account for the balancer
thread itself, which also runs inside the thread pool. The balancer has access to
the number of threads that are active (threads), the number of threads that
are processing some task (busythreads), and the number of tasks that are
waiting to be assigned to a worker thread (tasks).

The await statement in Line 4 suspends the process if it is not necessary to
create further worker threads, i.e. if the maximal number of threads is already
reached or half of the threads are without a task (they are neither processing a
task, nor is there a task open for processing). The if statement in Line 7 makes
sure there are not more tasks created than allowed by maxthreads. Finally,
the thread pool is ordered to create the required numbers of threads in Line 11.

We instantiate the model with a fixed number of tasks (10 in our example)
and with a variable maximum of threads maxthreadsS , with the goal of find-
ing different values for maxthreadsS to optimize the coverage of the code in
Figure 5. In the following, we show only the relevant parts of the calculated
path conditions, leaving out conditions pertaining to other parts of the model
(killThreads, the thread creation code inside threadpool, etc.).

For a first run we choose maxthreadsS==0. Dynamic symbolic execution
with this starting value results in the path condition:

{"disabled await" : not(1< (maxthreadsS +1) & true) }

After a little simplification it becomes clear that the path was taken because 0
>= maxthreadsS . Any other start value will lead to a different run. We select
a start value maxthreadsS==15 and get

{"enabled await" : (1< (maxthreadsS +1) & true) }
{"ifthenelse" : not(10 > maxthreadsS) }

13

1 op createThreads ==
2 var amountToCreate : Int;
3 var idlethreads : Int := threads −busythreads;
4 await ((threads< maxthreads)
5 ∧ ((idlethreads −tasks)< (threads/ 2)));
6 amountToCreate := tasks −idlethreads +(threads/ 2);
7 if (amountToCreate > (maxthreads −threads)) then
8 amountToCreate := maxthreads −threads;
9 end;

10 if (amountToCreate > 0) then
11 await threadpool.createThreads(amountToCreate);
12 end;
13 createThreads();

Fig. 5. Model of thread pool balancing code in the ASK system. The fields threads,
idlethreads and tasks are updated by outside method calls, so the conditions in
the await statements can become true.

The number 10 reflects the number of tasks we created. The path condition re-
flects that all inputs with maxthreadsS >= 10 lead to the same path because
in each case only the number of threads is created, which is 10 due to the 10
tasks with which the model was initialized. There is no condition for the if
in Line 10 because the amount to create does not exceed maxthreadsS and
therefore is not dependent on it. A third run, created with maxthreadsS==5,
results in

{"disabled await" : (1< (maxthreadsS +1) & true) }
{"ifthenelse" : 10 > maxthreadsS }
{"ifthenelse" : maxthreadsS > 0 }

In this test case the amount of tasks to create exceeded the maximal allowed
number of tasks and therefore was recomputed in Line 8. The new value depends
on maxthreadsS , which causes the if statement in Line 10 to contribute to the
path condition. The new path condition does not further divide the input space,
so the maximal possible coverage according to the chosen coverage criterion is
reached.

7 Conclusions

The main contribution of this work is the novel extension of dynamic symbolic
execution to non-trivial distributed and concurrent object models. This has been
achieved by exploiting the properties of the Creol modeling language; in particu-
lar local scheduling control of the processes and strict encapsulation of the object
state. This paper demonstrates how dynamic symbolic execution, combined with
the executable architectural models of Creol, can be used to systematically de-
rive interesting test cases, while avoiding the combinatorial explosion inherent in
distributed concurrent systems. Our approach has been formalized in rewriting

14

logic and implemented in Maude. A peer to peer example and an industrial case
study of an agent system serve to illustrate the technique.

The current version of the tool reports the equivalence classes to the user, but
does not automatically select and execute new test runs. Immediate future work
will be an automation of this process by means of constraint solving techniques.
Others have shown that this is feasible in practice, e.g. in [19].

Dynamic symbolic execution, as presented in this paper, should be applicable
to other object-oriented languages with concurrency by enforcing serialization of
processes in the object as well as strict encapsulation. In a multi-threaded con-
currency model as found in Java, dynamic symbolic execution could in principle
be achieved by declaring all methods as synchronized and all fields as private.
However, such severe restrictions seem undesirable. It would be interesting if
lighter restrictions for such languages could be identified that still enable dy-
namic symbolic execution.

References

1. B. Aichernig, A. Griesmayer, R. Schlatte, and A. Stam. Modeling and testing multi-
threaded asynchronous systems with Creol. In Proceedings of the 2nd Interna-
tional Workshop on Harnessing Theories for Tool Support in Software (TTSS’08),
ENTCS. Elsevier, 2009. To appear.

2. R. S. Boyer, B. Elspas, and K. N. Levitt. Select-A formal system for testing and
debugging programs by symbolic execution. SIGPLAN Not., 10(6):234–245, 1975.

3. F. Chen, M. Hills, and G. Roşu. A Rewrite Logic Approach to Semantic Definition,
Design and Analysis of Object-Oriented Languages. Technical Report UIUCDCS-
R-2006-2702, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2006.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 285:187–243, Aug. 2002.

5. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
R. de Nicola, editor, Proc. 16th European Symposium on Programming (ESOP’07),
volume 4421 of LNCS, pages 316–330. Springer, Mar. 2007.

6. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur. Framework for
testing multi-threaded Java programs. Concurrency and Computation: Practice &
Experience, 15(3):485–499, 2003.

7. A. Gargantini and C. Heitmeyer. Using model checking to generate tests from
requirements specifications. In ESEC/FSE-7: Proc. of the 7th European software
engineering conference, volume 1687 of LNCS, pages 146–162. Springer-Verlag,
1999.

8. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 213–223. ACM, 2005.

9. H. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test
coverage and generation. In Proceedings of the 8th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’02),
volume 2280 of LNCS, pages 327–341. Springer, 2002.

15

10. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, Mar. 2007.

11. S. Khurshid, C. Pasareanu, and W. Visser. Generalized Symbolic Execution for
Model Checking and Testing. In Proceedings of the 9th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’03),
volume 2619 of LNCS, pages 553–568. Springer, 2003.

12. J. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

13. R. Kirner. Towards preserving model coverage and structural code coverage.
EURASIP Journal on Embedded Systems, 2009.

14. B. Long, D. Hoffman, and P. A. Strooper. Tool Support for Testing Concurrent
Java Components. IEEE Trans. on Software Engineering, pages 555–566, 2003.

15. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

16. M. Musuvathi, S. Qadeer, T. Ball, and G. Basler. Finding and reproducing heisen-
bugs in concurrent programs. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’08), 2008.

17. A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner, B. Sostawa,
R. Zölch, and T. Stauner. One evaluation of model-based testing and its automa-
tion. In ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 392–401, New York, NY, USA, 2005. ACM.

18. K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In Proc. 18th International Conference on Computer Aided
Verification (CAV’06), volume 4144 of LNCS, page 419. Springer, 2006.

19. N. Tillmann and J. de Halleux. Pex - white box test generation for .NET. In Proc.
of the 2nd International Conference on Tests and Proofs (TAP’08), volume 4966
of LNCS, pages 134–153. Springer, 2008.

20. J. Tretmans and H. Brinksma. Torx: Automated model based testing. In Proceed-
ings of the 1st European Conference on Model-Driven Engineering, 2003.

21. W. Visser, K. Havelund, G. Brat, and S. Park. Java PathFinder - second gener-
ation of a Java model checker. In Proc. of Post-CAV Workshop on Advances in
Verification, Chicago, July, 2000.

22. W. Visser, C. Pasareanu, and S. Khurshid. Test input generation with Java
PathFinder. In Proceedings of the 2004 ACM SIGSOFT international symposium
on Software testing and analysis, pages 97–107. ACM New York, NY, USA, 2004.

23. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for gen-
erating object-oriented unit tests using symbolic execution. In Proceedings of the
11th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’05), volume 3440 of LNCS, pages 365–381. Springer,
2005.

24. Y. Xie, A. Chou, and D. Engler. Archer: using symbolic, path-sensitive analysis to
detect memory access errors. In ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, pages 327–336. ACM,
2003.

16

