
Incremental Reasoning for Multiple Inheritance ?

Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

Department of Informatics, University of Oslo, Norway
{johand,einarj,olaf,msteffen}@ifi.uio.no

Abstract. Object-orientation supports code reuse and incremental programming.
Multiple inheritance increases the power of code reuse, but complicates the bind-
ing of method calls and thereby program analysis. Behavioral subtyping allows
program analysis under an open world assumption; i.e., under the assumption
that class hierarchies are extensible. However, method redefinition is severely re-
stricted by behavioral subtyping, and multiple inheritance often leads to conflict-
ing restrictions from independently designed superclasses. This paper presents an
approach to incremental reasoning for multiple inheritance under an open world
assumption. The approach, based on a notion of lazy behavioral subtyping, is
less restrictive than behavioral subtyping and fits well with multiple inheritance,
as it incrementally imposes context-dependent behavioral constraints on new sub-
classes. We formalize the approach as a calculus, for which we show soundness.

1 Introduction

Object-orientation supports code reuse and incremental programming through inheri-
tance. Class hierarchies are extended over time as subclasses are developed and added.
A class may reuse code from its superclasses but it may also specialize and adapt this
code by providing additional method definitions, possibly overriding definitions in su-
perclasses. This way, the class hierarchy allows programs to be represented in a compact
and succinct way, significantly reducing the need for code duplication. Late binding is
the underlying mechanism for this incremental programming style; the binding of a
method call at run-time depends on the actual class of the called object. Consequently,
the code to be executed depends on information which is not statically available. Al-
though late binding is an important feature of object-oriented programming, this loss of
control severely complicates reasoning about object-oriented programs.

Behavioral subtyping is the most prominent solution to regain static control of late-
bound method calls (see, e.g., [21, 1, 20]), with an open world assumption; i.e., where
class hierarchies are extensible. This approach achieves incremental reasoning in the
sense that a subclass may be analyzed in the context of previously defined classes,
such that previously proved properties are ensured by additional verification conditions.
However, the approach restricts how methods may be redefined in subclasses. To avoid
reverification, any method redefinition must preserve certain properties of the method
which is redefined. In particular, this applies to the method’s contract; i.e., the pre- and

? This research is partially funded by the EU project IST-33826 CREDO: Modeling and analysis
of evolutionary structures for distributed services (http://credo.cwi.nl).

P ::=L {t} L ::=class C extends C { f M}
M ::=m (x){t} e ::=new C | b | v | this | e.m(e) | m(e) | m(e)@C

v ::= f | f @C t ::=v := e | return e | skip | if b then t else t fi | t; t

Fig. 1. The language syntax, with class names C and method names m. Expressions e
include fields, this, object creation, Boolean expressions b, and method calls. Whites-
pace is used for list concatenation (i.e., e is a list and e e a non-empty list of expressions).

postcondition for its body. This contract can be seen as a description of the promised
behavior of all implementations of the method. Unfortunately, this restriction hinders
code reuse and is often violated in practice [30]; for example, it is not respected by the
standard Java library definitions.

Multiple inheritance offers greater flexibility than single inheritance, as several class
hierarchies can be combined in a subclass. However, it also complicates language de-
sign and is often explained in terms of complex run-time data structures such as vir-
tual pointer tables [31], which are hard to understand. Formal treatments are scarce
(e.g., [29,8,5,14,32]), but help clarify intricacies, thus facilitating design and reasoning
for programs using multiple inheritance. Multiple inheritance also complicates behav-
ioral reasoning, as name conflicts may occur between methods independently defined
in different branches of the class hierarchy.

Work on behavioral reasoning about object-oriented programs has mostly focused
on languages with single inheritance (see, e.g., [27, 28, 7]). It is an open problem how
to design an incremental proof system for multiple inheritance under an open world
assumption, without severely restricting code reuse. In this paper we propose a solution
to this problem. The approach extends lazy behavioral subtyping, which was originally
developed for single inheritance systems [13] to allow more flexible code reuse than rea-
soning systems based on behavioral subtyping. Our approach applies to a wide class of
object-oriented systems, relying on the assumption of a healthy binding strategy, which
is needed for incremental reasoning. Healthiness may easily be imposed on non-healthy
binding strategies. The approach is formalized as a syntax-driven inference system, for
which we show soundness, combines deductive style program logic with incremen-
tal program development, and is well-suited for program development environments.
Proofs and a more detailed example may be found in [12].

Paper overview. Sect. 2 introduces late binding and multiple inheritance, Sect. 3
proof environments for behavioral reasoning, and Sect. 4 presents the inference system
for incremental reasoning. Sect. 5 discusses methodological aspects, Sect. 6 discusses
related work, and Sect. 7 concludes the paper.

2 Late Binding and Multiple Inheritance

An object-oriented kernel language is given in Fig. 1, based on Featherweight Java [16].
For simplicity, we let expressions e be without side-effects and assume that fields f have
(locally) distinct names, methods with the same name have the same signature (i.e., no
method overloading), class names are unique, programs are well-typed, there is read-

2

Account

hhhhhhhhh
WWWWWWWWWW Number

gggggggggg

FeeAccount

VVVVVVVVVV InterestAccount

gggggggggggg

Card

Fig. 2. A multiple inheritance class hierarchy for an account system. The inheritance
relation is indicated by lines, e.g., class FeeAccount inherits from Account.

only access to the formal parameters of methods, as well as this, and we ignore the
types of fields and methods. Two notable differences to Featherweight Java are multiple
inheritance and a corresponding form of static method calls. These are explained below.
(For brevity, we do not explain standard language features in detail.)

A class C extends a list C of superclass names with fields f and methods M, where
C consists of unique names. We say that C defines a method m if the set M contains
an implementation of m. Let a partial function body(C,m) return this implementation
(so body(C,m) is undefined if m is not in M). For any superclass B of C and method
m defined in B, we say that C inherits m from B if C does not define m, otherwise m is
overridden in C. We say that a class C1 is below class C2 (written C1 ≤C2) if C1 and C2
are the same class or if C1 extends a class below C2. Furthermore, C2 is above C1 if C1
is below C2. A subclass is below a superclass. Two classes are related if one is below
the other.

There are two kinds of method calls. A static call m(e)@C may occur in a class
below C, and it is bound above C at compile time. This statement generalizes the call
to the superclass found in languages with single inheritance. In a remote call e.m(e),
the object e receives a call to m with actual parameters e. For convenience, we write
e.m(e) or simply e.m instead of v := e.m(e) if the result is not needed. Explicit self-
calls, written m(e), are late-bound to this. Similarly, f @C binds a field f above C.

2.1 Name Conflicts and Healthiness

Inheritance relates classes in a class hierarchy. For single inheritance this hierarchy
forms a tree, whereas for multiple inheritance, the hierarchy forms a directed, acyclic
graph. In the single inheritance tree, vertical name conflicts occur when a subclass over-
rides a method from a superclass. The binding strategy for method calls must resolve
such conflicts. Late binding or dynamic dispatch selects the method body to be executed
at run-time, depending on the callee’s run-time class: the selected body is found by the
first matching definition of the method above the actual class of the object. In multiple
inheritance class hierarchies there are also horizontal name conflicts. These occur when
different definitions of the same method are found above a given class, depending on
the chosen path through the hierarchy. More elaborate binding strategies are needed to
resolve horizontal conflicts. Some binding strategies are infeasible, as they contradict
incremental program development. This is illustrated by the following example.

Example 1. We consider a class hierarchy for a bank account system, given in Fig. 2.
Potential problems with horizontal name conflicts are illustrated by the classes in Fig. 3,

3

class Account { int bal = 0;
deposit(int x) {...;update(x)}
withdraw(int x) {...;update(-x)}
update(int y) {...;bal=bal+y;...}}

class Number { int num;
update(int x) {num = x }
increase(int x) {update(num+x)}}

class InterestAccount extends Account Number { int fee;
addInterest(int x y) {...; deposit(x);increase(y)}
withdraw(int x) {withdraw(x)@Account;if bal<0 then update(-fee) fi}}

class FeeAccount extends Account { int fee;
withdraw(int x) {withdraw(x)@Account;update(-fee) }
update(int y) {...; bal=bal+y;...}}

class Card extends FeeAccount InterestAccount {
withdraw(int x) {withdraw(x)@InterestAccount;update(-fee@FeeAccount)}}

Fig. 3. Implementation sketches of the classes in Fig. 2.

sketching an implementation of the account system. (A more detailed implementation
is available in the extended version of this paper [12].) Class Account implements
basic facilities for depositing and withdrawing money. The actual manipulation of the
balance is implemented by a method update. Class Number, developed indepen-
dently of Account, provides functionality for manipulating a number num. These two
classes are inherited by the subclass InterestAccount, where field num plays the
role of the current interest rate. Method addInterest increases the interest rate after
depositing a value. For InterestAccount, inheritance of Account and Number
gives a horizontal name conflict for method update. The behavior of the two ver-
sions of update is completely different, which means that the behavior specified by
increase in Number will not hold in the subclass, if the self-call to update in
increase is bound to Account. Thus, in order to support incremental design, the
self-call in Number should bind to the definition in Number, and correspondingly for
the self-call in Accountshould bind to the definition in Account.

One solution to resolve horizontal name conflicts is explicit resolution specified as
part of an inheritance list; e.g., to use qualification or renaming as in C++ [31], Eif-
fel [23], and POOL [2]. However, it might be undesirable to force the programmer to
modify method names, making programs more difficult to understand and maintain. We
generalize this approach and decorate each self-call with a binding clause restricting the
binding space. Such a clause may represent a specific name resolution strategy, or be ex-
plicitly provided by the programmer. This way, the approach of this paper is applicable
to several resolution strategies. Binding clauses allow us to consider horizontal name
conflicts as a natural feature of multiple inheritance. In particular when using libraries,
the programmer cannot be expected to know (or resolve) potential name conflicts of,
e.g., auxiliary methods in the libraries. To support incremental program development
and reasoning, we impose the following healthiness condition on the binding strategy:

– a self-call made by a method defined in C must bind to a class related to C, and

4

– a remote call x.m, where x has C as declared class, must bind to a class related to C.

It is easy to see that healthiness removes accidental overriding of methods, due to
unfortunate binding. Let C#m denote a call to m where the binding is restricted to
classes related to C. In Example 1, if the call to update in Number is replaced
by Number#update, the call becomes healthy. When executed in an instance of
InterestAccount, the call will bind related to Number. For the rest of the paper,
we use the convention that a self-call to m made by a method defined in C is understood
as C#m. Similarly, a remote call x.m with C as the declared class of x, is understood as
x.C#m. As static calls are inherently healthy, this ensures healthy binding. A particular
binding strategy is given below. We here assume that the notation C#m and x.C#m is
introduced during static analysis, but it could also be made available to the programmer.

2.2 The Binding of Method Calls and Fields

For the reasoning system, we need an explicit definition of a healthy resolution strat-
egy. In this paper, we formalize the strategy by a function bind defined below. Other
definitions of bind are possible and would lead to variations of the calculus. A call to a
method m is bound with respect to a search class D; i.e., bind(D,m), where the search
for a definition of m starts in D. Following [9, 11, 17], ambiguities are solved by fixing
the order in which inherited classes are searched, e.g., from left to right. Let Cid and
Mid denote class and method names. To make the representation of class hierarchies
compact, a class name is bound to a tuple 〈C, f ,M〉 of type Class, where C, f , and M
are accessible by the observer functions inh, fields, and mtds, respectively. This binding
strategy can be defined by a partial function bind: List[Cid]×Mid→ Cid:

bind(nil,m) , ⊥
bind(D D,m) , D if m ∈ D.mtds
bind(D D,m) , bind(D.inh D,m) otherwise,

where nil denotes the empty list and D.inh D reduces to D when D.inh is empty. This
strategy is not healthy, since a self-call would be bound independently of where in the
hierarchy the call is made. A healthy strategy can be obtained by restricting the binding
to classes related to the class where the call is made. We let the notation bind(D,C#m)
define the call C#m for search class D. The search is restricted by C; the returned class
must be either above or below C. This ensures the healthiness condition described
above. By type-safety, there is a definition of m above C; thus bind(D,C#m) is well-
defined for D below C.

Definition 1. Define bind(_,_#_) : List[Cid]×Cid×Mid→ Cid by:

bind(nil,C#m) , ⊥
bind(D D,C#m) , D if (D < C∨D≥C)∧m ∈ D.mtds
bind(D D,C#m) , bind(D.inh D,C#m) if (D < C∨D≥C)∧m /∈ D.mtds
bind(D D,C#m) , bind(D,C#m) otherwise

5

A remote call x.m is bound by bind(D,C#m) where C is the declared class of x
and D the actual class of x. A statically bound method call m@C is bound above C
independently of the actual class that the call is executed in. Following the traversal
strategy above, the binding of the call is given by bind(m@C):

Definition 2. Define bind(_@_) : Mid×Cid→ Cid by: bind(m@C) , bind(C,C#m).

Similar binding functions may be used to define the binding of fields: An occurrence
of f @B is allowed inside a class declaration C if B is above C, and is bound above B;
and an unqualified occurrence of f inside C is understood as f @C.

3 Lazy Behavioral Subtyping

Lazy behavioral subtyping supports incremental reasoning for extensible class hierar-
chies; each class is analyzed based on the analysis of its superclasses, but independent
of (future) subclasses. Lazy behavioral subtyping was presented for single inheritance
in [13]. We here present an extension for multiple inheritance and horizontal name con-
flicts, assuming a healthy binding strategy. With healthy binding, a method call binds to
a class related to the calling class. Therefore behavioral constraints may be propagated
down the class hierarchy, which allows incremental reasoning. The proof method has
two parts, a conventional program logic (e.g., [27,15,4,25]) and, on top of that, a proof
environment which incrementally tracks method specifications and requirements.

The proof system uses Hoare triples {p} t {q} with the standard partial correctness
interpretation: if a statement t starts execution in a state where a precondition p holds
and this execution terminates, then the postcondition q holds afterwards. Triples can be
derived in any suited program logic, so let `PL {p} t {q} denote that the triple {p} t {q}
is derivable in the chosen program logic PL. A proof outline [25] for a method definition
m(x){t} is an annotated method definition m(x) : (p,q){t}, where method calls inside t
are decorated with call-site requirements. We henceforth assume that all method bodies
are decorated in this way. The derivability `PL m(x) : (p,q){t} of a proof outline is
given by `PL {p} t {q}. Let Spec denote pairs (p,q) of conditions.

Method specifications and requirements. The verification technique distinguishes be-
tween a method’s declared specification (its contract) and its requirement. Roughly,
the first captures its announced behavior as declared in the pre- and post-condition of
the method definition. In contrast, the requirements stem from call-sites and represent
properties needed to verify the client code of a method, namely to satisfy the client
code’s specification in turn. Due to inheritance and overriding, a method with a given
name is available in more than one class, and can be called from different client codes.
Consequently, the properties are considered per class and its position in the class hier-
archy. If, furthermore, the class hierarchy is incrementally extended, new specifications
and requirements may be added. This bookkeeping of the properties is done in a proof
environment, through the two mappings S and R.

Definition 3 (Proof environments). A proof environment is a triple 〈P,S,R〉 of type
Env, where P : Cid→ Class is a partial mapping and R and S are total mappings of
type Cid×Cid×Mid→ Set[Spec].

6

In such a proof environment E , the mapping P reflects the class hierarchy and the two
mappings S and R contain the constraints collected so far during analysis. We use a
subscript, e.g., RE , if the proof environment is not clear from the context.

For a method m defined in a class B, besides m’s declared specification as given in B
itself, subclasses of B may give additional specifications for the method. For example,
if a method n is overridden by a subclass C of B, and m calls n, a specification of
body(B,m) given by C may account for m’s behavior relying on the overriding version
of n. Hence, for a method m defined in B, S(C,B.m) represents the specification as given
in C. Note that a non-empty S(C,B.m) implies C ≤ B.

Example 2. Recall the method update, implemented in both Account and Number
in Example 1. Let the specifications of these two definitions of update be contained in
S(Account,Account.update) and S(Number,Number.update), respectively.
The common subclass InterestAccount may provide additional specifications for
these implementations in the sets S(InterestAccount,Account.update) and
S(InterestAccount,Number.update).

In order to preserve a declared specification (p,q)∈ S(C,B.m) when inheriting m, it
is necessary to impose requirements on methods called via late binding in body(B,m).
The requirements are given by the proof outline m(x) : (p,q){body(B,m)} and main-
tained by the requirement mapping R. For each call {r}n(){s} in this outline, the re-
quirement (r,s) is included in R(C,B#n). Here, C denotes the class that imposes the
requirement and B is the call-site class where m is defined.

Since we work with sets of specifications, the entailment relation is lifted as follows.
Let p′ be the condition p with all fields f substituted by f ′, avoiding name capture.

Definition 4 (Entailment). Assume specifications (p,q) and (r,s), and specification
sets U = {(pi,qi) |1≤ i≤ n} and V = {(ri,si) |1≤ i≤ m}. Entailment is defined by

i) (p,q) _ (r,s) , (∀z1 . p⇒ q′)⇒ (∀z2 . r⇒ s′),
where z1 and z2 are the logical variables in (p,q) and (r,s), respectively

ii) U _ (r,s) , (
V

1≤i≤n(∀zi . pi⇒ q′i))⇒ (∀z . r⇒ s′) .

iii) U _ V ,
V

1≤i≤m U _ (ri,si) .

The relation U _ (r,s) corresponds to Hoare-style reasoning, proving {r} t {s} from
{pi} t {qi} for all 1 ≤ i ≤ n, by means of the adaptation and conjunction rules [3]. En-
tailment is reflexive and transitive, and V ⊆U implies U _ V .

Soundness. It is crucial for incremental reasoning to preserve the declared specifica-
tions for inherited methods: for a specification (p,q) included in S(C,B.m) it is safe
to rely on (p,q) when body(B,m) is executed on an instance of subclasses of C. Note
that overriding implementations of m in such subclasses may satisfy different contracts
than the definition in the superclass. This flexibility goes beyond standard behavioral
subtyping. With the open world assumption the subclasses of C are unknown when C is
analyzed, so soundness is ensured by tracking the requirements that (p,q) imposes on
late-bound calls in body(B,m). If n is overridden in a class D below C, all requirements
towards n made by classes above D must be satisfied by body(D,n). This is expressed

7

by S(D,D.n) _ R↑(D,n), where R↑(D,n) denotes the union of all requirements towards
n made above D; i.e., the union of R(C,B#n) for all D≤C ≤ B.

In general soundness means that if body(B,m) is executed on an instance of class D,
it must be safe to rely on S↑(D,B.m), which is the union of S(C,B.m) for all classes C
where D ≤C ≤ B. Soundness is formalized by the following definition of sound proof
environments and Lemma 1. Let C ∈ E denote that PE (C) is defined, and x : C.m the
remote call x.m where x is declared with type C.

Definition 5 (Sound environments). Let B,C,D : Cid and m,n : Mid. A sound environ-
ment E satisfies the following two conditions for all B,C ∈ E and m:

i) ∀(p,q) ∈ SE (C,B.m) . ∃body(B,m) . `PL m(x) : (p,q){body(B,m)}
∧ LocalE (C,B,body(B,m))∧RemE (body(B,m))∧StatE (C,body(B,m))

ii) m ∈C.mtds⇒ SE (C,C.m) _ R↑E (C,m)

where

LocalE (C,B, t) , ∀{r}n{s} ∈ t . ∀D ≤E C . S↑E (D,bind(D,B#n).n) _ (r,s)
RemE (t) , ∀{r}x : D.n{s} ∈ t . S↑E (D,bind(n@D).n) _ (r,s)∧ R↑E (D,n) _ (r,s)
StatE (C, t) , ∀{r}n@B{s} ∈ t . S↑E (C,bind(n@B).n) _ (r,s)

The soundness of a proof environment can be explained informally as follows: As-
sume that (p,q) ∈ SE (C,B.m) and that there is a proof outline of body(B,m) for (p,q).
For each requirement {r}n{s} to a self-call in this proof outline and for each subclass
D of C, (r,s) must follow from the specifications of the method definition to which a call
is bound for search class D. For each requirement {r}x.n{s} to a remote call, (r,s) must
follow from the specification of the method provided by the static type of x, and it must
be imposed on redefinitions below the static type. For each requirement {r}n@A{s} to
a static call, (r,s) must follow from the specification of the method implementation to
which the call will bind. The requirement is not imposed on method overridings since
the call is bound at compile time.

Let |=C {p} t {q} denote |= {p} t {q} provided that late-bound self-calls in t are
bound for search class C, and let |=C m(x) : (p,q){t} be given by |=C {p} t {q}. If t
is without calls and `PL {p} t {q}, then |= {p} t {q} follows by the soundness of PL.
Lemma 1 states that if (p,q) ∈ SE (C,B.m) and body(B,m) is executed in an instance of
a subclass D of C, a sound environment guarantees that (p,q) is a valid specification:

Lemma 1. Assume given a sound environment E and a sound program logic PL. Let
B,D : Cid, m : Mid, and (p,q) : Spec such that B,D ∈E and (p,q) ∈ S↑E(D,B.m). Then
|=D m(x) : (p,q){bodyE (B,m)}.

Example 3. Consider the method Account.withdraw(x), specified by (bal = b0,
bal = b0 − x) ∈ S(Account,Account.withdraw). This specification leads to a
requirement on update: the method modifies the balance according to its parame-
ter. The requirement is satisfied by update defined in Account, and FeeAccount,
the two implementations to which the call in Account can be bound. The separa-
tion of method specifications from requirements made by method calls allows incre-
mental reasoning without imposing the constraints of behavioral subtyping on method

8

overridings. For instance in FeeAccount, the overriding implementation satisfies
(bal = b0,bal = b0− x−fee@FeeAccount). Incremental reasoning is still sup-
ported as the static call to the superclass method relies on the verified specification of
withdraw in Account. Correspondingly for the implementations of withdraw in
InterestAccount and Card.

4 The Inference System for Incremental Reasoning

The inference system analyzes and manipulates the proof environments. Establishing a
proof outline for one method at a given stage of the overall analysis gives rise to (further)
proof-obligations, which are tracked by the proof system (cf. Section 4.1). The system
itself is formalized as a set of derivation rules (cf. Section 4.3), whose traversal through
the class-hierarchy is driven by the analysis operations given in Section 4.2.

4.1 Tracking behavioral constraints

Assume that a proof outline m(x) : (p,q){body(B,m)} is given by a class C. To ensure
soundness, this gives rise to the following steps:

1. (p,q) is included in S(C,B.m).
2. for each call {r}n{s} in the proof outline:

(a) (r,s) is analyzed with regard to the implementation of B#n found for search
class C; i.e., the proof obligation S↑(C,E.n) _ (r,s) must be established, where
E = bind(C,B#n).

(b) (r,s) is included in R(C,B#n).

Establishing S↑(C,E.n) _ (r,s) in step 2a means: Either (r,s) follows directly from
the already established specifications in S↑(C,E.n) by entailment, or the proof outline
n(y) : (r,s){body(E,n)} given by C is analyzed in the same manner as the original spec-
ification of m. This adds (r,s) to S(C,E.n), trivializing the proof of S↑(C,E.n) _ (r,s).

Including (r,s) into R(C,B#n) in step 2b constrains future subclasses of C: Each
subclass D of C must ensure

S↑(D,bind(D,B#n).n) _ (r,s) (1)

If n is overridden by D, all late-bound calls to n made by classes above D will bind
to the definition of n in D. As explained, the calculus then ensures (1) by establishing
S(D,D.n) _ R↑(D,n). If n is not overridden by D, we distinguish two cases. Let E =
bind(D,B#n); i.e., the call B#n will bind to the implementation in E for search class
D. If E is related to C, soundness of the analysis of superclasses of D ensures (1). If
otherwise E is unrelated to C, class D may introduce a diamond in the class hierarchy,
which needs to dealt with. A diamond is introduced by D if there are two different
classes D1 and D2 in D.inh and a class A such that D1≤A and D2≤A. Let commSup(D)
denote the union of all such classes A. For an E unrelated to C, let B ∈ commSup(D).
Then the requirements R(C,B#n) were not imposed on body(E,n) at the time E was
analyzed. For soundness, they are therefore imposed on body(E,n) when the diamond is

9

created by D. More generally, the same argument applies to all classes between D and B
that are unrelated to E. We let the set dreq(D,B#n) of diamond requirements denote the
union of all R(C,B#n) for C such that D≤C≤ B and bind(D,B#n) is unrelated to C. By
the analysis of D, the calculus ensures (1) by establishing S↑(D,E.n) _ dreq(D,B#n).
Note that in the subcase where E is related to C, class D may also introduce a diamond.
This case is covered by the proof of Theorem 1 (details are in the extended version [12]).

Example 4. In the classes of Example 1, the method update is defined in Account
and overridden in FeeAccount. Let class InterestAccount impose a require-
ment (r,s) on update, contained in R(InterestAccount,Account#update).
Now the class Card introduces a diamond in the class hierarchy. Since class Card
is a subclass of InterestAccount, soundness requires the validity of the formula
S↑(Card,bind(Card,Account#update).update) _ (r,s) where the method bind-
ing resolves to FeeAccount. Since FeeAccount and InterestAccount are un-
related, (r,s) is in the set dreq(Card,Account#update), and the calculus establishes
the required verification of (r,s) by the analysis of Card.

4.2 Analysis Operations

The judgments of the calculus are of the form E `A , where E is the proof environment
and A is a list of analysis operations with the following syntax.

O ::=ε |anMtd(M) |anOutln(C, t) | verify(C,m,R) | supCls(C) | supMtd(C,m) |O ·O
S ::= /0 |L | require(C,m,(p,q)) |S ∪S
A ::=module(L) | [〈C : O〉 ; S] | [ε ; S] |module(L) ·A

Here L denotes a class definition, as defined in Fig. 1. The rule system below specifies
an algorithm that traverses a class hierarchy and its syntactic constituents — classes,
methods, statements, etc. — according to the principles explained above; in particular,
tracking specifications and requirements. The analysis starts with an E ` A where E
is empty and A contains the program as a sequence of modules. A module is a set of
classes considered as a compilation unit. At each stage of the development, the modules
given so far represent a complete, compilable program. Programs are open in the sense
that new modules may be analyzed at later stages. Inside a module, the set S contains
a module’s classes. The inference rules ensure that a class can only be analyzed after
analysis of all its superclasses.

The above operations and the proof environment drive the algorithm through the
program. The operation class C extends D {f M} initiates the analysis of C, and
[〈C : O〉 ; S] analyzes O in the context of class C before operations in S are considered.
The analysis of a specific class involves the analysis of the proof outlines for its methods
M, the verification of the requirements for a method, and collecting the proof obliga-
tions for the calls mentioned inside the method bodies (by the operations anMtd(M),
verify(D,m,R), and anOutln(D, t)). The operation require(D,m,(p,q)) applies to re-
mote calls to ensure that m in D satisfies the requirement (p,q). Requirements are lifted
outside the context of the analyzed class by this operation, and shifted into the set S of
analysis operations. The two remaining operations, supCls(D) and supMtd(D,m) are
only used during analysis of C, if C introduces diamonds.

10

Environment updates. Updates are represented by the operator _⊕_ : Env×Update→
Env, where the second argument represents the update. There are three different envi-
ronment updates; loading a new class and extending the specifications or the require-
ments of a method in a class. The updates are defined as follows:

E ⊕ extP(C,D, f ,M) = 〈PE [C 7→ 〈D, f ,M〉],SE ,RE 〉
E ⊕ extS(C,D,m,(p,q)) = 〈PE ,SE [(C,D,m) 7→ SE (C,D,m)∪{(p,q)}],RE 〉
E ⊕ extR(C,D,m,(p,q)) = 〈PE ,SE ,RE [(C,D,m) 7→ RE (C,D,m)∪{(p,q)}]〉

4.3 The Inference Rules

The inference rules are given in Fig. 4. Rule (NEWMODULE) initiates the analysis of a
set of classes. For convenience, we let L denote both a list and set of classes. Further-
more, (NEWCLASS) loads a new class C for analysis, the second premise ensures that the
superclasses D have already been analyzed. For each method m in C, the calculus gen-
erates an operation verify(C,m,R), where R is the set of requirements that must hold
for this method. Rules (REQDER) and (REQNOTDER) deal with the verification of a partic-
ular specification with respect to the implementation. If the specification follows from
the already established specification of the method, rule (REQDER) continues with the
remaining analysis operations. Otherwise, a proof of the specification is required. By
(REQNOTDER), an outline of the specification is then analyzed by an anOutln operation.
Remark that only rule (REQNOTDER) extends the S mapping.

For a given proof outline, the rules (LATECALL), (STATCALL), and (REMCALL) handle late-
bound, static, and remote calls, respectively. Rule (LATECALL) extends the R mapping and
generates a verify operation to analyze the requirement for the implementation to which
the call will bind. The extension of R ensures that the requirement will be respected by
future subclasses. Rule (STATCALL) also generates a verify operation, but does not extend
R. Remote late-bound calls are handled by the rules (REMREQ) and (REMCALL), which
allow reasoning from the method requirements given in the declared class of the callee.
Notice that no new requirements are imposed. However, as requirements are generated
from internal self-calls in a class, these may not provide suitable external specifications.

Finally, there are rules for analyzing requirements from common superclasses when
diamonds are introduced in the environment. Rule (SUPMTD) generates a supMtd for
each common superclass. For each method called by a common superclass, (SUPREQ)

generates a verify operation for the requirements imposed by calls to the method. If a
class introduced by (NEWCLASS) does not have any common superclasses, the generated
supCls operation will have an empty argument and can be discarded by (NOSUP).

For brevity, we elide a few straightforward rules which formalize a lifting from
single-elements to sets or sequences of elements. For example, the rule for anMtd(M)
(which occurs in the premise of (NEWCLASS)), generalizes the analysis of a single method
which is done in (NEWMTD). These rules are included in the extended version of this
paper [12], together with the proof of the soundness theorem below. Note that a proof
of E ` module(L) has exactly one leaf node E ′ ` [ε ; /0]; we call E ′ the environment
resulting from the analysis of module(L).

Theorem 1. Let E be a sound environment and L a set of class declarations. If a proof
of E ` module(L) has E ′ as its resulting environment, then E ′ is also sound.

11

(NEWCLASS) (NEWMODULE)

C /∈ E D 6= nil⇒ D ∈ E E = commSupE (C)
E ⊕ extP(C,D, f ,M) ` [〈C : anMtd(M) · supCls(E)〉 ; S] ·A

E ` [ε ; {class C extends D {f M}}∪S] ·A

E ` [ε ; L] ·A
E ` module(L) ·A

(NEWMTD) (EMPCLASS)

E ` [〈C : verify(C,m,{(p,q)}∪R↑E (C.inh,m)) ·O〉 ; S] ·A
E ` [〈C : anMtd(m(x) : (p,q){t}) ·O〉 ; S] ·A

E ` [ε ; S] ·A
E ` [〈C : ε〉 ; S] ·A

(REQDER) (EMPMODULE)

S↑E (C,D.m) _ (p,q) E ` [〈C : O〉 ; S] ·A
E ` [〈C : verify(D,m,(p,q)) ·O〉 ; S] ·A

E ` A
E ` [ε ; /0] ·A

(REQNOTDER)

`PL m : (p,q){bodyE (D,m)}
E ⊕ extS(C,D,m,(p,q)) ` [〈C : anOutln(D,bodyE (D,m)) ·O〉 ; S] ·A

E ` [〈C : verify(D,m,(p,q)) ·O〉 ; S] ·A

(LATECALL)

E = bind(C,D#m) E ⊕ extR(C,D,m,(p,q)) ` [〈C : verify(E,m,(p,q)) ·O〉 ; S] ·A
E ` [〈C : anOutln(D,{p}m{q}) ·O〉 ; S] ·A

(STATCALL)

E ` [〈C : verify(bind(m@B),m,(p,q)) ·O〉 ; S] ·A
E ` [〈C : anOutln(D,{p}m@B{q}) ·O〉 ; S] ·A

(REMCALL)

E ` [〈C : O〉 ; S ∪{require(E,m,(p,q))}] ·A
E ` [〈C : anOutln(D,{p}x : E.m{q}) ·O〉 ; S] ·A

(REMREQ)

C ∈ E R↑E (C,m) _ (p,q) S↑E (C,bind(m@C).m) _ (p,q) E ` [ε ; S] ·A
E ` [ε ; {require(C,m,(p,q))}∪S] ·A

(SUPMTD)

E ` [〈C : supMtd(D,calledE (D)\C.mtds) ·O〉 ; S] ·A
E ` [〈C : supCls(D) ·O〉 ; S] ·A

(SUPREQ)

E = bind(C,D#m) E ` [〈C : verify(E,m,dreq(C,D#m)) ·O〉 ; S] ·A
E ` [〈C : supMtd(D,m) ·O〉 ; S] ·A

(NOSUP) (NOSUPMTD)

E ` [〈C : O〉 ; S] ·A
E ` [〈C : supCls(/0) ·O〉 ; S] ·A

E ` [〈C : O〉 ; S] ·A
E ` [〈C : supMtd(D, /0) ·O〉 ; S] ·A

Fig. 4. The inference system. Here m denotes a call, including actual parameters, and
called(D) denotes the names of the methods called by D.

12

5 Methodological Aspects

With the given approach, a programmer typically provides S-requirements for each
class. Their verification generates R-requirements for the late-bound self-calls occur-
ring in the class, which will be imposed on subclass redefinitions of the called meth-
ods. In a subclass C, redefined methods can violate the S-requirements of a superclass,
but not the R-requirements. C may give additional contracts for inherited methods, re-
sulting in additional verification of such methods, which may generate additional R-
requirement for future subclasses of C. With multiple inheritance, this means that dif-
ferent parts of the inheritance graph may have different R-requirements to the same
method. Note that behavioral subtyping is not implied by this approach: When m is
overridden, the new definition need not implement all superclass specifications of m,
but only the R-requirements made towards usage of m. This way, lazy behavioral sub-
typing still supports incremental reasoning under an open world assumption.

A weakness of the approach presented here is that a remote call x.m(..) may create
R-requirements to m for the declared class of x, say C, and these requirements must
be imposed on C and its subclasses, unless they follow from already established R-
requirements to m for C. Adding R-requirements to a previously established class hier-
archy can lead to several verification tasks, which makes the approach less modular. As
R-requirements generated from internal self-calls in a class may not in general provide
suitable external properties, a programmer should provide R-requirements such that rea-
soning about remote calls can be derived from these. Therefore a programmer should
be aware of the distinction between S- and R-requirements, and be able to provide both,
and that unnecessarily strong R-requirements will restrict future method redefinitions.

A more modular version of lazy behavioral subtyping may be obtained by using
behavioral interfaces. A behavioral interface describes the visible methods of a class
and their contracts (or possibly an invariant), and inheritance may be used to form
new interfaces from old ones. An advantage of seeing all classes through interfaces is
that explicit hiding constructs become superfluous. A class may then be specified by a
number of interfaces. If all object variables (references) are typed by interfaces, one may
let the inheritance hierarchies of interfaces and classes be independent. In particular, one
need not require that a subclass of C inherits (nor respects) the behavioral interfaces
specified for C: Static type checking of an assignment x := e must then ensure that the
expression e denotes an object supporting the declared interface of the object variable
x. In this setting, the substitution principle for objects can be reformulated as follows:
For an object variable x with declared interface I, the actual object referred to by x at
run-time will satisfy the behavioral specification I. As a consequence, a subclass may
freely reuse and redefine superclass methods, since it is free to violate the behavioral
specification of superclasses. Reasoning about a remote call x.m(..) can then be done
by relying on the behavioral interface of the object variable x, simplifying rule (REMREQ)

to simply check interface contracts. This approach is followed by, e.g., Creol [18].

6 Related Work

Multiple inheritance is supported in, e.g., C++ [31], CLOS [11], Eiffel [23], POOL [2],
and Self [9]. Horizontal name conflicts in C++, POOL, and Eiffel are removed by ex-

13

plicit resolution, after which the inheritance graph may be linearized. Multiple dispatch,
or multi-methods [11], gives a more powerful binding mechanism, but reasoning about
multi-methods and redefinition is difficult. The prototype-based language Self [9] pro-
poses an elegant prioritized binding strategy. Each superclass is given a priority. With
equal priority, the superclass related to the caller class is preferred. However, explicit
class priorities may cause surprises in large class hierarchies: names may become am-
biguous through inheritance. If neither class is related to the caller, binding fails.

Formalizations of multiple inheritance in the literature traditionally use the objects-
as-records paradigm. This approach addresses subtyping issues related to subclassing,
but method binding is not easily captured. In Cardelli’s denotational semantics of mul-
tiple inheritance [8], not even access to methods of superclasses is addressed. Rossie,
Friedman, and Wand [29] formalize multiple inheritance using subobjects, a run-time
data structure used for virtual pointer tables [19,31]. This work focuses on compile-time
issues and does not clarify multiple inheritance at the abstraction level of the program-
ming language. A natural semantics for late binding in Eiffel models the binding mech-
anism at the abstraction level of the program [5]. Recently, an operational semantics
and type safety proof inspired by C++ has been formalized in Isabelle [32].

Work on behavioral reasoning about object-oriented programs address languages
with single inheritance (e.g., [27,28,7]). For late binding, different variations of behav-
ioral subtyping are most common [21,1,20], as discussed above. Pierik and de Boer [27]
present a sound and complete reasoning system for late-bound calls which does not rely
on behavioral subtyping. This work, also for single inheritance, is based on a closed
world assumption, meaning that the class hierarchy is not open for incremental ex-
tensions. To support object-oriented design, proof systems should be constructed for
incremental reasoning.

Lately, incremental reasoning, both for single and multiple inheritance, has been
considered in the setting of separation logic [22, 10, 26]. These approaches support a
distinction between static specifications, given for each method implementation, and
dynamic specifications that are used to verify late-bound calls. The dynamic specifica-
tions are given at the declaration site, in contrast to our work where late-bound calls are
verified based on call-site requirements.

7 Conclusion and Future Work

Lazy behavioral subtyping supports incremental reasoning under an open world as-
sumption, where class hierarchies can be gradually extended by inheritance. The ap-
proach is more flexible than traditional behavioral subtyping, as illustrated by the run-
ning example. This paper has introduced a healthiness condition for method binding and
extended lazy behavioral subtyping to the setting of multiple inheritance for healthy
binding strategies. This extension requires additional context information for method
specifications and requirements, in order to resolve ambiguities that do not occur in
single inheritance languages. The combination of healthiness and lazy behavioral sub-
typing has the advantage that requirements from two independent class hierarchies do
not interfere with each other when the hierarchies are combined in a common subclass.
This is essential in an incremental proof system.

14

The inference rules for incremental reasoning presented in this paper are essentially
syntax-driven and would form a good basis for integrating behavioral reasoning in a
tool supported environment for program development. In such a tool, specifications for
method definitions must be manually annotated, whereas method requirements in proof
outlines may often be inferred. The integration of lazy behavioral subtyping in the KeY
tool [6] is currently being investigated. This integration will allow more elaborate case
studies to better evaluate the methodology and practical applicability of the approach.

References

1. P. America. Designing an object-oriented programming language with behavioural sub-
typing. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Foundations of
Object-Oriented Languages, volume 489 of Lecture Notes in Computer Science, pages 60–
90. Springer, 1991.

2. P. America and F. van der Linden. A parallel object-oriented language with inheritance
and subtyping. In N. Meyrowitz, editor, Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’90), volume 25(10), pages
161–168. ACM Press, Oct. 1990.

3. K. R. Apt. Ten years of Hoare’s logic: A survey — Part I. ACM Transactions on Program-
ming Languages and Systems, 3(4):431–483, Oct. 1981.

4. K. R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Systems. Texts and
Monographs in Computer Science. Springer, 1991.

5. I. Attali, D. Caromel, and S. O. Ehmety. A natural semantics for Eiffel dynamic binding.
ACM Transactions on Programming Languages and Systems, 18(6):711–729, 1996.

6. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software.
The KeY Approach, volume 4334 of Lecture Notes in Artificial Intelligence. Springer, 2007.

7. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer, 7(3):212–232, 2005.

8. L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76(2-
3):138–164, 1988.

9. C. Chambers, D. Ungar, B.-W. Chang, and U. Hölzle. Parents are shared parts of objects:
Inheritance and encapsulation in SELF. Lisp and Symbolic Computation, 4(3):207–222,
1991.

10. W.-N. Chin, C. David, H.-H. Nguyen, and S. Qin. Enhancing modular OO verification with
separation logic. In Necula and Wadler [24], pages 87–99.

11. L. G. DeMichiel and R. P. Gabriel. The Common Lisp Object System: An overview. In
J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman, editors, European Conference on
Object-Oriented Programming (ECOOP’87), volume 276 of Lecture Notes in Computer Sci-
ence, pages 151–170. Springer, 1987.

12. J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Incremental reasoning for multiple inher-
itance. Research Report 373, Dept. of Informatics, University of Oslo, Apr. 2008. Available
from http://heim.ifi.uio.no/~creol.

13. J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Lazy behavioral subtyping. In J. Cuellar
and T. Maibaum, editors, Proc. 15th Intl. Symposium on Formal Methods (FM’08), volume
5014 of Lecture Notes in Computer Science, pages 52–67. Springer, May 2008.

14. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the Join calculus. Journal
of Logic and Algebraic Programming, 57(1-2):23–69, 2003.

15

http://heim.ifi.uio.no/~creol

15. C. A. R. Hoare. An Axiomatic Basis of Computer Programming. Communications of the
ACM, 12:576–580, 1969.

16. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for
Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450,
2001.

17. E. B. Johnsen and O. Owe. A dynamic binding strategy for multiple inheritance and asyn-
chronously communicating objects. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P.
de Roever, editors, Proc. 3rd Intl. Symposium on Formal Methods for Components and Ob-
jects (FMCO 2004), volume 3657 of Lecture Notes in Computer Science, pages 274–295.
Springer, 2005.

18. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for distributed
concurrent systems. Theoretical Computer Science, 365(1–2):23–66, Nov. 2006.

19. S. Krogdahl. Multiple inheritance in Simula-like languages. BIT, 25(2):318–326, 1985.
20. G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance, and

modular reasoning. Tech. Rep. 06-20a, Dept. of Comp. Sci., Iowa State University, 2006.
21. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on

Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.
22. C. Luo and S. Qin. Separation logic for multiple inheritance. Electronic Notes in Theoretical

Computer Science, 212:27–40, 2008.
23. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2. edition, 1997.
24. G. C. Necula and P. Wadler, editors. 37th Annual Symposium on Principles of Programming

Languages (POPL’08). ACM, Jan. 2008.
25. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Infor-

matica, 6(4):319–340, 1976.
26. M. J. Parkinson and G. M. Biermann. Separation logic, abstraction, and inheritance. In

Necula and Wadler [24].
27. C. Pierik and F. S. de Boer. A proof outline logic for object-oriented programming. Theo-

retical Computer Science, 343(3):413–442, 2005.
28. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. D. Swier-

stra, editor, 8th European Symposium on Programming Languages and Systems (ESOP’99),
volume 1576 of Lecture Notes in Computer Science, pages 162–176. Springer, 1999.

29. J. G. Rossie Jr., D. P. Friedman, and M. Wand. Modeling subobject-based inheri-
tance. In P. Cointe, editor, 10th European Conference on Object-Oriented Programming
(ECOOP’96), volume 1098 of Lecture Notes in Computer Science, pages 248–274. Springer,
July 1996.

30. N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In
P. Devanbu and J. Poulin, editors, Proc. Fifth International Conference on Software Reuse
(ICSR5), pages 206–215. IEEE Computer Society Press, 1998.

31. B. Stroustrup. Multiple inheritance for C++. Computing Systems, 2(4):367–395, Dec. 1989.
32. D. Wasserrab, T. Nipkow, G. Snelting, and F. Tip. An operational semantics and type safety

proof for multiple inheritance in C++. In P. L. Tarr and W. R. Cook, editors, Proceedings
of the Conference on Object-Oriented Programming, Systems, Languages, and Applications,
(OOPSLA’06), pages 345–362. ACM, 2006.

16

	Incremental Reasoning for Multiple Inheritance
	Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

