
WRLA 2008

Proof Search for the First-Order

Connection Calculus in Maude

Bjarne Holen, Einar Broch Johnsen, and Arild Waaler 1

Department of Informatics, University of Oslo, Norway

Abstract

This paper develops a rewriting logic specification of the connection method for first-order logic, implemen-
ted in Maude. The connection method is a goal-directed proof procedure that requires a careful control
over clause copies. The specification separates the inference rule layer from the rule application layer, and
implements the latter at Maude’s meta-level. This allows us to develop and compare different strategies for
proof search.
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1 Introduction

The increasing use of logics in practical applications, and in particular non-classical

logics, poses challenges for automated reasoning. A key issue currently addressed by

the automated reasoning community, is how one can improve scalability of already

successful methods. Besides optimizing the implementations, this can primarily be

achieved in two ways: either by improving the proof calculus or by finding more

clever ways of applying the rules.

This observation motivates the Maude implementation of the connection calcu-

lus presented in this paper. The implementation addresses first-order logic (FOL)

without equality on clausal form. It is designed to satisfy two guiding principles.

First, it clearly separates a rule layer from a strategy layer that governs rule ap-

plication. Second, the set of rules that comprises the proof system is not restricted

to FOL only, but has also non-classical counterparts. This way the implementation

is part of a more wide-ranging project outlined in the discussion of future work in

Section 7, in which we intend to contribute with both improved calculi and with

more flexible strategies for rule application. The present work can be taken as a

preliminary report from this activity.
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Our focus on the strategy level makes Maude attractive as an implementation

platform. This is partly due to its support for reflection [6], which allows strategic

choices at run-time [5]. In particular, this gives a satisfying separation between

deduction and strategic choices, allowing us to experiment with different strategies

over the same deductive core. Ideally, theorem proving can be as simple as con-

structing a specification containing all the deductive rules (as rewrite rules), and

then rewriting an appropriate term. This also gives a close relationship between the

calculus and its specification.

The main rationale behind the isolation of a strategy layer is that more eas-

ily understood procedures are less error-prone than procedures in which rules and

strategies are intermixed. Moreover if one opts for the other extreme, i.e., to build

the strategy into the rules, the strategy will most likely be hard to modify. In prac-

tice one will often need to have a little of both, even if one tries to separate the

layers, since pruning the search space may in some cases be easier to implement by

means of inference rules than tacticals.

Our deductive platform implements the connection calculus [2,3], which is a

calculus in the tableau family. Like other tableau methods the connection calculus

is not limited to normal forms like clausal form, but unlike other tableau methods

it is goal-directed. This means that inference steps are driven by complementary

literals (in the sequent calculus these correspond to potential axioms), a feature

which in general makes the connection calculus much more efficient than calculi

that are driven by connectives, like analytic tableau calculi Goal-directed search is

particularly powerful for problems that contain many axioms that are not required

to prove the conjecture.

Although the connection method for FOL has been well documented, and imple-

mentations of it exist, specifying it in Maude is nevertheless non-trivial. Exploiting

Maude’s reflective properties we implement search strategies by explicitly operating

on a stack of search states, abstracting from, e.g., details of the underlying data

structures. While this level of abstraction is particularly useful for rapid proto-

typing, more optimized implementations should of course be sensitive to low-level

details. Clearly, more low-level implementation details may also be exploited by

search strategies.

Paper overview: Section 2 and 3 present the connection method, rewriting logic,

and Maude. Section 4 and 5 consider the connection method and proof search in

Maude. Section 6 discusses related work and Section 7 concludes.

2 The Connection Method: Paths through Matrices

This section briefly introduces the connection calculus. We assume a standard

vocabulary; in particular, a literal is any atomic formula P (t1, . . . , tn) or its neg-

ation, and a clause is a conjunction of literals. A formula is in prenex disjunctive

normal form (PDNF) if it is a closed formula of the form ∃x1 . . . ∃xn M, where the

matrix M is a disjunction of clauses. It is well-known that any FOL formula A

can be effectively transformed into a PDNF formula B, such that A is valid iff B

is valid. Hereafter, we assume that all input formulas are on PDNF. This matrix

representation exploits graphical metaphors. To illustrate the idea let Ai, Bi, . . . , Ri
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be literals. The PDNF formula

∃x1∃x2 . . . ∃xn[(A1 ∧A2 . . . Am) ∨ (B1 ∧B2 . . . Bk) ∨ . . . ∨ (R1 ∧R2 . . . Rj)]

is usually depicted as a matrix in which each clause has become a column:
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The existential quantifiers are implicitly present; all the variables inside literals can

be seen as existentially quantified outside of the matrix. A path through the matrix

is a set of literals, with one literal from each clause (or column).

A connection consists of two literals with the same predicate symbol and arity,

but only one contains a negation sign. The connection is σ-complementary if the

substitution σ unifies its two atomic formulas. A set of connections spans the matrix

if all paths through the matrix contain a connection from the set.

Example 2.1 The formula ∀xP (x)→ P (a) ∧ P (b) receives the matrix representa-
tion below to the left; the two paths through the matrix to the right.

"

[¬P (x)]

"

P (a)

P (b)

##

{¬P (x), P (a)} {¬P (x), P (b)}

In this particular case the two paths comprise a spanning set of connections. How-

ever, no substitution can make both of the connections complementary.

Clauses in a matrix can be copied, in which case all free variables are replaced

by fresh variables. The multiplicity µ for a matrix M is a function which assigns a

positive integer to each clause in M ; Mµ then results from M by, for each clause

C, adding µ(C)− 1 free variable copies of C to M . A PDNF formula with matrix

M is matrix provable if there is a set of σ-complementary connections which spans

Mµ, for a multiplicity µ and a substitution σ.
Matrix provability is a sound and complete characterization of validity in FOL

[4]. For the matrix in Example 2.1 it is easy to see that one can increase the
multiplicity of the singleton clause to demonstrate matrix provability:

"

[¬P (x)] [¬P (y)]

"

P (a)

P (b)

##

Given the substitution (x ← a, y ← b) both paths contain complementary connec-

tions. In this case the free variable copy adds little complexity as it only contains

one element; this would not be the case if the clause were larger.

Proof search with the connection calculus is a connection-driven path-exploring

process; the multiplicity is increased on demand and unification constrains the set

of potentially closing substitutions. Complete strategies must fairly balance the

incremental extension of partial paths (based on identification of new connections),

the update of partial substitutions (with new unifiers), and the addition of copies

of clauses. All implementations we know use iterative deepening, either on the

number of inferences or on proof depth; i.e., the search space is explored up to a

fixed multiplicity, which can gradually be increased. Our strategies will also use

iterative deepening and backtracking.
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sorts FOLconstant FOLfunc FOLterm FOLtermlist Open Closed .

sorts Lit LitSet Clause ClauseSet Matrix SearchState Success Failure .
subsorts FOLconstant FOLfunc < FOLterm < FOLtermlist .

subsort Nat < FOLconstant .

subsorts FOLpredicate < Lit < LitSet .

subsort Clause < ClauseSet .

subsorts Open Closed < SearchState < SearchStateList .

op nil : → FOLtermlist .

op , : FOLtermlist FOLtermlist → FOLtermlist [ assoc id: nil prec 77 ] .

op [ ] : Qid FOLtermlist → FOLfunc .

op ( ) : Qid FOLtermlist → FOLpredicate .

op ¬ : Lit → Lit .

op none : → LitSet .

op , : LitSet LitSet → LitSet [ assoc comm id: none ] .

op noClause : → Clause .
op [ ] : LitSet → Clause .

op none : → ClauseSet .

op , : ClauseSet ClauseSet → ClauseSet [ assoc comm id: none ] .

op [ ] : ClauseSet → Matrix .

Figure 1. The Maude specification of basic syntax.

3 Rewriting Logic, Reflection, and Maude

A rewrite theory is a 4-tuple (Σ, E, L,R) where the signature Σ defines the term

language, E is a set of equations and membership sentences, L is a set of labels,

and R is a set of labeled rewrite rules [12]. Rewrite rules apply to terms of given

sorts (modulo equivalence), as specified in the membership equational logic theory

(Σ, E). A rule t −→ t′ if cond allows a local instance of pattern t to become

the corresponding instance of t′, where cond consists of rewrites, equations, and

memberships that must hold for the rule to apply.

Rewriting logic is reflective [6]; i.e., there is a finitely presented universal re-

write theory U in which any finitely presented rewrite theory R can be represented

(including U itself). Let C and C ′ be configurations and R be a set of rewrite rules,

represented in U as C, C
′
, and R, respectively. Denote by R ⊢ C → C ′ that C may

be rewritten to C ′ in the rewrite theory R. Using this notation, the equivalence

R ⊢ C → C′ ⇔ U ⊢ 〈R, C〉 → 〈R, C′〉, states that if a term C in the rewrite theory R

can be rewritten to a term C ′, then the meta-representation 〈R, C〉 of C in R can

be rewritten to the meta-representation 〈R, C ′〉 of C ′ in R in the universal rewrite

theory U .

Maude [5] is a tool for rewriting logic which includes facilities to meta-represent

a theory R and to apply rules from R to the meta-representation of a term C using

descent functions. Metalevel rewrite rules may be used to select which rule from R

to apply to which subterm of C by defining a function which takes as arguments

a finitely presented rewrite theory R, a term C, and a deterministic strategy S.

Further details on the theory and the use of reflection in rewriting logic and Maude

may be found in [5,6].
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op 〈 ; ; ; ; 〉 : LitSet Clause Matrix ObjSubstitution Int → SearchState .

mb open stack : St: SearchStateList : Failure .

mb closed stack : nil : Success .

op open : → Open .

op closed : → Closed .
op nil : → SearchStateList .

op : SearchStateList SearchStateList → SearchStateList [ assoc id : nil ] .

Figure 2. The Maude specification of SearchState.

4 The Connection Method in Maude: Basic Syntax

In the Maude implementation terms of FOL have sorts FOLconstant, FOLfunc, FOL-

term, and FOLpredicate, cf. Fig. 1. Constants are represented by lower case letters,

function and predicate symbols by quoted identifiers applied to lists of terms, and

variables by standard Maude variables. We assume that formulas are in PDNF

and define literals of sort Lit as (possibly negated) predicates. Literal disjunction

and conjunction are implicitly given by the matrix representation. Clauses of sort

Clause are sets of literals, a matrix of sort Matrix is a set of clauses. The matrix of

Example 2.1 is represented by
"

[¬P (x)]

"

P (a)

P (b)

##

[[¬ ’P(X:FOLterm)], [’P(a), ’P(b)]]

The implementation that we propose operates on terms of sort SearchStateList, cf.

Fig. 2. A term of sort SearchState is of the form

〈active path, active clause, remaining matrix, substitution, copy index〉.

In the initial state 〈none; noClause; M ; none; 0〉 of a search through a matrix

M , the active path is empty, there is no active clause, the remaining matrix is

M itself, the substitution is empty, and the copy index is zero. The ordering of

literals in the active path is irrelevant, so the path is represented by a set of literals.

Since connections depend on a variable substitution, the search state contains a

term of sort ObjSubstitution (with empty element none). This sort is an object

level representation of Maude’s sort Substitution; its terms associate terms of sort

FOLterm to variables. The final argument of a search state is an index used to

generate new variable names.

The connection method is formalized as a calculus by the rewrite rules of Fig. 3.

Note incidentally that to avoid matching large lists of search states against the

rewrite rules, we let the SearchState elements form a SearchStateList, which in turn

is treated as a stack. This way the search procedure developed in the sequel needs

only work with one SearchState element at a time. SearchState elements are pushed

onto the stack as deductive rules generate new elements; if the current SearchState

element is found to be connected, we pop a new element off the stack and proceed

with that element. The proof search terminates when the stack is empty.

Rule init selects an active clause from the matrix of the initial state. Given an

active clause, the search for connections can start. In rule reductionRule, there is a

literal Lit1 in the active path and a complementary literal Lit2 in the active clause

which are unifiable. In this case we remove the literal Lit2 known to contain a

complementary connection from the active clause, eliminating further investigation
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of paths already known to be connected.

Rule extensionRule similarly compares a literal in the active clause to literals

in the remaining matrix, which allows an eager pruning of the search space. This

rule is a simplification rule; it can be simulated by reductionRule in combination

with extendPath, so it is not necessary for completeness. However, extensionRule

reduces the number of search states much more efficiently.

Rules reductionRule and extensionRule unify two literals (of opposite polarit-

ies). For this purpose we currently use Maude’s built-in unification, by which a

successful unification returns a substitution and a natural number. The latter is a

variable index which can be passed between different unification problems in order

to avoid name clashes in variable names generated by the substitutions. In the

rules, unifyCompl(P,Q) is true if there is a unifier between the terms in literals P

and Q, and false otherwise. In contrast, mgu constructs the most general unifier

for the two literals, based on the substitution provided by Maude’s unification. To

distinguish free variables in a FOL term from variables constrained by unifiers, we

conventionally denote by F(N):FOLterm and by B(N):FOLterm the free and bound

variables indexed by N, respectively. The function newIndex provides a new vari-

able index, based on the two literals and the old index. The substitution is used

to propagate variable substitutions in the calculus, based on a most general unifier

for the free variables in literals. In the presentation, we omit the application of the

substitution; the new unifier is applied to all literals of the initial matrix between

rewrite steps.

Rule extendPath branches the search by adding a search state in which the

active path is extended with a literal from the active clause. The other literals of

the active clause remain in a separate search state. The accumulated unification

is passed on to both search states. Two structural rules closedPath and openPath

simplify the list of SearchState elements (they play the role of open and closed leaf

nodes in the sequent calculus). Rule closedPath removes redundant search states

from the SearchStateList, whereas rule openPath terminates the proof search in the

case of a path with no connections. The latter rule should only be applied to the

final and non-empty clause of a matrix. Provided that extendPath has only been

applied when extensionRule is not applicable, no connection can be found for the

active path at this stage (although the formula can still be valid.)

Rule application must be strictly controlled to avoid unfair strategies. A case in

point is extendPath, which should only be applied when the rules that prune the

search space fail to apply. Such order constraint on the calculus will be handled by

means of a rewrite strategy. In Maude, strategies can be implemented as meta-level

rewrite theories applied to object-level theories, which is what we do in the next

section.

5 Implementing the Proof Search

We present the main components of the implementation separately, leading to the

formulation of a connection-based search procedure in Section 5.5. For simplicity,

this procedure assumes a fixed multiplicity and does hence not implement iterative

deepening. For a complete search procedure, all that is omitted in Section 5.5 is a
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vars Lit1 Lit2 : Lit . var Cl : Clause .

vars Path LSet1 LSet2 : LitSet . var ClSet : ClauseSet .
vars MGU Sub : ObjSubstitution . vars N N2 : Int .

var St : SearchState .

var StL : SearchStateList .

op stack : : SearchState SearchStateList → Search .

rl [ init]: 〈none; noClause; [Cl, ClSet]; none; N〉 stack: nil

=⇒ 〈none; Cl; [ClSet]; none; N〉 stack: nil .

crl [reductionRule]: 〈Path, Lit1; [Lit2, LSet1]; [ClSet]; Sub; N〉 stack: StL
=⇒ 〈Path, Lit1; [LSet1]; [ClSet]; MGU; N2 〉 stack: StL

if MGU := mgu(Lit1, Lit2, N) ∧ N2 := newIndex(Lit1, Lit2, N) ∧ unifyCompl(Lit1, Lit2) .

crl [extensionRule]: 〈Path; [Lit1, LSet1];[[Lit2, LSet2],ClSet]; Sub; N〉 stack: StL

=⇒ 〈Path, Lit1; [LSet2]; [ClSet]; MGU ; N2〉
stack : 〈Path; [LSet1]; [[ Lit2 ,LSet2],ClSet ]; Sub; N2〉 StL

if MGU := mgu(Lit1, Lit2, N) ∧ N2 := newIndex(Lit1, Lit2, N) ∧ unifyCompl(Lit1, Lit2) .

rl [extendPath]: 〈Path; [Lit1, LSet1] ; [Cl, ClSet] ; Sub; N 〉 stack: StL

=⇒ 〈Path, Lit1; Cl; [ClSet]; Sub; N〉 stack: 〈Path; [LSet1]; [Cl , ClSet ]; Sub; N〉 StL .

rl [closedPath]: 〈Path; [none]; [ClSet]; Sub; N〉 stack: St StL =⇒ St stack: StL .

rl [closedPath]: 〈Path; [none]; [ClSet]; Sub; N〉 stack: nil =⇒ closed stack: nil .

rl [openPath]: 〈Path; [Lit1, LSet1]; [none]; Sub; N〉 stack: StL =⇒ open stack: nil .

Figure 3. The connection calculus in Maude with an explicit notion of stack.

function which gradually increases the multiplicity.

5.1 A Function for Case-based Rewriting

Let l be a Qid and applyRule(M, t, l) a function which applies a rule with label l to a

term t in module M (simplifying Maude’s metaApply by assuming that the rewrite

may only occur at a unique position of t and ignoring the substitution). Following

Maude conventions, this function returns a term of sort ResultTriple?; if the rule

application succeeds it returns a term of the subsort ResultTriple. The standard

function getTerm : ResultTriple → Term returns the term resulting from the rule

application (the ResultTriple terms also includes a sort and a substitution). Let lab

be a label, and L1 and L2 be lists of labels. A case-based rewrite function cases(M,

T, L1) is defined as follows:

var M : Module . var T : Term . vars L1 L2 : QidList . var lab : Qid .

op cases : Module Term QidList → Term .
op cases : Module Term QidList QidList → Term .

eq cases(M, T, L1) = cases(M, T, nil , L1) .

eq cases(M, T, L1, nil ) = T .

ceq cases(M, T, L1, lab L2) =
if (RESULT :: ResultTriple) then

if (occurs(lab , ’ reductionRule ’ extensionRule ’ extensionRule2 ))

then cases(M, mguNewIndex(M, getTerm(RESULT)), nil, L1 lab L2)

else cases(M, getTerm(RESULT), nil, L1 lab L2) fi

else cases(M, T, L1 lab, L2) fi

if RESULT := applyRule(M, T, lab) .
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The function cases(M, T, L1) repeatedly tries to apply the rules of module M to the

term T in the order given by the labels in the list L1. When no rule is applicable, the

function terminates and the term is returned. The function mguNewIndex distributes

information about variable bindings (mgu) and newly generated fresh variables, so

other SearchState elements can update their newIndex and substitute variables. This

is only relevant if the rewrite rule we are applying is a variable binding rule, hence

the occurs check.

5.2 A Strategy for Basic Search

The basic search component defines a strategy where an active clause is selected by

an init rule. Then, we recursively attempt to apply rules to the currently investig-

ated SearchState element, respecting a given order and keeping track of substitutions

and index values. Let gt and dt be wrapper functions for getTerm and downTerm.

The strategy terminates once it locates a path without connections. In particular,

it does not solve the matrix in Example 2.1.

var Mat : Matrix . var Mo : Module . var N : Nat . var lab : Qid . var L1 : QidList .

op init : Matrix → Term .

op strategy : Module Matrix QidList → Search .
op basicSearch : Matrix → Bool .

eq init (Mat)= upTerm(〈none; noClause; Mat ; none; 0〉 stack: nil) .

ceq strategy (Mo, Mat, lab L1) =
if (RESULT :: ResultTriple) then dt(cases(Mo, gt(RESULT), L1))

else open stack: nil fi ∗∗∗ return member of Failure sort when init rule fails

if RESULT := applyRule(Mo, init(Mat), lab) .

ceq basicSearch(Mat) = RESULT :: Success
if RESULT := strategy([’FOL−CONNECTION], Mat,

’ init ’ reductionRule ’closedPath ’openPath ’extensionRule ’extendPath) .

5.3 Static Free Variable Copies

We now address clause copying. The function below implements static copying ;

i.e., copies are introduced before the proof search begins. The presented function

makes a single copy of each clause with free variables, this can easily be modified

by increasing the last parameter of the strategy function.

op init : Matrix Nat → Term . ∗∗∗ we extend init and strategy

op strategy : Module Matrix QidList Nat → Search .

eq init (Mat, N) =

upTerm(< none; noClause; staticCopy(Mat, N); none; sumFree(Mat) ∗ N > stack: nil) .

ceq strategy (Mo, Mat, lab L1, N) =

if (RESULT :: ResultTriple) then dt(cases(Mo, gt(RESULT), L1))
else open stack: nil fi

if RESULT := applyRule(M, init(Mat, N), lab) .

ceq staticCopySearch(Mat) = RESULT :: Success

if RESULT := strategy([’FOL−CONNECTION], Mat,
’ init ’ reductionRule ’closedPath ’openPath ’extensionRule ’extendPath, 1) .
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Here, the auxiliary function sumFree : Matrix → Nat returns the number of free

variables inside the Matrix, and staticCopy : Matrix Nat→Matrix returns the matrix

with an additional N fresh copies of any clause that contains variables.

Example 5.1 These auxiliary functions work as follows:

red sumFree ([[’P(X:FOLterm), ’R(Z:FOLterm,X:FOLterm)], [’Q(a,b)]]) .

result NzNat: 2

red staticCopy ([[¬(’P(X:FOLterm))], [’P(a),’P(b )]], 2) .

result Matrix: [[¬(’P(X:FOLterm))],[¬(’P(F0:FOLterm))],[¬(’P(F1:FOLterm))],[’P(a),’P(b)]]

5.4 Backtracking

A fair strategy requires that we keep track of the (number of) possible matches for

a rule in a term and decide on an order for trying the different matches. For this

purpose, we use the functionality provided by Maude’s metaApply to apply a rewrite

rule to the n’th matching position in a term. This way, we extend the case-based

rewrite strategy above with backtracking support:

sorts BackTrack BackTrackList .

subsort BackTrack < BackTrackList .

op { , , } : Qid Term Nat → BackTrack .

op nil : → BackTrackList .

op : BackTrackList BackTrackList → BackTrackList [assoc id: nil ] .

op btrcases : Module Term QidList QidList → Term .

op btrcases : Module Term QidList QidList BackTrackList QidList → Term .

eq btrcases (M, T, L1, L2) = btrcases(M, T, nil , L1, nil , L2) .

eq btrcases (M, T, L1, nil , nil , L2) = T .

ceq btrcases (M, T, L1, lab L2, BTL, L3) =

if (RESULT :: ResultTriple) then

if (occurs(lab , L3)) ∗∗∗ this is a rule we should backtrack over

then btrcases (M, mguNewIndex(M, gt(RESULT)), nil, L1 lab L2, {lab, T, 1} BTL, L3)

else btrcases (M, mguNewIndex(M, gt(RESULT)), nil, L1 lab L2, BTL, L3) fi

else

btrcases (M, T, L1 lab, L2, BTL, L3)

fi

if RESULT := applyRule(M, T, lab) .

eq btrcases (M, T, L1, nil , { lab , T2, N } BTL, L3) =

if (dt(T) :: Failure ) then

if (applyRule(M, T2, lab, N) :: ResultTriple )

then btrcases (M, mguNewIndex(M, gt(applyRule(M, T2, lab, N))),

nil , L1, {lab , T2, N+1} BTL, L3)

else

btrcases (M, T, L1, nil , BTL, L3)

fi

else T fi .
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If our current rule applies, the number of the next potential matching position

is stored in the BackTrackList. Backtracking is then a matter of calling the search

function with the elements of the backtrack-term, which are now stored in a list.

Note that we can select the members of the label list; i.e., the rewrite rules to which

backtracking should apply.

op strategy : Module Matrix QidList QidList Nat → Search .

op backtrackSearch : Matrix → Bool .

ceq strategy (Mo, Mat, lab L1, L2) =

if (RESULT :: ResultTriple) then dt( btrcases (Mo, gt(RESULT), L1, L2))

else open stack: nil fi

if RESULT := applyRule(Mo, init(Mat), lab) .

ceq backtrackSearch(Mat) = RESULT :: Success

if RESULT := strategy([’FOL−CONNECTION], Mat,

’ init ’ reductionRule ’closedPath ’openPath ’extensionRule ’extendPath,

’ reductionRule ’ extensionRule ) .

5.5 Dynamic Free Variable Copies

In this section we consider a strategy for proof search in which the copies of clauses

with free variables are added dynamically when deductive rules are applied. The

main advantage of a dynamic scheme is that copies are created on demand. This

limits the number of possible connections, in contrast to the a priori fixed number

of copies provided by staticCopySearch. The idea is to make variables as free as

possible, such that variable bindings occurring during unification affect as few vari-

ables as possible. For this purpose, clause copying will be associated with the rules

which activate a new clause during the search.

rl [ init2 ]: 〈Path; noClause; [Cl, ClSet]; Sub; N〉 stack: StL

=⇒ 〈Path; Cl; [copyClause(Cl, N), ClSet]; Sub; cntFree(Cl) + N〉 stack: StL.

crl [extensionRule2 ]: 〈Path; [Lit1, LSet1]; [[Lit2, LSet2], ClSet]; Sub; N〉 stack: StL

=⇒ 〈Path,Lit1; [LSet2]; [ClSet]; MGU; N2〉 stack: 〈Path; [LSet1]; [Cl,ClSet]; Sub; N2〉 StL

if (unifyCompl(Lit1, Lit2 )) ∧ MGU := mgu(Lit1, Lit2, N)

∧ N2 := newIndex(Lit1, Lit2, N) + cntFree([Lit2 , LSet2])

∧ Cl := copyClause([Lit2, LSet2], newIndex(Lit1, Lit2 , N)) .

First, the rule init2 modifies the initialization rule (init) which selects the active

clause from the initial matrix. The difference from the previous init rule is that

a copy of the selected clause is placed in the remaining matrix. Recall that the

function copyClause provides a fresh copy of the input clause, that newIndex provides

a new variable index based on the two literals and the old index, and that the

function cntFree counts the number of free variables in a clause. Next, we modify

the rule extensionRule, which prunes the search by locating connections between

elements in the active clause and the remaining matrix. Here, a fresh clause is

generated and added to the second search state.

10
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Search SET044-5 SYN057-1 SYN005-1.010 SYN101-1.020.020 PUZ005-1

4/8/6 5/13/4 11/10/20 17/37/24 51/112/56

basic S, 8ms F, 8ms S, 24ms S, 80ms F, 6680ms

basic ∗ S, 20ms F, 8ms S, 24ms S, 396ms F, 61563ms

static copy S, 28ms F, 16ms S, 36ms S, 296ms F, 11452ms

static copy ∗ F, 64ms F, 16ms S, 32ms S, 21241ms -

backtracking S, 8ms F, 1132ms S, 24ms S, 84ms -

backtracking ∗ S, 24ms F, 504ms S, 20ms S, 412ms -

static copy,
backtrack
over init rule

F, 248ms S, 40ms S, 44ms S, 312ms -

dynamic copy F, 8ms F, 8ms S, 24ms S, 88ms S, 224ms

dynamic copy,
backtracking

S, 56ms S, 80ms S, 32ms S, 88ms S, 228ms

Figure 4. Sample results from strategy application. The size of each formula is suggested by its number of
clauses/literals/variables (given in row 2 of the table).

Example 5.2 The use of rule extensionRule2 is illustrated as follows:

〈Q(a); [P(X), U(c)]; [[¬P(b), R(Y)], [S(Z)]]; empty; 7〉

=⇒ 〈Q(a), P(X); [R(Y)]; [[S(Z)]]; (X ← b); 8〉

〈Q(a); [U(c)]; [[¬P(b), R(F7)], S(Z)]; empty; 8〉

The index of the SearchState elements is increased due to the free variable inside

the clause that is copied. The main idea is that binding the variable Y should

not affect the clauses left in the remaining matrix when the substitution is applied.

Since a fresh copy of this clause is allowed, we replace the original clause with a copy

to avoid name capture. Note that the original version of the clause could be left

inside the remaining matrix as well. An iterative procedure where original versions

of the clauses are left inside the remaining matrix is needed for completeness of the

connection method.

By selecting the initial active SearchState element with rule init2 and replacing

extensionRule with extensionRule2 in basicSearch, we get a search strategy dy-

namicCopySearch which incorporates a possible solution for dynamic fresh clause

copies. (Note that there are several options for when to introduce copies; e.g., ex-

tendPath could also copy the activated clause.) In order to include backtracking

over the variable binding rewrite rules, we define a strategy dynamicCopyBacktrack

combining the backtracking strategy given in Section 5.4 with the new rule set. The

strategy function is used once again, it should be noted that backtracking over the

init-rules have not been presented, this is however only a minor detail to implement.

ceq dynamicCopySearch(Mat) = RESULT :: Success

if RESULT := strategy([’FOL−CONNECTION], Mat,

’ init2 ’ reductionRule ’closedPath ’openPath ’extensionRule2 ’extendPath) .

ceq dynamicCopyBacktrack(M, ClSet) = RESULT :: Success

if RESULT := strategy([’FOL−CONNECTION], Mat,

’ init2 ’ reductionRule ’closedPath ’openPath ’extensionRule2 ’extendPath,

’ init2 ’ reductionRule ’ extensionRule2) .

11
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5.6 Comparison of Search Strategies

In order to compare search functions we apply the previously defined functions to a

selection of formulas from the TPTP library [15]. The proof search was done on a

laptop with a 1.7 GHz CPU and 1 Gb RAM running Linux. The results of the search

strategy applications for some representative formulas are presented in Fig. 4. In

the figure, S denotes that the proof search succeeded in proving the formula, and F

that the search failed to prove the formula. As previously mentioned, extensionRule

can be excluded. The three first proof searches have also been performed without

this rule (marked with ‘∗’). We also considered a proof search where backtracking

only applies to the init-rule and took one static copy of the free variable clauses

prior to the proof search. In addition, the figure provides the time in milliseconds

for each proof search to terminate. Open entries represent that the search did not

produce any result within five minutes. Note that the formulas selected in Fig. 4

are all valid and easy to prove in state of the art systems. However, they also show

that the behavior of the different strategies defined for the connection calculus are

easy to compare using rewriting logic and Maude.

Most notable are perhaps the negative results produced by the different strategies,

which allow the strengths of these simple strategies to be compared. The strategies

are listed in the figure in increasing strength. Surprisingly, dynamicCopySearch has

bad performance on SET0044-5; this is due to the choice of variable binding and

is solved by backtracking in dynamicCopyBacktrack. Although the basicSearch is

obviously not complete it provides a useful insight into the time needed for effi-

cient verification, due to its simplicity. Therefore, it may be interesting to compare

strategies with more overhead to basicSearch. For the formulas in the figure, stat-

icCopySearch performs surprisingly well. However, the significant overhead due to

the initial extension of the matrix results in much slower results for large formulas

such as PUZ005-1. The figure finally suggests that backtracking and the dynamic

clause copies inserted during rule application adds little overhead. In particular,

when backtracking or additional clause copies are not needed, the additional time

needed with these strategies seems acceptable.

6 Related Work

A broad range of computational and deductive systems have been specified using

rewriting logic and Maude; for examples, see [5]. In particular, the ITP tool is a

theorem prover developed in Maude [7], exploiting reflection. In contrast to our

automated proof search, ITP is an interactive prover developed for inductive reas-

oning about specifications in membership equational logic. A strategy language has

been proposed for Maude [11,8] in which strategies may be composed using strategy

combinators. The approach provides a nice separation of concerns between compu-

tation and control. Our strategies for cases and btrcases are examples of strategies

which could potentially be expressed in this language. However our backtracking

strategy allows the user to specify that backtracking applies to a specific subset

of the rules of the rewrite theory, a feature which reduces the size of the search at

runtime. Currently the strategy language is implemented at the meta-level and only

supported by Full Maude. Thus, it does not fit directly with the connection calcu-
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lus that we have presented here. However, a low-level integration of the strategy

language with Maude will make it an interesting tool for further extensions of our

work. Such an implementation is under development [8].

This work extends our previous work on the connection calculus for propositional

logic [10]. We are not aware of any attempts to design a theorem prover for FOL

in Maude using a system with a level of sophistication that is comparable to the

connection calculus. The system and strategy we implement in this paper is closely

related to the Prolog theorem prover leanCoP [14]. This is an implementation

which takes full advantage of Prolog’s backtracking and unification scheme, a feature

which allows extremely compact code, but also makes it more difficult to control

backtracking.

The tableaux workbench [1] and LoTREC [9] are initiatives that are similar to

ours, in the sense that they support high-level specification of proof systems and

strategies. They are, however, limited to tableau methods, which are not goal-

directed, and their strategy languages are much more restricted than what Maude’s

meta-level provides.

7 Conclusion and Future Work

The paper presents a rewriting logic approach to the implementation of a connection-

driven search engine for FOL. A rewrite theory is defined for the connection method,

and variations of search strategies are explored at the Maude meta-level. This fa-

cilitates comparison and experimentation with strategies for proof search, as these

control the same underlying rewrite theory.

The motivation behind the current work is to develop a deduction platform in

Maude that supports flexible strategies. In future work we enable incorporation

of contextual knowledge about assumption sets into search procedures, a feature

which supports the design of special-purpose theorem provers. We also intend to

operate both on a meta-level (the usual level of strategies) and at a meta-meta-

level, the latter in order to select, refine and compose new strategies at run-time.

This adaptive behaviour can be guided by information about the search history in

addition to the present configuration of the search.

Our long-term perspective is to contribute to the design of efficient domain-

specific reasoning algorithms for expressive non-classical logics. In contrast to, say,

the formalization of mathematical reasoning, many applications are characterized

by a large set of premises with fairly shallow logical structure. For example, onto-

logies with more than 100 000 concepts are not unusual, often with simple concept

definitions. We believe that a goal-directed method like the connection method has

potential in such contexts, along with domain-specific search strategies. The fact

that the connection method does not require any normal form makes it attractive

also for non-classical logics. For intuitionistic logic, for instance, the connection-

based theorem prover ileanCoP by far outperforms any other implementation [13].

Matrix characterisations already exist for a number of non-classical logics [16], and

a future ambition is to gradually extend the current work to more sophisticated

logics and more complex strategies.
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