Lazy Behavioral Subtyping*

Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

Dept. of Informatics, University of Oslo, Norway
{johand,einarj,olaf ,msteffen}@ifi.uio.no

Abstract. Late binding allows flexible code reuse but complicates formal rea-
soning significantly, as a method call’s receiver class is not statically known.
This is especially true when programs are incrementally developed by extend-
ing class hierarchies. This paper develops a novel method to reason about late
bound method calls. In contrast to traditional behavioral subtyping, reverification
is avoided without restricting method overriding to fully behavior-preserving re-
definition. The approach ensures that when analyzing the methods of a class, it
suffices to consider that class and its superclasses. Thus, the full class hierarchy is
not needed, anohcrementakeasoning is supported. We formalize this approach

as a calculus which lazily imposes context-dependent subtyping constraints on
method definitions. The calculus ensures that all method specifications required
by late bound calls remain satisfied when new classes extend a class hierarchy.
The calculus does not depend on a specific program logic, but the examples in
the paper use a Hoare-style proof system. We show soundness of the analysis
method.

1 Introduction

Late binding of method calls is a central feature in object-oriented languages and con-
tributes to flexible code reuse. A class may extend its superclasses with new methods,
possibly overriding the existing ones. This flexibility comes at a price: It significantly
complicates reasoning about method calls as the binding of a method call to code cannot
be statically determined; i.e., the binding at run-time depends on the actual class of the
called object. In addition, object-oriented programs are often designed undgean

world assumptionClass hierarchies are extended over time as subclasses are gradually
developed and added. In general, a class hierarchy may be extended with new subclasses
in the future, which will lead to new potential bindings for overridden methods.

To control this flexibility, existing reasoning and verification strategies impose re-
strictions on inheritance and redefinition. One strategy is to ignore openness and assume
a “closed world”; i.e., the proof rules assume that the complete inheritance tree is avail-
able at reasoning time (e.g., [24]). This severely restricts the applicability of the proof
strategy; for example, libraries are designed to be extended. Moreover, the closed world
assumption contradicts inheritance as an object-oriented design principle, which is in-
tended to support incremental development and analysis. If the reasoning relies on the
world being closed, extending the class hierarchy requires a costly reverification.

* This research is partially funded by the EU project IST-33826 CREDO: Modeling and analysis
of evolutionary structures for distributed servicestp: //credo.cwi.nl).

An alternative strategy is to reflect in the verification system that the world is open,
but to constrain how methods may be redefined. The general idea is that to avoid rever-
ification, any redefinition of a method through overriding mnustservecertain proper-
ties of the method being redefined. An important part of the properties to be preserved
is the method’s contract; i.e., the pre- and postconditions for its body. The contract can
be seen as a description of the promised behavior of all implementations of the method
as part of its interface description, the methamisnmitmentBest known avehavioral
subtyping(e.g, [2, 19, 20, 25]), this strategy achieves incremental reasoning by limit-
ing the possibilities for code reuse. Once a method has committed to a contract, this
commitment may not change in later redefinitions. That is overly restrictive and often
violated in practice [26]; e.g., it is not respected by the standard Java library definitions.

This paper relaxes the property preservation restriction of behavioral subtyping,
while embracing the open world assumption of incremental program development. The
basic idea is as follows: given a methotdeclared withp andq as the method’s pre-
and postcondition, there is no need to restrict the behavior of methods ovemiding
and require that these adhere to that specification. Instead it suffices to preserve the
“part” of p andq actuallyused to verifythe program at the current stage. Specifically,
if mis used in the program in the form of a method dal} em(...) {s}, the pre-
and postconditions ands at that call-site constituten's required behavior and it is
those weaker conditions that need to be preserved to avoid reverification. We call the
corresponding analysis stratelggy behavioral subtypind his strategy may serve as a
blueprint for integrating a flexible system for program verification of late bound method
calls into object-oriented program development and analysis tools environments [5—7].

The paper formalizes this analysis strategy using an object-oriented kernel lan-
guage, based on Featherweight Java [15], and using Hoare-style proof outlines. For-
malized as a syntax-driven inference system, class analysis is done in the context of a
proof environmentonstructed during the analysis. The environment keeps track of the
context-dependent requirements on method definitions, derived from late bound calls.
The strategy is incremental; for the analysis of a classnly knowledge ofC and its
superclasses is needed. We show the soundness of the proposed method.

Paper overviewSect. 2 introduces the problem of reasoning about late binding,
Sect. 3 presents the approach taken in this paper, and Sect. 4 gives the details of the
inference system. Related work is discussed in Sect. 5 and Sect. 6 concludes the paper.

2 Late Bound Method Calls

2.1 Syntax for an Object-Oriented Kernel Language

To succinctly explain late binding and our analysis strategy, we use an object-oriented
kernel language (Fig. 1) with a standard operational semantics (e.g., [15]) . We assume
a functional language of side-effect free expressimn& programP consists of a list

L of class definitions, and a method body. A class extends a superclass, which may be
Object, with fields f and method¥. To simplify, we let fields have distinct names,
methods with the same name have the same signature (i.e., no method overloading),
programs be well-typed, and ignore the types of fields and methods. For diagrds

P =L {t} L::=class C extends C {f M}
M:=m(X){t} t i=v:i=newC() |[vi=em(g) |[vi=e
v i=f|return | skip | if bthent elset fi |t;t

Fig. 1. The language syntax, whe@zandm are class and method names (of tyad andMid,
respectively). Expressiorsinclude declared field$, the reserved variablegiis andreturn,
and Boolean expressiohsVector notation denotes lists; e.g., a list of expressions is wréiten

class Cp {
m(): (p1,d1) {{t1)}
n():() {..;{r1} this.m() {s1};...}
n(): (L)9.-;{r2} this.m() {s2};...}

}

class Cp extends Cp { class C3 extends C {

} m(): (p2,d2) {(t2) } } m():(ps,03) {(t3)}

Fig. 2. A class hierarchy with proof outlines for overridden methods.

C, B < Cdenotes the reflexive and transitive subclass relation derived from class inher-
itance. IfB < C, we say thaB is below CandC is above B

A methodM takes parameters and contains a statementwhich may be com-
posed. The sequential composition of statemiraadt; is writtents;t,. The statement
v:=new C() creates a new object of cla€swith fields instantiated to default values,
and assigns the new referencevtoA possible constructor method in the class must
be called explicitly. In a method invocatiamm(€), the objecte receives a call to the
methodm with actual parametei® The statement := em(€) assigns the value of the
method activation’seturn variable tov. (For convenience, we often writem(g) or
simplye.minstead of/:=em(g).) There are standard statementssiot p, conditionals
if bthent elset fi, and assignmenis:= e. As usualthis is read only.

Late binding or dynamic dispatch is a central concept of object-orientation, already
present in Simula [8]. A method call is late bound vatual, if the method body to be
executed is selected at run-time, depending on the callee’s actual class. Virtual calls are
bound to the first implementation found above the actual class. The mechanism can be
illustrated by an object of clag® which executes a methad defined in its superclass

C; and this method issues a call to a methodiefined in both classes (see Fig. 2).
With late binding, the code selected for execution is associated to the first matching
signature fom aboveC;; i.e., m of C; is selected and not the one@. If n;, however,

were executed in an instance®f, the virtual invocation ofn would be bound to the
definition inC;. We say that a definition ah is reachablefrom C if there is a class

D < C such that a call ton will bind to that definition for instances d@. For instance,

if mis overridden byD, that declaration is reached fradnfor instances obD. Thus, for

a virtual call there might be several reachable definitions.

(AssieN) {ge/v]} vi=e{q}

(s«ip) {q} skip {q}

{pita{r} {r}to{q} P=p1 {pijt{m} d=q
50 {p}ti;t2 {a} (Aoarn {p}t{a}
VieS. {pife/X} bOdYrin(y) {ai}

{Aies(pi[e/X))} vi=em(®) {Vics(i[v/return])}

(CALL)

S= implements(class0£f(€), M)

Fig. 3. Closed world proof rules. Letlass0f(e) denote the class of expressieandp[e/v] the
substitution of all occurrences ofin p by e [12], extended for object creation following [24].
The functionimplements(C, m) returns all classes where a calltdfrom classC may be bound.

2.2 Reasoning about Virtual Calls

Apart from the treatment of late bound method calls, our reasoning system for the other
statements follows standard proof rules [3, 4] for partial correctness, adapted to the
object-oriented setting; in particular, de Boer’s technique using sequences in the asser-
tion language addresses the issue of object creation [9]. We present the proof system
using Hoare tripleg p} t {q}, wherep is the precondition and is the postcondition to

the statement [12]. The meaning of a triplé p} t {g} is standard: it is executed in

a state wher@ holds and the execution terminates, tligmolds aftert. The derivation

of triples can be done in any suitable program logic. Let PL be such a program logic
and letkp. {p} t {q} denote thatp} t {q} is derivable in PL. Aproof outline[23]

for a method definitiom(X){t} is an annotated methau(X): (p,q) {(t)} where (t)

is the method body annotated with pre- and postconditions to method calls. The
derivability Fp. m(X): (p,q) {(t)} of a proof outline is given by-p_ {p} (t) {q}. For

m(xX): (p,q) {(t)}, the pair(p,q) is called thecommitmenbf methodm. For simplicity,

we assume thateturn does not occur irp and thatx do not occur ing. To prove an
assertion, the annotated method bddymay imposeequirementon methods called
within t, expressed by pre- and postconditions to those calls. For drgati() {s} in

{t), (r,s) is the required assertion for To ensure that the requirement is valid, every
reachable definition ai must be analyzed.

If the proof system assumes a closed world, all classes must be defined before the
analysis can begin, as the requirement to a method call is derived from the commit-
ments of all reachable implementations of that method. To simplify the presentation in
this paper, we omit further details of the assertion language and the proof system (e.g.,
ignoring the representation of the program semantics — for details see [24]). The cor-
responding proof system is given in Fig. 3; the proof rale.) captures late binding
under a closed world assumption. The following example illustrates the proof system.

Example 1.Consider the class hierarchy of Fig. 2, where the methods are decorated
with proof outlines. The specifications of methassandn; play no role in the dis-
cussion and are given a wildcard notation_). Assume-p. m(): (p1,q1) {{t1)}, FpL

m(): (pz2,d2) {{t2)}, andtp. m(): (ps,q3) {(t3) } for the definitions oimin classe<;,

Cy, andCg, respectively. Let us initially consider the class hierarchy consistirg; of
andC, and ignoreCs for the moment. The proof system of Fig. 3 gives the Hoare triple
{p1A p2}this.m(){o1 V qz} for each call tam, i.e., for the calls in the bodies of meth-
odsn; andn; in classC;. To apply(apart), we get the proof obligations; = p1 A p2
andq V g2 = s for ng, andrz = p1 A p2, andqy Vv g = S, for np. Extendingnow the
class hierarchy witlgz breaks the closed world assumption and requiresverifythe
methods; andny. With the new Hoare triplé pp A p2 A ps}this.m(){g1 VgV gz} at
every call site, the proof obligations given above for applyiger) no longer apply.

3 A Lazy Approach to Virtual Calls

This section presents informally the approach to reason about virtual calls which is
based on an open world assumption. It supports incremental reasoning about classes
and is well-suited for program development, being less restrictive than behavioral sub-
typing. A formal presentation is given in Sect. 4.

Reconsider clas€; of Example 1. The proof outlines far, andny require that
{r1}this.m() {s1} and{r2} this.m() {2} hold in the bodies ofi; andn,, respectively.
The assertion&r1,s1) and(rp,) may be seen agquirementso reachable definitions
of m; for m's definition inCy, both{r1} t; {s1} and{r,} t; {s} must hold. However,
the proof obligations for method calls have shifted from the call site to the declaration
site, which allows incremental reasoning. During the verification of a class only the
class and its superclasses need to be considered, subclasses are ignored. If we later
analyze subclags; or Cg, thesame requiremen@pply to their definition om. Thus,
no reverification of the bodies of andn; is needed when new subclasses are analyzed.

AlthoughC; is analyzed independently 65 andCs, its requirements must be con-
sidered during subclass analysis. For this purpoggopaf environments constructed
while analyzingC; recording thatC; requires both(rq,s1) and(rz,s) from m. Sub-
classes are analyzed in the context of this proof environment, and may in turn extend
the proof environment with new requirements, tracking the scope of each requirement.
For two independent subclasses, the requirements made by one subclass should not af-
fect the other. Hence, the order of subclass analysis does not influence the assertions to
be verified in each class. To avoid reverification, the proof environment also tracks the
commitments established for each method definition. The analysis of a requirement to a
method definition immediately succeeds if the requirement follows from the previously
established commitments of that method.

3.1 Assertions and Assertion Entailment
We consider an assertion language with expressaomnstructed as follows:
ex=1f | z| opge) | this | return

Here, f is a program fieldz a logical variable, andpsan operation on abstract data
types, ignoring field access. Aassertion(of type Asser} is a pair of Boolean expres-
sions. Letp’ denote an expressignwith all occurrences of field$é substituted byf’,
avoiding name capture. We define entailment for assertions and for sets of assertions:

Definition 1 (Entailment). Let (p,q) and(r,s) be assertions and letl and 7’ denote
the assertion set§(p;,qi) |1 <i<n}and{(r;,5)|1<i<m}. Entailments defined by

1 (pa)—=(rs) £ (Va.p=dq)= (V22.r=9),

wherez; andz, are the logical variables ifp,q) and(r,s), respectively.
2. U—-(,s) 2 (Ai<i<n(Vz . P =) = (Vz.r = 9).
3. U—-V 2 Algigm‘u — (ri,5).

Note that the relatiort — (r,s) corresponds to classic Hoare-style reasoning to prove
{r}t{s}from{pi}t{qi} forall 1 <i <n, by means of the adaptation and conjunction
rules [3] . Note that entailment is reflexive and transitive, &hd U implies U — 7.

3.2 Class Analysis with a Proof Environment

We now illustrate the role of the proof environments during class analyses through a
series of examples. The environment collects method commitments and requirements
in two mappingsS andR which, given a class name and method identifier, return a set
of assertions. The analysis of a class both uses and changes the proof environment.

Propagation of requirementdVethod requirements encountered during the analysis of
a proof outline in a clas€ are verified for the known reachable definitions and im-
posed on future subclassesmifx): (p,q) {(t)} is shown while analyzin@, we extend
S(C, m) with (p,q). For each requiremert } n {s} in the proof outline(r,s) must hold

for definitions ofn reached by instances @f FurthermoreR(C,n) is extended with
(r,s) as a restriction on future subclass redefinitions.of

Example 2.Consider the analysis of cla€s in Fig. 2. The commitmentpi,qi) is
included inS(Cy,m) and the requirementss,s;) and(rz,sz) are included irR(Cy, m).
Both requirements must be verified for the definitiomrah Cg, i.e., the definition ofm
reachable fron€;. Consequently, for eadfn;,s), S(C1,m) — (ri,s) must hold, which
follows from (p1,q1) —» (ri,S).

In the example, the requirements maderiyandn, follow from the established
commitment ofm. Generally, the requirements need not follow from the previously
shown commitments. It is then necessary to provide a new proof outline for the method.

Example 3.If (ri,s) does not follow from(p1,di1) in Example 2, a new proof outline
m: (ri,s) {{t1)} must be analyzed similarly to the proof outlinesGn The mapping
S(C1,m) is extended byr;,s), ensuring the desired relatidifCy, m) — (r;,s).

The analysis strategy must ensure that once a commitfgeqgj is included in
S(C, m), it will always hold when the method is executed in an instance of any (future)
subclass o€, without reverifyingm. In particular, wherm is overridden, theequire-
mentsmade by methods i@ to m must hold for the new definition ah.

Example 4.Consider clas€; in Fig. 2, which redefinem. After analysis of the proof
outlinem: (p2,02) {(t2) }, S(C2, m) is extended witl{ p2, g2). In addition, the superclass
requirement®R(Cq, m) must hold for the new definition afhto ensure that the commit-
ments ofny andny apply for instances df,. Hence S(Cy, m) — (rj,s) must be shown
for each(ri,s) € R(C1,m), similar toS(Cy,m) — (rj,s) in Example 2.

When a methodn is (re)defined in a clags, all superclass invocations af from
instances of will bind to the new definition. The new definition must therefore support
the requirements from all superclasses. RE(C, m) denote the union ak(B, m) for all
C < B. For each methonhdefined inC, it is necessary to ensure the following property:

S(C,m) — R7(C,m) (1)
It follows thatm must support the requirements fr@itself; i.e.,S(C,m) — R(C,m).

Context-dependent properties of inherited methddst. us now consider methods that
are inherited but not redefined, sayjs inherited from a superclass ©f In this case,
virtual calls tom from instances o€ are bound to the first definition ofi aboveC, but
virtual callsby mare boundn the context of CasC may redefine methods invoked by
m. FurthermoreC may impose new requirements onnot proved during the analysis

of the superclass, resulting in new proof outlinesrfoitn the analysis of the new proof
outlines, we know that virtual calls are bound fr@nlt would be unsound to extend
the commitment mapping of the superclass, since the new commitments are only part
of the subclass context. Instead, we §§8, m) andR(C, m) for local commitment and
requirement extension¥hese new commitments and requirements only apply in the
context ofC and not in the context of its superclasses.

Example 5.Let the following class extend the hierarchy of Fig. 2:

class Cj extends C {

nO):() {...;{ra} this.m() {s4};...}

ClassC, inherits the superclass implementatiomofThe analysis of's proof outline
yields {r4} m{s1} as requirement, which is included R(C4,m) and verified for the
inherited implementation afi. The verification succeeds${Ci,m) — (r4,&). Other-
wise, a new proof outline: (r4,s4) {(t1) } is analyzed under the assumption that virtual
calls are bound in the context 6f. When analyzedr4,s4) becomes a commitment of
mand itis included ir§(C4, m). This mapping acts as a local extensiors@€;, m) and
contains commitments of that hold in the subclass context.

Assume that a definition ahin a classA is reachable fron€. When analyzing a
requirement{r} m{s} in C, we can then rely oi$(A,m) and the local extensions of
this mapping for all classes betweArandC. We assume that programs are type-safe
and define a functios1 recursively as followsST(C,m) £ S(C,m) if mis defined in
C andST(C,m) £ S(C,m) U ST(B,m) otherwise, wher® is the immediate superclass
of C. We can now revise Property 1 to accountifdrerited methods

ST(C,m) — RT(C,m) (2)

Thus, each requirement R(B,m), for someB aboveC, must follow from the estab-
lished commitments ahin contextC. Especially, for eachp,q) € R(C,m), (p,q) must
either follow from the superclass commitments or from the local extericmm). If
(p,q) follows from the local extensio§(C,m), we are in the case when a new proof
outline has been analyzed in the contextoNote that Property 2 reduces to Property 1
if mis defined irC.

Analysis of class hierarchiesA class hierarchy is analyzed in a top-down manner,
starting withObject and an empty proof environment. Classes are analyzed after their
respective superclasses, and each class is analyzed without knowledge of possible sub-
classes. Methods are specified in terms of proof outlines. For each me(xoft }
defined in a clas€, we analyze eaclip,q) occurring either as a specification mfin
some proof outline, or as an inherited requiremeRfiC, m). If S(C,m) — (p,q), no
further analysis ofp, q) is needed. Otherwise a proof outlimgx) : (p,q) {(t)} needs to
be analyzed, after whic$i(C, m) is extended witl{ p,q). During the analysis of a proof
outline, annotated (internal) cal{s} n {s} yield requirementsr,s) on reachable im-
plementations ofi. TheR(C, n) mapping is therefore extended withs) to ensure that
future redefinitions of will support the requirement. In additio(r, s) is analyzed with
respect to the implementation ofthat is reached for instances ©fi.e., the first im-
plementation oh aboveC. This verification succeeds immediatel\Sif(C,n) — (r,s).
Otherwise, a proof outline fam is analyzed in the context &, which again extends
S(C,n) by (r,s). Each call statement in this proof outline is analyzed in this manner.
Forexternalcalls {r} x.m() {s}, wherex refers to an object of clas¥, we require that
(r,s) follows from the requirement®?(C’,m) of min C'.

The mappings reflects thedefinition of methodseach lookupS(C,m) returns a
set of commitments for a particular implementatiomofin contrast, the mapping
reflects thause of methodand may impose requirements on several implementations.

Lazy behavioral subtypingBehavioral subtyping in the traditional sense dnesfol-

low from the analysis. Behavioral subtyping would mean that whenever a metiwd
redefined in a clasg, its new definition must implement all superclassnmitments

for m; i.e., the method would have to satisf{B, m) for all B aboveC. For example, be-
havioral subtyping would imply thahin bothC, andCgz in Fig. 2 must satisfy p1,0z1).

Instead, theR mapping identifies the requirements imposed by virtual calls. Only these
assertions must be supported by overriding methods to ensure that the execution of su-
perclass’ code does not have unexpected results. Thus, only the behavior assumed by
the virtual call statements is ensured at the subclass level. In this way, requirements are
inherited by needresulting in a lazy form of behavioral subtyping.

Example 6.Consider a class defining two methods which increment counters.

class A{
int Xx=0;y=0
inc() { x:=x+1,y:=y+1}
incX2() { this.inc(); this.inc() }

}

Let (x = z9,x = Zp + 2) be a commitment ahcX2, based on a requiremefxt= zy,x =
Zp+1) toinc, included inR(A,inc). If Ais later inherited by a clad3, B may override
inc, providedR(A,inc) is supported by the new implementation. The behavion@X2
does not depend on other possible commitmentS(A&inc); e.g., (X =y, x=Yy) and
(y=12,y=12y+1). In fact, the subclass implementationio€ may assign any value to
y without breaking the reasoning system.

4 An Assertion Calculus for Program Analysis

The incremental strategy outlined in Sect. 3 is now formalized as a calculus which tracks

commitments and requirements for method implementations in an extensible class hier-
archy. Given a program, the calculus builds an environment which reflects the class hi-

erarchy and captures method commitments and requirements. This environment forms
the context for the analysis of new classes, possibly inheriting already analyzed ones.
Proofs of the lemmas can be found in [11].

4.1 The Proof Environment of the Assertion Calculus

A class is represented by a tugle, f,M) from which the superclass identifie, fields

, and method® are accessible by observer functians, att, andmtds, respectively.

Let M.body =t for a methodM = m(X){t} (or its proof outline). Class names are
assumed to be unique, and method names to be unique within a class. The superclass
identifier may benil, representing no superclass (for clasgect).

Definition 2 (Proof environments). A proof environmentE of type Env is a tuple
(P£,S,Rz), where B : Cid — Class is a partial mapping anfz, Rz : Cid x Mid —
SefAssert are total mappings.

In an environment, Pz reflects the class structurz (C, m) the set of commitments
for min C andRz(C, m) a set of requirements t@ from C. For theempty environment
Fo, Pz, (C) is undefined andz,(C,m) = R, (C,m) = 0 for all C: Cid andm: Mid. Let
<z: Cid x Cid — Bool be the reflexive and transitive subclass relatiorfon

Next we define somauxiliary functionson proof environment&. Let T Pz (C).att
denote the fields of and of its superclasses; i.e., the declared fields accessible from
methods inC, including the implicit declaratiorhis : C. Denote byt’ € t that the
statement’ is contained in the statementand byC € E thatPz(C) is defined. The
function bindz (C,m) : Cid x Mid — Cid returns the first class aboin which the
methodm is defined. This function will never retunn] for type correct calls. Let the
recursively defined functionS{« (C,m) andR7z (C,m) : Cid x Mid — SefAsser} re-
turn all commitments ofm both aboveC and belowbindz (C, m), and all requirements
to m that are made by all classes abd@ven the proof environment, respectively.
Finally, body;(C,m) : Cid x Mid — Stmreturns the body ofnin bindg(C, m).

A sound environmenteflects that previously analyzed classes are correct. If an
assertion appears %z (C,m), there must be a verified proof outlid in PL for the
corresponding method body. For internal cdlit$ n {s} in M, (r,s) must be included
in R¢(C,n); i.e., all requirements made by the proof outline are in Ramapping.

For external call{r} x.n {s} in M, wherex is of classD, the requiremen(r,s) must

follow from the requirements aof in the context oD. Note thatD may be independent

of C; i.e., neither above nor belo®. Finally, method commitments must entail the
requirements (see Property 2 of Sect. 3.2). Sound environments are defined as follows:

Definition 3 (Sound environments).A sound environment satisfies the following
conditions for all C: Cid and m: Mid:

1. v(p,q) € Sz(C,m) . I(body;:(C,m) .) FpL M(X): (p,q) {(body(C,m)) }
AV{r} n{s} € (body;(C,m)) . Rx(C,n) = (r,9)

AV{r}x.n{s} € (body:(C,m)).3ID. ((x: D) €TPz(C).att) = Rlz(D,n) — (r,9)
2. STE(Cv m) _DRTE(Cv m)

Note that in this definition, the proof outline required by Condition 1 need not e in
itself, but may be found abov@as described blgody,(C,m). Let|=c {p} t {q} denote
= {p}t {g} under the assumption that virtual callstiare bound in the context &,
and let=c m(X): (p,q) {t} be given by=c {p} t {q}. If there are no method calls tn
andtp. {p} t {q}, thenk= {p} t {q} follows by the soundness of PL.

Although method redefinitions in a subclass need not respect the commitments of
method definitions in superclasses, Lemma 1 below ensures that the commitments of
method definitions in superclasses will hold when invoked from a subclass, even if
auxiliary methods have been redefined.

Lemma 1. Given a sound environmert and a sound program logiPL. For all C :
Cid, m: Mid, and (p,q) : Assert such that @ £ and (p,q) € S1z(C,m), we have
E=p m(X): (p,q) {body;: (C,m)} for each D<« C.

In a minimal environmentE, the mappingRz only contains requirements that are
caused by some proof outline; i.e., there are no superfluous requirements. Minimal en-
vironments are defined as follows:

Definition 4 (Minimal Environments). A sound environmerg is minimal iff

Y(r,s) € Rz(C,n) . 3(p,q),m, (body:(C,m)) .
(P,a) € S£(C,mA Fp m(X): (p,q) { {(body;:(C,m)) } A {r} n {s} € (body;(C,m))

Reverifications avoided by incrementally extendirsg (C, m). If a virtual call re-
quires a verified specification, it is found #%(C,m). Thus, the avoidance of reverifi-
cation can be seen as a dual to the first condition to Def. 8p}fbody;: (C,m) {q} is
proved, the commitmer{ip, q) is added tSz (C, m).

4.2 The Analysis Operations of the Assertion Calculus

An open program may be extended with new classes, and there may be mutual depen-
dencies between the new classes. For example, a method in a neW dasscall a
method in another new clagy and a method iD can call a method i€. In such
cases, a complete analysis of one class cannot be carried out without consideration of
mutually dependent classes. We therefore choose class sets as the granularity of pro-
gram analysis. Anoduleis a set of classes, and a modulsédf-containedvith regard
to an environment if all method calls inside the module can be successfully bound
inside that module or to classes represented.in

In the calculus, judgments have the fofirt- 4, whereE is the proof environment
and 4 is a list of analysis operation®n the class hierarchy. The analysis operations
have the following syntax:

O ::=¢| analyzeMtd&M) | verify(m,R) | analyzeOutling) | O- O

S ==0|L|requirelC,m,(p,q)) | SUS
4 :=moduléL) | [(C: 0); S]] [e; S] | 4-moduléL)

These analysis operations may be understood as follows.lAdfetlass declarations is
analyzed by the module operatiamduléL). Classes are assumed to be syntactically
well-formed and well-typed. Inside a module, the classes are analyzed in some order,
captured by the set. The operatiortlass C extends D {f M} initiates the analysis

of classC. The operation(C : O); S] analyzesO in the context of clas€ before
operations inS are considered. Upon completion, the analysis yields a term of the form
[€; S]. The analysis of a specific class consists of the following operations, all inside
the context of that class. The operatmmalyzeMtdéM) initiates analysis of the proof
outlinesM. The operatiowerify(m, R) verifies the seR of assertions with respect to the
methodm. The operatioranalyzeOutling) analyzes the method calls in the statement
t. Since the operation only occurs in the context of a diasdrtual calls are bound in

this context. The operatioequire(D,m, (p,q)) applies to external calls to ensure that
min D satisfies the requiremefp,q). Requirements are lifted outside the context of
the calling clas€ by this operation, and the verification of requiremémtg) for min

D is shifted into the set of analysis operatighs

4.3 The Inference Rules of the Assertion Calculus

Class modules are analyzed in sequential order such that each module is self-contained
with regard to the already analyzed modules. Program analysis is initiat&g by
moduléL), whereL is a module that is self-contained with regard to the empty envi-
ronment. The analysis of a module is carried out by manipulation ofrtbéuléL)
operation according to the inference rules below. During module analysis, the proof en-
vironment is extended, keeping track of the currently analyzed class hierarchy and the
associated method commitments and requirements. Winerdaleoperation succeeds,
the resulting environment represents a verified class hierarchy. New modules may in-
troduce subclasses of previously analyzed classes, and the calculus is based on an open
world assumption as a module may be analyzed in the context of previously analyzed
modules and independent of later modules.

There are three differeminvironment updateshe loading of a new cladsand the
extension of the commitment and requirement mappings with an asséptignfor a
given methodnand clas€. These are denotedtS(C,m, (p,q)) andextR(C,m, (p,q)),
respectively. Environment updates are represented by the operaténvx Update—
Env, where the first argument is the current proof environment and the second argument
is the environment update, defined as follows:

E @ class C extends D {f M} = (Pz[C+— (D, f,M)], Sz, Rz)
E & extS(C,m, (p,q)) = (Pg,S£[(C,m) — S£(C,m) U{(p,q)}],Rz)
ED eXtR(C, m, (p,q)) = <P£7S£,R£[(C, m) = R‘Z(C7 m) U {(p7 q)}]>

The correspondingnference rulesare given in Fig. 4. Note thall represents a list
of modules which will be analyzed later, and which may be empty. Rut@mMoouLe)
initiates the analysis of a new moduteodul€L). The analysis continues by manipu-
lation of the[e; L] operation that is generated by this rule. For notational convenience,
we letL denote both a set and list of classes.

Rule (Newciass) selects a new class from the current module, and initiates analysis

of the class in the current proof environment. The premises ensure that a class cannot

EFrle;L]-a
E + modulél) - 4

(NEWMODULE)

C¢E D#nl=>DeE
E@ (class C extends D {f M}) - [(C: analyzeMtdéM)) ; 5]- 4
T - [e; {class Cextends D {T M}}US]- 4
E - [(C: verifym, {(p,q)} URT¢ (P£(C).inh,m)) - 0); S]- 4
E I [(C: analyzeMtdém(x): (p,q) {(t)})- 0); S]- 4

(NEWCLASS)

(NEWMTD)

Sl (Cm) —(pg EF[C:0);5]-4
E F[(C: verify(m, (p,q)) - O); S]- 4

FpLm(X): (p, a) { (body; (C,m))}
E@extS(C,m,(p,q)) - [(C: analyzeOutlingbody: (C,m)))- 0); S]- 4
E +[(C: verify(m,(p,q)) - O); S]- 4
E®extR(C,m,(p,q)) F [(C: verify(m,(p,q))-O0); S]- 4
E + [(C: analyzeOutling{p} m{q}) - 0); S]- 4

(REQDER)

(REQNOTDER)

(CALL)

x:D eTPg(C).att E F[(C: 0); SU{require(D,m,(p,q))}]- 4
E F [(C: analyzeOutling{p} xm{q})- 0); S]- 4

(EXTCALL)

CeZ RT’Z(Cvm)Ab(pvq) fl—[ﬁ;_ﬂ-ﬂ
E I [g; {require(C,m, (p,q)) } US]- 4

(EXTREQ)

Erleis]a Er4a
MPCLA —_—
TF[Cie)s]- A) Tr[e,0 A4

(EMPMODULE)

EF[C:0);5]-4
E - [(C: verifym,0)-O); S]- 4

(NOREQ)

EF[C:0);8]- 4
E F [(C: analyzeMtd&D)- O); S]- 4

(NOoMTDS)

EFR[C:0);5]-4 t does not contain call statement(sS
K
E + [(C: analyzeOutling) - 0y ; S]- 4

IP)

E +[(C: verify(m,Ry) - verify(m Ry) - 0) ; S]- 4
E+[(C: verifymRL Ry)- 0); 5]-4

(DECOMPREQ)

E [(C: analyzeOutlin&;) - analyzeOutlin&,) - O) ; S]- 4
E | [(C: analyzeOutlinés;ty) - O); S]- 4

(DECOMPCALLS)

E I [(C: analyzeMtdéM;) - analyzeMtdéMy) - O) ; S]- 4
E I [(C: analyzeMtd&M; Mp) - 0); S]- 4

(DECOMPMTDS)

Fig. 4. The inference system, whergis a (possibly empty) list of analysis operations. To sim-
plify the presentation, we leh denote a method call including actual parameters.

be introduced twice and that the superclassdiesady been analyzed'he class hier-
archy is extended with the new class and the analysis continues by traversing the proof
outlines by means of thanalyzeMtdoperation. Note that at this point in the analy-
sis, the class has no subclasses in the proof environment. (Redeto) generates a
set of requirement assertions for a method. The requirement set is constructed from the
specified commitment of the method and the superclass requirements to the method.

The rules (rReqDer) and (ReeNoTDER) address the verification of a particular require-
ment with respect to a method implementation. If the requirement follows from the
commitments of the method, rulgeqper) proceeds with the remaining analysis oper-
ations. Otherwise, a proof of the requirement is needed. As
decbody:(C,m) nondeterministically selects a proof outline, the rule applies to any
proof outline for the method available in cla8sRemark that(reeNoTDER) iS the only
rule which extends th8 mapping. The considered requirement leads to a new commit-
ment formwith respect taC, and the commitment itself is assumed when analyzing the
method body. This captures the standard approach to reasoning about recursive proce-
dure calls [13].

Rule (caw) analyzes the requirement of a local call occurring in some proof out-
line. The rule extends thR mapping and generatesvarify operation which analyzes
the requirement with respect to the implementation bound from the current class. The
extension of theR mapping ensures that future redefinitionsnofmust respect the re-
quirement; i.e., the requirement applies whenever future redefinitions are considered by
(NewMTp). Rule (Exrcair) handles external calls on the fosm (ignoring field shadow-
ing). The requirement to the external method is removed from the context of the current
class and inserted asrequire operation inS. The class of the callee is found by the
declaration ok. Rule (extReq) can first be appliedfter the analysis of the callee class,
and the requirement must then follow from the requirements of this class.

Rule (emrcLass) concludes the analysis of a class when all analysis operations have
succeeded in the context of the class. The analysis of a module is completed by the rule
(EmpMobuie). Thus, the analysis of a module is completed after the analysis of all the
module classes and external requirements made by these classes have succeeded.

In addition, there are some structural rules. The ruleseq) and (Nomos) apply to
the empty requirement set and the empty method list, respectively. Baudgapplies to
statements which are irrelevant to this analysis. These rules simply continue the analysis
with the remaining analysis operations. Finally, the rulescomrmos), (DEcomPREQ),
and (pecowmrcalLs) flatten non-empty method lists, requirement sets and statements into
separate analysis operations. Note that a prod 6fmoduléL) has exactly one leaf
nodeZ’ +- [e; 0]; we call £’ the environment resulting from the analysiswwdduléL).

Properties of the inference systerlthough the individual rules of the inference sys-

tem do not preserve soundness of the proof environment, the soundness of the proof
environment is preserved by the successful analysis of a module. This allows us to
prove that the proof system is sound for module analysis.

Theorem 1. LetE be a sound environment ahda set of class declarations. If a proof
of £ + modul€L) hasZ' as its resulting proof environment, thdii is also sound.

Theorem 2 (Soundness)f PL is a sound program logic, then the derived proof out-
line logic combined with the calculus also constitutes a sound proof system.

Furthermore, the inference system preserves minimality of proof environments; i.e.,
only requirements needed by some proof outline are recorded Rsthmeapping.

Lemma 2. If £ is a minimal environment andis a set of class declarations such that a
proof of £ - modul€L) leads to the resulting environmeft, thenE’ is also minimal.

Finally we show that the proof system supports verification reuse in the sense that
commitments are remembered.

Lemma 3. Let £ be an environmenE andL a list of class declarations. Whenever
a proof outline nfx): (p,q) {(t)} is verified during analysis of some class CLinthe
commitmentp, q) is included inS¢(C, m).

5 Related Work

Object-orientation poses several challenges to program logics; e.g., inheritance, late
binding, recursive method calls, aliasing, and object creation. In the last years several
programming logics have been proposed, addressing various of these challenges. Nu-
merous proof methods, verification condition generators, and validation environments
for object-oriented languages have been developed, including [1,6,14,16,22]. In partic-
ular, Java has attracted much interest, with advances being made for different (mostly
sequential) aspects and sublanguages of that language. In particular, most such formal-
izations concentrate on closed systems. A recent state-of-the-art survey of challenges
and results for proof systems and verification in the field is given in [18], and for an
overview of verification tools based on the Java modeling language JML, see [7].

Proof systems especially studying late bound methods have been shown to be sound
and complete assuming a closed world [24]. While this is proof-theoretically satisfac-
tory, the closed world assumption is unrealistic in practice and necessitates costly reveri-
fication when the class hierarchy is extended (as discussed in Sect. 1). To support object-
oriented design, proof systems should be constructed for incremental reasoning. Most
prominent in that context are different variations of behavioral subtyping [19, 20, 26].
Virtual methods [25] similarly allow incremental reasoning by committing to certain ab-
stract properties about a method, which must hold for all its implementations. Although
sound, the approach does not generally provide complete program logics, as these ab-
stract properties would, in non-trivial cases, be too weak to obtain completeness. Virtual
methods furthermore force the developer to commit to specific abstract specifications
of method behavior early in the design process. In particular, the verification platforms
for Spec#5] and JML [7] rely on versions of behavioral subtyping.

The fragile base class problem emerges when seemingly harmless superclass up-
dates lead to unexpected behavior of subclass instances [21]. Many variations of the
problem relate to imprecise specifications and assumptions made in super- or sub-
classes. By making method requirements and assumptions explicit, our calculus can
detect many issues related to the fragile base class problem.

6 Conclusion

This paper presents lazy behavioral subtyping, a novel strategy for reasoning about
late bound method calls. The strategy is designed to support incremental reasoning and
avoid reverification in an open setting, where class hierarchies can be extended by inher-
itance. Lazy behavioral subtyping is more flexible than strategies based on traditional
behavioral subtyping, while retaining the open world assumption. To focus the presen-
tation, we have abstracted from many object-oriented language features and presented
the approach for an object-oriented kernel language supporting single inheritance. This
reflects the mainstream object-oriented languages today, such as Java and C

We currently integrate lazy behavioral subtyping in a program logic for Creol [10,
17], a language for dynamically reprogrammable active objects, developed in the con-
text of the European project Credo. This integration requires a generalization of the
analysis tomultiple inheritanceand concurrent objects, as well as to Creol’s mech-
anism forclass upgradesMoreover an adaptation is needed to Creol’s type system,
which is purely based on interfaces. Interface types provide a clear distinction between
internal and external calls. By separating interface level subtyping from class level in-
heritance, class inheritance can freely exploit code reuse based on lazy behavioral sub-
typing while still supporting incremental reasoning techniques. This program logic with
lazy behavioral subtyping will be part of the programming environment for Creol, based
on Eclipse.

Acknowledgment.We are grateful for helpful comments from Wolfgang Ahrendt and
the anonymous reviewers Bbrmal Methods 2008

References

1. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In N. Dershowitz,
editor, Verification: Theory and Practice, Essays Dedicated to Zohar Maxmalume 2772
of LNCS pages 11-41. Springer, 2003.

2. P. America. Designing an object-oriented programming language with behavioural sub-
typing. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, edifousidations of
Object-Oriented Languagepages 60—90. Springer, 1991.

3. K. R. Apt. Ten years of Hoare’s logic: A survey — PartACM Transactions on Program-
ming Languages and Syster8§4):431-483, Oct. 1981.

4. K. R. Apt and E.-R. OlderogVerification of Sequential and Concurrent Systeffexts and
Monographs in Computer Science. Springer, 1991.

5. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editatks,Workshop on
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices (CASSIS'04)
volume 3362 oLNCS pages 49-69. Springer, 2005.

6. B. Beckert, R. Hahnle, and P. H. Schmitt, editdverification of Object-Oriented Software.
The KeY Approachvolume 4334 oL.NAI. Springer, 2007.

7. L. Burdy, Y. Cheon, D. R. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, , and
E. Poll. An overview of JML tools and applications. In T. Arts and W. Fokkink, editors,
Proceedings of FMICS 'Q3/olume 80 ofENTCS Elsevier Science Publishers, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. 0.-J. Dahl, B. Myhrhaug, and K. Nygaard. (Simula 67) Common Base Language. Technical

Report S-2, Norsk Regnesentral (Norwegian Computing Center), Oslo, Norway, May 1968.

. F. S. de Boer. A WP-calculus for OO. In W. Thomas, ediwaceedings of Foundations of

Software Science and Computation Structure, (FOSSACS8@me 1578 oLNCS pages
135-149. Springer, 1999.

F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In R. de Nicola,
editor,Proc. 16th European Symposium on Programming (ESORPW@Iyme 4421 o NCS

pages 316-330. Springer-Verlag, Mar. 2007.

J. Dovland, E. B. Johnsen, O. Owe, and M. Steffen. Lazy behavioral subtyping. Re-
search Report 368, Dept. of Informatics, University of Oslo, Nov. 2007. Available from
heim.ifi.uio.no/creol.

C. A. R. Hoare. An Axiomatic Basis of Computer Programmi@pmmunications of the
ACM, 12:576-580, 1969.

C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In E. Engeler, edi-
tor, Symposium On Semantics of Algorithmic Languagekime 188 ofLecture Notes in
Mathematicspages 102—-116. Springer, 1971.

M. Huisman.Java Program Verification in Higher-Order Logic with PVS and IsahefeD
thesis, University of Nijmegen, 2001.

A. lgarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for
Java and GJACM Transactions on Programming Languages and Syst2&{8):396—450,
2001.

B. Jacobs and E. Poll. A logic for the Java Modelling Language JML. In H. Hussmann,
editor, Fundamental Approaches to Software Engineervgume 2029 ofLNCS pages
284-299. Springer, 2001.

E. B. Johnsen and O. Owe. An asynchronous communication model for distributed concur-
rent objects Software and Systems Modeljrgg§1):35-58, Mar. 2007.

G. T. Leavens, K. R. M. Leino, and P. Miiller. Specification and verification challenges for
sequential object-oriented progrankermal Aspects of Computing9(2):159-189, 2007.

G. T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance, and
modular reasoning. Technical Report 06-20a, Department of Computer Science, lowa State
University, Ames, lowa, 2006.

B. H. Liskov and J. M. Wing. A behavioral notion of subtypindCM Transactions on
Programming Languages and Syste(6):1811-1841, Nov. 1994.

L. Mikhajlov and E. Sekerinski. A study of the fragile base class problem. In E. Jul, editor,
12th European Conference on Object-Oriented Programming (ECO@M)me 1445 of
LNCS pages 355-382. Springer, 1998.

D. v. Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side effects,
and virtual methods revisited. In L.-H. Eriksson and P. A. Lindsay, edifarsnal Methods
Europe (FME 2002)volume 2391 of NCS pages 89-105. Springer, 2002.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programdgia Infor-
matica 6(4):319-340, 1976.

C. Pierik and F. S. de Boer. A proof outline logic for object-oriented programniihgo-

retical Computer Scien¢843(3):413-442, 2005.

A. Poetzsch-Heffter and P. Mller. A programming logic for sequential Java. In S. D. Swier-
stra, editor8th European Symposium on Programming Languages and Systems (ESOP’99)
volume 1576 oLNCS pages 162-176. Springer, 1999.

N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In
P. Devanbu and J. Poulin, editoRoc. Fifth International Conference on Software Reuse
(ICSR5) pages 206—215. IEEE Computer Society Press, 1998.

