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Abstract. Late binding allows flexible code reuse but complicates formal rea-
soning significantly, as a method call’s receiver class is not statically known.
This is especially true when programs are incrementally developed by extend-
ing class hierarchies. This paper develops a novel method to reason about late
bound method calls. In contrast to traditional behavioral subtyping, reverification
is avoided without restricting method overriding to fully behavior-preserving re-
definition. The approach ensures that when analyzing the methods of a class, it
suffices to consider that class and its superclasses. Thus, the full class hierarchy is
not needed, andincrementalreasoning is supported. We formalize this approach
as a calculus which lazily imposes context-dependent subtyping constraints on
method definitions. The calculus ensures that all method specifications required
by late bound calls remain satisfied when new classes extend a class hierarchy.
The calculus does not depend on a specific program logic, but the examples in
the paper use a Hoare-style proof system. We show soundness of the analysis
method.

1 Introduction

Late binding of method calls is a central feature in object-oriented languages and con-
tributes to flexible code reuse. A class may extend its superclasses with new methods,
possibly overriding the existing ones. This flexibility comes at a price: It significantly
complicates reasoning about method calls as the binding of a method call to code cannot
be statically determined; i.e., the binding at run-time depends on the actual class of the
called object. In addition, object-oriented programs are often designed under anopen
world assumption: Class hierarchies are extended over time as subclasses are gradually
developed and added. In general, a class hierarchy may be extended with new subclasses
in the future, which will lead to new potential bindings for overridden methods.

To control this flexibility, existing reasoning and verification strategies impose re-
strictions on inheritance and redefinition. One strategy is to ignore openness and assume
a “closed world”; i.e., the proof rules assume that the complete inheritance tree is avail-
able at reasoning time (e.g., [24]). This severely restricts the applicability of the proof
strategy; for example, libraries are designed to be extended. Moreover, the closed world
assumption contradicts inheritance as an object-oriented design principle, which is in-
tended to support incremental development and analysis. If the reasoning relies on the
world being closed, extending the class hierarchy requires a costly reverification.
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An alternative strategy is to reflect in the verification system that the world is open,
but to constrain how methods may be redefined. The general idea is that to avoid rever-
ification, any redefinition of a method through overriding mustpreservecertain proper-
ties of the method being redefined. An important part of the properties to be preserved
is the method’s contract; i.e., the pre- and postconditions for its body. The contract can
be seen as a description of the promised behavior of all implementations of the method
as part of its interface description, the method’scommitment. Best known asbehavioral
subtyping(e.g, [2, 19, 20, 25]), this strategy achieves incremental reasoning by limit-
ing the possibilities for code reuse. Once a method has committed to a contract, this
commitment may not change in later redefinitions. That is overly restrictive and often
violated in practice [26]; e.g., it is not respected by the standard Java library definitions.

This paper relaxes the property preservation restriction of behavioral subtyping,
while embracing the open world assumption of incremental program development. The
basic idea is as follows: given a methodm declared withp andq as the method’s pre-
and postcondition, there is no need to restrict the behavior of methods overridingm
and require that these adhere to that specification. Instead it suffices to preserve the
“part” of p andq actuallyused to verifythe program at the current stage. Specifically,
if m is used in the program in the form of a method call{r} e.m(. . .) {s}, the pre-
and postconditionsr ands at that call-site constitutem’s required behavior and it is
those weaker conditions that need to be preserved to avoid reverification. We call the
corresponding analysis strategylazy behavioral subtyping. This strategy may serve as a
blueprint for integrating a flexible system for program verification of late bound method
calls into object-oriented program development and analysis tools environments [5–7].

The paper formalizes this analysis strategy using an object-oriented kernel lan-
guage, based on Featherweight Java [15], and using Hoare-style proof outlines. For-
malized as a syntax-driven inference system, class analysis is done in the context of a
proof environmentconstructed during the analysis. The environment keeps track of the
context-dependent requirements on method definitions, derived from late bound calls.
The strategy is incremental; for the analysis of a classC, only knowledge ofC and its
superclasses is needed. We show the soundness of the proposed method.

Paper overview.Sect. 2 introduces the problem of reasoning about late binding,
Sect. 3 presents the approach taken in this paper, and Sect. 4 gives the details of the
inference system. Related work is discussed in Sect. 5 and Sect. 6 concludes the paper.

2 Late Bound Method Calls

2.1 Syntax for an Object-Oriented Kernel Language

To succinctly explain late binding and our analysis strategy, we use an object-oriented
kernel language (Fig. 1) with a standard operational semantics (e.g., [15]) . We assume
a functional language of side-effect free expressionse. A programP consists of a list
L of class definitions, and a method body. A class extends a superclass, which may be
Object, with fields f and methodsM. To simplify, we let fields have distinct names,
methods with the same name have the same signature (i.e., no method overloading),
programs be well-typed, and ignore the types of fields and methods. For classesB and



P ::=L {t} L ::=classC extendsC { f M}
M ::=m (x){t} t ::=v := newC() | v := e.m(e) | v := e
v ::= f | return | skip | if b then t else t fi | t; t

Fig. 1. The language syntax, whereC andm are class and method names (of typesCid andMid,
respectively). Expressionse include declared fieldsf , the reserved variablesthis andreturn,
and Boolean expressionsb. Vector notation denotes lists; e.g., a list of expressions is writtene.

classC1 {
m() :(p1,q1){〈t1〉}
n1() :(_,_){. . . ;{r1} this.m() {s1}; . . .}
n2() :(_,_){. . . ;{r2} this.m() {s2}; . . .}

}

classC2 extendsC1 {
m() :(p2,q2){〈t2〉}

}

classC3 extendsC1 {
m() :(p3,q3){〈t3〉}

}

Fig. 2.A class hierarchy with proof outlines for overridden methods.

C, B≤C denotes the reflexive and transitive subclass relation derived from class inher-
itance. IfB≤ C, we say thatB is below CandC is above B.

A methodM takes parametersx and contains a statementt, which may be com-
posed. The sequential composition of statementst1 andt2 is writtent1; t2. The statement
v := new C() creates a new object of classC with fields instantiated to default values,
and assigns the new reference tov. A possible constructor method in the class must
be called explicitly. In a method invocatione.m(e), the objecte receives a call to the
methodm with actual parameterse. The statementv := e.m(e) assigns the value of the
method activation’sreturn variable tov. (For convenience, we often writee.m(e) or
simplye.m instead ofv := e.m(e).) There are standard statements forskip, conditionals
if b then t else t fi, and assignmentsv := e. As usual,this is read only.

Late binding or dynamic dispatch is a central concept of object-orientation, already
present in Simula [8]. A method call is late bound, orvirtual, if the method body to be
executed is selected at run-time, depending on the callee’s actual class. Virtual calls are
bound to the first implementation found above the actual class. The mechanism can be
illustrated by an object of classC2 which executes a methodn1 defined in its superclass
C1 and this method issues a call to a methodm defined in both classes (see Fig. 2).
With late binding, the code selected for execution is associated to the first matching
signature formaboveC2; i.e.,mof C2 is selected and not the one inC1. If n1, however,
were executed in an instance ofC1, the virtual invocation ofm would be bound to the
definition inC1. We say that a definition ofm is reachablefrom C if there is a class
D ≤ C such that a call tom will bind to that definition for instances ofD. For instance,
if m is overridden byD, that declaration is reached fromC for instances ofD. Thus, for
a virtual call there might be several reachable definitions.



(ASSIGN) {q[e/v]} v := e{q}
(NEW) {q[newC/v]} v := newC() {q}
(SKIP) {q} skip {q}

(COND)
{p∧b} t1 {q} {p∧¬b} t2 {q}
{p} if b then t1 else t2 fi {q}

(SEQ)
{p} t1 {r} {r} t2 {q}

{p} t1; t2 {q}
(ADAPT)

p⇒ p1 {p1} t {q1} q1 ⇒ q

{p} t {q}

(CALL )
∀i ∈ S.{pi [e/x]} body i

m(x) {qi}
{

V
i∈S(pi [e/x])} v := e.m(e) {

W
i∈S(qi [v/return])}

S= implements(classOf(e), m)

Fig. 3. Closed world proof rules. LetclassOf(e) denote the class of expressione andp[e/v] the
substitution of all occurrences ofv in p by e [12], extended for object creation following [24].
The functionimplements(C,m) returns all classes where a call tom from classC may be bound.

2.2 Reasoning about Virtual Calls

Apart from the treatment of late bound method calls, our reasoning system for the other
statements follows standard proof rules [3, 4] for partial correctness, adapted to the
object-oriented setting; in particular, de Boer’s technique using sequences in the asser-
tion language addresses the issue of object creation [9]. We present the proof system
using Hoare triples{p} t {q}, wherep is the precondition andq is the postcondition to
the statementt [12]. The meaning of a triple{p} t {q} is standard: ift is executed in
a state wherep holds and the execution terminates, thenq holds aftert. The derivation
of triples can be done in any suitable program logic. Let PL be such a program logic
and let`PL {p} t {q} denote that{p} t {q} is derivable in PL. Aproof outline[23]
for a method definitionm(x){t} is an annotated methodm(x) : (p,q){〈t〉} where〈t〉
is the method bodyt annotated with pre- and postconditions to method calls. The
derivability `PL m(x) : (p,q){〈t〉} of a proof outline is given bỳ PL {p} 〈t〉 {q}. For
m(x) :(p,q){〈t〉}, the pair(p,q) is called thecommitmentof methodm. For simplicity,
we assume thatreturn does not occur inp and thatx do not occur inq. To prove an
assertion, the annotated method body〈t〉 may imposerequirementson methods called
within t, expressed by pre- and postconditions to those calls. For a call{r} n() {s} in
〈t〉, (r,s) is the required assertion forn. To ensure that the requirement is valid, every
reachable definition ofn must be analyzed.

If the proof system assumes a closed world, all classes must be defined before the
analysis can begin, as the requirement to a method call is derived from the commit-
ments of all reachable implementations of that method. To simplify the presentation in
this paper, we omit further details of the assertion language and the proof system (e.g.,
ignoring the representation of the program semantics — for details see [24]). The cor-
responding proof system is given in Fig. 3; the proof rule(CALL ) captures late binding
under a closed world assumption. The following example illustrates the proof system.

Example 1.Consider the class hierarchy of Fig. 2, where the methods are decorated
with proof outlines. The specifications of methodsn1 andn2 play no role in the dis-
cussion and are given a wildcard notation(_,_). Assumè PL m() : (p1,q1){〈t1〉}, `PL



m() : (p2,q2){〈t2〉}, and`PL m() : (p3,q3){〈t3〉} for the definitions ofm in classesC1,
C2, andC3, respectively. Let us initially consider the class hierarchy consisting ofC1

andC2 and ignoreC3 for the moment. The proof system of Fig. 3 gives the Hoare triple
{p1∧ p2}this.m(){q1∨q2} for each call tom, i.e., for the calls in the bodies of meth-
odsn1 andn2 in classC1. To apply(ADAPT), we get the proof obligations:r1 ⇒ p1∧ p2

andq1∨q2 ⇒ s1 for n1, andr2 ⇒ p1∧ p2, andq1∨q2 ⇒ s2 for n2. Extendingnow the
class hierarchy withC3 breaks the closed world assumption and requires toreverifythe
methodsn1 andn2. With the new Hoare triple{p1∧ p2∧ p3}this.m(){q1∨q2∨q3} at
every call site, the proof obligations given above for applying(ADAPT) no longer apply.

3 A Lazy Approach to Virtual Calls

This section presents informally the approach to reason about virtual calls which is
based on an open world assumption. It supports incremental reasoning about classes
and is well-suited for program development, being less restrictive than behavioral sub-
typing. A formal presentation is given in Sect. 4.

Reconsider classC1 of Example 1. The proof outlines forn1 andn2 require that
{r1}this.m(){s1} and{r2}this.m(){s2} hold in the bodies ofn1 andn2, respectively.
The assertions(r1,s1) and(r2,s2) may be seen asrequirementsto reachable definitions
of m; for m’s definition inC1, both{r1} t1 {s1} and{r2} t1 {s2} must hold. However,
the proof obligations for method calls have shifted from the call site to the declaration
site, which allows incremental reasoning. During the verification of a class only the
class and its superclasses need to be considered, subclasses are ignored. If we later
analyze subclassC2 or C3, thesame requirementsapply to their definition ofm. Thus,
no reverification of the bodies ofn1 andn2 is needed when new subclasses are analyzed.

AlthoughC1 is analyzed independently ofC2 andC3, its requirements must be con-
sidered during subclass analysis. For this purpose, aproof environmentis constructed
while analyzingC1 recording thatC1 requires both(r1,s1) and(r2,s2) from m. Sub-
classes are analyzed in the context of this proof environment, and may in turn extend
the proof environment with new requirements, tracking the scope of each requirement.
For two independent subclasses, the requirements made by one subclass should not af-
fect the other. Hence, the order of subclass analysis does not influence the assertions to
be verified in each class. To avoid reverification, the proof environment also tracks the
commitments established for each method definition. The analysis of a requirement to a
method definition immediately succeeds if the requirement follows from the previously
established commitments of that method.

3.1 Assertions and Assertion Entailment

We consider an assertion language with expressionseconstructed as follows:

e ::= f | z | ops(ē) | this | return

Here, f is a program field,z a logical variable, andopsan operation on abstract data
types, ignoring field access. Anassertion(of typeAssert) is a pair of Boolean expres-
sions. Letp′ denote an expressionp with all occurrences of fieldsf substituted byf ′,
avoiding name capture. We define entailment for assertions and for sets of assertions:



Definition 1 (Entailment). Let (p,q) and(r,s) be assertions and letU andV denote
the assertion sets{(pi ,qi) |1≤ i ≤ n} and{(r i ,si) |1≤ i ≤m}. Entailmentis defined by

1. (p,q) _ (r,s) , (∀z1 . p⇒ q′)⇒ (∀z2 . r ⇒ s′),
wherez1 andz2 are the logical variables in(p,q) and(r,s), respectively.

2. U _ (r,s) , (
V

1≤i≤n(∀zi . pi ⇒ q′i))⇒ (∀z . r ⇒ s′).
3. U _ V ,

V
1≤i≤mU _ (r i ,si).

Note that the relationU _ (r,s) corresponds to classic Hoare-style reasoning to prove
{r} t {s} from {pi} t {qi} for all 1≤ i ≤ n, by means of the adaptation and conjunction
rules [3] . Note that entailment is reflexive and transitive, andV ⊆ U impliesU _ V .

3.2 Class Analysis with a Proof Environment

We now illustrate the role of the proof environments during class analyses through a
series of examples. The environment collects method commitments and requirements
in two mappingsS andR which, given a class name and method identifier, return a set
of assertions. The analysis of a class both uses and changes the proof environment.

Propagation of requirements.Method requirements encountered during the analysis of
a proof outline in a classC are verified for the known reachable definitions and im-
posed on future subclasses. Ifm(x) :(p,q){〈t〉} is shown while analyzingC, we extend
S(C,m) with (p,q). For each requirement{r} n{s} in the proof outline,(r,s) must hold
for definitions ofn reached by instances ofC. Furthermore,R(C,n) is extended with
(r,s) as a restriction on future subclass redefinitions ofn.

Example 2.Consider the analysis of classC1 in Fig. 2. The commitment(p1,q1) is
included inS(C1,m) and the requirements(r1,s1) and(r2,s2) are included inR(C1,m).
Both requirements must be verified for the definition ofm in C1, i.e., the definition ofm
reachable fromC1. Consequently, for each(r i ,si), S(C1,m) _ (r i ,si) must hold, which
follows from (p1,q1) _ (r i ,si).

In the example, the requirements made byn1 andn2 follow from the established
commitment ofm. Generally, the requirements need not follow from the previously
shown commitments. It is then necessary to provide a new proof outline for the method.

Example 3.If (r i ,si) does not follow from(p1,q1) in Example 2, a new proof outline
m: (r i ,si){〈t1〉} must be analyzed similarly to the proof outlines inC1. The mapping
S(C1,m) is extended by(r i ,si), ensuring the desired relationS(C1,m) _ (r i ,si).

The analysis strategy must ensure that once a commitment(p,q) is included in
S(C,m), it will always hold when the method is executed in an instance of any (future)
subclass ofC, without reverifyingm. In particular, whenm is overridden, therequire-
mentsmade by methods inC to mmust hold for the new definition ofm.

Example 4.Consider classC2 in Fig. 2, which redefinesm. After analysis of the proof
outlinem:(p2,q2){〈t2〉}, S(C2,m) is extended with(p2,q2). In addition, the superclass
requirementsR(C1,m) must hold for the new definition ofm to ensure that the commit-
ments ofn1 andn2 apply for instances ofC2. Hence,S(C2,m) _ (r i ,si) must be shown
for each(r i ,si) ∈ R(C1,m), similar toS(C1,m) _ (r i ,si) in Example 2.



When a methodm is (re)defined in a classC, all superclass invocations ofm from
instances ofC will bind to the new definition. The new definition must therefore support
the requirements from all superclasses. LetR↑(C,m) denote the union ofR(B,m) for all
C≤B. For each methodmdefined inC, it is necessary to ensure the following property:

S(C,m) _ R↑(C,m) (1)

It follows thatmmust support the requirements fromC itself; i.e.,S(C,m) _ R(C,m).

Context-dependent properties of inherited methods.Let us now consider methods that
are inherited but not redefined, say,m is inherited from a superclass ofC. In this case,
virtual calls tom from instances ofC are bound to the first definition ofm aboveC, but
virtual callsby mare boundin the context of C, asC may redefine methods invoked by
m. Furthermore,C may impose new requirements onm not proved during the analysis
of the superclass, resulting in new proof outlines form. In the analysis of the new proof
outlines, we know that virtual calls are bound fromC. It would be unsound to extend
the commitment mapping of the superclass, since the new commitments are only part
of the subclass context. Instead, we useS(C,m) andR(C,m) for local commitment and
requirement extensions. These new commitments and requirements only apply in the
context ofC and not in the context of its superclasses.

Example 5.Let the following class extend the hierarchy of Fig. 2:

classC4 extendsC1 {
n() :(_,_){. . . ;{r4} this.m() {s4}; . . .}

}

ClassC4 inherits the superclass implementation ofm. The analysis ofn’s proof outline
yields{r4} m{s4} as requirement, which is included inR(C4,m) and verified for the
inherited implementation ofm. The verification succeeds ifS(C1,m) _ (r4,s4). Other-
wise, a new proof outlinem:(r4,s4){〈t1〉} is analyzed under the assumption that virtual
calls are bound in the context ofC4. When analyzed,(r4,s4) becomes a commitment of
mand it is included inS(C4,m). This mapping acts as a local extension ofS(C1,m) and
contains commitments ofm that hold in the subclass context.

Assume that a definition ofm in a classA is reachable fromC. When analyzing a
requirement{r} m {s} in C, we can then rely onS(A,m) and the local extensions of
this mapping for all classes betweenA andC. We assume that programs are type-safe
and define a functionS↑ recursively as follows:S↑(C,m) , S(C,m) if m is defined in
C andS↑(C,m) , S(C,m)∪S↑(B,m) otherwise, whereB is the immediate superclass
of C. We can now revise Property 1 to account forinherited methods:

S↑(C,m) _ R↑(C,m) (2)

Thus, each requirement inR(B,m), for someB aboveC, must follow from the estab-
lished commitments ofm in contextC. Especially, for each(p,q)∈R(C,m), (p,q) must
either follow from the superclass commitments or from the local extensionS(C,m). If
(p,q) follows from the local extensionS(C,m), we are in the case when a new proof
outline has been analyzed in the context ofC. Note that Property 2 reduces to Property 1
if m is defined inC.



Analysis of class hierarchies.A class hierarchy is analyzed in a top-down manner,
starting withObject and an empty proof environment. Classes are analyzed after their
respective superclasses, and each class is analyzed without knowledge of possible sub-
classes. Methods are specified in terms of proof outlines. For each methodm(x){t}
defined in a classC, we analyze each(p,q) occurring either as a specification ofm in
some proof outline, or as an inherited requirement inR↑(C,m). If S(C,m) _ (p,q), no
further analysis of(p,q) is needed. Otherwise a proof outlinem(x) :(p,q){〈t〉} needs to
be analyzed, after whichS(C,m) is extended with(p,q). During the analysis of a proof
outline, annotated (internal) calls{r} n {s} yield requirements(r,s) on reachable im-
plementations ofn. TheR(C,n) mapping is therefore extended with(r,s) to ensure that
future redefinitions ofn will support the requirement. In addition,(r,s) is analyzed with
respect to the implementation ofn that is reached for instances ofC; i.e., the first im-
plementation ofn aboveC. This verification succeeds immediately ifS↑(C,n) _ (r,s).
Otherwise, a proof outline forn is analyzed in the context ofC, which again extends
S(C,n) by (r,s). Each call statement in this proof outline is analyzed in this manner.
For externalcalls{r} x.m() {s}, wherex refers to an object of classC′, we require that
(r,s) follows from the requirementsR↑(C′,m) of m in C′.

The mappingS reflects thedefinition of methods; each lookupS(C,m) returns a
set of commitments for a particular implementation ofm. In contrast, the mappingR
reflects theuse of methodsand may impose requirements on several implementations.

Lazy behavioral subtyping.Behavioral subtyping in the traditional sense doesnot fol-
low from the analysis. Behavioral subtyping would mean that whenever a methodm is
redefined in a classC, its new definition must implement all superclasscommitments
for m; i.e., the method would have to satisfyS(B,m) for all B aboveC. For example, be-
havioral subtyping would imply thatm in bothC2 andC3 in Fig. 2 must satisfy(p1,q1).
Instead, theR mapping identifies the requirements imposed by virtual calls. Only these
assertions must be supported by overriding methods to ensure that the execution of su-
perclass’ code does not have unexpected results. Thus, only the behavior assumed by
the virtual call statements is ensured at the subclass level. In this way, requirements are
inherited by need, resulting in a lazy form of behavioral subtyping.

Example 6.Consider a class defining two methods which increment counters.

class A {
int x = 0; y = 0
inc() { x := x+1; y := y+1 }
incX2() { this.inc(); this.inc() }
}

Let (x = z0,x = z0 +2) be a commitment ofincX2, based on a requirement(x = z0,x =
z0 +1) to inc, included inR(A, inc). If A is later inherited by a classB, B may override
inc, providedR(A, inc) is supported by the new implementation. The behavior ofincX2
does not depend on other possible commitments inS(A, inc); e.g.,(x = y,x = y) and
(y = z0,y = z0 +1). In fact, the subclass implementation ofinc may assign any value to
y without breaking the reasoning system.



4 An Assertion Calculus for Program Analysis

The incremental strategy outlined in Sect. 3 is now formalized as a calculus which tracks
commitments and requirements for method implementations in an extensible class hier-
archy. Given a program, the calculus builds an environment which reflects the class hi-
erarchy and captures method commitments and requirements. This environment forms
the context for the analysis of new classes, possibly inheriting already analyzed ones.
Proofs of the lemmas can be found in [11].

4.1 The Proof Environment of the Assertion Calculus

A class is represented by a tuple〈D, f ,M〉 from which the superclass identifierD, fields
f , and methodsM are accessible by observer functionsinh, att, andmtds, respectively.
Let M.body = t for a methodM = m(x){t} (or its proof outline). Class names are
assumed to be unique, and method names to be unique within a class. The superclass
identifier may benil, representing no superclass (for classObject).

Definition 2 (Proof environments). A proof environmentE of type Env is a tuple
〈PE ,SE ,RE 〉, where PE : Cid→ Class is a partial mapping andSE ,RE : Cid×Mid →
Set[Assert] are total mappings.

In an environmentE , PE reflects the class structure,SE (C,m) the set of commitments
for m in C andRE (C,m) a set of requirements tom from C. For theempty environment
E /0, PE /0(C) is undefined andSE /0(C,m) = RE /0(C,m) = /0 for all C : Cid andm : Mid. Let
≤E : Cid×Cid→ Boolbe the reflexive and transitive subclass relation onE .

Next we define someauxiliary functionson proof environmentsE . Let ↑PE (C).att
denote the fields ofC and of its superclasses; i.e., the declared fields accessible from
methods inC, including the implicit declarationthis : C. Denote byt ′ ∈ t that the
statementt ′ is contained in the statementt, and byC ∈ E that PE (C) is defined. The
function bindE (C,m) : Cid×Mid → Cid returns the first class aboveC in which the
methodm is defined. This function will never returnnil for type correct calls. Let the
recursively defined functionsS↑E (C,m) andR↑E (C,m) : Cid×Mid → Set[Assert] re-
turn all commitments ofm both aboveC and belowbindE (C,m), and all requirements
to m that are made by all classes aboveC in the proof environmentE , respectively.
Finally, bodyE(C,m) : Cid×Mid → Stmreturns the body ofm in bindE (C,m).

A sound environmentreflects that previously analyzed classes are correct. If an
assertion appears inSE (C,m), there must be a verified proof outlineM in PL for the
corresponding method body. For internal calls{r} n {s} in M, (r,s) must be included
in RE (C,n); i.e., all requirements made by the proof outline are in theR-mapping.
For external calls{r} x.n {s} in M, wherex is of classD, the requirement(r,s) must
follow from the requirements ofn in the context ofD. Note thatD may be independent
of C; i.e., neither above nor belowC. Finally, method commitments must entail the
requirements (see Property 2 of Sect. 3.2). Sound environments are defined as follows:

Definition 3 (Sound environments).A sound environmentE satisfies the following
conditions for all C: Cid and m: Mid:



1. ∀(p,q) ∈ SE (C,m) . ∃〈bodyE (C,m) . 〉 `PL m(x) :(p,q){〈bodyE (C,m)〉}
∧ ∀{r} n {s} ∈ 〈bodyE (C,m)〉 . RE (C,n) _ (r,s)
∧ ∀{r} x.n{s} ∈ 〈bodyE (C,m)〉 . ∃D . ((x : D)∈↑PE (C).att)⇒R↑E(D,n) _ (r,s)

2. S↑E (C,m) _ R↑E (C,m)

Note that in this definition, the proof outline required by Condition 1 need not be inC
itself, but may be found aboveC as described bybodyE (C,m). Let |=C {p} t {q} denote
|= {p} t {q} under the assumption that virtual calls int are bound in the context ofC,
and let|=C m(x) : (p,q){t} be given by|=C {p} t {q}. If there are no method calls int
and`PL {p} t {q}, then|= {p} t {q} follows by the soundness of PL.

Although method redefinitions in a subclass need not respect the commitments of
method definitions in superclasses, Lemma 1 below ensures that the commitments of
method definitions in superclasses will hold when invoked from a subclass, even if
auxiliary methods have been redefined.

Lemma 1. Given a sound environmentE and a sound program logicPL. For all C :
Cid, m : Mid, and (p,q) : Assert such that C∈ E and (p,q) ∈ S↑E (C,m), we have
|=D m(x) :(p,q){bodyE (C,m)} for each D≤E C.

In a minimalenvironmentE , the mappingRE only contains requirements that are
caused by some proof outline; i.e., there are no superfluous requirements. Minimal en-
vironments are defined as follows:

Definition 4 (Minimal Environments). A sound environmentE is minimal iff

∀(r,s) ∈ RE (C,n) . ∃(p,q),m,〈bodyE (C,m)〉 .
(p,q) ∈ SE (C,m)∧ `PL m(x) :(p,q){〈bodyE (C,m)〉}∧{r} n {s} ∈ 〈bodyE (C,m)〉

Reverificationis avoided by incrementally extendingSE (C,m). If a virtual call re-
quires a verified specification, it is found inSE (C,m). Thus, the avoidance of reverifi-
cation can be seen as a dual to the first condition to Def. 3: If{p} bodyE (C,m) {q} is
proved, the commitment(p,q) is added toSE (C,m).

4.2 The Analysis Operations of the Assertion Calculus

An open program may be extended with new classes, and there may be mutual depen-
dencies between the new classes. For example, a method in a new classC can call a
method in another new classD, and a method inD can call a method inC. In such
cases, a complete analysis of one class cannot be carried out without consideration of
mutually dependent classes. We therefore choose class sets as the granularity of pro-
gram analysis. Amoduleis a set of classes, and a module isself-containedwith regard
to an environmentE if all method calls inside the module can be successfully bound
inside that module or to classes represented inE .

In the calculus, judgments have the formE ` A , whereE is the proof environment
andA is a list of analysis operationson the class hierarchy. The analysis operations
have the following syntax:

O ::= ε | analyzeMtds(M) | verify(m,R) | analyzeOutline(t) | O ·O
S ::= /0 | L | require(C,m,(p,q)) | S ∪S
A ::= module(L) | [〈C : O〉 ; S ] | [ε ; S ] | A ·module(L)



These analysis operations may be understood as follows. A setL of class declarations is
analyzed by the module operationmodule(L). Classes are assumed to be syntactically
well-formed and well-typed. Inside a module, the classes are analyzed in some order,
captured by the setS . The operationclass C extends D { f M} initiates the analysis
of classC. The operation[〈C : O〉 ; S ] analyzesO in the context of classC before
operations inS are considered. Upon completion, the analysis yields a term of the form
[ε ; S ]. The analysis of a specific class consists of the following operations, all inside
the context of that class. The operationanalyzeMtds(M) initiates analysis of the proof
outlinesM. The operationverify(m,R) verifies the setRof assertions with respect to the
methodm. The operationanalyzeOutline(t) analyzes the method calls in the statement
t. Since the operation only occurs in the context of a classC, virtual calls are bound in
this context. The operationrequire(D,m,(p,q)) applies to external calls to ensure that
m in D satisfies the requirement(p,q). Requirements are lifted outside the context of
the calling classC by this operation, and the verification of requirement(p,q) for m in
D is shifted into the set of analysis operationsS .

4.3 The Inference Rules of the Assertion Calculus

Class modules are analyzed in sequential order such that each module is self-contained
with regard to the already analyzed modules. Program analysis is initiated byE /0 `
module(L), whereL is a module that is self-contained with regard to the empty envi-
ronment. The analysis of a module is carried out by manipulation of themodule(L)
operation according to the inference rules below. During module analysis, the proof en-
vironment is extended, keeping track of the currently analyzed class hierarchy and the
associated method commitments and requirements. When amoduleoperation succeeds,
the resulting environment represents a verified class hierarchy. New modules may in-
troduce subclasses of previously analyzed classes, and the calculus is based on an open
world assumption as a module may be analyzed in the context of previously analyzed
modules and independent of later modules.

There are three differentenvironment updates; the loading of a new classL and the
extension of the commitment and requirement mappings with an assertion(p,q) for a
given methodmand classC. These are denotedextS(C,m,(p,q)) andextR(C,m,(p,q)),
respectively. Environment updates are represented by the operator⊕ : Env×Update→
Env, where the first argument is the current proof environment and the second argument
is the environment update, defined as follows:

E ⊕classC extends D { f M} = 〈PE [C 7→ 〈D, f ,M〉],SE ,RE 〉
E ⊕ extS(C,m,(p,q)) = 〈PE ,SE [(C,m) 7→ SE (C,m)∪{(p,q)}],RE 〉
E ⊕ extR(C,m,(p,q)) = 〈PE ,SE ,RE [(C,m) 7→ RE (C,m)∪{(p,q)}]〉

The correspondinginference rulesare given in Fig. 4. Note thatA represents a list
of modules which will be analyzed later, and which may be empty. Rule(NEWMODULE)

initiates the analysis of a new modulemodule(L). The analysis continues by manipu-
lation of the[ε ; L] operation that is generated by this rule. For notational convenience,
we letL denote both a set and list of classes.

Rule (NEWCLASS) selects a new class from the current module, and initiates analysis
of the class in the current proof environment. The premises ensure that a class cannot



E ` [ε ; L] ·A
E ` module(L) ·A

(NEWMODULE)

C /∈ E D 6= nil ⇒ D ∈ E
E ⊕ (classC extends D { f M}) ` [〈C : analyzeMtds(M)〉 ; S ] ·A

E ` [ε ; {classC extends D { f M}}∪S ] ·A
(NEWCLASS)

E ` [〈C : verify(m,{(p,q)}∪R↑E (PE (C).inh,m)) ·O〉 ; S ] ·A
E ` [〈C : analyzeMtds(m(x) :(p,q){〈t〉}) ·O〉 ; S ] ·A

(NEWMTD)

S↑E (C,m) _ (p,q) E ` [〈C : O〉 ; S ] ·A
E ` [〈C : verify(m,(p,q)) ·O〉 ; S ] ·A

(REQDER)

`PL m(x) :(p,q){〈bodyE (C,m)〉}
E ⊕ extS(C,m,(p,q)) ` [〈C : analyzeOutline(〈bodyE (C,m)〉) ·O〉 ; S ] ·A

E ` [〈C : verify(m,(p,q)) ·O〉 ; S ] ·A
(REQNOTDER)

E ⊕ extR(C,m,(p,q)) ` [〈C : verify(m,(p,q)) ·O〉 ; S ] ·A
E ` [〈C : analyzeOutline({p} m{q}) ·O〉 ; S ] ·A

(CALL )

x : D ∈↑PE (C).att E ` [〈C : O〉 ; S ∪{require(D,m,(p,q))}] ·A
E ` [〈C : analyzeOutline({p} x.m{q}) ·O〉 ; S ] ·A

(EXTCALL )

C∈ E R↑E (C,m) _ (p,q) E ` [ε ; S ] ·A
E ` [ε ; {require(C,m,(p,q))}∪S ] ·A

(EXTREQ)

E ` [ε ; S ] ·A
E ` [〈C : ε〉 ; S ] ·A

(EMPCLASS)
E ` A

E ` [ε ; /0] ·A
(EMPMODULE)

E ` [〈C : O〉 ; S ] ·A
E ` [〈C : verify(m, /0) ·O〉 ; S ] ·A

(NOREQ)

E ` [〈C : O〉 ; S ] ·A
E ` [〈C : analyzeMtds( /0) ·O〉 ; S ] ·A

(NOMTDS)

E ` [〈C : O〉 ; S ] ·A t does not contain call statements

E ` [〈C : analyzeOutline(t) ·O〉 ; S ] ·A
(SKIP)

E ` [〈C : verify(m,R1) ·verify(m,R2) ·O〉 ; S ] ·A
E ` [〈C : verify(m,R1 R2) ·O〉 ; S ] ·A

(DECOMPREQ)

E ` [〈C : analyzeOutline(t1) ·analyzeOutline(t2) ·O〉 ; S ] ·A
E ` [〈C : analyzeOutline(t1; t2) ·O〉 ; S ] ·A

(DECOMPCALLS)

E ` [〈C : analyzeMtds(M1) ·analyzeMtds(M2) ·O〉 ; S ] ·A
E ` [〈C : analyzeMtds(M1 M2) ·O〉 ; S ] ·A

(DECOMPMTDS)

Fig. 4. The inference system, whereA is a (possibly empty) list of analysis operations. To sim-
plify the presentation, we letm denote a method call including actual parameters.



be introduced twice and that the superclass hasalready been analyzed. The class hier-
archy is extended with the new class and the analysis continues by traversing the proof
outlines by means of theanalyzeMtdsoperation. Note that at this point in the analy-
sis, the class has no subclasses in the proof environment. Rule(NEWMTD) generates a
set of requirement assertions for a method. The requirement set is constructed from the
specified commitment of the method and the superclass requirements to the method.

The rules (REQDER) and (REQNOTDER) address the verification of a particular require-
ment with respect to a method implementation. If the requirement follows from the
commitments of the method, rule(REQDER) proceeds with the remaining analysis oper-
ations. Otherwise, a proof of the requirement is needed. As
decbodyE (C,m) nondeterministically selects a proof outline, the rule applies to any
proof outline for the method available in classC. Remark that(REQNOTDER) is the only
rule which extends theS mapping. The considered requirement leads to a new commit-
ment formwith respect toC, and the commitment itself is assumed when analyzing the
method body. This captures the standard approach to reasoning about recursive proce-
dure calls [13].

Rule (CALL ) analyzes the requirement of a local call occurring in some proof out-
line. The rule extends theR mapping and generates averify operation which analyzes
the requirement with respect to the implementation bound from the current class. The
extension of theR mapping ensures that future redefinitions ofm must respect the re-
quirement; i.e., the requirement applies whenever future redefinitions are considered by
(NEWMTD). Rule (EXTCALL ) handles external calls on the formx.m (ignoring field shadow-
ing). The requirement to the external method is removed from the context of the current
class and inserted as arequire operation inS . The class of the callee is found by the
declaration ofx. Rule (EXTREQ) can first be appliedafter the analysis of the callee class,
and the requirement must then follow from the requirements of this class.

Rule (EMPCLASS) concludes the analysis of a class when all analysis operations have
succeeded in the context of the class. The analysis of a module is completed by the rule
(EMPMODULE). Thus, the analysis of a module is completed after the analysis of all the
module classes and external requirements made by these classes have succeeded.

In addition, there are some structural rules. The rules(NOREQ) and (NOMTDS) apply to
the empty requirement set and the empty method list, respectively. Rule(SKIP) applies to
statements which are irrelevant to this analysis. These rules simply continue the analysis
with the remaining analysis operations. Finally, the rules(DECOMPMTDS), (DECOMPREQ),
and (DECOMPCALLS) flatten non-empty method lists, requirement sets and statements into
separate analysis operations. Note that a proof ofE ` module(L) has exactly one leaf
nodeE ′ ` [ε ; /0]; we callE ′ the environment resulting from the analysis ofmodule(L).

Properties of the inference system.Although the individual rules of the inference sys-
tem do not preserve soundness of the proof environment, the soundness of the proof
environment is preserved by the successful analysis of a module. This allows us to
prove that the proof system is sound for module analysis.

Theorem 1. LetE be a sound environment andL a set of class declarations. If a proof
of E ` module(L) hasE ′ as its resulting proof environment, thenE ′ is also sound.



Theorem 2 (Soundness).If PL is a sound program logic, then the derived proof out-
line logic combined with the calculus also constitutes a sound proof system.

Furthermore, the inference system preserves minimality of proof environments; i.e.,
only requirements needed by some proof outline are recorded in theRE mapping.

Lemma 2. If E is a minimal environment andL is a set of class declarations such that a
proof ofE `module(L) leads to the resulting environmentE ′, thenE ′ is also minimal.

Finally we show that the proof system supports verification reuse in the sense that
commitments are remembered.

Lemma 3. Let E be an environmentE and L a list of class declarations. Whenever
a proof outline m(x) : (p,q){〈t〉} is verified during analysis of some class C inL, the
commitment(p,q) is included inSE (C,m).

5 Related Work

Object-orientation poses several challenges to program logics; e.g., inheritance, late
binding, recursive method calls, aliasing, and object creation. In the last years several
programming logics have been proposed, addressing various of these challenges. Nu-
merous proof methods, verification condition generators, and validation environments
for object-oriented languages have been developed, including [1,6,14,16,22]. In partic-
ular, Java has attracted much interest, with advances being made for different (mostly
sequential) aspects and sublanguages of that language. In particular, most such formal-
izations concentrate on closed systems. A recent state-of-the-art survey of challenges
and results for proof systems and verification in the field is given in [18], and for an
overview of verification tools based on the Java modeling language JML, see [7].

Proof systems especially studying late bound methods have been shown to be sound
and complete assuming a closed world [24]. While this is proof-theoretically satisfac-
tory, the closed world assumption is unrealistic in practice and necessitates costly reveri-
fication when the class hierarchy is extended (as discussed in Sect. 1). To support object-
oriented design, proof systems should be constructed for incremental reasoning. Most
prominent in that context are different variations of behavioral subtyping [19, 20, 26].
Virtual methods [25] similarly allow incremental reasoning by committing to certain ab-
stract properties about a method, which must hold for all its implementations. Although
sound, the approach does not generally provide complete program logics, as these ab-
stract properties would, in non-trivial cases, be too weak to obtain completeness. Virtual
methods furthermore force the developer to commit to specific abstract specifications
of method behavior early in the design process. In particular, the verification platforms
for Spec#[5] and JML [7] rely on versions of behavioral subtyping.

The fragile base class problem emerges when seemingly harmless superclass up-
dates lead to unexpected behavior of subclass instances [21]. Many variations of the
problem relate to imprecise specifications and assumptions made in super- or sub-
classes. By making method requirements and assumptions explicit, our calculus can
detect many issues related to the fragile base class problem.



6 Conclusion

This paper presents lazy behavioral subtyping, a novel strategy for reasoning about
late bound method calls. The strategy is designed to support incremental reasoning and
avoid reverification in an open setting, where class hierarchies can be extended by inher-
itance. Lazy behavioral subtyping is more flexible than strategies based on traditional
behavioral subtyping, while retaining the open world assumption. To focus the presen-
tation, we have abstracted from many object-oriented language features and presented
the approach for an object-oriented kernel language supporting single inheritance. This
reflects the mainstream object-oriented languages today, such as Java and C#.

We currently integrate lazy behavioral subtyping in a program logic for Creol [10,
17], a language for dynamically reprogrammable active objects, developed in the con-
text of the European project Credo. This integration requires a generalization of the
analysis tomultiple inheritanceand concurrent objects, as well as to Creol’s mech-
anism forclass upgrades. Moreover an adaptation is needed to Creol’s type system,
which is purely based on interfaces. Interface types provide a clear distinction between
internal and external calls. By separating interface level subtyping from class level in-
heritance, class inheritance can freely exploit code reuse based on lazy behavioral sub-
typing while still supporting incremental reasoning techniques. This program logic with
lazy behavioral subtyping will be part of the programming environment for Creol, based
on Eclipse.
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