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Abstract Active objects offer a structured approach to concurrency,
encapsulating both unshared state and a thread of control. For efficient
data transfer, data should be passed by reference whenever possible,
but this introduces aliasing and undermines the validity of the active
objects. This paper proposes a minimal variant of ownership types that
preserves the required race freedom invariant yet enables data transfer by
reference between active objects (that is, without copying) in many cases,
and a cheap clone operation where copying is necessary. Our approach is
general and should be adaptable to several existing active object systems.

1 Introduction

Active objects have been proposed as an approach to concurrency that blends
naturally with object-oriented programming [1,37,61]. Several slightly differently
flavoured active object systems exist for Java [8], Eiffel [17, 46], C++ [43] et al.
Active objects encapsulate not only their state and methods, but also a single
(active) thread of control. Additional mechanisms, such as asynchronous method
calls and futures, reduce the temporal coupling between the caller and callee of a
method. Together, these mechanisms offer a large degree of potential concurrency
for deployment on multi-core or distributed architectures.

Internal data structures of active objects, used to store or transfer local data,
do not need independent threads of control. In contrast to the active objects,
these passive objects resemble ordinary (Java) objects. An immediate benefit of
distinguishing active and passive objects is that all the concurrency control is
handled by the active objects, and locking (via synchronised methods) becomes
redundant in the passive objects. This simplifies programming and enables the
(re-)use of standard APIs without additional concurrency considerations.

Unfortunately, introducing passive objects into the model gives rise to alias-
ing problems whenever a passive object can be shared between more than one
active object. This allows concurrent modification and/or observation of changes
to the passive data objects. Specifically, two active objects can access the same
passive data; if at least one thread modifies the data, then different access orders
may produce different results unless we re-introduce locks into the programming
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model. The resulting system would be as difficult to reason about as uncon-
strained shared variable concurrency. This problem can be addressed several
ways, neither of which we feel is entirely satisfactory:

Immutable Data Only Active objects are mutable, but field values belong to
immutable data types; e.g., integers or booleans, immutable objects such as
Java-style strings or XML, or Erlang- and Haskell-style datatypes [5, 35].

Cloning Locally, active objects can arbitrarily access passive objects, but when
data is passed between active objects, the data must be deeply cloned. This
approach is taken for distributed active objects (e.g., [8, 18]).

Unique References Only one reference to any passive object is allowed at any
time. Passive objects can be safely transferred between active objects.

Emerald [33,51] partly addresses this problem using the first approach. Objects
can be declared immutable to simplify sharing and for compiler optimisation, but
immutability is an unchecked annotation which may be violated. Emerald’s use
of immutability is optional, as adopting pure immutability means that programs
can no longer be implemented in an imperative object-oriented style.

ProActive [8] uses the second approach and copies all message parameters.
The programmer gets a very simple and straightforward programming model,
but the copying overhead is huge in message-intensive applications.

Last, using uniqueness requires a radical change in programming style and
may result in fragile code in situations not easily modelled without aliasing.

This paper investigates the application of ownership types in the context of
active object-based concurrency. We propose a combination of ownership-based
techniques that can identify the boundaries of active objects and statically verify
where reference semantics can be used in place of copy semantics for method
arguments and returns.

In previous work, we combined ownership types with effects to facilitate rea-
soning about disjointness [20] and with uniqueness to enable ownership trans-
fer [21]. Recently, we coalesced these to realise flexible forms of immutability and
read-only references [49]. In this paper we tune these systems to the active ob-
jects concurrent setting and extend the resulting system with the arg reference
mode from Flexible Alias Protection [48]. Furthermore, our specific choices of
ownership defaults make the proposed language design very concise in terms of
additional type annotations. The main contributions of this paper are:

– A synthesised minimal type system with little syntactic overhead that iden-
tifies active object boundaries. This type system enables expressing and stat-
ically checking (and subsequent compiler optimisations) safe practices that
programmers do manually today (framework permitting), such as:

* Statically guarantee total isolation of active objects;
* In a local setting, replace deep copying of messages with reference passing

for (parts of) immutable objects, or unique objects;
* In a distributed setting replace remote references to immutable (parts

of) objects with copying for more efficient local access; and
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* Immutability is per object and the same class can be used to instantiate
both immutable and mutable objects.

All necessary annotations are expressed in terms of ownership, plus a trivial
effects system which makes the formalisation (see [22]) clean and simple.

– We present our system in the context of a Java-like language, Joëlle, however
our results are applicable to any active object or actor based concurrency
model. Active object systems such as ProActive [8], Emerald [33, 51], and
Scoop [41] use unchecked immutability or active annotations. Integrating our
type system with these approaches for static checking seems straightforward.

The formal description of the system, which is a synthesized model of a large
body of previous work [20,21,25,49,59], can be found in [22].

Organisation Section 2 surveys the alias control mechanisms upon which we
build our proposal. Section 3 further details the problem and presents our solu-
tion. Section 4 compares our work with related work, and Section 5 concludes.

2 Building Blocks

We now survey the alias control mechanisms used to construct our synthesized
system. They address the problem of reasoning about shared mutable state [31,
48], which is problematic as a shared object’s state can change unexpectedly,
potentially violating a sharer’s invariants or a client’s expectations. There are
three main approaches to this problem:

ownership: encapsulate all references to an object within some box ; such as
another object, a stack frame, a thread, a package, a class, or an active
object [3, 4, 11,13,19,23,30,45,48].

uniqueness: eliminate sharing so that there is only one active reference to an
object [3, 11,14,21,30,42].

immutability: eliminate or restrict mutability so an object cannot change, or
so that changes to it cannot be observed [10,15,48,55,58,62].

2.1 Ownership

Ownership types [23] initially formalised the core of Flexible Alias Protection [48];
variants have later been devised for a range of applications [3,11,13,19,23,45,48].
In general, object graphs form an unstructured “soup” of objects. Ownership
types impose structure on these graphs by first putting objects into boxes [27],
then imposing a topology [2,19] on the boxes, and finally restricting the way ob-
jects in different boxes can access each other, either prohibiting certain references
or limiting how the references can be used [44,45].

Ownership types record the box in which an object resides, called the owner,
in the object’s type. The type system syntactically ensures that fields and meth-
ods with types containing the name of a private box are encapsulated (thus
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only accessible by this). This encapsulation ensures that the contents of pri-
vate boxes cannot be exported outside their owner. For this to work, the owner
information must be retained in the type. Consider the following code fragment:1

class Engine {} class Car { this::Engine e; }

In class Car, the owner of the Engine object is this, which indicates that the
object in the field e is owned by the current instance of Car (or, in other words,
that every car has its own engine). The type system ensures that the field e is
accessible only by this, the owning object.

Ownership types enforce a constraint on the structure of object graphs called
owners-as-dominators. This property ensures that access to an object’s internal
state goes through the object’s interface: the only way for a client of a Car object
to manipulate the Car’s Engine is via some method exposed in the Car’s public
interface. Some ownership types proposals [2, 3, 12,45] weaken this property.

All classes, such as Engine above, have an implicit parameter owner which
refers to the owner of each instance of the class. Thus, arbitrary and extensible
linked data structures may be encapsulated in an object. Contrast this with
Eiffel’s expanded types [40] and C++’s value objects [57], which enable an object
to be encapsulated in another object, but require a fixed sized object. In the
following class

class Link { owner::Link next; int data; }

the next object has the same owner as the present object. This is a common
idiom, and we call such objects siblings. (The Universes system [45] uses the
keyword peer instead of owner.)

2.2 External Uniqueness

Object sharing can be avoided using unique or linear references [3,11,14,21,30,
42]: at any point in the execution of a program, only one accessible reference to
an object exists. Clarke and Wrigstad introduced the notion of external unique-
ness [21,59] which fits nicely with ownership types and permits unique references
to aggregate objects that are inherently aliased, such as circularly linked lists. In
external uniqueness, unique references must be (temporarily) made non-unique
to access or call methods on fields. The single external reference is thus the only
active reference making the aggregate effectively unique. External uniqueness
enables ownership transfer in ownership types systems.

External uniqueness is effectively equivalent to introducing an owner for the
field or variable holding a reference into the data structure, such that the only
occurrence of that owner is in the type of the field or variable. In the code below,
first holds the only pointer to the (sibling) link objects.

class List { unique::Link first; }

Uniqueness can be maintained with e.g., destructive reads or Alias Burying [14].

1 In this section, code uses syntax from Joe-like languages [20,21,49].

4



In summary, ownership deals with encapsulating an entire aggregate. Uniqueness
concerns having a single (usable) reference to an object. External uniqueness
combines them, resulting in a single (usable) reference to an entire aggregate.

2.3 Immutability and ‘Safe’ Methods

Immutable objects can never change after they are created. An immutable ref-
erence prevents the holder from calling methods that mutate the target object.
Furthermore, references to representation objects returned from a method call
via an immutable reference are also immutable—or immutability would be lost.
Observational exposure [15] occurs when an immutable reference can be used to
observe changes to an object, which is possible if non-immutable aliases exist to
the object or its representation. Fortunately, strong encapsulation, uniqueness,
and read-only methods make the (staged2) creation of “truly immutable” objects
straightforward [49]. This is similar to Fähndrich and Xia’s Delayed Types [28].

In Flexible Alias Protection [48], ‘arg ’ or safe references (our preferred ter-
minology) to an object may only access immutable parts of the object; i.e., the
parts which do not change after initialisation. Thus, clients accessing an object
via a safe reference can only depend on the object’s immutable state, which is
safe as it cannot change unexpectedly. Safe references can refer to any object,
even one which is being mutated by a different active object, without any risk
of observational exposure.

2.4 Owner-Polymorphic Methods

Owner-polymorphism is crucial for code reuse and flexibility in the ownership
types setting [19,59]. Owner-polymorphic methods are parameterised with owners
to give the receiver temporary permission to reference an argument object. For
example, the following method accepts an owner parameter foo in order to
enable a list owned by any other object to be passed as an argument:

<foo> int sum(foo::List values) { ... }

Clarke [19] established that owner-polymorphic methods can express a no-
tion of borrowing : an object may be passed to another object, which does not
own it, without the latter being able to capture a reference to the former. (For
further details, see [59].) Owner-polymorphic methods are reminiscent of region-
polymorphic procedures in Cyclone [29].

3 Active Ownership

In Concurrent programming in Java [38], Doug Lea writes that “To guarantee
safety in a concurrent system, you must ensure that all objects accessible from
multiple threads are either immutable or employ appropriate synchronisation,
2 In staged object creation an object is initialised though a series of method calls,

potentially within different objects, rather than exclusively in its constructor [49].
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Figure 1. Active Ownership. Safe references are not depicted. Broker and Client are
active objects from the code example in Figure 2.

and also must ensure that no other object ever becomes concurrently accessible
by leaking out of its ownership domain.”

The simple ways to guarantee the above are the first two we listed on Page 2:
making everything immutable or use deep copying semantics. While efficient, the
first is very restrictive and requires careful inspection of the code to determine
that the messages are truly immutable. The second is easier to check (just clone
all arguments) but has the downside of adding massive copying overhead.

We argue that the most effective approach is a pragmatic combination: using
unique references or immutable objects where possible and deep copying only
as a last resort. To enable this in a statically and modularly checkable fashion,
we introduce a few extra annotations on interfaces of active object classes. We
believe that requiring these extra annotations will be helpful for maintenance and
possibly also refactoring. Most importantly, we believe that the static checking
enabled by the annotations will save time, both programmer-time and run-time.

Our alias control mechanisms uphold the invariant that no two ‘threads’ con-
currently change or observe changes to an object, which is the invariant obtained
by the deep copying of message arguments in ProActive (with minor exceptions
unimportant to us here). Note that our type system is agnostic of the thread
model—it correctly infers the boundaries between active objects regardless.

3.1 Active and Passive Classes

Active and passive objects are instantiated from active and passive classes. Ac-
tive classes are declared with the active. Passive is default.

Active objects encapsulate a single thread of control. They primarily interact
via asynchronous method calls that return future values. A future is a placeholder
for a value which need not be currently available [9]. For asynchronous calls, the
future is the placeholder for the methods’ actual return values. Thus, the caller
need not wait for the call to complete. A future’s value is accessed using its get
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active class Client {
void run() {

Request rm = ...; // formulate Request
future Offer offer = myBroker!book(rm.clone()); // †
... // evaluate offer
offer.getProvider()!accept(offer.clone()); // †

}
}
active class Broker {

void run() { ... } // go into reactive mode
// book returns first Offer that responds to the request
Offer book(Request request) { ... }

}
active class Provider {

void run() { ... } // go into reactive mode
Offer query(Request request) { ... }
boolean accept(Offer offer) { ... }

}
class Request {

Request(String desc) { ... }
void markAccepted() { ... }

}
class Offer {

Offer(Details d, Provider p, Request trackback) { ... }
Provider getProvider() { ... }

}

Figure 2. Example of active objects exchanging arguments by copying (shown at †).
Here future Offer denotes a future of type Offer. For clarity, we use a !-notation
on asynchronous method calls, e.g., myBroker!book(rm).

method, which blocks until the future has a value, which is standard practise.
Synchronous calls may be encoded by calling get directly after asynchronous
method calls. Method calls to passive objects are always synchronous; i.e., they
are similar to standard method calls as found in Java. Multiple asynchronous
calls to an active object are put in an inbox and executed sequentially. Creol
[25,34] uses release point to yield execution midway through a method, but this
is irrelevant to the minimal ownership system.

Figures 1 and 2 show a use of active objects that deliberately copy arguments
to avoid aliasing-induced data races. Figure 4 shows how we can annotate the
code in our system to avoid the copying without comprising safety. For brevity,
we focus simply on the interfaces, which suffices for the type annotations. The
figure shows the following scenario:

1. Client sends request to broker
2. Broker forwards request to provider(s) and negotiates a deal
3. Broker returns resulting offer to client
4. If client accepts offer, client sends acceptance to provider

The client, the broker, and all providers are represented as active objects and
execute concurrently. In contrast, requests and offers are passive objects, passed
between active ones by copying to avoid data races between the active objects.
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3.2 Putting it Together: Language Constructs for Active Ownership

This section describes our synthesised system leading up to an encoding of the
example from Figure 2 that avoids copying. Figure 3 shows a few examples of
code using our annotations. While our annotations are similar to capabilities,
they are expressed as owners. This keeps the underlying formalism (see [22])
relatively simple. Our system has the following annotations:

active globally accessible owner of all active objects
owner the owner of the current object (in the scope of the annotation)
this the owner denoting the current object (in the scope of the annotation)
unique the owner denoting the current field or variable
immutable globally accessible owner of all immutable objects
safe globally accessible owner allowing safe access

The owners active, immutable, and safe are available in any context, and
denote the global owner of active objects, immutable references, and safe ref-
erences, respectively. unique is also available everywhere, but denotes field-as-
owner, as explained in Section 2.2. Nested inside each active object is a collec-
tion of passive objects, owned by the active object with owner this. The owner
owner is available only in passive classes for referring to the owner of the current
instance, and is used to create data structures within an active object.

Note that the ownership hierarchy is very flat, as there is no owner this inside
a passive class. Ownership encapsulates passive objects inside an active object.
Consequently, there is no need to keep track of nesting or other relationships
such as links between owners [2]. In addition, the classes in this system take
no owner parameters, in contrast to the original ownership types system [23].
Therefore, no run-time representation of ownership is required [60].

Immutable and Safe References Immutable types have owner immutable.
In our system, only passive objects can have immutable type. Fields or variables
containing immutable references are not final unless explicitly declared final or if
the container enclosing the field is immutable. In order to preserve immutability,
only read-only and safe methods (see below) can be called on immutable objects.

Safe references (called argument references in Flexible Alias Protection [48])
have owner safe and can be used only to access the final fields of an object, and
the final fields of the values returned from methods, and so forth. These parts of
an object cannot be changed underfoot. Methods that obey these conditions are
called safe methods, denoted by a safe annotation. Any non-active type can be
subsumed into a safe type.

Immutable references can only be created from unique references. The op-
eration consumes the unique reference and thus guarantees the absence of any
aliases to the object that allows mutation. This is powerful and flexible as it al-
lows a single class to be used both as a template for both mutable and immutable
objects (see [21]) and staged object construction. Effectively, immutability be-
comes a property of the object, rather than of the class or of references.
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active class Foo { // active class
this Bar f; // properly encapsulated field
owner Bar b; // invalid -- owner is not legal in active classes
active Bar k; // reference to (sibling) active object

}

class Bar { // passive class
owner Bar f; // sibling field (same level of encapsulation)
this Bar b; // invalid -- this is not legal in passive classes

}

unique Foo f = new Foo(); // new returns a unique reference
immutable Foo b = f--; // -- is destructive read, nullifies f

void foo() read { ... } // can only call read and safe methods
// on this, and not update fields

void foo() safe { ... } // can only call safe methods/read
safe Foo f; // final immutable/safe fields on this/f

void foo() write { ... } // regular method, write can be omitted

Figure 3. Examples of active and passive classes, unique, safe and immutable types,
and read and safe methods.

Safe references do not preclude the existence of mutable aliases, which is safe
as it only allows access to the referenced object’s immutable parts. Consequently,
both safe and immutable references avoid observational exposure.

Read-only and Safe Methods Following previous read-only proposals, e.g.,
[10,15,30,55], a read-only method preserves the immutability of objects, and does
not return non-immutable references to otherwise immutable objects. Read-only
methods cannot update any object with owner owner, which notably includes the
receiver. They are not, however, purely functional: they can be used to modify
unique references passed in as arguments or objects freshly created within the
method itself and they can call mutating methods on active objects.

As immutability is encoded in the owners, a return value from a read-only
method that has owner owner will (automatically) have the owner immutable

when the read-only method is called on an immutable reference, and hence will
not provide a means for violating the immutability of the original reference [49,
62]. To allow modular checking, read-only methods are annotated with read.

A safe method, annotated safe, is an additionally restricted read-only method
that may only access immutable parts of the receiver’s state, i.e., final fields con-
taining safe or immutable references. Conceptually, a read-only method prevents
mutation whereas a safe method also prevents the observation of mutation.

3.3 Data Transfer and Minimal Cloning

To ensure that the data race freedom invariant is preserved, care is needed when
passing data between active objects. How data is passed, depends on its owner.

9



Active-owned objects are safe to pass by reference as external threads of
control never enter them by virtue of asynchronous methods calls and futures.
Immutable and safe-owned objects are obviously safe to pass by reference as
their accessible parts cannot be changed. Last, unique objects are safe to pass
by reference as they are effectively transferred to the target3.

Other objects (owned by this, owner and owner-parameters to methods)
must be cloned. Cloning returns a unique reference which can be transferred
regardless of the owner of the expected parameter type. Cloning follows the
above rules to determine whether an object’s fields must be cloned or whether
it is safe to simply copy the reference—the only difference is that clone clones
fields holding unique references. A “minimal clone” operation can be trivially
inferred statically from the owner annotations. This is similar to the sheep clone
described for ownership types [19,47] and Nienaltowski’s object import [46].

Notably, our clone rightfully avoids cloning of active objects, something a
naive clone would not do. This is necessary to allow returning a reference to a
provider in our example and lets active objects behave like regular objects.

Reducing Syntactic Baggage We adopt a number of reasonable defaults for
owner annotations to reduce the amount of annotations required in a program,
and to use legacy code immediately in a sensible way.

Passive Classes (including all library code) have one implicit owner parameter
owner, which is the default owner of all fields and all method arguments.
Note that this means that library code, in general, requires no annotations.

Active Classes have the implicit owner active. In an active class, the default
owner is this for all fields and unique for all method arguments.

Together these defaults imply that all passive objects reachable from an ac-
tive object’s fields are encapsulated inside the active object, in the absence of
immutable and safe references. By default, all method parameters in the pub-
lic interface of active objects are unique. This is the only way to guarantee
that mutable objects are not shared between active objects. References passed
between active objects must be unique, either originally or as a result of perform-
ing a clone. Note that having unique as the default annotation does not apply
to active class types appearing in the interface, as these can only be active.
This choice of defaults is supported by the experimental results of Potanin and
Noble [50] and Ma and Foster [39], which show that many arguments between
objects could well be unique references.

3.4 Revisiting the example

Figure 4 adds active ownership annotations to Figure 2. As a result, all copying
is avoided. Only six annotations are needed to express the intended semantics of

3 We currently do not support borrowing on asyncronous method calls. A unique
object transferred to from active object A to B must be explicitly transferred back.
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active class Client {
void run() ‡ {

†Request rm = ...; // formulate Request
future immutable Offer offer = myBroker!book(rm); // (1)
... // evaluate offer
offer.getProvider()!accept(offer); // (2)

}
}
active class Broker {

void run() ‡ { ... } // go into reactive mode
// book returns first provider that responds to the request
immutable Offer book(safe Request request) ‡ { ... } // (3)

}
active class Provider {

immutable Offer query(safe Request request) ‡ { ... } // (4)
boolean accept(immutable Offer offer) ‡ { ... } // (5)

}
class Request {

Request(†String desc) ‡ { ... }
void markAccepted() ‡ { ... }

}
class Offer {

Offer(†Details d, †Provider p, safe Request r) ‡ ... // (6)
Provider getProvider() read { ... } // (7)

}

Figure 4. The active objects example with active ownership. † indicates an implicit
use of a default, owner in passive classes and this in active. ‡ indicates an implicit
use of the write default for methods. These are not part of the actual code.

Figure 2. This might seem excessive for a 20-line program, but remember that we
only focus on the parts of the program that needs annotations. Furthermore, no
annotations are required for library code used by this program. But more impor-
tantly, we can now captures the programmer’s intentions in statically checkable
annotations.

The offer is made immutable (4), which allows it to be safely shared between
concurrently executing clients, brokers and providers. The immutability require-
ment propagates to the type of the future variable (1) and formal parameter (5).
The request is received as a safe reference (3), so the broker may only access its
immutable parts which precludes both races and observational exposure. This
constraint is reasonable, since changing crucial parts of a request under foot
might lead to invalid offers. Parts of the request can still be updated by the
client (but not by the broker or any provider), e.g., to store a handle to the ac-
cepted offer in it. The safe annotation propagates to (6). Read-only methods are
annotated read (7). Reading the provider from an immutable offer (2) returns
a reference to an active object, which is safe as it does not share any state with
the outside world.

11



3.5 Other Relevant Features

For space reasons, we omit a discussion of exceptions, which is a straightforward
addition (they would be immutable), and a discussion on how to deal with globals
(see [22]) and focus on the issue of owner-polymorphic methods in the presence
of asynchronous method calls.

Owner-polymorphic methods (and their problems) The previous dis-
cussion ignored owner-polymorphic methods. An owner-polymorphic method of
an active object enables the active object to borrow passive objects from an-
other active object, with the guarantee that it will not keep any references to
the borrowed objects. Such methods require care, as they are problematic in the
presence of asynchronous method calls. It is easy to see that an asynchronous call
could easily lead to a situation where two active objects (Client and Broker)
have access to the same passive objects (Request):

1. Client lends Request to Broker via an asynchronous method call.
2. Client continues executing on Request.
3. Broker concurrently operates on Request.

We choose the simplest solution to avoid this problem by banning asyn-
chronous calls to owner-polymorphic methods. Alternative approaches would
require preventing Client from accessing Request—or more precisely, objects
with the same owner as Request—until the method call to Broker returned.

4 Related Work

4.1 Ownership Types

Several approaches using ownership types for concurrency control have been pro-
posed. [7, 11] introduce thread-local owners to avoid data races and deadlocks.
Guava [7] is presented as an informal collection of rules which would require a
significantly more complex ownership types system than the one we present here.
Boyapati et al.’s PRFJ [11] encodes a lock ordering in class headers. The rigid
structure imposed by this scheme along with explicit threads makes program
evolution tedious and the system complex. Another related approach uses Uni-
verses instead of ownership types for race safety [24]. In each case the underlying
concurrency model is threads and not active objects.

In X10 place types statically describe where data resides improving data
locality [52], mainly for performance reasons. X10 also sports futures and a
shared space of immutable data. Remote data is remotely accessed, and there
are no unique references. However, due to the hierarchical memory model of X10,
similar to a distributed system, pointer transfer might not be as effective as in
a shared memory system.

StreamFlex [56] and its successor Flexotasks [6] are close in spirit to Joëlle.
They use a minimal notion of ownership, with little need for annotations, to
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handle garbage collection issues in a real-time setting. Objects may be passed
between concurrent components without copying (Singularity OS [32] allows this
too). StreamFlex’s notion of immutability is however more limited than ours
and safe or unique references are not supported. In conclusion, the additional lim-
itations of the stream programming approach (compared to our general-purpose
approach) allows StreamFlex to use even less syntactic baggage than Joëlle.

4.2 Actors and Active objects

Erlang [5] is relevant as a purely functional language with immutable data. This
is a bad fit for OO and encoding of data structures that rely on sharing or
object identifiers is difficult or impossible. Carlsson et al. [16] present an under-
approximate message analysis to detect when messages can be safely shared
rather than copied for a mini-Erlang system with cubic worst-case time com-
plexity. Our type-system based approach should fare better for the price of a
few additional concepts and annotations.

Symbian OS [43] and the ProActive Java framework [8] use active objects
for concurrency. Based on Eiffel, Eiffel// [17] is an active objects system with
asynchronous method calls with futures, and SCOOP [41] uses preconditions for
task scheduling. In SCOOP, active object boundaries are captured by separate

annotations on variables, which, in contrast to our proposal, are not statically en-
forced. (This is partially improved by Nienaltowski [46].) In the original SCOOP
proposal, method arguments across active objects have deep copying semantics,
with the aforementioned associated pains. Object migration through uniqueness
is not supported. Later versions of SCOOP [46] integrate an eager locking mecha-
nism to enable pass-by-reference arguments for non-value objects. An integration
of our approach with SCOOP seems fairly straightforward.

CoBoxes [53] impose a hierarchy structure on active objects to control the
access to groups of objects. Our proposal permits only a flat collection of active
objects. On the other hand, our system allows the transfer of objects between
active objects and the sharing of immutable and safe objects.

Different components or active objects communicate data by cloning in, e.g.,
the coordination language ToolBus [26] and in ASP [18]. In a distributed setting
this is vindicated, but, as ToolBus developers [26] observe, copying data is a
major source of performance problems. This is exactly the problem our approach
aims to address, without introducing data-races, in a statically checkable fashion.

4.3 Software Transactional Memory

Software Transactional Memory is a recent approach to avoiding data races [54].
Atomic blocks are executed optimistically without locking and versioning de-
tects conflicting updates. STM could be used under the hood to implement
Emerald’s mutually exclusive object regions [33,51]. Ongoing work by Kotselidis
et al. [36] adds software transactional memory to ProActive. Preliminary results
are promising, but the system retains ProActive’s deep-copying semantics even
for inter-node computations.
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5 Concluding Remarks

We have applied ownership types to a data sharing problem of active objects.
Our solution involves a combination of ownership, external uniqueness, and im-
mutability. Our minimal ownership system was defined so that default annota-
tions can be chosen to give a low syntactic overhead. We expect few necessary
changes to code for passive objects if our system was implemented in ProActive.

Our system is close in spirit to several existing systems that lack our static
checking for things like immutability. No existing active objects system is pow-
erful enough to use minimal safe cloning the way we outlined in Section 3.3.

A prototype compiler for Joëlle is available from the authors.
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