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Abstract Distributed systems are often modeled by
objects that run concurrently, each with its own proces-
sor, and communicate by synchronous remote method
calls. This may be satisfactory for tightly coupled sys-
tems, but in the distributed setting synchronous external
calls lead to much waiting; at best resulting in inefficient
use of processor capacity, at worst resulting in deadlock.
Furthermore, it is difficult to combine active and passive
behavior in concurrent objects. This paper proposes an
object-oriented solution to these problems by means
of asynchronous method calls and conditional proces-
sor release points. Although at the cost of additional
internal nondeterminism in the objects, this approach
seems attractive in asynchronous or unreliable environ-
ments. The concepts are integrated in a small object-
oriented language with an operational semantics defined
in rewriting logic, and illustrated by examples.
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1 Introduction

Inter-process communication is becoming increasingly
important with the development of distributed com-
puting, both over the Internet and over local networks.
Object orientation appears as the leading paradigm for
concurrent and distributed systems, and has been rec-
ommended by the RM-ODP [34], but standard models
of object interaction seem less appropriate for
distributed concurrent objects. Object interaction based
on method calls is usually synchronous. The mechanism
of remote method calls has been derived from the set-
ting of sequential systems, and is well suited for tightly
coupled systems. It is clearly less suitable in a distrib-
uted setting where the components are loosely coupled.
In this setting, synchronous communication gives rise to
undesired and uncontrolled waiting, and possibly dead-
lock. Asynchronous message passing gives better con-
trol and efficiency, but does not provide the structure
and discipline inherent in method calls. The integration
of the message concept in the object-oriented setting is
still unsettled, especially with respect to inheritance and
redefinition.

In order to unite object orientation and distribution
in a natural way, we need intuitive high-level program-
ming constructs. In this paper programming constructs
for concurrent objects are discussed, based on processor
release points and a notion of asynchronous method call.
Processor release points influence the implicit internal
control flow in concurrent objects. This reduces time
spent waiting for replies to method calls in a distrib-
uted environment and allows objects to dynamically
change between active and reactive behavior (client
and server). The suitability of these concepts for distrib-
uted object systems is motivated through integration in
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an object-oriented language with a simple operational
semantics, while maintaining the efficiency control of
asynchronous message passing. The language is object-
oriented in the sense that all object interaction hap-
pens through method calls, the language is class-based
and supports inheritance. The proposed language con-
structs are explored in the small object-oriented lan-
guage Creol. The operational semantics of the language
is defined in rewriting logic [49] and is executable as a
language interpreter in the tool Maude [16]. Our exper-
iments suggest that rewriting logic and Maude provide a
well-suited platform for experimentation with language
constructs and concurrent environments.

The three basic interaction models for concurrent
processes are shared variables, remote method calls, and
message passing [6], which we review with respect to
interaction between distributed concurrent objects. As
shared memory models do not generalize well to dis-
tributed environments, shared variables are discarded
as inappropriate to capture object interaction in the dis-
tributed setting. With remote method invocations (RMI),
an object is activated by a method call. The thread of
control is transferred with the call so there is a mas-
ter–slave relationship between the caller and the cal-
lee. Caller activity is blocked until the return values
from the call have been received. A similar approach
is taken with the execution threads of, e.g., Hybrid [53]
and Java [30], where concurrency is achieved through
multi-threading. The interference problem for shared
variables reemerges when threads operate concurrently
in the same object, which happens with nonserialized
methods in Java. Reasoning about programs in this set-
ting is highly complex [2,14]: Safety is by convention
rather than by language design [10]. Verification con-
siderations therefore suggest that all methods should
be serialized, which is the approach taken in Hybrid.
However, when the language is restricted to serialized
methods, an object making a remote method call must
wait for the return of the call before proceeding with its
activity, and any other activity in the object is prohibited
while waiting. In a distributed setting this limitation is
severe; delays and instabilities may cause much unneces-
sary waiting. A nonterminating method will even block
the evaluation of other method instances, which makes
it difficult to combine active and passive behavior in the
same object.

In contrast to remote method calls, message passing
does not transfer control between concurrent objects. A
method call can here be modeled by an invocation and a
reply message. Message passing may be synchronized, as
in Ada’s Rendezvous mechanism, in which case both the
sender and receiver process must be ready before com-
munication can occur. Hence, the objects synchronize

on message transmission. Remote method invocations
may be captured in this model if the calling object must
wait between the two synchronized messages represent-
ing the call [6]. If the calling object is allowed to proceed
for a while before resynchronizing on the reply message
we obtain a different model of method calls which from
the caller perspective resembles future variables [63]
(or eager invocation [21]). For distributed systems, even
such synchronization must necessarily result in much
waiting.

Message passing may also be asynchronous. In this
setting message emission is always possible, regardless of
when the receiver accepts the message. Communication
by asynchronous message passing is well-known from,
e.g., the Actor model [3,4]. Languages which support
future variables are usually based on asynchronous mes-
sage passing; the caller’s activity is synchronized with the
arrival of the reply message rather than with its emission
and the activities of the caller and the callee need not
directly synchronize [8,12,17,35,62,63]. This approach
seems well-suited for distributed environments, reflect-
ing the fact that communication in a network takes time.
Generative communication in Linda [13] is an approach
in between shared variables and asynchronous mes-
sage passing, where messages without an explicit des-
tination address are shared in a tuple space. However,
method calls imply an ordering on communication not
easily captured in the Actor model and Linda. Actors
do not distinguish replies from invocations, so capturing
method calls with Actors quickly becomes unwieldy [3].
We believe that a satisfactory notion of method calls for
the distributed setting should be asynchronous, combin-
ing asynchronous message passing with the structuring
mechanism provided by the method concept.

In the Creol language, method calls are taken as the
communication primitive for concurrent objects. In the
operational semantics of the language, method calls are
represented by pairs of asynchronous messages, allow-
ing message overtaking. We do not believe that distribu-
tion should be kept transparent to the programmer as in
the RMI communication model, rather communication
in the distributed setting should be explicitly asynchro-
nous. Also, separating execution threads from objects
breaks the modularity and encapsulation of object orien-
tation, leading to a very low-level style of programming.
To model real world systems in an object-oriented man-
ner, asynchronously communicating concurrent objects
appear as a much more natural approach.

This paper considers the communication model of
Creol, extending [37,41] as follows: a mechanism for
time-out and race conditions is added, a more abstract
and complete semantics is given in which the intra-
object process interleaving mechanism is significantly
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improved, and several new examples are provided.
Regarding class inheritance in Creol, dynamic binding
is discussed in [39] and the inheritance anomaly in [40].
The type system for Creol is given in [43] and Hoare-style
proof rules in [23].

The paper is organized as follows. Section 2 outlines
the overall setting of the approach. Section 3 introduces
Creol, focusing on asynchronous method calls and pro-
cessor release points. Section 4 models a peer-to-peer
network and Sect. 5 the dining philosophers in Creol.
Section 6 illustrates how explicit synchronization may
be obtained. Section 7 models a coordinator class for
joint computation, and Sect. 8 a class for implicit method
invocation in Creol. Section 9 considers a mechanism
capturing method time out and method race conditions.
Section 10 defines the operational semantics of Creol in
rewriting logic and Sect. 11 discusses executing the oper-
ational semantics. Sections 12 and 13 consider related
and future work, and Sect. 14 concludes the paper.

2 Background

According to the RM-ODP, we can represent compo-
nents by (collections of) objects that run in parallel
and communicate asynchronously by means of remote
method calls with input and output parameters. Of-
ten, objects are supplied by third-party manufacturers
unwilling to reveal their implementation details. There-
fore, reasoning should be done relying on abstract spec-
ifications of the system’s components. In this setting
specifications of observable behavior seem particularly
attractive. A behavioral interface consists of a set of
method names with signatures and semantic constraints
on the use of these methods. We assume that compo-
nents come equipped with behavioral interfaces that in-
struct us on how to use them. A component may have
multiple interfaces, which correspond to the specifica-
tions of different viewpoints, thus providing a separa-
tion of concerns between the different services offered
by the component.

2.1 Strong typing

We consider typing where two kinds of variables are
declared; an object variable is typed by an interface and
a data variable is typed by a data type. For each method
invocation o.m(inputs; outputs), where interface I is the
declared type of o, strong typing ensures that the actual
object o (if not nil) will support I, the method m will be
declared in I, and the call will be understood in the sense
that the method is implemented in the class of o, and for-
mal and actual parameters match. Explicit hiding of class

attributes and methods is not needed, because typing of
object variables is based on interfaces and only methods
mentioned in the interface (or its super-interfaces) are
visible. Multiple inheritance is allowed at the interface
level, restricted to a form of behavioral subtyping [46].
A class may implement several interfaces, provided that
it satisfies the syntactic and semantic requirements of
these interfaces. An object of class C supports an inter-
face I if C implements I. Reasoning control is ensured by
substitutability at the level of interfaces: an object sup-
porting an interface I may be replaced by another object
supporting I or a subtype of I in a context where I is
expected, although the classes of the two objects may
differ.

An interface may specify observable behavior in the
form of an assumption-guarantee specification [44] on
the local communication history. The assumption is a
requirement on the behavior of objects in the environ-
ment. As customary in the assumption-guarantee par-
adigm, the guaranteed invariant need only hold when
the assumption is respected by the environment. In our
setting, the paradigm is adjusted to deal with input and
output aspects of distributed communicating systems.
The semantic requirements of an interface rely on the
present communication history of an object offering
the interface. A compositional formalism for reasoning
about behavioral interfaces, and an associated interface
refinement relation, is given in previous work [36,38]. At
the imperative level, reasoning about class invariants in
terms of class attributes and the local history can be done
locally in each class [23], extending standard assertional
reasoning. In this paper, these semantic requirements
on interfaces are not considered in detail.

3 The Creol language

The Creol language proposes programming constructs
for distributed concurrent objects based on asynchro-
nous method calls and processor release points.
Concurrent objects are potentially active: an object
encapsulates an execution thread. Consequently, ele-
ments of basic data types (referred to as data) are not
considered as objects in the language. Rather, Creol’s
concurrent objects resemble top-level objects in, e.g.,
Hybrid. Objects have identity: an object’s name is
unique, communication takes place between named
objects, and object names may be exchanged between
objects. As motivated above, Creol objects are typed by
interfaces, resembling CORBA’s IDL [61], but extended
with mechanisms for static type control in dynamically
reconfigurable systems. Types, interfaces, and classes
may be parameterized by formal interfaces and types,
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allowing generalized definitions. All use of parameter-
ized constructs requires actual parameters. The language
supports strong typing, based on a nominal type-system
which ensures that invoked methods are supported by
the callee (when not nil) and that formal and actual
parameters match [43].

3.1 Interfaces

Interfaces describe viewpoints to objects and provide
a typing mechanism for object variables. In order to
support generic descriptions, interfaces may be param-
eterized by types, but also by data and objects, typed by
data types and interfaces, respectively. Interface param-
eters describe the minimal environment that any object
offering the interface needs at the point of creation, and
may be passed on to inherited interfaces.

In order to support protocol sessions between concur-
rent objects, an object may require access to an interface
of the calling object. This way, the callee may safely
invoke methods of the caller and not only passively
process calls to its own methods. Using a with clause
statically restricts the communication environment to
external objects offering a so-called cointerface, while
admitting remote calls to the methods of the caller de-
clared in the cointerface [36,38]. (An example is given
in Sect. 8.) At the imperative level, access to the caller is
given by an implicit parameter, caller. A with clause in an
interface applies to the methods declared in that inter-
face; for inherited methods the associated with clause
applies. This gives strong typing in the asynchronous
setting. When call-back access to the caller is not re-
quired, the keyword Any is used in the with clause. Mu-
tual dependency is captured if two interfaces have each
other as cointerface. The syntax for interface declara-
tions (IF) and type expressions (Type) is given in Fig. 1.

Standard type systems lack expressiveness regarding
component connectors [58]. Using interfaces to type
variables provides abstractions for connecting to ob-
jects; in particular, object parameters capture static links
to environment resources, cointerfaces capture require-
ments to a counterpart in a protocol between concur-
rent objects (while specification predicates capture the
intended sequence of interactions in the protocol).

3.2 Example

We consider the interfaces of a node in a peer-to-peer
file sharing network. A toClient interface captures the
client end of the node, available to any user of the sys-
tem. It offers methods to list all files available in the net-
work, and to request the download of a given file from
a given server. A toServer interface offers a method for

Fig. 1 BNF grammar for interface and class declarations. Curly
brackets are used as meta parenthesis, superscript ? for optional
parts, superscript * for repetition zero or more times, whereas
{. . .}+, denotes repetition one or more times with ”,” as delim-
iter. Identifiers N denote interface, class, type, or method names.
The syntax for variables v, expressions e, expression lists e, and
statement lists s, is given in Fig. 2

obtaining a list of files available from the node, and a
mechanism for downloading packs, i.e., parts of a target
file. The toServer interface is available to servers in the
network.

Due to the with-construct and strong typing, the enquire,
getLength, and getPack methods may only be called by
other objects supporting the toServer interface. To save
space, discussion of method parameters is postponed to
Sect. 4. The two interfaces may be inherited by a third
interface Peer which describes nodes able to act accord-
ing to both the toClient and the toServer role. The Peer
interface becomes:

3.3 Classes and objects

At the imperative level, attributes (program variables)
and method declarations are organized in classes. Clas-
ses may include class parameters, which become assign-
able attributes of object instances as in Simula [19]. The
syntax for classes (CL) is given in Fig. 1. Objects are
dynamically created instances of classes, supplied with
actual type, data, and object parameters. The attributes
of an object are encapsulated and can only be accessed
via the object’s methods. Among the declared methods,
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we distinguish two methods init and run, which are given
special treatment operationally. The method init is in-
voked at object creation to instantiate attributes. After
initialization the method run is started, if it is provided.
Apart from init and run, declared methods may be in-
voked internally and by other objects of appropriate
interfaces. When called from other objects, these meth-
ods reflect passive or reactive behavior in the object,
whereas run initiates active behavior. Methods need not
terminate and all method instances may be temporarily
suspended.

In order to focus the paper on asynchronous method
calls and processor release points in method bodies,
other language aspects are not discussed in detail, includ-
ing inheritance and typing. To simplify the exposition,
we assume a common type Data of basic data values,
such as the natural numbers Nat, strings Str, and the ob-
ject identifiers Obj, which may be passed as arguments
to methods. Expressions Expr evaluate to Data, and do
not have side effects. In particular we denote by Obj-
Expr and BoolExpr two subtypes of Expr; expressions
of these types reduce to object identifiers and Booleans,
respectively. Let Var denote the set of program vari-
ables, Mtd the set of method names, and Label a set
of method call identifiers. There is read-only access to
method in-parameters, to self, used for self-reference, to
caller, used for return calls. Label variables may not be
used in expressions.

3.4 Asynchronous methods

An object offers methods to its environment, specified
through a number of interfaces and cointerfaces. All
interaction with an object happens through method calls.
In the asynchronous setting method calls can always
be emitted, because the receiving object cannot block
communication. Method overtaking is allowed: if meth-
ods offered by an object are invoked in one order, the
object may start the method instances in another order.
A method instance is, roughly speaking, program code
with nested processor release points, evaluated in the
context of local variables.

Due to the possible interleavings of different method
executions, the values of an object’s program variables
are not entirely controlled by a method instance which
suspends itself before completion. However, a method
may have local variables supplementing the object vari-
ables. In particular, the values of formal parameters are
stored locally, but other local variables may also be cre-
ated. Semantically, a method activation is represented
by a process 〈s,l〉 where s is a sequence of statements
and l:Var → Data the local variable bindings. Consider
an object o which offers the method

op m(in x : Nat out y : Data) == var z : Nat = 0; s

to the environment. Accepting a call to m with argument
2 from another object o′ creates a process 〈s, {caller �→
o′, label �→ l, x �→ 2, y �→ nil, z �→ 0}〉 in the object o.
An object can have several (suspended) instances of
a method, possibly with different values for local vari-
ables. The values of the implicit parameters label and
caller are used to correctly identify the call at run-time,
in order to bind the return values in the calling process.
Figure 2 gives the language syntax for program sen-
tences except for variable declarations, given in Fig. 2.
In particular, the syntax var x, y : T = e is syntactic sugar
for var x : T = e, y : T = e.

An asynchronous method call is made with the state-
ment t!o.m(e), where t ∈ Label provides a symbolic ref-
erence to the call, o is an object expression, m a method
name, and e an expression list with the actual in-param-
eters supplied to the method. The call is local when o is
omitted or evaluates to the same value as self, otherwise
the call is remote. As no synchronization is involved,
process execution can proceed after an asynchronous
call, until the return values are actually needed by the
process. The label may be omitted if a reply is not explic-
itly requested. Label variables may be reused when the
reference to the original call is no longer needed.

To fetch the return values from the call, say in a vari-
able list v, we ask for the reply to our call: t?(v), where
the label name t statically binds the reply to an invo-
cation by the type analysis in order to type check the
out-parameters. The reply statement t?(v) treats v as a
list of future variables [63]. If the reply to the call has
arrived, return values are assigned to v and the execu-
tion continues without delay. If the reply has not arrived,
process execution is blocked. In order to avoid block-
ing in the asynchronous case, processor release points

Fig. 2 The language syntax for method definitions, with typical
terms for each category. Capitalized terms such as e, v, and s,
denote lists of the syntactic categories of the corresponding lower-
case terms
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are introduced for reply guards (Sect. 3.5). In this case,
process execution is suspended rather than blocked.

The use of label variables is subject to static language
restrictions to ensure natural and deterministic static
binding [43]: a reply statement t?(v) may only occur in
a method or loop body if a “pending” call to t is stati-
cally guaranteed in the body. A call to t is pending after
an invocation to t, and before a reply statement to t or
another invocation to t. Any number of reply guards to
t may occur when a call to t is pending.

All methods may be invoked synchronously as well
as asynchronously. Synchronous (RMI) method calls
immediately block the processor while waiting for the
reply and have the syntax o.m(e; v), defined as t!o.m(e);
t?(v) for some fresh label t. This way the call is perceived
as synchronous by the caller, although the interaction
with the callee is in fact asynchronous. The callee does
not distinguish synchronous and asynchronous invoca-
tion of its methods. It is clear that in order to reply to
local calls, the calling method must eventually suspend
its own execution. Therefore the reply statement t?(v)

will enable execution of the call identified by t when
this call is local. The language does not support monitor
reentrance, mutual or cyclic synchronous calls between
objects may therefore lead to deadlock. Local calls need
not be prefixed by an object identifier, in which case
they may be identified syntactically, otherwise equality
between caller and callee is determined at runtime.

3.5 Processor release points

Nondeterministic choice may be captured as a basic pro-
gramming construct using guarded statements [22]. In
Creol, guards influence the control flow between pro-
cesses inside concurrent objects. A guard g is used to
explicitly declare a potential release point for the ob-
ject’s processor with the guard statement await g. Guard
statements can be nested within the same local variable
scope, corresponding to a series of processor release
points. A guard statement is enabled if its guard evalu-
ates to true. Other basic statements are always enabled.
When a statement which is not enabled is encountered
during process execution, the process is suspended and
the processor released. In contrast enabled statements
which are blocked, do not release the processor. After
processor release, the object’s suspended and enabled
processes compete for the free processor; any suspended
process may be selected for execution.

The type Guard is constructed inductively:

– wait ∈ Guard (explicit release)
– t?, ¬t? ∈ Guard, where t ∈ Label

– b ∈ Guard, where b is a Boolean expression
over local and object variables

– g1 ∧ g2 ∈ Guard, where g1, g2 ∈ Guard

The wait guard explicitly releases the processor. The
reply guard t? evaluates to true if the reply to the invo-
cation with label t has arrived. Evaluation of guard state-
ments is atomic. Let await t?(v) be an abbreviation for
await t?; t?(v), and await p(e; v) for t!p(e); await t?(v), a
typical form of nonblocking asynchronous method call.

Statements can be composed in different ways, reflect-
ing the requirements to the internal control flow in
the objects. An unguarded statement list is always en-
abled, but reply statements t?(v) may block. Let s1 and
s2 denote statement lists. Sequential composition may
introduce guards; in a program statement s1; await g; s2
the guard g corresponds to a potential inner processor
release point. Nondeterministic choice between state-
ments, written s1�s2, may compute s1 once s1 is en-
abled, or s2 once s2 is enabled, and suspends if neither
branch is enabled. (Observe that to avoid deadlock, the
semantics additionally will not commit to a branch which
starts with a blocking reply statement.) Nondeterminis-
tic merge, written s1|||s2, evaluates the statements s1 and
s2 in some interleaved and enabled order. Control flow
without potential processor release uses if and while
constructs, and multiple assignment to local and object
variables is expressed as v := e for (the same number
of) program variables v and expressions e.

With nested processor release points, the object pro-
cessor need not block while waiting for replies. This ap-
proach is more flexible than future variables: suspended
processes or new method calls may be evaluated while
waiting. If the called object does not reply at all, dead-
lock is avoided in the sense that other activity in the
object is possible. However, when the reply has arrived,
the continuation of the original process must compete
with other enabled suspended processes.

4 Example: a peer-to-peer network

A peer-to-peer file sharing system consists of nodes dis-
tributed across a network. Peers are equal: each node
plays both the role of a server and of a client. In the
network, nodes may appear and disappear dynamically.
As a client, a node requests a file from a server in the
network, and downloads it as a series of packet trans-
missions until the file download is complete. The con-
nection to the server may be blocked, in which case the
download will automatically resume if the connection is
reestablished. A client may run several downloads con-
currently, at different speeds. We assume that every node
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in the network has an associated database with shared
files. Downloaded files are stored in this database, which
is not modeled here but implements the interface DB:

Here, getFile returns a list of packets, i.e., a sequence of
sequences of data, for transmission over the network,
getLength returns the number of such sequences, list-
Files returns the list of available files, and storeFile adds
a file to the database, possibly overwriting an existing
file.

Nodes in the peer-to-peer network implement the
Peer interface and are modeled by a class Node. Node
objects can have several interleaved activities: several
downloads may be processed simultaneously as well as
uploads to other servers, etc. All method calls are asyn-
chronous: If a server temporarily becomes unavailable,
the transaction is suspended and may resume at any
time after the server becomes available again. Proces-
sor release points ensure that the processor will not be
blocked and transactions with other servers not affected.
The Node class is given in Fig. 3. In the class, the method
availFiles returns a list of pairs each consisting of a file
identifier fId and the server identifier sId where fId may
be found, reqFile the file associated with fId, enquire
the list of files available from the server, and getPack a
particular pack in the transmission of a file. The list con-
structor is represented by “::”. For x : T and s : List[T],
let hd(x :: s) = x, tl(x :: s) = s, let s[i] denote the i’th
element of s, for i ≤ length(s), and let rem(x, s) be s with
all occurrences of x removed (cf. Sect. 8).

The example demonstrates high level synchroniza-
tion and efficiency control, without explicit signaling. In
addition, the abbreviation await p(e; v) for label free
invocation may be generalized by allowing conjunctions
of guards and method calls in await statements. For
example, the body of the availFiles method could then
be rewritten as

This gives a label free programming style, applicable to
a large class of programs.

Fig. 3 A class capturing nodes in a peer-to-peer network

5 Example: the dining philosophers

This section considers a model of the dining philoso-
phers in Creol, demonstrating how to combine active
and reactive object behavior. Philosophers are active
as they think, eat, and digest in an interleaved man-
ner. Each philosopher is equipped with one chopstick,
but needs two chopsticks in order to eat. To acquire
chopsticks, the philosophers interact with each other. In
this model, philosophers can be added dynamically to
the system by a seat method, which seats the new ob-
ject between the callee and its neighbor. A philosopher
may borrow and return its neighbor’s chopstick. Interac-
tion between the philosophers is restricted by the inter-
face. This results in a clear distinction between internal
methods and methods that are externally available to
other objects. Strong typing and cointerfaces guarantee
that only philosophers can call the methods of the Phil
interface.
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In this approach, each philosopher controls one chop-
stick, and must both retain its own and borrow its neigh-
bor’s chopstick in order to eat. Thus philosophers have
their internal activity, in addition they respond to calls
from the environment.

5.1 Implementing the philosophers

Philosophers are active, which implies that the Philos-
opher class will include a run method. The run method
is defined in terms of several nonterminating internal
methods representing different activities within a phi-
losopher: think, eat, and digest. In run, the internal meth-
ods are invoked asynchronously. Consequently all three
methods are activated before any of them can begin exe-
cution, and the calling order is arbitrary here. (A merge
of the three calls would not improve efficiency.) Thus,
the internal methods will be interleaved in a nontermi-
nating manner, illustrating the processor release point
construct. All three methods depend on the value of the
class attribute hungry, which is a shared variable for the
object methods. The think method is a loop which sus-
pends its own evaluation before each iteration, whereas
eat attempts to grab the philosopher’s and its neighbor’s
chopsticks in order to satisfy its hunger. The philosopher
has to wait until both chopsticks are available before it
can eat. In order to avoid blocking the object proces-
sor, the eat method is therefore suspended after asking
for the neighbor’s chopstick; further processing of the
method can happen once the guard is satisfied. The digest
method represents the action of becoming hungry. The
Philosopher class is defined in Fig. 4.

The standard configuration of five philosophers can
be obtained by the sequence

where new Philosopher(null) initiates a cyclic structure,
and new Philosopher(p), when p not null, preserves
cyclicity. New philosophers can be added dynamically
by all objects with access to an existing philosopher.

The proposed model favors implicit control of the
object’s active behavior. Caromel and Rodier [12] argue

Fig. 4 A class capturing dining philosophers

that facilities for both implicit and explicit control are
needed in languages which address concurrent program-
ming. Explicit activity control can be programmed in
Creol by using a while loop in the run method. In asyn-
chronous distributed systems, we believe that communi-
cation introduces so much nondeterminism that explicit
control structures quickly lead to program over-specifi-
cation and possibly to unnecessary active waiting.

6 Example: explicit synchronization

Creol supports high-level implicit synchronization of
interleaved method executions in concurrent objects.
Consequently, objects may be regarded as abstract mon-
itors [31], without the need for explicit signaling.
Explicit signaling adds an additional level of complex-
ity to programming and reasoning with monitors [18].
In Creol, signaling is guaranteed by the semantics and
is therefore not the responsibility of the programmer.
When explicit signaling is desirable, it can be achieved
by encoding monitors with different signaling disciplines
in Creol. We here present the encoding of a class imple-
menting general monitors with the signal and continue
discipline [6], for simplicity restricted to one condition
variable. The condition variable is encoded as a triple
〈s, d, q〉 of natural numbers; s represents signals to the
condition variable, d the number of the delayed process
in the queue of the condition variable, and q the number
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of delayed processes that have been reactivated. Queues
on condition variables are FIFO ordered.

The counters representing the queue of the condition
variable may be reset when no processes are suspended
on the queue, by adding an additional line at the end of
the wait method: if (d=q) then d:=0; q:=0 fi.

7 Example: coordinators

This section introduces a class which coordinates the
activities of surrounding objects and performs a joint
computation. We consider k objects which should con-
tribute to the inputs and share the resulting output
values of a coordinated computation body. For each
participating object i, we define a method mi which has
as input parameters the data contributed by the object
and as output parameters the result values desired by
the object. In order to perform the coordinated compu-
tation, all k objects must have contributed their input
data. The Coordinator class is given in Fig. 5. For sim-
plicity, we assume that there is a single, locally defined
body method. In the general case, the active method
run may invoke different bodies depending on the input
values, and these may be external.

We now identify two special cases of the Coordi-
nator class, which correspond to synchronization con-
structs in the literature. First, we consider the case where
the methods m1,…,mk do not contain input and output
parameters and let

body == ε.

This corresponds to barrier synchronization [6]. We note
that if a method mi is invoked asynchronously, only the
invoking process in the caller is synchronized and other
processes in the caller object may proceed while wait-
ing for the synchronization barrier. Second we consider
a join pattern or chord in the Join calculus [26], Join
Java [35], and Polyphonic C# [8]. A chord consists of
a header and a body. The header is a set of method
declarations and the body is only executed once all the
methods in the header have been called. Method calls
are queued up until there is a matching chord. In any

Fig. 5 A Coordinator class in Creol

given chord, at most one method may be synchronous,
i.e., result in output. It is easy to see that the chord
construct is a special case of the Coordinator class: let
methods m1,…,mk−1 contain input parameters but no
output parameters and mk contain output parameters
but no input parameters. The body of the chord corre-
sponds exactly to the coordinated computation of the
body method. If there are several chords coordinating
on the synchronization methods, the chords would cor-
respond to branches in the run method composed by the
nondeterministic choice operator.

8 Example: implicit invocation

Publish/subscribe interaction addresses scalable and dis-
tributed systems by decoupling the interacting parties
with respect to space, time, and synchronization [24].
This means that the interacting parties should not know
about each other, they need not participate in the inter-
action at the same time, and the interaction should not
directly interfere with the other on-going activities of
the parties. Note that there may be zero or more pub-
lishers and subscribers to an event at a particular time,
and the number of publishers as well as of subscrib-
ers may vary over time. This section introduces a class
which organizes implicit or anonymous method calls,
allowing interested objects to subscribe and unsubscribe
to particular events. An EventManager class is defined,
which is parameterized by the signature of the event
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parameters, allowing new instances of the class to be
defined and subscribed to as part of the normal exe-
cution flow. This approach allows static type checking
of the events [54], while the asynchronous invocation
mechanism of Creol naturally models concurrent notifi-
cation.

An object which subscribes to particular events must
understand event notifications, as captured through an
EventListener interface:

The corresponding interface of the event manager
offers methods to subscribe and unsubscribe to event
notification. The manager also has an interface to pub-
lisher objects. These interfaces are defined as follows:

The EventManager class given in Fig. 6 implements
EventSender, which will only allow event listeners to
subscribe and unsubscribe to the event; i.e., an event
listener must understand the notify method with param-
eter of type T. Notice that the explicit use of caller as an
EventListener is due to the with clause, and allows the
subscribers (subs) to be a list of event listeners, making
the remote call to notify type correct. A class implement-

Fig. 6 An EventManager class in Creol

ing EventListener[T] may define a variable x of interface
EventSender[T] and a method

op notify(in par : T) == if caller == x then . . . fi

In this case, the implicit caller variable may be used to
distinguish similar events. In order to publish an event,
an object declares an instance of the appropriate Event-
Manager class and (asynchronously) invokes its pub-
lish method. The instances of the EventManager may be
locally created, or obtained from some shared resource.

9 Time-outs and race conditions

Open distributed systems may be highly unstable in the
sense that remote objects may become unavailable and
communication links may break down. In these situ-
ations, an object’s services may be severely delayed or
even disrupted. The presence of the blocking reply state-
ment may lead to object deadlock in an unstable envi-
ronment, whereas a reply guard may lead to deadlock
in one process in the object. The use of reply guards
improves the latter situation as the object remains active,
but the waiting process may remain suspended if the
guard never becomes enabled. It is therefore desirable to
extend the model with a time-out mechanism, which will
be defined in terms of the previously defined language.

Consider a local timing mechanism expressing a delay,
such as the following operation:

op delay(n :Nat) ==
if n>0 then await wait; delay(n−1) fi

The timing mechanism essentially corresponds to the
time needed to evaluate a series of n unconditional
processor suspension points. Remark that this does not
provide very exact timing, as the ordering of suspended
processes is not specified in the abstract semantics
(Sect. 10). In an implementation of the operational
semantics, a more precise (and low level) timing con-
struct could be defined in terms of a counter on the
number of rewrite steps, by some kind of underlying
clock, or by defining a deterministic ordering of sus-
pended processes.

A time-out effect for an invocation of a (remote)
method m may be obtained by nondeterministically
combining the asynchronous call to m with a call to a
local timing mechanism. In an object with an internal
delay method this can be illustrated by two program
examples, considering blocking and nonblocking reply
statements for some time delay n ≥ 0:

t!o.m(e); t′!delay(n); s; (t?(v); s1 � await t′?; s2) (1)
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t!o.m(e); t′!delay(n); s; (await t?(v); s1� await t′?; s2) (2)

In case the replies corresponding to the respective
reply statements for label t do not arrive within the time
taken to evaluate the delay, both programming examples
(1) and (2) are able to continue with s2. This is because
the semantics of nondeterministic choice will only com-
mit to an enabled branch which does not immediately
block evaluation. Consequently, a time-out branch may
take control over a branch starting with a reply state-
ment or guard, provided the time-out occurs before the
reply has been received. If neither branch of the non-
deterministic choice is enabled, (2) may be suspended.
If this happens both replies may arrive before the sen-
tence is reevaluated, in which case either branch may
be selected. The semantics does not give priority to a
particular branch. However, priority may be given to a
branch by extending a guard: If normal execution is pre-
ferred to the time-out behavior, this can be achieved by
replacing the second branch by await t′? ∧ ¬t?; s2.

This construction can be used to create race condi-
tions between method calls. It is often desirable to in-
voke methods in several different objects and proceed
with the first available reply. It may therefore be conve-
nient to introduce a more direct syntax for time-outs and
method race conditions, clearly separating the different
branches. Denote by st? a reply statement for a label
identifier t, i.e., either await g ∧ t? or t?(v). Let t and t′
be label identifiers and assume that the possibly empty
statement lists s1 and s′

1 do not contain reply statements
for t and t′. The construct

(t!p(e); s1; st?; s2 | t′!p′(e′); s′
1; s′

t′?; s′
2)

is defined as

t!p(e); t′!p′(e′); (s1|||s′
1); (st?; s2 � s′

t′?; s′
2)

Due to the expansion of synchronous calls, it follows
that

(o.m(e; v); s | delay(n); s′)

will evaluate s if the call to m completes within the time-
out, and otherwise s′. This construct will not suspend
while waiting for the completion of m or delay since it is
enabled (but blocked). In contrast, the statement

(await o.m(e; v); s | await delay(n); s′)

will be able to suspend since it is not necessarily enabled.
It will select s if evaluated before the time-out and the
call to m is completed, otherwise s′ may also be chosen.
Remark that for time-out mechanisms priority to nor-
mal execution is determined by the size of the time-out.

The suggested construct may also be used for program-
ming method race conditions. For instance

(p(e; v); s | p′(e′; v′); s′)

will evaluate s if the p call completes before the p′ call
and otherwise evaluates s′. In this case equal priority to
the branches seems most desirable, which is provided by
the semantics.

9.1 Example

Reconsider the model of the dining philosophers from
Sect. 5. In the model, a deadlock situation may occur
in which every philosopher is hungry and has made a
request for its neighbor’s chopstick. While waiting for
the reply to the request, the eat method suspends, allow-
ing borrowStick to lend its own chopstick to a neighbor.
The deadlock situation occurs when every philosopher
is in possession of its neighbor’s chopstick but not of its
own. (Remark that although deadlocked, the philoso-
pher may still digest.) It is here assumed that the Philos-
opher class contains the delay method and an attribute
n : Nat bound to a suitably large value. To avoid this
deadlock situation, the eat method is now redefined.

After the delay, the reply guard await l? ensures that
only borrowed sticks are returned.

10 An operational semantics for Creol

The operational semantics of Creol is defined using
rewriting logic [49], emphasizing simplicity and abstrac-
tion while modeling the essential aspects of concurrency,
distribution, and communication. In the operational
semantics, it is assumed that programs have been type
checked. In particular, this applies to cointerface restric-
tions: at run-time, objects invoke methods without dy-
namic (cointerface) restrictions. At run-time, implicit
parameters are treated as ordinary program variables;
the run-time system assigns values to these parameters,
while read-only access from program code is enforced
by static checking. Also the initialization of variable dec-
larations is replaced by assignments in init.

A rewrite theory is a 4-tuple R = (�, E, L, R), where
the signature � defines the function symbols of the
language, E defines equations between terms, L is a set
of labels, and R is a set of labeled rewrite rules. From
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a computational viewpoint, a rewrite rule t −→ t′ may
be interpreted as a local transition rule allowing an in-
stance of the pattern t to evolve into the corresponding
instance of the pattern t′. If several rules can be ap-
plied to distinct subconfigurations, they can be executed
in a concurrent rewrite step. As a result, concurrency is
implicit in rewriting logic (RL) semantics. Many concur-
rency models have been successfully represented in RL
[49,16]; these include Petri nets, CCS, Actors, and Unity,
as well as the ODP computational model [52]. RL also
offers its own model of object orientation [16].

Informally, a state configuration in RL is a multiset of
terms of given types. These types are specified in (mem-
bership) equational logic (�, E), the functional sublan-
guage of RL which supports algebraic specification in
the OBJ [28] style. When modeling computational sys-
tems, configurations may include the local system states,
where different parts of the system are modeled by terms
of the different types defined in the equational logic.

RL extends algebraic specification techniques with
transition rules: the dynamic behavior of a system is
captured by rewrite rules, supplementing the equations
which define the term language. Assuming that all terms
can be reduced to normal form, rewrite rules transform
terms modulo the defining equations of E. Conditional
rewrite rules are allowed, where the condition can be
formulated as a conjunction of rewrites and equations
which must hold for the main rule to apply:

subconfiguration −→ subconfiguration if condition

Rules in RL may be formulated at a high level of abstrac-
tion, closely resembling a compositional operational
semantics. In fact, RL provides a semantic framework
unifying equational and operational semantics [50].

10.1 System configurations

Object activity will be organized around a message queue
which contains incoming messages and a process queue
which contains suspended processes, i.e., remaining parts
of method instances. A state configuration is a multiset
which consists of Creol objects, classes, and messages.
(To increase parallelism in the model, message queues
may be made external to object bodies as shown in [37].)

In RL, objects are commonly represented by terms
〈o : C | a1 : v1, . . . , an : vn〉 where o is the object’s iden-
tifier, C is its class, the ais are the names of the object’s
attributes, and the vis are the corresponding values [16].
We adopt this form of presentation and define both
Creol objects and classes as RL objects, omitting RL
types. A Creol object is represented by an RL object

〈Ob | Cl, Pr, PrQ, Lvar, Att, Lab, EvQ〉,
where Ob is the object identifier, Cl the class name, Pr
the active process code, PrQ a multiset of suspended
processes with unspecified queue ordering, EvQ a mul-
tiset of unprocessed messages, and Lvar and Att the
local and object state variables, respectively. Let τ be a
sort partially ordered by <, with least element 1, and
let next : τ → τ be such that ∀x . x < next(x). Lab is
a method call identifier corresponding to labels in the
language, of sort τ . The object identifier and the gener-
ated label value will provide a globally unique identifier
for each method call. In the semantics, whitespace is
used as the associative and commutative constructor of
multisets with identity element empty, such as PrQ and
EvQ, as well as the associative constructor of variable
and expression lists, also with identity element empty,
whereas semicolon is used as the similar constructor of
statement lists and variable bindings to improve read-
ability. Capitalized variables are reserved for lists and
multisets. Note that matching is modulo associativity,
commutativity, and identity (ACI) for the multiset con-
structor, and modulo associativity and identity for the
list constructor. In particular, matching modulo the iden-
tity s; ε = s ensures that left hand sides with patterns s; s
(in Pr) match s.

A Creol class is represented by an RL object

〈Cl | Par, Att, init, Mtds, Tok〉,
where Cl is the class name, Par the list of class parame-
ters, Att a list of attributes, init the initialization method,
Tok is an unbounded set of tokens of sort τ , and Mtds
a multiset of methods (including run). When an object
needs a method, it is loaded from the Mtds multiset of
its class. In RL’s object model [16], classes are not repre-
sented explicitly in the system configuration. This leads
to ad hoc mechanisms to handle object creation, which
we avoid by explicit class representation. Let o and C be
variables of the types Obj of object identifiers and Class
of class identifiers, respectively.

10.2 Concurrent transitions

Concurrent change is achieved by applying concurrent
rewrite steps to state configurations in the operational
semantics. There are four different kinds of rewrite rules:

– Rules that execute code from the active process: for
every program statement there is at least one rule.

– Rules for suspension of the active process: when an
active process guard evaluates to false, the process
is suspended, leaving Pr empty.
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– Rules that activate suspended processes: when Pr is
empty, suspended processes may be activated. When
this happens, the local variable bindings are replaced.

– Transport rules move messages into message queues,
representing distributed communication.

When auxiliary functions are needed in the semantics,
these are defined in equational logic. Equations are eval-
uated in between the state transitions [49]. Some equa-
tions defining normal forms are introduced, including

!m(e) = !self.m(e)

await t?(v) = await t?; t?(v)

(ε ||| s) = s
(ε � s) = s
(ε := ε) = ε

Two new primitives are introduced in the operational
semantics to control process termination: cont(inue) and
return. These are not available for the programmer.

Assignment. A standard program statement is illustrated
by the multiple assignment v := e, which binds the value
of the expression list e to v within the lists of local and
object variables. The rewrite rule for this transition is
written as follows, ignoring irrelevant attributes in the
style of Full Maude [16]:

The auxiliary function eval evaluates an expression with
a given state, i.e., a list of variable to value bindings.

Object creation. Next, the creation of new objects is con-
sidered. Class parameters are stored among object attri-
butes. A new object with a unique identifier is created.
New object identifiers are created by concatenating to-
kens from the unbounded set Tok to the class name.
The new object identifier, denoted C#n, is returned to
the object initiating the object creation.

In the new object, self is bound to the new identifier,
and class parameter values are stored in the attribute
list of the class and instantiated by assignment. After
this assignment, init is executed and finally, a synchro-
nous call is made to run (if present in the class).

Guard statements. There are three types of basic guards
representing potential processor release points: a Bool-
ean expression guard, a wait guard, and a reply guard.
When a guard is encountered, execution continues if the
guard is enabled:

Enabledness is defined by induction over the construc-
tion of guards by the predicate

enabled(t?, d, q) = eval(t, d) in q
enabled(b, d, q) = eval(b, d)

enabled(wait, d, q) = false
enabled(g ∧ g′, d, q)= enabled(g, d, q)∧enabled(g′, d, q)

where d denotes a list of state variables, and the function
in checks whether a completion message corresponding
to a given label value is present in the message queue q.

When a nonenabled statement is encountered, the
active process is suspended on the process queue:

where the enabledness predicate is extended to state-
ments as follows:

enabled(s; s, d, q) = enabled(s, d, q)

enabled(await g, d, q) = enabled(g, d, q)

enabled(s�s′, d, q) = enabled(s, d, q)∨enabled(s′, d, q)

enabled(s|||s′, d, q) = enabled(s, d, q)∨enabled(s′, d, q)

enabled(s, d, q) = true [otherwise]

The otherwise attribute of the last equation states that
this equation is taken for all other statements.

The ready predicate expresses that a process is ready
to execute; i.e., the process is neither waiting for a guard
to become true nor for acompletion message. The
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predicate is defined just as the enabled predicate,
except that blocking reply statements are not ready:

ready(s; s, d, q) = ready(s, d, q)

ready(t?(v), d, q) = enabled(await t?, d, q)

ready(s�s′, d, q) = ready(s, d, q)∨ready(s′, d, q)

ready(s|||s′, d, q) = ready(s, d, q)∨ready(s′, d, q)

ready(s, d, q) = enabled(s, d, q) [otherwise]
If there is no active process, a suspended process can be
reactivated if it is ready:

This rule allows any ready process to continue because
PrQ is a multiset. Explicit waiting is resolved by the rule

using ACI matching for conjunctions. Similar rules treat
branches of ||| and � which start with explicit waiting, e.g.,
a process 〈(await wait ∧ g; s1)�s2, l〉 in PrQ is reduced
to 〈(await g; s1)�s2, l〉.

Control flow. Some rules for control flow are now con-
sidered. Selection of a branch s1 in a nondeterministic
choice statement s1�s2 is modeled by the following rule:

Combined with associativity and commutativity of the
� operator, this rule covers the selection of any branch
in a compound nondeterministic choice. When neither
s1 nor s2 is ready the active process is blocked if enabled,
but suspended if not enabled. Consequently, selecting a
branch which immediately blocks or suspends execution
is avoided if possible.

The merge operator ||| interleaves the execution of two
statement lists s1 and s2. A naive approach is to define
merge in terms of the nondeterministic choice operator:
s1; s2�s2; s1. To improve efficiency, a more fine-grained
interleaving is preferred. However, in order to comply
with the suspension technique of the language, inter-
leaving will only be allowed at processor release points

in the branches. Define an associative, but not commu-
tative, auxiliary operator ///:

Whenever evaluation of the selected (left) branch leads
to non-enabledness, execution has arrived at a suspen-
sion point and it is safe to pass control back to the |||
operator to decide whether to block, select the other
branch, or suspend. This is in contrast to the left merge
operator of Bergstra and Klop [9], which always returns
control to merge after execution of one statement. The |||
operator is associative and commutative, and is defined
by the following rule:

An enabled merge blocks unless this rule is applicable.

Synchronous and asynchronous method calls. In the
operational semantics, two messages are used to en-
code a method call. If an object o1 calls a method m
of an object o2, with arguments in, and the execution
results in the return values out, the call is reflected by
the messages invoc(o2, m, o1 l in) and comp(o1 l out),
representing the invocation and completion of the call,
respectively. Objects communicate by asynchronously
exchanging these kinds of messages. In the asynchro-
nous setting, the invocation message must include the
reply address of the caller, so the completion can be
transmitted to the correct destination. As an object may
have several pending calls to another object, the com-
pletion message includes a locally unique label value l,
automatically generated by the caller and included in
the invocation message.

The Creol semantics handles all invocation mech-
anisms in a uniform manner using the primitives for
asynchronous communication; i.e., asynchronous calls,
reply statements, and reply guards. Synchronous and
nonblocking calls are reduced by the following equa-
tions:
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When an object calls a method, a message is placed
in the configuration. The rewrite rule for this transition
is as follows, assigning a value to the label name:

Note that the caller identity and the label value are in-
cluded as actual parameters. Transport rules take charge
of the message, which eventually arrives at the callee’s
message queue:

This way, communication between objects requires sev-
eral rewrite steps, mimicking a distributed environment.
A similar transport rule handles completion messages
emitted into the configuration upon method execution.
Message overtaking is captured by ACI matching mes-
sages sent by an object to another object in one order
may arrive in any order. (Lossy communication may be
explicitly allowed by adding a rule of the form
Configuration Message −→ Configuration.)

When an invocation is found in the message queue of
an object o, the class of o, which was not statically known
by the caller, is identified. The call is dynamically bound
in this class and loaded into the object’s internal process
queue:

The auxiliary function bind fetches method m in the
method multiset mt of the class, returns the code associ-
ated with the method name from the object’s class, and
instantiates the method’s in-parameters with the call’s
actual parameters e. Note that the code is loaded into o
and evaluated in the context of the object’s state vari-
ables, in which self is bound to o. The bind function
ensures that a completion message will be emitted upon
method termination by suffixing the code with a state-
ment return(v), where v are the formal out-parameters:

Here caller and label are the reserved formal parameter
names referring to the caller and label values of a call.

The reply statement blocks object activity until the
appropriate reply message arrives in the message queue.

In the case of a local call, the reply statement allows
the call to be loaded in Pr by introducing a language
primitive cont(n) as follows:

This use of the primitive cont(n) enforces a LIFO disci-
pline on PrQ for local synchronous calls. Similar rules
handle branches of ||| and � starting with a reply of a
local call. When evaluation of the new call is completed,
the return values are placed in the message queue as
usual and the continuation primitive is evaluated:

The label value is here sufficient to identify the caller, as
reply statements and guards refer to local calls.

11 Executable semantics

Specifications in RL are executable on the Maude mod-
eling and analysis tool [16]. This makes RL well-suited
for experimenting with programming constructs and
language prototypes, combined with Maude’s various
rewrite strategies and search and model-checking abili-
ties. Thus, development of the language constructs and
testing them is done incrementally. In fact, Creol’s oper-
ational semantics has been used as a language inter-
preter to test the behavior of Creol programs [41]. The
interpreter consists of 700 lines of code, including aux-
iliary functions and equational specifications, and it has
24 rewrite rules.

Althoughtheproposedoperationalsemanticsishighly
nondeterministic, Maude rewriting is deterministic in its
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choice of which rule to apply to a given configuration.
For the evaluation of specifications of nondeterministic
systems in Maude, as targeted by Creol, this limitation
restricts the applicability of the tool as every run of the
specification will be identical. However, RL is reflec-
tive [15], which allows execution strategies for Maude
programs to be written in RL. A strategy based on a
pseudo-random number generator is proposed in [41].
Using this strategy, it is easy to test a specification in a
series of different runs by providing different seeds to
the random number generator.

By executing the operational semantics, Maude may
be used as a program analysis tool. Maude’s search
and model checking facilities can be employed to look
for specific configurations or configurations satisfying a
given condition. In particular, breadth first search pro-
vides a semi-decision procedure for finding failures of
safety properties [50].

12 Related work

The Creol process statements are inspired by notions
from process algebra [32,51]. Process algebra is usually
based on synchronous communication. In contrast to
the asynchronous π -calculus [33], which encodes asyn-
chronous communication in a synchronous framework
by dummy processes, our communication model is truly
asynchronous and without channels: message overtak-
ing may occur. Further, Creol differs from process alge-
bra in its integration of processes in an object-oriented
setting using methods, including active and passive ob-
ject behavior, and self reference rather than channels.
In formalisms based on process algebra the operation of
returning a result is not directly supported, but typically
encoded as sending a message on a fresh return channel
[56,57,60]. This provides a unique reference to a call,
similar to the values bound to Creol labels at runtime.
As shown, label free abstractions may be used in Creol
for high level asynchronous method calls.

Integrated formal methods that combine state-based
object-oriented structuring languages such as Object-Z
and B with process algebras such as CSP and CCS exploit
process algebra to express channel communication and
synchronization [25,59]. In this vein of work, TCOZ
[47] addresses asynchronous communication explicitly
through actuators and sensors which represent the local
channel ends of asynchronous channels, making global
information unnecessary. However, channel-based com-
munication in integrated approaches based on process
algebra fixes the communication medium and disallows
message overtaking. Finally, Creol’s high-level integra-
tion of asynchronous and synchronous communication,

in which a method may be invoked in both ways, and
the organization of pending processes and interleaving
at release points within objects seem hard to capture
naturally in process algebra and integrated approaches
which fix the communication structure.

Object calculi such as the ς -calculus [1] and its concur-
rent extension [29] aim at a direct expression of object-
oriented features, supporting, e.g., the return of result
values, but asynchronous invocation of methods is not
addressed. This also applies to Obliq [11], a program-
ming language based on similar primitives which targets
distributed concurrent objects. The concurrent object
calculus of [21] provides both synchronous and asyn-
chronous invocation of methods. In contrast to Creol,
return values are discarded when methods are invoked
asynchronously and the two ways of invoking a method
have different semantics.

The internal concurrency model of concurrent objects
in Creol may be compared to monitors [31] or to thread
pools executing on a single processor, with a shared state
space given by the object attributes. In contrast to mon-
itors, explicit signaling is avoided. In contrast to thread
pools, processor release is explicit. The activation of sus-
pended processes is nondeterministically handled by an
unspecified scheduler. Consequently, intra-object con-
currency in Creol is similar to the interleaving seman-
tics of concurrent process languages [22,6], where each
Creol process resembles a series of guarded atomic ac-
tions (discarding local process variables). In contrast to
monitors, sufficient signaling is ensured at the seman-
tic level, which significantly simplifies reasoning [18].
Internal reasoning control is facilitated by the explicit
declaration of release points, at which class invariants
are expected to hold [23].

Many object-oriented languages offer constructs for
concurrency; a survey is given in [55]. A common ap-
proach has been to keep activity (threads) and objects
distinct, as done in Hybrid [53] and Java [30]. These
languages rely on the tightly synchronized RMI model
of method calls, forcing the calling method instance to
block while waiting for the reply to a call. Verification
considerations suggest that methods should be serial-
ized [10], which would block all activity in the calling
object. Closely related are method calls based on the
rendezvous concept in languages where objects encap-
sulate activity threads, such as Ada [6] and POOL-T [5].

For distributed systems, with potential delays and
even loss of communication, activity threads as well
as the tight synchronization of the RMI model seem
less desirable. Hybrid offers delegation as an explicit
construct to (temporarily) branch an activity thread.
Clearly, asynchronous method calls may be seen as a
form of delegation. Asynchronous method calls can be
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implemented in, e.g., Java by explicitly creating new
threads to handle calls [17]. In Creol, polling for replies
to asynchronous calls is handled at the level of the
operational semantics: no active loop is needed to poll
for replies to delegated activity. UML offers asynchro-
nous event communication and synchronous method
invocation but does not integrate these, resulting in sig-
nificantly more complex formalizations [20] than ours.
To facilitate the programmer’s task and reduce the risk
of errors, implicit control structures combined with asyn-
chronous method calls as proposed in Creol seem more
attractive, allowing a higher level of abstraction in the
language.

Publish/subscribe systems support anonymous and
indirect method invocation [24], which complements
explicit invocation with a mechanism by which objects
subscribing to an event are notified without targeted
communication. The approach taken in Sect. 8 follows
an approach taken by Notkin et al. [54] for C++. How-
ever, asynchronous invocation in Creol directly captures
concurrent notification without synchronization.

Languages based on the Actor model [4,3] take asyn-
chronous messages as the communication primitive,
focusing on loosely coupled processes with less syn-
chronization. This makes Actor languages conceptually
attractive for distributed programming. The interpreta-
tion of method calls as asynchronous messages has lead
to the notion of future variables which may be found in
languages such as ABCL [63], Argus [45], Concurrent-
Smalltalk [62], Eiffel// [12], CJava [17], and in the Join
calculus [26] based languages Polyphonic C� [8] and Join
Java [35]. Our communication model is also based on
asynchronous messages and the proposed asynchronous
method calls resemble programming with future vari-
ables, but Creol’s processor release points further extend
this approach to asynchrony with additional flexibility.

Maude’s inherent object concept [49,16] represents
an object’s state as a subconfiguration, as we have done
in this paper, but in contrast to our approach object
behavior is captured directly by rewrite rules. Both
Actor-style asynchronous messages and synchronous
transitions (rewrite rules which involve more than one
object) are allowed, which makes Maude’s object model
very flexible. However, asynchronous method calls and
processor release points as proposed in this paper are
hard to represent within this model.

13 Future work

Creol models as presented in this paper, abstract from
any local scheduling policies as well as from any particu-
lar network properties. No assumptions are made about

the network between objects: it may be channel-based,
allow or disallow message loss, etc. In future work, we
plan to combine Creol objects with a modeling language
expressing properties of network interaction and coor-
dination [7].

The long term goal of our research is to study open-
ness in distributed object systems. This paper has fo-
cused on communication aspects in the asynchronous
setting and related papers [40,39] on class inheritance,
including an approach to dynamic binding and the inher-
itance anomaly. We believe the language presented here
offers interesting possibilities for reasoning about sys-
tem behavior in the presence of dynamic change. An
obvious way to provide some openness is to allow the
addition of new (sub)classes and new (sub)interfaces.
However, old objects may not use new interfaces that
require new methods. A natural way to overcome this
limitation is through a dynamic class construct, allow-
ing a class to be replaced by a subclass [42]. Thus a
class C may be modified by adding attributes (with ini-
tialization) and methods, redefining methods, as well as
extending the inheritance and implements relationships.
Unlike standard subclassing, all existing objects of class
C or a subclass of C become renewed in this case and
support the new interfaces. The run-time implementa-
tion of dynamic class constructs is nontrivial [48], even
typing and virtual binding need special considerations.
Reasoning control is maintained when the dynamic class
construct is restricted to a form of behavioral subtyp-
ing [46]. As a special case of class modification, one
may posteriorly add super-classes to an established class
hierarchy. This answers a major criticism against object-
oriented design [27], namely that the class hierarchy
severely limits restructuring the system design.

Currently, type systems, and reasoning about inheri-
tance and dynamic classes, are being investigated. More
elaborate case studies to test the mechanisms of the
language are on the way. The framework provided by
rewriting logic and Maude is promising for experimen-
tation with dynamic classes, as the semantic model sup-
ports formal reasoning as well as execution and testing.

14 Conclusion

Object orientation is the leading framework for
distributed systems, but the common approaches to com-
bining concurrency with object-oriented method invo-
cations seem less satisfactory. Communication is either
based on synchronous method calls, best suited for
tightly coupled processes, or on asynchronous messages,
with no direct support for the abstraction and structur-
ing mechanism provided by methods in object-oriented
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design. Consequently, method calls in the distributed
setting become either very inefficient or difficult to
program and reason about, requiring explicit low-level
synchronization of activity and communication.

In order to facilitate the design of distributed con-
current objects, high-level implicit control structures are
needed to organize method invocations and internal ob-
ject activity. In this paper, we have integrated remote
and local, asynchronous and synchronous, method calls
with nested processor release points in method bod-
ies for this purpose. The language semantics has been
fully formalized in rewriting logic. The approach im-
proves on the efficiency of future variables and allows
implicit control of interleaved intra-object concurrency
between invoked methods. Active and reactive behavior
in an object are thereby easily combined. The proposed
interleaving of method executions is more flexible than
serialized methods, allowing method overtaking, while
maintaining the ease of code verification lost for non-
serialized methods. In fact, it suffices that class invariants
hold at processor release points.
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