
Runtime Validation of Communication Histories

Einar Broch Johnsen, Gerardo Schneider, and Øystein Torget
Department of informatics, University of Oslo
PO Box 1080 Blindern, N-0316 Oslo, Norway

{einarj, gerardo, oysteto}@ifi.uio.no

Abstract

Component based software development techniques are
becoming increasingly popular, as they improve the soft-
ware development process through component reuse. How-
ever component based development poses a challenge to
software verification: How can we assert the correctness
of a black-box component without having access to the in-
ternal logic of its implementation? In this paper, we pro-
pose an approach to this challenge by validating a compon-
ent’s communication history with respect to a specification
of its observable behaviour using runtime verification tech-
niques. For this purpose we present a simple specification
language for describing component behaviour in terms of
communication protocols, a language extension to support
error handling at the communication level, and a proto-
type tool to monitor components and assert that they sat-
isfy their protocol specification at runtime. The prototypeis
implemented for Java components, supports multithreaded
access to the monitored components, and is demonstrated
on two examples.

1 Introduction

In order to construct software systems by component
composition, the components must communicate correctly
with each other to successfully make use of the services
provided by other components. Correct communication in
this sense is not merely restricted to respecting type con-
straints on data values, but will typically consist of a notion
of componentprotocoldescribing a component’s provided
services in terms of the meaningful sequences of interac-
tion in which the component can participate. In general it
is not easy to ensure that these protocols are not violated,
and multithreading makes this task even more difficult. In
contrast to testing and simulation, formal verification tech-
niques like theorem proving and model checking guaran-
tee correctness by exploring all possible executions. These
techniques have been used successfully in both academic

and industrial applications, but their applicability remains
restricted to specific kinds of systems.

Runtime verification is an interesting and complement-
ary technique for program validation. Specifications are
made in a formal language and the program is monitored
for events that are relevant to this specification. The trace
of events is analysed on-the-fly with respect to the spe-
cification. Since only a single trace is analysed, runtime
verification is expected to scale well. Several frameworks
for runtime verification exist, including Java PathExplorer
(JPAX) [10] and Java-MOP [3] for Java programs. JPAX
supports specifications in temporal logic and features al-
gorithms for concurrency analysis which identify race con-
ditions and deadlocks. Java-MOP emphasises monitoring
as an important part of software design; the framework is
specification independent and supports different specifica-
tion languages throughlogic plug-ins.

An important application area for runtime verification
tools, such as JPAX and Java-MOP, is the validation of
communication histories. The following example motivates
this need. The application depicted in Fig. 1 consists of
a web browser, an application front-end, a user manager, a
query manager, and a database. The web browser accepts
user input and provides the user interface. The application
front-end handles requests from the web browser and dir-
ects them to a component that can handled the requests.
The user manager authenticates users, gives each authen-
ticated user a session identifier, and keeps track of all active
session identifiers. The query manager handles queries to
the database which contains all relevant data for the applic-
ation. In this system there can be several constraints on
what is considered valid communication between the com-
ponents. Three examples of such constraints are (1) the user
manager should not communicate with the query manager,
(2) the query manager should only send valid queries to the
database, and (3) the user manager should not provide an
active user with a new session identifier if the user authen-
ticates himself again, while he is still active.

In object-oriented languages like Java, communication
between components is mostly through method calls. Two

1

Application FrontendWeb Browser

Query Manager

User Manager

Database

Figure 1. An example web application.

ways of specifying restrictions on method calls areaccess
modifiersandtype restrictions[7]. Access modifiers restrict
method access to certain components and type restrictions
ensure that the arguments to method calls are within cer-
tain boundaries. Both access modifiers and type restrictions
capture restrictions related to one method call. They do not
take the history of communication into account and do not
place restrictions on the communication protocol. In the
example above restrictions 1 and 2 can be captured by ac-
cess modifiers and type restrictions, respectively. However,
restriction 3 cannot be specified without taking the history
of communication into account and cannot be captured by
access modifiers or type restrictions.

This paper presents a runtime verification approach that
focuses on the specification and validation ofcommunica-
tion histories. No knowledge of the internal logic of a com-
ponent is required; the approach only considers its external
behaviour, i.e., its communication with other components.
For this purpose, we introduce SSL, a simple specification
language for specifying communication protocols, based on
regular expressions.

Paper overview.The next section gives an overview of
the approach. In Sec. 3 we present our specification lan-
guage while in Sec. 4 we briefly describe the validation al-
gorithm. We show how to treat runtime errors in Sec. 5.
Sec. 6 presents the prototype and Sect. 7 show some ex-
amples and benchmarks. We then discuss related and future
work and conclude the paper.

2 Overview of the Approach

Our approach views a software system as a set of com-
ponents that communicate with each other through some
form of message passing. By component, we understand
a part of a software system which offers predefined services
to other parts of a system and which is able to communicate
with these other parts. A component can itself be built from
smaller components and be part of a bigger component. The
part of the software system that is not part of the considered

component is called the component’senvironment.
All communication between the considered component

and its environment from the moment the component was
created up to some timet, is called the component’scom-
munication historyup tot. We represent the communication
history of the component as amessage sequence. For both
finite and infinite executions of the component, the com-
munication history of the component up to timet is always
finite. Therefore the message sequence is finite as well. We
assume that amessageis the smallest unit of communica-
tion that can occur between a component and its environ-
ment.

We divide the validation engine into three main parts:
Specification, Monitor, and Validator. The Specification
is a representation of the communication protocol between
a component and its environment. The protocol expresses
what is considered a correct message sequence for the com-
ponent’s services. Protocols are represented usingextended
finite state machines(EFSM). A message sequence that is
correct with respect to the specification,satisfiesthe spe-
cification; otherwise we say, itviolates the specification.
The Monitor is responsible for recording communication
between components, which is passed as a message se-
quence to the Validator. The Validator is responsible for
validating that the provided message sequences satisfy the
specification. The relationship between the different parts
is shown in Fig. 2. A message is processed in the following
order (the numbers in the list corresponds to the numbers in
the figure):

1. The environment sends a message to the component.
The message is intercepted by the Monitor.

2. The Monitor forwards the intercepted message to the
Validator.

3. The Validator checks that the message is correct with
respect to the specification. If the message is not cor-
rect the Validator flags the message as an error to be
handled by the system.

4. The message is sent to the component.

5. The component replies to the message from the envir-
onment and sends an reply message. This reply mes-
sage is intercepted by the Monitor.

6. The Monitor forwards the intercepted message to the
Validator.

7. The Validator checks that the message is correct with
respect to the specification. If the message is not cor-
rect the Validator flags the message as an error to be
handled by the system.

8. The reply message is sent to the environment.

2

Component

Environment

Monitor Validator

Specification
(FSM)

1

2, 6

3, 7

4 5

8

Figure 2. The validation engine.

3 Protocol Specifications

All our specifications describe protocols from the per-
spective of one component and we assume for simplicity
that the component is theserverin a client/server relation-
ship, though the approach can be extended to more gen-
eral architectures. In our setting aclient is any component
in the environment that communicates with the component.
Although the environment may consist of more than one
client, the specification only describes the correct commu-
nication between the component and one client at a time.
(Multiple clients are considered below.) The specifications
assume that the component is not active and only replies to
requests from its clients. In the cases when the compon-
ent makes active connections to other components in the
environment, it takes the role of client with regard to the
contacted component.

A protocol expresses what is considered to be a correct
communication between a component and one of its clients.
Protocols can specify different properties of the commu-
nication and they do not necessarily need to specify all as-
pects of the communication; underspecification is achieved
by only considering certain events in a protocol specific-
ation. We want our protocols to express which messages
the component accepts at a specific point in the run of a
protocol and how it will reply to a message at that point,
depending on the communication history of the compon-
ent. These protocols can be intuitively expressed asexten-
ded finite-state machines(EFSMs). There are several dif-
ferent definitions of EFSMs. For our purposes we extend
finite states machines with variables. AnEFSM is defined
as a tupleM = (S, s0, V, I, O, T), whereS is a finite set of
states;s0 is a distinguished initial state,s0 ∈ S; V is finite
set of variables;I is a set of input symbols;O is a set of out-
put symbols; andT is a set of transitions,T ⊆ S×I×O×S.

The state of an EFSM is an abstraction of the communica-
tion history, and the transitions from a state express which
messages are accepted in that state; the input symbols are
used to express what messages are accepted in a state, the
output symbols will be used for error handling in Sec. 5.

A variable is a tuple on the form(name, type, value)
consisting of a uniquenamefor the variable, thetype of
the variable, and avalue from the domain of the variable
type. We require that the domains of all types are finite to
ensure that all EFSM can be translated into FSM. We will
call a specific assignment of values to the variablesV in an
EFSM aninstanceof V . The notationVi refers to instance
i of V . An instance ofV is always associated with a state
in the state machine. An instanceVi of V and an associated
states ∈ S is called aconfigurationof the state machine
M .

Input symbolsare tuples(guard, message, pred), where
guardis a predicate that must betrue in a state before a
transition can be taken, andpred relates the states before
and after the transition. Aguard is a predicate over the cur-
rent instance ofV . Let guard(Vi) denote the evaluation of
guardon the variable instanceVi. A predicate transformer
is a relation between the variable instances before and after
a transition. Letpred(Vi, Vj) denote the evaluation of the
predicate transformerpredon the variable instancesVi and
Vj . The predicate transformerskip evaluates totrue if and
only if all variables in the variables instancesVi andVj have
the same value.

If the guard of the input symbol of a transition evaluates
to true for a given instanceVi (i.e., guard(Vi)), we call a
transitionenabled. A transition can not be taken unless it is
enabled. When a transition is taken in a states, the variable
instanceVi associated withs is transformed into a variable
instanceVj associated with the state after the transition. For
all transitions that are taken the predicate transformer asso-
ciated with the transition should always evaluate to true.

Protocol specifications based on regular expressions.
Common ways of representing finite state machines, such
as transition diagrams and state tables, are cumbersome for
large specifications. Therefore, we have developed the spe-
cification language SSL, based on regular expressions, to
make it easier to express protocol specifications. SSL sup-
ports variables, guards, predicate transformers, and alias
definitions. An SSL specification can be automatically
transformed into an EFSM [19]. Fig. 3 shows a simple
SSL specification of a user manager component. The user
manager allows users to login and, if a login is successful,
returns a session identifier. The user manager also provides
the possibility of checking if a session identifier is in use by
theisActive operation, which returnstrue if the iden-
tifier is active andfalse otherwise.

SSL specifications are divided into three parts; the de-

3

Set $ids = {}

alias success = return login(#val);
check not(#val equals null);
do #val add-to $ids

alias failure = return login(#val);
check #val equals null

[[login(#user, #pass) : [failure] | [success]]|
[isActive(#id); check #id in $ids :

return isActive(#val); check #val equals true]|
[isActive(#id); check not(#id in $ids) :

return isActive(#val); check #val equals false]]*

Figure 3. A specification of the user manager.

claration of variables, the definitions of aliases, and the de-
scription of valid message sequences. In Fig. 3 the variable
$ids is the set of all active session identifiers. An alias
defines a name for parts of the specification, allowing mod-
ularity. In the example specification we declare two aliases
success andfailure, respectively defining the criteria
for successful and unsuccessful login. The last part of the
specification is the description of valid message sequences.
This part is based on regular expressions, with similar syn-
tax and semantics. We use ’:’ to separate the messages, ’*’
as the Kleene closure operator, ’|’ as the union operator, and
’[’ and ’]’ as grouping symbols. In addition to common
regular expression operators, guards and predicate trans-
formers are supported with thecheck anddo keywords
respectively. The complete syntax and semantics of SSL
can be found in [19].

Specification of multiple clients. The presented specific-
ation language does not explicitly distinguish different cli-
ents in protocols. In practise this is too restrictive as com-
ponents often have many clients simultaneously in multith-
readed programs. The specifications are now extended to
support multiple clients.

Due to the potentially high number of possible commu-
nication interleavings, direct support for multiple clients in
specifications is difficult and would tie the specification to
a fixed number of clients, reducing flexibility. Instead, we
support multiple clients through an on-the-fly transforma-
tion of the specification.

The interleaving semantics of parallel processes can be
represented by using theasynchronous productof two EF-
SMs [12]. Using a standard definition of the asynchron-
ous product, we obtain specifications that support the inter-
leaving of communication from several clients. Whenever
a new client starts communicating with the component, the
product is performed on-the-fly. Notice that the communic-
ation with one client often affects the component commu-
nication with other clients, through some of the shared vari-
ables. For instance if a user manager component has given

def performTransitions(message):
for state in currentStates:
for transition in state.transitions:

if message == transition.message
and <transition is enabled>:

<update variable instance>
<add next state to newCurrentStates>

if <newCurrentState is empty>:
<found specification violation>

<assign newCurrentState to current states for client>

Figure 4. Validation algorithm using an
EFSM.

one client a session identifier, it should not give the same
session identifier to another client. Shared variables can be
automatically renamed to avoid name clashes if needed.

4 Validating Histories

The communications between a component and its cli-
ents are represented as sequences of messages, which must
satisfy the protocol specification. We say that a message
sequenceviolatesthe specification if no transitions are pos-
sible from the current state of the product EFSM for a given
message. For simplicity, we limit our approach tosynchron-
ous validation, which means that when a message is inter-
cepted and forwarded to the Validator for validation, the
program blocks until the validation is completed.

Pseudo-code for an algorithm which does runtime valid-
ation for a given message is shown in Fig. 4. The algorithm
tries all possible transitions from the current states of the
specification machine when a message is received. The
transitions are tried by iterating over all the current states of
the specification machine (a non-deterministic machine can
be in several states at once [13]). For each possible state, the
algorithm iterates over all the transitions from the state and
checks for enabled transitions. All enabled transitions are
performed and the end state of every performed transition
is put in a list of new states. A variable instance, updated to
satisfy the predicate transformer, is associated to each state
in the list. If no transition is enabled, the algorithm reports
an error.

5 Runtime Error Handling

The runtime validation technique described in Sect. 4 is
now extended to an approach for runtime error handling
which works transparently for the monitored program. The
approach works by replacing erroneous messages with cor-
rected messages, based on the output from the specification
machine. A conceptual view of the framework with this ex-
tension is shown in Fig. 5; the numbers in the following list
correspond to the numbers in the figure:

4

Component

Client

Extended
Finite State

Machine

1

2

3

4

5

6

7

8

Runtime verification
framework

Figure 5. A conceptual view of the framework
with the new specification model.

1. The client sends a message to the component.

2. The framework intercepts the message, which is for-
warded to the EFSM.

3. The EFSM outputs a message, which need not be the
message it received.

4. The framework receives the output message from the
EFSM and sends it to the component.

5. The component emits a return message, addressed to
the client.

6. The framework intercepts the return message and for-
wards it to the EFSM.

7. The EFSM outputs a message which need not be the
message it received.

8. The framework receives the output message from the
EFSM and sends it to the client.

Remark that performing error handling by transparently
replacing messages con itself be a possible source of errors.
Specific strategies are needed to handle errors correctly.
One such strategy, which may be used to prevent a client
from obtaining information to which it should not have ac-
cess, is to replace sensitive message content by harmless
information without breaking the logic of the protocol. An
example illustrates how the strategy works. In a web-based
banking application clients can access their account inform-
ation and perform transactions, but only if they have been
authorised first. A possible error in the banking application
could enable an unauthorised client to access account in-
formation. By analysing the message sequences this may
be discovered at runtime. In our example, if such an error
is detected the specification machine replaces the sensitive

return account_info(#val); check #val equals null /
return account_info(#val)

return account_info(#val); check not(#val equals null) /
return account_info(null)

return account_info(#val); check #val equals null /
return account_info(#val)

Figure 6. Error handling: A specification (left)
is extended with error handling (right), where
labels are on the form input/output.

account information with no information, thereby prevent-
ing leakage of the account information. More sophisticated
error recovering strategies can be written with our approach.

To support this strategy, the specifications need to be
slightly extended. For each error that we want to handle,
a transition is added which takes the erroneous message as
input and has the corrected message as output. In addition
the transition should start and end in the same states, as the
transition having the correct message as input and output.
For instance in the web banking example, one transition
would have a message with no information as input and
the same message as output, the error handling transition
would have a message with information as input and a mes-
sage with no information as output. Fig. 6 shows a part of
a specification with and without error handling. Not all er-
rors can be handled by replacing message content, so other
strategies are also needed. Some other strategies are dis-
cussed in [19].

6 A Prototype Implementation

A prototype of the approach has been implemented,
which monitors and validates Java programs [19]. This
section briefly describes some implementation decisions.
The prototype represents components by single objects,
method calls and method returns by messages, and cli-
ents by threads. The last choice is because Java does not
provided access to unique object identifiers, while thread
identifiers are unique in practise. The architecture of the
prototype tool is shown in Fig. 7 and consists of the follow-
ing components:

• The specification parserreads an SSL specification
and generates an EFSM, stored in XML format [20].

• Themonitor generatorgenerates a specific monitor for
the given objects and SSL specification.

• Themonitor, generated by the monitor generator, mon-
itors messages to be sent or received and forwards in-
tercepted messages to the Validator.

• The validator validates the sequence of messages re-
ceived from the monitor with respect to the EFSM spe-

5

Validator

Extended SSL

specification

Specification
Parser

Extended finite state

machine in XML format

Monitored
component

Monitor

Monitor
Generator

Runtime

Compile time

Reads

Reads Generates

Generates

input

output

Reads

Figure 7. Architecture of the tool.

cification. To avoid race conditions, only one message
can be validated at the time.

Only the monitor and the validator are active at runtime.
The specification parser and the monitor generator are only
used before program execution.

The monitoring should betransparentto both the com-
ponent and its clients. This means that no code in the com-
ponent nor its clients should need to take the monitoring
into account. Consequently, we can retrofit the program
either at the source code level, the byte code level, or the
interpreter level. We have chosen to do so at the byte code
level as there are several tools that support changing the
Java byte code; e.g., AspectJ, BCEL, and ASM1. For the
prototype, we follow an aspect oriented approach, using As-
pectJ [8,15].

Implementation of the asynchronous product. The
asynchronous product operation results in specifications
that support the interleaving of multiple client threads, but
the number of states in the specification machine can grow
significantly as the number of clients increases. The valid-
ation of the communication protocols of a component with
multiple clients therefore requires some optimisation to re-
duce the number of states. For this purpose the asynchron-
ous product of specification EFSMs is not done explicitly.
Instead a copy is kept of each EFSM specification, and the
global state is thus defined by the set of variables, together
with a tuple that contains the current state of the EFSM for
each client. When a message is received from a client, a
transition is performed in the EFSM associated with that cli-
ent. The approach is illustrated in Fig. 8, which shows the
original specification, the internal view of the implement-
ation, and how the implementation looks from the outside.

1Seewww.eclipse.org/aspectj, jakarta.apache.org/
bcel, andasm.objectweb.org, respectively.

Original Specification Automaton

1

1’ 2’

1,1

1,2 2,2

2 2,1

The current state

Internal view External view

The current state

1 2

Figure 8. Asynchronous product.

Internally, there are two copies of the EFSM specification
and the current state of the product state machine is a tuple
with one state from each copy of the EFSM.

Monitoring method calls. In Java, the message can be
recorded at two different moments, which for the purpose
of monitoring are not equivalent: either when the method
is called or when the method starts executing. This differ-
ence arises because of Java’s synchronisation mechanism2.
The two choices for monitoring correspond to recording the
call before or after the synchronisation. The first choice can
lead to validation of the wrong message sequence, as shown
in the following example. LetA, B, andC be three clients
communicating with a synchronised componentD. First
A calls a method inD. Since the synchronisation lock is
free,A is given access. ThenB calls a method inD, butB
must wait because the synchronisation lock is taken. Then
C calls a method inD andC must also wait for the lock.
WhenA finishes and frees the lock, Java does not guarantee
thatB will be given access first. IfC is given access first
and the call message was recorded at call time, there will
be a mismatch between the message sequence seen from
the validation point of view and the message sequence seen
from the component’s point of view. To avoid this mismatch
the monitoring is performed just before a method starts ex-
ecuting and not when the method is called.

7 Examples and Benchmarks

We have run some benchmarks for the prototype imple-
mentation on two Java examples. The first example is an
implementation of a user manager component (see Fig. 1).
The user manager is a component which performs authen-
tication in web applications. The second example is an
implementation of a query manager component for use in

2A call to a synchronised method in Java can only be executed bya
thread if no other thread concurrently executes a synchronised method on
the same object.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

5001001051

se
c

threads

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

5001001051

se
c

threads

(b)

Figure 9. Benchmark results for (a) the user
manager and (b) the query manager. The
dark columns include monitoring.

desktop applications. The query manager component has
access to a database and all queries to the database pass via
the query manager. To speed up certain queries, the query
component stores the result of the last query for each of its
clients. This stored result can then be manipulated locallyto
get the desired view of the result. Since the query manager
can avoid making some of the queries to the database, the
response time is reduced and so is the load on the database.

The benchmarkis based on the Unixtime command,
which executes other programs and records different stat-
istics about the executions. We use theuserstatistic to re-
cord the time it would take a program to execute if no other
programs where using the CPU. This benchmark is simple
and gives consistent results when run on the same program
several times.

The benchmark has been applied to both examples with
and without monitoring. Each example was run with 1, 5,
10, 100, and 500 threads. To ensure that one divergent result
should not have a large impact on the final result, the bench-
mark was run 50 times for each case. The benchmark results
for the user manager component are shown in Fig. 9 (a) and
the benchmark results for the query manager in Fig. 9 (b).

For the user manager there is a significant increase in

execution time when the component is monitored, which
becomes more prominent when the number of threads in-
creases. This is probably because the validator only val-
idates one message at a time. The validator uses a lock to
ensure mutual exclusion; since all the threads need to access
the lock, it is likely that threads must wait before acquiring
the lock. A more sophisticated locking scheme may there-
fore increase the performance significantly. For the query
manager, the execution time only increases by a factor of
2 or 3 with monitoring. The main difference between the
query and the user manager is that the query manager meth-
ods are significantly slower than the user manager methods;
the time used to acquire the lock compared to the method
execution time will therefore be less significant than for the
user manager component.

These benchmarks suggest that an approach using
EFSM-based specifications can be implemented efficiently
for runtime validation even for specifications that must
handle a large number of clients.

8 Related and Future Work

The Design by Contract technique was introduced by
Meyer for the Eiffel programming language [17] in order
to allow runtime checks of specification violations and their
treatment. This approach has been developed for Java in,
e.g., JML [16] and Bandera [5]. JML can be used to model
the behaviour of components, based on the guards and pre-
dicate transformers of methods. These specifications are
compiled into runtime checks. Jass [2] extends guards and
predicate transformers with trace assertions, expressed in
terms of CSP processes [11]. Trace assertions are compiled
into the Java program such that violations result in Java ex-
ceptions. Jass does not support trace assertions for multi-
threaded programs. A JML extension to support the spe-
cification of the order of communication has recently been
proposed [4], but does not generalise to multithreaded pro-
grams. Multithreaded programs are difficult to handle in
the JML setting because the guard may be broken before
the method executes [18]. While these approaches require
access to the component source code for compilation, our
approach deals with components for which the source code
is not available. Furthermore, the above-mentioned diffi-
culties do not apply to our approach as guard and predicate
transformer are associated with the sending of messages,
which are atomic actions.

In contrast to Java-MOP, which focuses on providing a
platform for supporting various kinds of program monitor-
ing and analysis at runtime, our approach is more focused
on specification. Java-MOP supports runtime error hand-
ling through user specified violation handlers, while we
support error handling at the specification level, allowing
the error handling to be completely transparent for the mon-

7

itored program. As stated in the introduction we do not re-
quire knowledge of the internal logic of the components and
we only concentrate on a component external behaviour, in
contrast to JPAX, which is based on the monitoring of state
variables [10].

The use of automata-based specifications for component
behaviour is not new, e.g., [6] and [1]. The latter work in-
troduces the notion of interface automata, which could be
used instead of the I/O automata we use in our approach.

This paper proposes runtime verification based on com-
munication histories. Several interesting research topics re-
main to be addressed, including:

• More efficient monitoring.To perform runtime verific-
ation on deployed software, the monitoring and veri-
fication should not interfere unreasonably with normal
system activity. More efficient monitoring and valida-
tion may contribute to the success of runtime verifica-
tion.

• More sophisticated monitoring.Our approach might
be extended to monitor security properties such as,
e.g.,admissibility[9]. It would also be interesting to
monitor more advanced protocol specifications such
as, e.g., assume-guarantee history specifications [14].

• JML integration. It seems that our approach for spe-
cifying communication protocols could, at least par-
tially, be integrated into JML. This would for instance
give the approach access to a more refined type system
and a richer language for specifying guards and predic-
ate transformers, thereby increasing the expressibility
of the approach.

9 Conclusion

In this paper we have presented an approach to runtime
verification based on the specification and validation
of history-sensitive communication protocols for object-
oriented components. The specification of communication
protocols was written in a simple specification language
based on regular expressions and represented as extended
finite state machines, letting the state of the machine be an
abstraction of the history. By representing the protocols as
extended finite state machines the protocols could be ex-
panded on-the-fly to support interleaving communication to
the multi-threaded case with any number of clients, thereby
transferring the difficult task of specifying all possible in-
terleavings to the framework implementation. We have also
presented a prototype implementation of the approach and
performed two benchmark tests to argue for its feasibility in
practise.

References

[1] R. Allen and D. Garlan. A formal basis for architectural
connection.ACM Trans. Softw. Eng. Methodol., 6(3):213–
249, 1997.

[2] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass
- Java with assertions.ENTCS, 55(2), 2001.

[3] F. Chen and G. Rosu. Java-MOP: A monitoring oriented
programming environment for Java. InTACAS, volume 3440
of LNCS, pages 546–550. Springer, 2005.

[4] Y. Cheon and A. Perumandla. Specifying and Checking
Method Call Sequences of Java Programs. Technical Re-
port 05–36, Dept. of Computer Science, Univ. of Texas at El
Paso, Nov. 2005.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Express-
ing checkable properties of dynamic systems: the Bandera
specification language.International Journal on Software
Tools for Technology Transfer, 4(1):34–56, 2002.

[6] L. de Alfaro and T. A. Henzinger. Interface automata. In
ESEC / SIGSOFT FSE, pages 109–120, 2001.

[7] B. Eckel.Thinking in Java. Prentice Hall, 3rd edition, 2003.
[8] T. Elrad, M. Aksit, G. Kiczales, K. Lieberherr, and H. Os-

sher. Discussing Aspects of AOP.Communications of the
ACM, 44(10):33–38, 2001.

[9] P. Giambiagi and M. Dam. On the secure implementation of
security protocols.Sci. Comput. Program., 50(1-3):73–99,
2004.

[10] K. Havelund and G. Rosu. An overview of the runtime veri-
fication tool Java PathExplorer.Form. Methods Syst. Des.,
24(2):189–215, 2004.

[11] C. A. R. Hoare.Communicating Sequential Processes. Int.
Series in Computer Science. Prentice Hall, 1985.

[12] G. J. Holzmann. Software model checking with Spin.Ad-
vances in Computers, 65:77–108, 2005.

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman.Introduction
to Automata Theory, Languages, and Computation. Pearson,
Addison-Wesley, 2nd edition, 2001.

[14] E. B. Johnsen, O. Owe, and A. B. Torjusen. Validating be-
havioral component interfaces in rewriting logic. InProc.
FSEN 2005, volume 159 ofENTCS, pages 187–204. El-
sevier, May 2006.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. Getting started with ASPECTJ.Commu-
nications of the ACM, 44(10):59–65, 2001.

[16] G. Leavens, A. Baker, and C. Ruby. Preliminary design of
JML: a behavioral interface specification language for Java.
SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.

[17] B. Meyer. Object-oriented Software Construction. Prentice
Hall, New York, NY, second edition, 1997.

[18] E. Rodríguez, M. Dwyer, C. Flanagan, J. Hatcliff,
G. Leavens, and Robby. Extending JML for modular
specification and verification of multi-threaded programs.
In ECOOP’05, volume 3586 ofLNCS, pages 551–576.
Springer, 2005.

[19] Ø. Torget. Runtime Validation of Communication Histor-
ies: An Automata-based Approach. Master’s thesis, Dept.
of Informatics, University of Oslo, May 2006.

[20] XML Extensible Markup Language 1.0, W3C Recommend-
ation. Available online: http://www.w3.org, Feb.
2004.

8

