
Type-Safe Runtime Class Upgrades in Creol

Ingrid Chieh Yu, Einar Broch Johnsen, and Olaf Owe

Department of Informatics, University of Oslo
PO Box 1080 Blindern, NO-0316 Oslo, Norway

{ingridcy,einarj,olaf}@ifi.uio.no

Abstract Modern applications distributed across networks such as the
Internet may need to evolve without compromising application availabil-
ity. Object systems are well suited for runtime update, as encapsulation
clearly separates internal structure and external services. This paper con-
siders a type-safe asynchronous mechanism for dynamic class upgrade,
allowing class hierarchies to be updated in such a way that the existing
objects of the upgraded class and of its subclasses gradually evolve at
runtime. New external services may be introduced in classes and old ser-
vices may be reprogrammed while static type checking ensures that asyn-
chronous class updates maintain type safety. A formalization is shown
in the Creol language which, addressing distributed and object-oriented
systems, provides a natural framework for dynamic upgrades.

1 Introduction

Long-lived distributed applications with high availability requirements need the
ability to adapt to new requirements that arise over time without compromising
application availability. These requirements include bugfixes but also new or
improved features. Examples of such applications are found in financial transac-
tion processes, aeronautics and space missions, and mobile and Internet applica-
tions. In these examples, updates must be applied at runtime. Early approaches
to software updates [4, 12, 16] do not address the issue of continuous availab-
ility, but runtime reconfiguration and upgrade have recently attracted atten-
tion [1–3, 5, 9–11, 17, 19, 21]. In large distributed systems runtime updates need
to be applied in an asynchronous and modular way, and propagate gradually
through the distributed system. An appropriate update system should [1, 21]:
propagate updates automatically, provide a means to control when components
may be upgraded, and ensure the availability of system services during the up-
grade process.

This paper considers a type-safe mechanism for distributed runtime updates
in Creol [13], a formally defined object-oriented language which specifically tar-
gets open distributed systems. We consider updates in the form of runtime up-
grades of existing classes combined with runtime additions of new interfaces and
new classes. Upgrading a class affects all future and existing object instances of
the class and its subclasses. As runtime upgrades are handled by asynchronous
messages, allowing message overtaking, dependencies between different upgrades

In: R. Gorrieri and H. Wehrheim (Eds.):
Proc. 8th Intl. Conf. on Formal Methods for Open Object-Based Distributed Systems

(FMOODS’06), p. 202–217, LNCS 4037, Springer-Verlag, June 2006.

could violate type safety. Extending previous work [14], this paper introduces a
type system for class upgrades which derives the upgrade dependencies of each
upgrade. These dependencies enforce an ordering of the upgrades in the runtime
system, formalized in rewriting logic [18], which ensures that the application of
the distributed upgrades is type-safe. Consequently, runtime class upgrades will
not introduce type errors. The upgrade mechanism proposed in this paper allows
new interfaces to be added to classes at runtime. This way upgraded classes may
provide new external services. The following simple example illustrates depend-
encies between several updates.

Motivating example. We adopt a separation of concerns between external
service specifications, given as interfaces, and implementation code, organized
in classes. Object pointers are typed by interfaces while objects are instances of
classes. A type system is used to ensure that methods invoked on object pointers
are supported by the objects. Consider a simple scenario with three classes C1,
C2, and C3, where C3 inherits C2 (the comment V:1 means version 1 of a class):

class C1 --- V:1, U:0 class C2 --- V:1, U:0 class C3 --- V:1, U:0
begin begin end inherits C2

op run() == n(); run() begin end
op n() == skip
end

The example sketch is given in Creol, U:0 comments that a class has not (yet)
been upgraded. Here, C1 objects are active as the run method is activated at
object creation, with a nonterminating behavior consisting of repeated local calls
to a method n. The external functionality of each class is given by its interfaces.
None are given here, so in this example only internal calls are possible in C1.

By dynamically upgrading the class C2 with a new method m, this method
will become available via objects of classes C2 and its subclass C3. However,
after the update the new method is only known internally in these classes. In
order to export the new functionality, we dynamically add a new interface I

providing a method m with an appropriate signature, after which m may be
invoked on pointers typed by I. If we can type check that C3 implements I, it
is type-safe to bind a pointer typed by I to an instance of C3 and invoke the
new method m on this object. This may be achieved by dynamically redefining
method n in class C1 to create an appropriately typed instance of C3 and invoke
m on this instance, for instance by the code var x : I; x := new C3(); x.m().
These dynamic updates may be realized by four update messages added to the
running system: introducing I, upgrading C1 by the redefinition of n, C2 by a
new method m, and C3 by the new interface I. After successful upgrades (U:1),
the following classes replace the previous runtime class definitions:

class C1 --- V:2, U:1 class C2 --- V:2, U:1 class C3 --- V:3, U:1
begin begin implements I
op run() == n(); run() op m() == Body inherits C2

op n() == var x : I; end begin end
x := new C3(); x.m()

end

203

Furthermore, the active behavior of existing instances of C1 now create instances
of C3 on which the new method m is invoked.

A type-safe introduction of these upgrades in a distributed system requires
a combination of type checking and careful timing at runtime. In particular, the
redefinition of method n has an immediate effect on any instance of C1. In order
to avoid errors, this upgrade cannot be applied before C3 implements the new
interface I. However, the addition of the new interface requires the presence of
method m, which in turn requires that the application of the upgrade of C2 has
already occurred. In fact, C3 has been upgraded twice, once directly and once
indirectly through the upgrade of C2. This paper formalizes an asynchronous
update mechanism which handles these dependencies, maintaining runtime type
safety throughout the upgrade process.

Paper overview. Sect. 2 introduces behavioral interfaces, Sect. 3 summarizes
Creol, Sect. 4 presents Creol’s type system, and Sect. 5 presents the dynamic
class construct. Sect. 6 discusses related work and Sect. 7 concludes the paper.

2 Behavioral Interfaces

An object may assume different roles, depending on the context of interaction,
which are captured by specifications of aspects of its externally observable be-
havior. A behavioral interface consists of a set of method names with signatures
and semantic constraints on the use of these methods. In this paper we restrict
semantic constraints to cointerface requirements, explained as follows: For active
objects it may be desirable to restrict access to the methods in an interface to
calling objects of a particular cointerface. This way the called object may invoke
methods of the caller and not only passively complete invocations of its own
methods, thus providing support for callback. Mutual dependency is specified if
two interfaces have each other as cointerface. Let Any be the superinterface of
all interfaces; Any is used as cointerface if no callback knowledge is required.

Object references (pointers) are typed by behavioral interfaces. References
typed by different interfaces may refer to the same object identifier. A class
implements an interface if its object instances provide the behavior described by
the interface. A class may implement several interfaces and different classes may
implement the same interface. Reasoning control is ensured by interface-level
substitutability: a reference typed by an interface I may be replaced by another
reference typed by I or by a subinterface of I. This substitutability is reflected
in the executable language by the fact that late binding applies to all external
method calls, as the runtime class of the object need not be statically known.

Let τB be a set of basic data type names and τI a set of interface names,
such that τB ∩ τI = ∅. Let τ denote the set of all types; τB ⊆ τ and τI ⊆ τ .
Let I and J be typical elements of τI , and T of τ . We assume that τB includes
standard types such as Booleans and natural numbers. Type schemes such as
parametrized data types may be applied to types in τ to form new types in τ ,
Set[T] and List[T] are included among the type schemes. To conveniently organize
object viewpoints, interfaces may be structured in an inheritance hierarchy.

204

Definition 1. An interface is denoted by a term int (Inh, Mtd) of type I, where
Inh is a list of (inherited) interfaces and Mtd is a set of method declarations
mdecl (Nm, Co, In, Out), where Nm is a method name, Co is a cointerface, and
In and Out are lists of parameter types.

Dot notation is used to access the elements of tuples such as methods and inter-
faces; e.g., int (Is, M).Mtd = M . The empty list is denoted ε. The name Any ∈ τI
is reserved for int (ε, ∅), and the name Internal ∈ τI is reserved for type checking
purposes (see Sect. 3). If I inherits J , the methods of both I and J must be
available in any class that implements I. We consider a nominal subtype rela-
tion [20] for interfaces. Two interfaces with the same set of methods may be part
of different subtype relationships.

3 Creol: A Language for Distributed Concurrent Objects

Creol is a high-level object-oriented language targeting open distributed systems
by combining interface types and concurrent objects with asynchronous method
calls, and by combining active and reactive object behavior [13,15]. In this paper
blocking and nonblocking (suspending) method calls are considered, although the
results of the paper apply to the full language. An object has its own processor
which evaluates local processes. Processes result from method activations. Active
behavior is initiated by the special run method, activated at object creation, and
interleaved with reactive behavior by means of suspension. Due to suspension,
the values of object variables may depend on the nondeterministic interleaving of
processes, so local process variables supplement the object variables and include
the formal parameters. An object may contain several (pending) activations of
a method, possibly with different values for local variables.

Objects only interact through asynchronous method calls. Calls can always
be emitted, as a receiving object cannot block communication. Method overtak-
ing is allowed: if methods offered by an object are invoked in one order, the object
may start execution of the method activations in another order. A blocking call
x.m(e;v) immediately blocks the processor while waiting for a reply. A nonblock-
ing call await x.m(e;v) releases the processor while waiting for a reply, allowing
other processes to execute. When the reply arrives, the suspended process be-
comes enabled and evaluation may resume. This approach provides flexibility in
the distributed setting: suspended processes or new method activations may be
evaluated while waiting. If the called object never replies, deadlock is avoided
as other activity in the object is possible. However, when the reply arrives, the
continuation of the process must compete with other pending and enabled pro-
cesses. After processor release, any enabled pending process may be selected for
evaluation. When x evaluates to self, the call is said to be local. Internal calls
are not prefixed by an object identifier and are identified syntactically, otherwise
the call is external. All internal calls are here late bound.

The language distinguishes data, typed by data types, and objects, typed by
interfaces. We assume given a strongly typed functional language of well-typed
expressions e ∈ Expr without side effects, including two subtypes ObjExpr and

205

CL ::= [class C [(Vdecl)]? [implements [I]+;]? [inherits [C[(e)]?]+;]?

begin [var Vdecl]? [[with I]? Methods]∗ end]∗

Methods ::= [op m ([in Vdecl]? [out Vdecl]?) == [var Vdecl;]? s]+

Vdecl ::= [v : T]+;

Figure 1. An outline of the language syntax for classes, excluding expressions e, ex-
pression lists e, and statement lists s. The meta notation [. . .]? denotes optional parts,
[. . .]∗ repetition zero or more times, and [. . .]+

d
non-empty repetition with d as delimiter.

BoolExpr whose expressions reduce to object references (typed by interface) and
Booleans, respectively. There are no constructors or field access functions for
terms in ObjExpr, but variables bound to object references may be compared by
an equality function. Let ΓF be a typing environment which includes all relevant
type information for the constants and functions of the functional language,
and let Γ extend ΓF with variable declarations. Then Γ ⊢f e : T denotes that
e has type T in Γ . It is assumed that expressions are type-sound : well-typed
expressions remain well-typed during evaluation. If Γ ⊢f e : T and e reduces to
e′, then Γ ⊢f e′ : T ′ such that T ′ � T .

Object-oriented features extend the functional language. Class definitions
include declarations of persistent state variables and method definitions.

Definition 2. A class is denoted by a term class (Par, Upg, Imp, Inh, Var, Mtd),
where Par is a list of typed program variables, Upg the current upgrade number,
Imp a list of interface names, Inh a list of class names, defining class inheritance,
Var a list of typed program variables (possibly with initial expressions), and Mtd

a set of methods mtd (Nm, Co, In, Out, Body) where Nm is a method name, Co

an interface, In and Out lists of variable declarations, and Body a pair of variable
declarations Vdecl and statements s.

The Upg attribute is not a part of the Creol syntax and cannot be altered by
programmers. For internal methods, the cointerface field is Internal. The field
Imp represents interfaces supported by this class. The typing of remote method
calls in a class C relies on the fact that the calling object supports the interfaces
of C, and these are used to check any cointerface requirements of the calls.

Let τC denote the set of class names, with typical element C, and C the set
of class terms. An abstract representation of a class may be given following the
BNF syntax of Figure 1. Method declarations in classes consist of local variable
declarations and a list of program statements (see Figure 2). Assignment to
local and object variables is expressed as v := e for a disjoint list of program
variables v and an expression list e, of matching types. In-parameters as well as
the pseudo-variables self, for self reference, and caller are read-only variables.

Due to the interface typing of object variables, the actual class of the receiver
of an external call is not statically known. Consequently, external calls are late
bound. Let the nominal subtype relation � be a reflexive partial ordering on
types, including interfaces. The nominal subtype relation restricts a structural
subtype relation which ensures substitutability; If T � T ′ then any value of T

may masquerade as a value of T ′ [20]. For product types R and R′, R � R′

206

Syntactic categories. Definitions.
s in Stm v in Var

m in Mtd p in MtdCall

e in Expr x in ObjExpr

p ::= m | x.m
s ::= s | s; s
s ::= skip | v := e | v := new C(e) | p(e;v) | await p(e;v)

Figure 2. Program statements in method definitions, with typical terms for each cat-
egory. Capitalized terms such as e denote lists of the given syntactic categories.

is the point-wise extension of the subtype relation. To explain the typing and
binding of methods, � is extended to function spaces A → B, where A and B are
(possibly empty) product types: A → B � A′ → B′ ⇔ A′ � A ∧ B � B′. The
static analysis of an internal call m(e;v) or await m(e;v) will assign unique
types to the in- and out-parameters depending on the textual context, say e : Te

and v : Tv. The call is type-correct if there is a method declaration m : T1 → T2

in the class C such that T1 → T2 � Te → Tv. An external call o.m(e;v) or
await o.m(e;v) to an object o of interface I is type-correct if it can be bound
to a method declaration in I in a similar way. The static analysis of a class
will verify that it implements its declared interfaces. Assuming that any object
variable typed by I is an instance of a class implementing I, method binding at
runtime will succeed regardless of the dynamically identified class of the object.

4 Typing

The typing environment Γ in Creol’s nominal type system is a mapping family:
ΓI maps interface names to interfaces, ΓC class names to classes, and Γv pro-
gram variable names to types. Without class upgrades, ΓI and ΓC correspond
to static tables. Declarations may only update Γv, and program statements may
not update Γv. For the purposes of dynamic updates, a dependency mapping Γd

captures the dependencies that a class has to different classes in the program.

Definition 3. The dependency mapping Γd : τC × Nat → Set[τC × Nat] maps
pairs of class names and upgrade numbers to sets of such pairs.

Each upgrade of a class C is uniquely identified by a pair 〈C, u〉. Thus,
elements in Γd(〈C, u〉) represent classes on which upgrade u of class C depends,
and structural requirements to these classes. At runtime Γd helps to monitor
whether these structural requirements are fulfilled, and to enforce an ordering
of local updates obeying the dependency requirements.

The type analysis of a syntactic construct D is formalized by a deductive
system for judgments Γ ⊢ D 〈∆〉, where Γ is the typing environment and ∆ the
update of the typing environment. After analysis of D, the typing environment
becomes Γ overridden by ∆, denoted Γ +∆. Sequential composition has the rule

(SEQ)
Γ ⊢ D 〈∆〉 Γ + ∆ ⊢ D′ 〈∆′〉

Γ ⊢ D; D′ 〈∆ + ∆′〉

where + is an associative operator on mappings with the identity element ∅. We
abbreviate Γ ⊢ D 〈∅〉 to Γ ⊢ D. Mapping families are now formally defined.

207

Definition 4. Let n be a name, d a declaration, i ∈ I a mapping index, and
[n 7→id] the binding of n to d indexed by i. A mapping family Γ is built from
the empty mapping family ∅ and indexed bindings by the constructor +. The
extraction of an indexed mapping Γi from Γ and application for the indexed
mapping Γi, are defined as follows

∅i = ε

(Γ + [n 7→i′d])i = if i = i′ then Γi + [n 7→id] else Γi

ε(n) = ⊥
(Γi + [n 7→id])(n′) = if n = n′

then d else Γi(n
′).

A class or interface declaration binds a name to a class or interface term,
respectively. Class and interface names need not be distinct. A program consists
of a list of interface and class declarations, represented by the mappings ΓI and
ΓC . For type checking a program, each interface and class term is type checked
based on these mappings (binding self to the class name in the second case). The
type rules are given in Figure 3 (omitting the rule for interfaces). To simplify
the exposition, some auxiliary functions are used to retrieve information from
the typing environment. The predicate matchpar verifies that the formal and
actual parameters of (inherited) classes match, given a list of classes and a typing
environment. The predicate matchext checks that an external invocation may be
bound through the interface of the callee, based on the types of actual parameter
values and the possible cointerfaces of the caller. The function matchint returns
a list of classes in which an internal invocation may be bound given a method,
a list of classes, and a typing environment. This function is used to check that a
class provides method bodies for the method declarations of its interfaces, and
for type checking internal calls. The function InhAttr returns a list of typed
variables when given a list of classes and a typing environment, and is used to
extend the typing environment with inherited attributes.

The main type rules are now briefly explained. Programs are type checked
in the context of ΓF . Variable declarations extend the context used to type
check methods in rule (Class). Local variable declarations extend the typing
environment used to type check the program statements of a method in rule
(method). For object creation, (new) ensures that the class must implement
an interface which is a subtype of the declared interface of the object pointer.
For external calls x.m, (ext) checks that the interface of x offers a method m

with a cointerface implemented by the class of the caller. Consequently, remote
calls to self are allowed when the class implements an interface used as the
cointerface of the method in the current class. For internal calls m, (int) checks
that the method has cointerface Internal. For a variable occurring in a method
body, the pair consisting of the name of the class in which the variable is declared
and the upgrade number of this class, are added to the dependency mapping for
the method. Similarly, matching classes for internal calls and object creations
also extend the mapping. This way, the type system constructs a dependency
mapping which captures the dependencies a method has to different classes in
the program. This dependency mapping is exploited for system upgrades.

208

(PROG)
∀I ∈ τI · ΓI ⊢ ΓI(I) ∀C ∈ τC · ΓF + ΓI + ΓC + [self 7→vC] ⊢ ΓC(C)

ΓF ⊢ ΓI , ΓC

(CLASS)

Γ ⊢ Par 〈∆〉 Γ + ∆ ⊢ InhAttr(Inh, ΓC), Var 〈∆′〉
matchpar(Γ + ∆, Inh) ∀m ∈ Mtd · Γ + ∆ + ∆′ ⊢ m 〈∆m〉
∀I ∈ Imp · ∀m ∈ ΓI(I).Mtd · matchint(m, Γv(self), Γ) 6= ε

Γ ⊢ class (Par, Upg, Imp, Inh, Var, Mtd) 〈∆ + ∆′ +
⋃

m∈Mtd

∆m〉

(METHOD)
Γ ⊢ (caller : Co); In;Out; Body 〈∆〉

Γ ⊢ mtd (Nm, Co, In, Out, Body) 〈∆d〉

(SKIP) Γ ⊢ skip (ASSIGN)
Γ ⊢f e : T ′ T ′ � Γv(v)

Γ ⊢ v := e 〈[• 7→dΓd(•) ∪ Jv; eK]〉

(VAR)
v /∈ Γv T � Data

Γ ⊢ v : T 〈[v 7→vT]〉
(NON-BL)

Γ ⊢ p(e; v) 〈∆〉
Γ ⊢ await p(e;v) 〈∆〉

(NEW)
Γ ⊢f e : T T � type(ΓC(C).Par) ∃I ∈ ΓC(C).Imp · I � Γv(v)

Γ ⊢ v := new C(e) 〈[• 7→dΓd(•) ∪ Jv; eK ∪ {〈C, ΓC(C).Upg〉}]〉

(EXT)
Γ ⊢f e : I Γ ⊢f e : T matchext(m, T,v, I, Γv(self), Γ)

Γ ⊢ e.m(e;v) 〈[• 7→dΓd(•) ∪ Je;vK]〉

(INT)
Γ ⊢f e : T C′ ∈ matchint(mtd (m, Internal, T, Γv(v), ε), Γv(self), Γ)

Γ ⊢ m(e;v) 〈[• 7→dΓd(•) ∪ Je;vK ∪ {〈C′, ΓC(C′).Upg〉}]〉

Figure 3. The type system, where • acts as a placeholder for values of type 〈τC×Nat〉,
JeK returns a set of class names and upgrade numbers for the classes in which the
attributes in an expression list e are declared (relative to self in Γ), and type extracts
the types of a declaration list.

5 Dynamic Class Upgrades

New interfaces, new classes, and class upgrades may update the running system.
New interfaces and classes extend the system while class upgrades allow method
redefinition as well as extending the class with new attributes, methods, inter-
faces, and superclasses. Modifications should not compromise the type safety of
the running program; e.g., a method redefinition must preserve the signature
so the class consistently supports its interfaces. In an open distributed setting,
upgrades of classes and objects are not sequentialized; rather, upgrades propag-
ate asynchronously through the network causing objects of different versions to
coexist. Consequently, the order in which upgrades happen at runtime may differ
from the order in which they were type checked. For upgrades with no syntactic
dependencies, this overtaking does not affect runtime type safety. If there are
syntactic dependencies between upgrades, the order of upgrades must respect
these dependencies. The following kinds of system updates are considered:

Definition 5. Systems are updated through the following operations:

– An interface addition is represented by a term new-interface(N, R), where
N is an interface name and R is an interface term.

209

(NEW-INTERFACE)
N /∈ ΓI Γ + [N 7→I R] ⊢ R

Γ ⊢ new-interface (N, R) 〈N 7→I R〉

(NEW-CLASS)
N /∈ ΓC Γ + [self 7→vN] + [N 7→C R] ⊢ R 〈∆〉

Γ ⊢ new-class (N, R) 〈[N 7→C R] + [〈N, 1〉 7→d (∆d(•) \ {〈N, 0〉})]〉

(UP)

Γ ⊢ self : N ; ΓC(N) 〈Γ ′〉 ∀I ∈ Imp · I ∈ ΓI

Γ + Γ ′ ⊢ InhAttr(Inh, ΓC);Var 〈∆〉 matchpar(Γ + Γ ′, Inh)
∀m ∈ Mtd · if m.Nm ∈ ΓC(N).Mtd

then Γ + Γ ′ + [N 7→C upg(ΓC(N), 0, ǫ, Inh, ǫ, Mtd \ m)] + ∆ ⊢r m 〈∆m〉
else Γ + Γ ′ + [N 7→C upg(ΓC(N), 0, ǫ, Inh, ǫ, Mtd)] + ∆ ⊢ m 〈∆m〉 fi

∀I ∈ Imp · ∀m′ ∈ ΓI(I).Mtd · (matchint(m′, (N ; Inh), Γ) 6= ǫ
∨(∃m ∈ Mtd(m′.Nm) · Sig(m) � Sig(m′)))

Γ ⊢ upd (N, Imp, Inh, Var, Mtd) 〈 [N 7→C upg(ΓC(N), 1, Imp, Inh, Var, Mtd)]
+[〈N, ΓC(N).Upg + 1〉 7→d

⋃

m∈Mtd

∆m

d (•) ∪ {〈N, ΓC(N).Upg〉}]〉

(MTD-RDEF)

Sig(mdef) � Sig(ΓC(Γv(self)).Mtd(mdef.Nm))
Γ + [ΓC(Γv(self) 7→C upg(ΓC(Γv(self), 0, ǫ, ǫ, ǫ, mdef)] ⊢ mdef 〈∆〉

Γ ⊢r mdef 〈∆d(•)〉

Figure 4. The type system for class upgrades. Here, ⊢r is used for type checking of
redefined methods, and Mtd(N) denotes the subset of methods in Mtd with name N .

– A class addition is represented by a term new-class(N, R), where N is a class
name and R is a class term.

– A class upgrade is represented by a term upd (N, Imp, Inh, Var, Mtd), where
N is the name of the class to be upgraded, Imp a list of interfaces, Inh a list
of classes, defining additional superclasses to be inherited, Var a list of typed
program variables, and Mtd a set of methods.

Type checking class upgrades results in dependency conditions which ensure
that system modifications do not violate the type safety of the running system.
Given an upgrade of a class C in a well-typed program P , an upgrade is type
checked based on the current typing environment Γ of P : the mappings in Γ are
modified by upgrades. Thus, the upgraded versions of classes as accumulated in
the environment resulting from a (successful) type checking, serve as the starting
point of future updates.

5.1 Type Checking System Updates

The rules to type check new interfaces and classes, class upgrades, and method
redefinitions are given in Figure 4. After type checking new interfaces and classes,
the typing environment is extended. Let Γ be the typing environment after
type checking a well-typed program P . An upgrade of a class C ∈ P is then
type checked in Γ ; i.e., Γ ⊢ upd (C, Imp, Inh, Var, Mtd) 〈Γ ′

d
+ ΓC

′〉, where ΓC
′ is

updates of the class representation in ΓC , computed by the auxiliary function
upg, and Γ ′

d
is dependency requirements to classes in P for the upgrade of C

accumulated while type checking. The next update is type checked in Γ+Γ ′

d
+ΓC

′.

210

Definition 6. Let n be a natural number, i a list of interfaces, i’ a list of classes,
v a list of variables, and m a set of methods. The upgraded version of a class
resulting from a class update is defined by the upg function:

upg(class (Par, Upg, Imp, Inh, Var, Mtd), n, i, i’,v,m)
= class (Par, Upg + n, Imp; i, Inh; i’, Var;v, Mtd ⊕ m)

For class upgrades, the typing environment is reloaded for the upgrading class
before type checking the upgrade elements with the rule (Up). By adding new
interfaces, the class may provide new external services. For each new interface,
the type system requires that the class provides, either by inheritance, by local
declarations, or by the current upgrade, at least one type-correct method body
for each method in the interface. The function Sig takes a method as argument
and returns its signature, including the cointerface as an explicit in-parameter.
If new superclasses are added, the inheritance list in ΓC must be extended ac-
cordingly before type checking method bodies, as there might be internal calls
to methods in the new superclasses. This also applies to methods, due to calls
to methods introduced in the same upgrade. The function matchpar verifies
that the formal and actual parameters of new inherited classes match, and that
these classes are contained in the class mapping ΓC . Inherited attributes, as well
as new object variables, will further extend the typing environment. For each
method, the effect system of rule (Method) computes the dependencies associ-
ated with the method body. Finally, after the type analysis of the upgrade term
of a class C, the ΓC mapping is upgraded and the dependency mapping for the
(ΓC(C).Upg + 1)’th upgrade of class C is constructed, which is a mapping from
〈C, ΓC(C).Upg + 1〉 to the dependencies identified by the type analysis of the
upgrade term. For method redefinition, the rule (Mtd-rdef) ensures that the
redefined method still satisfies the interface requirements implemented by the
class. For purely internal methods, the new cointerface must be Internal.

At runtime, upgrades are asynchronous and may bypass each other. Hence,
well-typed upgrades may give runtime errors if not applied in a type-correct or-
der. We show that Γd, provided by the type system, helps to ensure that each
upgrade is applied at an appropriate time: If both a class C′ and a superclass
C are updated, then upgrades will be applied at runtime in the order decided
by the static type system, e.g., C is upgraded first if the upgrade of C′ de-
pends on the upgrade of C. However, upgrades that do not depend on each
other may be applied in parallel. It is therefore necessary that Γd(〈C, u〉) is in-
cluded as an argument to the runtime class upgrade 〈C, u〉. This is achieved by
translating the update term upd (C, Imp, Inh, Var, Mtd) into the runtime mes-
sage upgrade (C, Inh, Var, Mtd, Γd(〈C, ΓC(C).Upg〉)) where Γ is the environment
obtained from type checking the update term. Note that the implements-clause
is not needed after type checking.

5.2 Operational Semantics

The operational semantics of Creol is defined in rewriting logic (RL) [18] and is
executable on the RL system Maude [6]. A rewrite theory is a 4-tuple (Σ, E, L, R)

211

where the signature Σ defines the function symbols, E defines equations between
terms, L is a set of labels, and R is a set of labeled rewrite rules. Rewrite rules
apply to terms of given sorts. Sorts are specified in (membership) equational logic
(Σ, E). When modeling computational systems, different system components
are typically modeled by terms of the different sorts defined in the equational
logic. The global state configuration is defined as a multiset of these terms. RL
extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules supplementing the equations
which define the term language. From a computational viewpoint, a rewrite rule
t −→ t′ may be interpreted as a local transition rule allowing an instance of
the pattern t to evolve into the corresponding instance of the pattern t′. When
auxiliary functions are needed in the semantics, these are defined in equational
logic, and are evaluated in between the state transitions [18]. If rewrite rules
apply to non-overlapping sub-configurations, the transitions may be performed
in parallel. Consequently, concurrency is implicit in RL. Conditional rewrite rules
t −→ t′ if cond are allowed, where the condition cond can be formulated as a
conjunction of rewrites and equations that must hold for the main rule to apply.

A system configuration is a multiset combining Creol classes, objects, and
messages. A Creol method call is reflected by a pair of messages, and object
activity is organized around a message queue which contains incoming messages
and a process queue which contains pending processes, i.e., remaining parts of
method activations. The associative list constructor is written as ‘;’, and the asso-
ciative and commutative constructors for multisets and sets by whitespace. Rep-
resenting argument positions by “_”, terms 〈_ : Ob |Cl :_, Pr :_, PrQ :_, Lvar :
, Att :, Qu :_〉 denote Creol objects, where Ob is the object identifier, Cl the
class identifier which consists of a class name and version number, Pr the active
process code, PrQ and Qu are multisets of pending processes and incoming mes-
sages with unspecified queue orderings, respectively, and Lvar and Att the local
and object state, respectively. Terms 〈_ : Cl |Upd : _, Inh :_, Att :_, Mtds :_〉
represent Creol classes, where Cl is the class identifier, Upd the upgrade number,
Inh a list of class identifiers, Att a list of attributes, and Mtds a set of methods.
The class identifier for version n of class C is denoted C#n. The rules for the
static language constructs may be found in [13]. Focus here is on method binding
and dynamic class constructs, given in Figure 5.

An implicit inheritance graph is used to facilitate dynamic reconfiguration
mechanisms. The binding mechanism dynamically inspects the class hierarchy
in the system configuration. When an invocation message invoc(m, Sig, In) rep-
resenting a call to a method m is found in the message queue of an object o

of class C#n, where Sig is the method signature as provided by the caller and
In is the list of actual in-parameters, a message bind(o, m, Sig, In) to C#n is
generated. If m is defined locally in C#n with a matching signature, a process
with the declared method code and local state is returned in a bound message.
Otherwise, the bind message is retransmitted to the superclasses of C. Thus
the bind message is sent from a class to its superclasses, dynamically unfold-
ing the inheritance graph as far as needed and resulting in a bound message

212

〈o :Ob | Cl : C#n〉 〈o :Qu | Ev : q invoc(m,Sig, In)〉
−→ 〈o :Ob | Cl : C#n〉 〈o :Qu | Ev : q〉 (bind(o, m, Sig, In) to C#n)

bind(o, m, Sig, In) to ε −→ bound(none) to o
bind(o, m, Sig, In) to (C#n); i′ 〈C#n′ :Cl | Inh : i, Mtds : m〉

−→ if match(m, Sig,m) then (bound(get(m,m, In)) to o)
else (bind(o, m, Sig, In) to i; i′) fi

〈C#n :Cl | Inh : i, Mtds : m〉

(bound(w) to o) 〈o :Ob | PrQ : w〉 −→ 〈o :Ob | PrQ : w w〉

new-class(C, i,a,m, ((C′#n) r)) 〈C′#n′ :Cl | Upd : u〉
−→ new-class(C, i,a, m,r) 〈C′#n′ :Cl | Upd : u〉 if u ≥ n

new-class(C, i,a,m, ε) −→ 〈C#1:Cl | Upd : 1, Inh : i, Att : a, Mtds : m, Tok : 1〉

upgrade (C, i,a,m, ((C′#n) r)) 〈C′#n′ :Cl | Upd : u〉
−→ upgrade (C, i,a,m,r) 〈C′#n′ :Cl | Upd : u〉 if u ≥ n

upgrade (C, i′,a′, m′, ∅) 〈C#n :Cl | Upd : u, Inh : i, Att : a, Mtds : m, Tok : T 〉
−→ 〈C#(n + 1) :Cl | Upd : u + 1, Inh : i; i′, Att : a;a′, Mtds : m ⊕m

′, Tok : T 〉

〈C#n :Cl | Inh : i; (C′#n′); i′〉 〈C′#n′′ :Cl | 〉
= 〈C#(n + 1) :Cl | Inh : i; (C′#n′′); i′〉 〈C′#n′′ :Cl | 〉 if n′′ > n′

〈o :Ob | Cl : C#n, Pr : ε〉〈C#n′ :Cl | Att : a〉
= 〈o :Ob | Cl : C#n′, P r : ε〉 〈C#n′ :Cl | Att : a〉 (getAttr(o,a) to C) if n′ > n

(gotAttr(a′) to o) 〈o :Ob | Att : a〉 = 〈o :Ob | Att : a
′〉

Figure 5. A RL specification of method binding and dynamic class upgrades.

returned to the object which generated the bind message. The auxiliary pre-
dicate match(m, Sig,m) is true if m is declared in m with a signature Sig′ such
that Sig′ � Sig, and the function get fetches method m in the method set m of
the class and returns a process, resulting from the method activation. Values of
the actual in-parameters In are stored in the local process state. The process is
loaded into the internal process queue of the callee.

Class upgrades may be direct, or indirect through the upgrade of one of the
superclasses. In order to control the upgrade propagation, class representations
include an upgrade number and a version number ; i.e., counters which record the
number of times a class has been directly upgraded and (directly or indirectly)
modified, respectively. When a class is upgraded, both its upgrade and version
numbers are incremented. When a super-class of a class C is modified, the version
number of C is incremented but the upgrade number of C does not change.

A direct class upgrade of a class C is realized through the insertion of a
message upgrade (C, i,a,m, Γd(〈C, ΓC(C).Upg〉)) in the system configuration at
runtime, where i is an inheritance list, a a state, m a set of method defini-
tions, and Γd(〈C, ΓC(C).Upg〉) the set of upgrade requirements to classes in the
runtime system directly derived from Γ , found by type checking. The upgrade of
a class may not be applied unless these requirements are fulfilled. As upgrade is

213

asynchronous, several upgrades may be pending in the runtime system, and the
current upgrade may need to wait. A message upgrade (C, i′,a′,m′, ε), with an
empty requirement set, does not have unverified dependencies, and the upgrade
may be applied to C. The rule for direct class upgrade uses an operator ⊕ to
overwrite the method set m with the new or redefined methods in m′. During
the upgrade, the upgrade and version numbers of the class are also incremented.

Indirect class upgrade propagates upgrade information to subclasses by means
of an equation, so instances of the subclasses will acquire new state attributes.
Note that by using an equation the indirect class upgrade happens in zero rewrite
steps, which corresponds to temporarily locking the upgraded class.

The upgrade of object instances must ensure that new attributes are acquired
before new code which may rely on new class attributes is evaluated. New object
instances automatically get the new class attributes. However, the upgrade of
existing object instances of the class must be closely controlled. Each time an ob-
ject needs to evaluate a method, it requests the code associated with this method
name. Problems may arise when executing new or redefined methods which rely
on new attributes that are not presently available in the object. With recursive or
nonterminating processes, objects cannot generally be expected to reach a state
without pending processes, even if the loading of processes corresponding to new
method calls from the environment is postponed as in [1, 7]. Consequently, it is
too restrictive to wait for the completion of all pending methods before applying
an upgrade. However, objects may reach quiescent states when the processor has
been released and before any pending process has been activated. Any object
which does not deadlock will eventually reach a quiescent state. In particular
nonterminating activity is implemented by means of recursion, which ensures
at least one quiescent state in each cycle. In the case of process termination or
an inner suspension point, Pr is empty. The rule for object upgrade applies to
quiescent states. Exploiting the implicit inheritance graph, attribute upgrade is
handled by a message getAttr, similar to bind, which recursively extends the
object state a and results in a message gotAttr(a′). The new object state a′

finally replaces a. The use of equations corresponds to locking the object.
The described runtime mechanism allows the upgrade of active objects. At-

tributes are collected at upgrade time while code is loaded “on demand”. A class
may be upgraded several times before the object reaches a quiescent state, so the
object may have missed some upgrades. However a single state upgrade suffices
to ensure that the object, once upgraded, is a complete instance of the present
version of its class. The upgrade mechanism ensures that an object upgrade has
occurred before new code is evaluated.

5.3 Type-Safe Execution with Dynamic Class Upgrades

The problem of type-safe execution of programs is now addressed. We prove that
errors such as method-not-understood do not occur at runtime, even with the
proposed dynamic class construct. A type soundness theorem for Creol without
dynamic classes was shown in [15]: Runtime type errors do not occur for well-
typed programs. The theorem implies that runtime assignments to program vari-

214

ables, object creation, and method invocations are type-correct. The proof is by
induction over the length of the execution sequence as given by the operational
semantics. However, dynamic upgrades as considered in this paper introduce
runtime changes as the state adapts to the upgrades. By reasoning about the
type system and operational semantics, the following properties are proved for
the class upgrade mechanism of this paper:

Lemma 1. A well-typed class upgrade does not affect the execution of code of
existing processes in an object.

Lemma 2. The execution of a method activation from a new version of an
object’s class will not begin before the object’s state is updated.

Lemma 3. Let Γ be the typing environment for a well-typed program after a
series of upgrades, including the upgrade 〈C, u〉. The upgrade 〈C, u〉 is applicable
iff the runtime structure satisfies Γd(〈C, u〉).

Lemma 4. The execution of processes introduced in a well-typed upgrade will
not cause runtime type errors.

Lemma 4 follows from Lemmas 2 and 3. Lemmas 1 and 4 show that vari-
able assignments, object creation, and method invocations are type-correct when
classes are upgraded, for old and new processes, respectively. A type soundness
property for Creol with class upgrades can now be proved by induction over
the length of execution sequences, extending the proof for the language without
dynamic classes. Lemmas 1 and 4 are used for the application of class upgrades:

Theorem 1 (Type soundness). Well-typed upgrades do not introduce runtime
type errors in well-typed programs.

6 Related Work

Availability during reconfiguration is an essential feature of many modern dis-
tributed applications. Dynamic or online system upgrade considers how run-
ning systems may evolve. Recently, several authors have investigated type-safe
mechanisms for runtime upgrade of imperative [22], functional [3], and object-
oriented [8] languages. These approaches consider the upgrade of single type
declarations, procedures, objects, or components in the sequential setting. Re-
classification in Fickle [8] is based on a type system which guarantees type safety
when an object changes its class. Fickle has been extended to multithreading [7],
but restrictions to runtime reclassification are needed; e.g., an object with a
nonterminating (recursive) method will not be reclassified.

Version control systems aim at a more modular upgrade support. Some ap-
proaches allow multiple module versions to coexist after an upgrade [2, 3, 9–11],
while others only keep the last version by doing a global update or “hot-swapping”
[1, 5, 17, 19]. The approaches also differ in their treatment of active behavior,

215

which may be disallowed [5, 10, 17, 19], delayed [1, 7], or supported [11, 22]. Ap-
proaches based on global update mostly disallow upgrades of active modules. An
upgrade system for type declarations and procedures in active code is proposed
in [22] for (sequential) C. Type-safe updates occur at annotated program points
found by the type system. However, the approach is synchronous as upgrades
which cannot be applied immediately will fail.

Dynamic class constructs support modular upgrades. The approach of Hjálm-
týsson and Gray [11] for C++, based on proxy classes which link to the actual
classes (reference indirection), supports multiple versions of each class. Existing
instances are not upgraded, so the activity in existing objects is uninterrupted.
Existing approaches for Java, either using proxies [19] or modifying the Java
virtual machine [17], are based on global upgrade and are not applicable to active
objects. In [19], each class version supports the same interfaces. New interfaces
can only be introduced by adding new classes. In [5] the ordering of upgrades
are serialized and in [17] invalid upgrades are handled by exceptions.

Automatic upgrade based on lazy global update is addressed in [1] for dis-
tributed objects and in [5] for persistent object stores. Here the object instances
of upgraded classes are upgraded, but inheritance and (nonterminating) active
code are not addressed, which limits the effect of class upgrade. Our approach
supports multiple inheritance, but restricts upgrades to addition and redefinition
and may therefore avoid these limitations. Only one version of an upgraded class
is kept in the system but active objects may still be upgraded. Upgrade is asyn-
chronous and distributed, and may therefore be temporarily delayed. Moreover,
the type system handles upgrade dependencies among distributed objects.

7 Conclusion

In this paper a construct for dynamic class upgrades in Creol is presented, includ-
ing its type system and operational semantics, which allows method redefinition
as well as extending classes with new attributes, methods, superclasses, and in-
terfaces, in the running system. By adding new interfaces, classes may provide
new external services, while the redefinition of methods may improve existing
ones. Our approach exempts programmers from handling the different version
numbers of classes when writing upgrade codes.

To address open distributed systems with concurrent objects, we consider
an asynchronous update mechanism where upgrade overtaking is possible in the
runtime system, and allow objects of different versions to coexist. A successful
introduction of upgrades in this setting requires both type checking and careful
timing of when the upgrades are applied. Runtime errors would occur if upgrades
are applied at a bad time. The type system captures upgrade dependencies and
enforces an ordering of upgrades. If the type checking of an upgrade succeeds,
an effect system provides a list of dependencies for the upgrade. This list of
dependencies is used by the runtime system to ensure that dependent upgrades
are applied in an order which preserves type correctness, while independent
upgrades may be performed simultaneously. Furthermore, it is shown that well-

216

typed runtime upgrades do not introduce type errors. In future work we plan to
extend the dynamic construct proposed in this paper with type-safe mechanisms
for removing attributes and method definitions, using similar techniques.

References

1. S. Ajmani, B. Liskov, and L. Shrira. Scheduling and simulation: How to upgrade
distributed systems. In Hot Topics in Op. Sys. (HotOS-IX), pages 43–48, 2003.

2. J. L. Armstrong and S. R. Virding. Erlang - an experimental telephony program-
ming language. In XIII International Switching Symposium, June 1990.

3. G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalizing dynamic software
updating. In Unanticipated Software Evolution (USE), May 2003.

4. T. Bloom. Dynamic Module Replacement in a Distributed Programming System.
PhD thesis, MIT, 1983. Also available as MIT LCS Tech. Report 303.

5. C. Boyapati et al. Lazy modular upgrades in persistent object stores. In OOPSLA
2003, pages 403–417. ACM Press, 2003.

6. M. Clavel et al. Maude: Specification and programming in rewriting logic. Theor-
etical Computer Science, 285:187–243, Aug. 2002.

7. F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Re-classification and multi-
threading: FickleMT. In Symp. Applied Computing (SAC’04). ACM Press, 2004.

8. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More dy-
namic object re-classification: FickleII. ACM TOPLAS, 24(2):153–191, 2002.

9. D. Duggan. Type-Based hot swapping of running modules. In Intl. Conf. Func-
tional Programming (ICFP-01), ACM SIGPLAN 36(10), pages 62–73, Sept. 2001.

10. D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line software version
change. IEEE Trans. Software Eng., 22(2):120–131, 1996.

11. G. Hjálmtýsson and R. S. Gray. Dynamic C++ classes: A lightweight mechanism
to update code in a running program. In Proc. USENIX Tech. Conf., May 1998.

12. C. R. Hofmeister and J. M. Purtilo. A framework for dynamic reconfiguration of
distributed programs. Tech. Report CS-TR-3119, Univ. of Maryland, 1993.

13. E. B. Johnsen and O. Owe. A dynamic binding strategy for multiple inherit-
ance and asynchronously communicating objects. Proc. FMCO’04, LNCS 3657.
Springer, 2005.

14. E. B. Johnsen, O. Owe, and I. Simplot-Ryl. A dynamic class construct for asyn-
chronous concurrent objects. In Proc. FMOODS, LNCS 3535. Springer, June 2005.

15. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for
distributed concurrent systems. Res. Rep. 327, Ifi, Univ. of Oslo, 2005.

16. J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic change
management. IEEE Trans. on Software Engineering, 16(11):1293–1306, Nov. 1990.

17. S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime support
for type-safe dynamic Java classes. In Proc. ECOOP, LNCS 1850. Springer, 2000.

18. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96:73–155, 1992.

19. A. Orso, A. Rao, and M. J. Harrold. A technique for dynamic updating of Java
software. In Software Maintenance (ICSM 2002), pages 649–658. IEEE Press, 2002.

20. B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.
21. C. A. N. Soules et al. System support for online reconfiguration. In Proc. USENIX

Tech. Conf., pages 141–154, 2003.
22. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis Mutandis:

Safe and flexible dynamic software updating. In Proc. POPL, ACM Press, 2005.

217

