
Verification of Concurrent Objects with Asynchronous Method Calls

Johan Dovland, Einar Broch Johnsen, and Olaf Owe
Department of informatics, University of Oslo
PO Box 1080 Blindern, N-0316 Oslo, Norway

{johand, einarj, olaf}@ifi.uio.no

Abstract

Current object-oriented approaches to distributed pro-
grams may be criticized in several respects. First, method
calls are generally synchronous, which leads to much wait-
ing in distributed and unstable networks. Second, the com-
mon model of thread concurrency makes reasoning about
program behavior very challenging. A model based on con-
current objects communicating by means of asynchronous
method calls has been proposed to combine object orienta-
tion and distribution in a more satisfactory way. This pa-
per introduces a reasoning system for this model, focus-
ing on simplicity and modularity. We believe that a simple
and compositional proof system is paramount to allow ver-
ification of real programs. The proposed proof rules are de-
rived from the Hoare rules of a standard sequential lan-
guage by means of a semantic encoding preserving sound-
ness and relative completeness.

1. Introduction

The importance of inter-process communication is
rapidly increasing with the development of distributed
computing, both over the Internet and over local net-
works. Object orientation appears as a promising frame-
work for concurrent and distributed systems, and has been
recommended by the RM-ODP [19], but object interac-
tion by means of method calls is usually synchronous.
The mechanism of remote method calls has been de-
rived from the setting of sequential systems, and is
well suited for tightly coupled systems. It is less suit-
able in a distributed setting with loosely coupled com-
ponents. Here synchronous communication gives rise to
undesired and uncontrolled waiting, and possibly dead-
lock. Asynchronous message passing gives better control
and efficiency in the distributed setting, but lacks the struc-
ture and discipline inherent in method calls. The integra-
tion of the message concept in the object-oriented setting is

unsettled, especially with respect to inheritance and redefi-
nition.

Three basic interaction models for concurrent processes
are shared variables, remote method calls, and message
passing [5]. As objects encapsulate local states, we find
inter-object communication most naturally modeled by (re-
mote) method calls, avoiding shared variables. With there-
mote method invocation(RMI) model, an object is acti-
vated by a method call. Control is transferred with the call
so there is a master-slave relationship between the caller
and the callee. A similar approach is taken with the exe-
cution threads of e.g. Hybrid [25] and Java [16], where con-
currency is achieved through multithreading. The interfer-
ence problem related to shared variables reemerges when
threads operate concurrently in the same object, which hap-
pens with nonserialized methods in Java. Reasoning about
programs in this setting is a highly complex matter [1, 10]:
Safety is by convention rather than by language design [9].
Verification considerations therefore suggest that all meth-
ods should be serialized as done in e.g. Hybrid. However,
when restricting to serialized methods, the calling object
mustwait for the return of a call, blocking for any other ac-
tivity in the object. In a distributed setting this limitation is
severe; delays and instabilities may cause much unneces-
sary waiting. A serialized nonterminating method will even
block other method invocations, which makes it difficult to
combine active and passive behavior in the same object.
Also, separating execution threads from objects breaks the
modularity and encapsulation of object orientation, leading
to a very low-level style of programming.

Message passing is a communication form without any
transfer of control between concurrent objects. A method
call can here be modeled by an invocation and a reply
message. Synchronous message passing, as in Ada’s Ren-
dezvous mechanism, requires that both sender and receiver
are ready before communication can occur. Hence, the ob-
jects synchronize on message transmission. For method
calls, the calling object must wait between the synchro-
nized messages [5]. For distributed systems, even such syn-
chronization must necessarily result in much waiting. In

Proc. Intl. Conf. on Software - Science, Technology & Engineering (SwSTE’05), pp. 141–150, IEEE press, Feb. 2005

the asynchronous setting message emission is always pos-
sible, regardless of when the receiver accepts the message.
Communication by asynchronous message passing is well-
known from e.g. the Actor model [2, 3]. Method calls im-
ply an ordering on communication not easily captured in
the Actor model. Actors do not distinguish replies from in-
vocations, so capturing method calls with Actors quickly
becomes unwieldy [2]. In addition, the abstraction mech-
anism provided by object-oriented methods is lost in lan-
guages where communication is expressed directly in terms
of message passing.

Intuitive high-level programming constructs are needed
to unite object orientation and distribution in a natural
way. Recently, programming constructs for concurrent ob-
jects have been proposed in the Creol language [20], based
on processor release pointsand a notion ofasynchronous
method calls. A concurrent object has its own execution
thread. Processor release points are used to influence the
implicit internal control flow in objects. This reduces time
spent waiting for replies to method calls in a distributed
environment and allows objects to dynamically change be-
tween active and reactive behavior (client and server). In or-
der to model real world systems in an object-oriented man-
ner, asynchronously communicating concurrent objects ap-
pear as a natural approach.

This paper considers the problem of formal reasoning
about concurrent objects communicating by asynchronous
method calls, based on the approach of the Creol language.
A partial correctness proof system is derived from that of
a standard sequential language by means of a semantic en-
coding. This suggests that reasoning is significantly sim-
pler than for languages based on thread concurrency. The
approach of this paper is modular, as invariants for classes
may be established independently and composed at need.

The paper is structured as follows. Section 2 introduces
and informally explains the language syntax, Section 3 con-
siders reasoning in terms of class invariants, Section 4 ex-
plains the language constructs in terms of a sequential lan-
guage, Section 5 derives proof rules for the Creol language,
Section 6 considers composition of class invariants, Sec-
tion 7 provides an example, Section 8 discusses related
work, and Section 9 concludes the paper.

2. The Creol Language

This section introduces the communication and concur-
rency aspects of Creol [20], a programming language for
distributed concurrent objects, and in particular the notions
of asynchronous method calls and processor release points.
Concurrent objects are potentially active, encapsulating ex-
ecution threads. Objects have explicit identifiers: communi-
cation takes place between named objects and object iden-

tifiers may be exchanged between objects. All object inter-
action is by means of method calls.

Classes and Objects.At the programming level, attributes
(object variables) and method declarations are organized in
classes in a standard way. Objects are dynamically created
instances of classes. The attributes of an object are encap-
sulated and can only be accessed via the object’s methods.
Among the declared methods, we distinguish the method
run, which is given special treatment operationally. After
initialization of the object, therun method, if provided, is
invoked. Apart fromrun, declared methods may be invoked
by other objects. These methods reflect passive, or reactive,
behavior in the object, whereasrun reflects active behav-
ior. We will refer to the invoked method instances as the ob-
ject’s processes. Object activity is organized around an ex-
ternal message queue, which contains incoming messages,
and an internal process queue, which containspendingpro-
cesses. Methods need not terminate and may be temporarily
suspendedon the internal process queue.

Objects are typed by interface. LetI be the declared in-
terface of an objecto and letm be a method declared inI .
Creol is strongly typed, which ensures that for each method
invocationo.m, the actual objecto will support I and the
methodm is understood.

Asynchronous Method Calls.Methods in Creol may be in-
voked in an asynchronous way [20]. Methods are imple-
mented by guarded commands to be evaluated in the context
of locally bound variables. Due to possible processor re-
lease points, the values of an object’s instance attributes are
not entirely controlled by a method instance if it suspends
itself before completion. However, a method may create lo-
cal variables supplementing the attributes. In particular, the
values of formal parameters are stored locally, but other lo-
cal variables may also be created. An object can have sev-
eral pending calls to the same method, possibly with differ-
ent values for local variables. The local variableslabel and
caller are reserved to identify the call and the caller for the
reply, which is emitted at method termination.

An asynchronous method call is made with the command
l !o.m(e), where the labell is a unique reference to the call,
o an object expression which reduces to an object identifier,
m a method name, ande an expression list with the sup-
plied actual parameters. Labels are used to identify replies,
and may be omitted in the syntax if a reply is not explicitly
requested. No synchronization is involved and process ex-
ecution may proceed after calling an external method until
the return value is needed by the process. To fetch the return
values from the queue, say in a variable listx, we ask for the
reply to the call:l?(x). If the reply has arrived, return val-
ues are assigned tox and execution continues without delay.
If no reply to the call has been received, process execution is
blocked. This interpretation ofl?(x) gives the same effect as
treatingx as afuture variable, e.g. [8, 31]. Local calls need

Syntactic categories. Definitions.
g in Guard
S in ComList
C in Com
v in Var
x in VarList
e in ExprList
m in Mtd
o in ObjExpr
l in Label
φ in BoolExpr

g ::= wait |φ | l?|g1∧g2 |g1∨g2

S::= C |C;S
C ::= skip |x := e| (S)
|v := newclassname(e)
| if φ then S1 elseS2 fi
| if φ then Sfi |while φ do Sod
|S1�S2

| l !o.m(e) | l?(x) |m(e;x)
|o.m(e;x) | l !m(e) | !o.m(e) | !m(e)
|await g|await l?(x) |await o.m(e;x)

Figure 1. An outline of Creol syntax.

not be prefixed by an object identifier. The syntaxo.m(e;x)
is adopted for synchronous (RPC) method calls, blocking
the processor while waiting for the reply. Synchronous lo-
cal calls are loaded directly into the active code.

Processor Release Points.In Creol, the control flow inside
concurrent objects may be influenced by potential processor
release points. These are explicitly declared in method bod-
ies using guarded commands [15], but adapted to the fol-
lowing semantics: When a guard evaluates tofalse during
process execution, the remaining process code and the val-
ues of its local variables aresuspendedon the internal pro-
cess queue and the processor is released. After processor re-
lease, an enabled process from the internal process queue is
selected for execution.

Definition 1. The type Guard is constructed by

• wait∈Guard (explicit release)
• l?∈Guard, where l is a label
• φ ∈Guard, whereφ is a boolean expression over local

and object variables.

Here,wait is a construct for explicit release of the proces-
sor, resembling the methodyield in Java. The reply guard
l? succeeds if the reply to the invocation labeledl has ar-
rived. Guards are evaluated atomically, and may be com-
bined:g1∧g2 andg1∨g2 for guardsg1 andg2.

Guarded commands can becomposedin different ways,
reflecting the requirements to the internal control flow in
the objects. LetGS1 and GS2 denote the guarded com-
mandsawait g1;S1 and await g2;S2. Nesting of guards is
obtained by sequential composition; in a program state-
mentGS1;GS2, the guardg2 corresponds to a potential inner
processor release point. Nondeterministic choice between
guarded commands is expressed byGS1�GS2, which may
computeS1 only wheng1 evaluates totrue or S2 only when
g2 evaluates totrue. An unguarded statement may be con-
sidered as a statement guarded bytrue. Control flow without

potential processor release is expressed byif andwhile con-
structs, and assignment to local and object variables is ex-
pressed byx := e, wherex is a list of disjoint variables to
which there is write access, ande is a list of expressions of
equal length ofx. There is read-only access to in-parameters
of methods. Figure 1 summarizes the language syntax.

With nested processor release points, the processor need
not wait actively for replies. Pending processes or new
method calls may be evaluated instead of blocking the pro-
cessor. However, when the reply has arrived, thecontinu-
ation of the original process must compete with other en-
abled pending processes in the internal process queue.

3. Class Invariants with Mythical Histories

The execution of a distributed system can be represented
by the sequence of observable communication events be-
tween system components. At any given point in time this
finite sequence, called a communication history [11] or
trace [17], abstractly captures the system state. Therefore,
system specifications may be given in terms of the finite
initial segments of these histories. Ahistory invariantis a
predicate on finite sequences which holds for all sequences
in the prefix-closure of the set of traces, and consequently
for all abstract system states, expressing safety properties in
the sense of Alpern and Schneider [4].

In order to reason about distributed object systems,
we use the assumption commitment (or rely-guarantee)
paradigm [23], but adapted to input and output prefixes of
the communication history [21], which allows composi-
tional reasoning. For nonterminating systems, these predi-
cates typically express invariant requirements on the (local)
communication history.

Communication Events.In order to model object commu-
nication, a call to a method of an objecto′ by an objecto
can be seen as passing an invocation message fromo to o′,
and the reply as passing a completion message fromo′ to o.
The alphabet of communication events is restricted to these
two kinds of messages, which are now formally defined.

Let Obj, Mtd, and Label denote the types of ob-
jects, methods, and labels. The latter is totally ordered.
Let Data be the type of values occurring as actual pa-
rameters to method calls, andKind the enumeration type
{init,comp}. The setMsg of messages consists of tuples
〈caller, label,kind,callee,mtd,par〉 wherepar : List[Data],
caller,callee: Obj, label : Label, kind : Kind, andmtd: Mtd.
The setIMsgof invocation messages is obtained by restrict-
ing Msgto messages of kindinit, represented graphically as

caller
label−→callee.mtd(par), and the setCMsgof completion

messages by restrictingMsgto messages of kindcomp, rep-

resented graphically ascaller
label←− callee.mtd(par). In the

graphical notation, the arrow illustrates which way the mes-

sage is sent. Messages may be decomposed by the func-
tionscaller, callee, label, kind, mtd, andpar: For instance,
〈o, l ,k,o′,m,e〉.label== l .

3.1. The Communication History

The communication history of a system up to present
time is represented as a finite sequence of typeSeq[Msg]. Fi-
nite sequences are defined by the empty (ε) and right append
(`) constructors. Initially, the history sequence is empty.
Whenever an object in the system calls a method, the his-
tory is extended by means of right append with a message
of type IMsg. When a reply is emitted, the history is simi-
larly extended with a message of typeCMsg.

Preliminaries. Decomposition functions for mes-
sages are lifted to sequences, returning a sequence
of the specified message element. For instancelabel:
Seq[Msg] → Seq[Label] constructs the sequence of la-
bels from the history and is inductively defined. Restriction
of the history to a set of messages is now defined.

Definition 2 (Projection). Let h: Seq[Msg] and S: Set[Msg].
Define _/_ : Seq[Msg]×Set[Msg]→ Seq[Msg] by:

ε/S== ε
h`m/S== if m∈ S then (h/S) `melseh/Sfi

For o : Obj, let o→ denote the set{m : IMsg|m.caller=o}
ando← the set{m : CMsg|m.caller= o}. We now define
the functionsinit andcomp.

Definition 3 (Init, Comp). Let h: Seq[Msg], l : Label, and
o : Obj. Define init,comp: Seq[Msg]×Obj×Label→ Bool
by:

init (h,o, l)== l ∈ (h/o→).label
comp(h,o, l)== l ∈ (h/o←).label

In a distributed system with asynchronous communica-
tion an object can in general emit an invocation message at
any time, since no synchronization is involved. However, a
completion message may only occur after the correspond-
ing invocation message in the history. For simplicity, we as-
sume that all invocation messages sent from a particular ob-
ject are equipped with unique labels. Wellformed histories
are now defined:

Definition 4 (Wellformed histories). Let h : Seq[Msg],
o,o′ : Obj, m : Mtd, l : Label, and e: List[Data]. De-
fine
wf : Seq[Msg]→ Bool inductively by:

wf(ε) == true

wf(h` o
l→o′.m(e)) == wf(h)∧¬init (h,o, l)

wf(h` o
l←o′.m(e)) ==

wf(h)∧ init (h/(o′.m),o, l)∧¬comp(h,o, l)

In this definition,h/(o′.m) denotes the restriction ofh to
messages involving the methodm provided by an object
o′. In a wellformed history, every invocation message is
uniquely defined by its caller and label. This is because ev-
ery object identifier is assumed to be unique and every invo-
cation from a given caller has a unique label. Furthermore,
every completion message must match exactly one invoca-
tion message. Define _≤ _ : Seq[T]×Seq[T]→ Bool such
thath≤ h′ iff h is a prefix ofh′.

Local History Projections.In order to reason locally about
a particular objecto, we will consider the restricted com-
munication historyh/o, defined as

h/o == h/{m : Msg|(m.caller = o∨m.callee= o)}.

If h is a wellformed history, every local history projec-
tion h/o is also wellformed. Consequently, all properties of
wellformed histories apply to local histories. The local his-
tory of an uninstantiated object isε.

For a particular objecto, define the set OUTo of possible
messages sent fromo. These are either invocation messages
sent fromo or completion messages generated byo.

OUTo ==
{m : IMsg|m.caller = o}∪{m : CMsg|m.callee= o}

Invariant Reasoning.In a nonterminating system it is dif-
ficult to specify and reason compositionally about behavior
in terms of pre- and postconditions. Instead, pre- and post-
conditions to method declarations are used to establish a
class invariant. In order to facilitate compositional reason-
ing about Creol programs, the class invariant will be used to
establish arelationship between the internal state and the
observable behaviorof class instances. The internal state
reflects the values of class attributes and the observable be-
havior is expressed by a set of potential communication his-
tories [21]. For this purpose the class attributes are extended
with a mythical variableH , reflecting the local history, and
the code is extended with (mythical) statements to update
H for everyoutput messagegenerated by the program code.
At the imperative level execution ofl !o′.m(e) by an objecto

is is reflected by a history extensionH := H ` o
l→o′.m(e),

where〈o, l〉 forms a unique pair of values. The correspond-
ing completion message is recorded on the history when the

invocation ofm finishes executionH := H ` o
l←o′.m(y),

wherey is the list of return parameters. Mythical statements
are introduced for reasoning purposes only, and need not
be included in the final program code [12]. LetFV[P] de-
note the set of variables which occur free in a predicateP
and letPx

e denote the substitution of every free occurrence
of x in P by the expressione. For a classC we want to es-
tablish a class invariantIC, ranging over class attributes (w)
and the history sequenceH , i.e.FV[IC]⊆ w∪{H }.

Class invariants are established in the following way. For
an arbitrary object of classC, we must prove thatIC holds

initially. Consequently,IC may be assumed when the object
processorstartsor resumesexecution of an invoked method,
if we can show thatIC holds every time processor control
is released. Due to Creol’s nested processor release points,
processor control can be released either because method ex-
ecution is completed or because guards are not satisfied.

Let wm denote the variables local to a methodm and as-
sume disjointness between the names of local and class vari-
ables, i.e.wm∩w = /0. Ignoring type information, a method
m may then be declared as

op m(in x out y) == var wm := e;body,

wherevar wm := e denotes concurrent assignment of ini-
tial values to local variable declarations. For reasoning pur-
poses we assume that methodm of objectthis has been in-
voked, which is reflected in the history by a pending invo-
cation message. Upon method termination a corresponding
completion message is appended to the history, preserving
wellformedness. For reasoning purposes, the history update
is explicitly represented. This leads to the following verifi-
cation condition:

{ IC∧ init (H /(this.m),caller, label)
∧¬comp(H ,caller, label)
∧x = (find(H ,caller, label, init)).par}

wm := e; body;H := H ` caller
label←− this.m(y)

{ IC }

Herefind returns the message onH with the specified caller
label and kind. The precondition accounts for the assign-
ment of actual parameters to the formal parameter listx.

4. Semantics

To define the semantics of Creol programs, we consider
asequential sublanguageof Creol, excluding constructs for
asynchronous method calls and processor release points:

skip |x := e|S1�S2 |m(e;x) | (S) |S1;S2

| if φ then S1 elseS2 fi |while φ do Sod

This sequential sublanguage SEQ consists of standard syn-
tax with a well-established semantics and proof system.
In particular, Apt [6, 7] shows that this proof system is
sound and relatively complete. In this section we will give
a semantic encoding of the remaining Creol statements in
terms of SEQ. To do this, we emphasize the encoding of
l !o.m(e), l?(x), andawait g for g∈ Guard. The remaining
language constructs may be defined in terms of these and
the sequential language as shown in Figure 2, whereL de-
notes some fresh label value. Note that synchronous calls
to remote objects are simulated by asynchronous commu-
nication, whereas synchronous local calls are performed di-
rectly (without involving any communication).

l !m(e) == l !this.m(e)
!o.m(e) == L!o.m(e)
!m(e) == L!this.m(e)
o.m(e;x) == if o = this then m(e;x)

elseL!o.m(e);L?(x) fi
await l?(x) == await l?; l?(x)
await o.m(e;x) == L!o.m(e);await L?(x)
if φ then Sfi == if φ then Selse skip fi

Figure 2. Language abbreviations

A Creol process with release points and asynchronous
method calls is interpreted in SEQ as a nondeterministic
programwithoutshared variables, release points, and asyn-
chronous method calls. The local history is captured by a
variableH in each class, using nondeterministic updates on
H to mimic the current state of the local interaction history
of the original Creol program. To obtain an interleaving se-
mantics for Creol, each atomic statement is proceeded by a
nondeterministic extension ofH , mimicking asynchronous
interaction with external objects.

4.1. Encoding Creol in SEQ

This section defines a mapping〈〈 〉〉 which translates
Creol programs into SEQ. All expressions and types are
translated by the identity function. Creol classes, with meth-
ods and attributes, are translated directly to SEQ, with
some implicit parameters added to the methods, and with
this : Obj added as a class attribute. We consider a given
classC with variable attributesw, and a given methodm in
this class with local variables and in- and out-parameters.
Each method gets two implicit in-parameters,caller : Obj
andlabel : Label, which store the object identifier of the ini-
tiator and label value of the call, respectively. As in Creol
there is only read access to in-parameters.

〈〈op m(in x out y) == var wm := Initval; body〉〉=
op m(in x, caller, label out y) ==

var wm := Initval;

〈〈body〉〉; H := H ` caller
label←− this.m(y)

The additional class variableH is a sequence of messages
involving this, initialized to empty.

In SEQ we introduce anondeterministic assignment

y := somex | P(x),

which assigns toy arbitrary values satisfying the predicate
P. (The variable listsx andy have equal length and type.)

Capturing the Environment.Reasoning about a Creol pro-
cess cannot alone capture the concurrent activity of the

asynchronously communicating object. In particular, the
object may receive arbitrary input and other processes in
the object may send output. We shall mimic this activity by
nondeterministic extensions to the history variableH . For
this purpose, we introduce two particular nondeterministic
assignments:interleave represents activity by the environ-
ment when the object is not active, andrelease represents
activity by the environment and also by other processes in
the object, capturing release points. Defineinterleave as

interleave == H := someh | IntReq(h),

whereIntReq(h) == H ≤ h∧h/OUTthis = H/OUTthis∧
wf(h), i.e.H is extended in a nondeterministic manner pre-
serving wellformedness, and without output fromthis. One
could model the parallel execution of the environment by in-
sertinginterleave before each Creol statement, however, for
simpler partial correctness it suffices to insertinterleave be-
fore each statement accessingH .

The definition of interleave expresses thatthis object
does not control the environment. Predicates not restrict-
ing input to this or not concerned with input tothis at all
are not affected byinterleave, but predicates may however
relate output events to input events. Especially, class invari-
ants must fulfill the criteria

{IC(w,H)} interleave{IC(w,H)}.

Consequently, we may omitinterleave when the invariant is
required to hold, i.e. before and after methods bodies.

In contrast,release denotes a simultaneous assignment
to the class attributes and toH , defined as

release == w,H := somew′,h | RelReq(w′,h),

whereRelReq(w′,h) == H ≤h∧¬comp(h,caller, label)∧
wf(h) ∧ (IC(w,H) ⇒ IC(w′,h)). This assignment updates
the history and class attributes nondeterministically with
values satisfying the class invariant, extending the his-
tory in a wellformed manner. Although output fromthis
may occur, the event representing completion of the cur-
rent method invocation cannot occur. It follows that the
following Hoare triple holds:

{IC(w,H)} release{IC(w,H)}.

For reasoning, two subsequentinterleave statements, as well
as tworelease statements, may be replaced by one. In addi-
tion, aninterleave preceding arelease may be omitted.

The Encoding.Asynchronous method calls give rise to
events recorded inH :

〈〈 l !o.m(e)〉〉== interleave; l := somel ′ | ¬init (H , this, l ′);

H := H ` this
l→o.m(e)

Reply statements block the object’s internal activity. There-
fore, input to the object may occur but output from the ob-
ject is not allowed. Reply statements are therefore modeled

by a loop doinginterleave as long as the reply message has
not arrived. However, restricting ourself to partial correct-
ness we may assume termination of this loop, giving:

〈〈 l?(y)〉〉== H := someh | IntReq(h)∧comp(h, this, l);
y := f ind(H , this, l ,comp).par

Processor release points allow output fromthis object, ex-
cept for the reply to the current method invocation. There-
fore, await statements are modeled by means ofrelease.

〈〈await wait 〉〉 == release
〈〈await l?〉〉 ==

w,H := somew′,h | RelReq(w′,h)∧comp(h, this, l)
〈〈await φ〉〉 == if φ then skip else

w,H := somew′,h | RelReq(w′,h)∧φw
w′ fi

Again, the encoding is restricted to partial correctness. For
await l? statements there is a nondeterministic (finite) de-
lay between sending and receiving of messages, modeled
by release. Other Creol statements are translated directly.

〈〈skip〉〉 == skip
〈〈x := e〉〉 == x := e
〈〈(S)〉〉 == (〈〈S〉〉)
〈〈while φ do Sod〉〉 == while φ do 〈〈S〉〉 od
〈〈 if φ then S1 elseS2 fi 〉〉== if φ then 〈〈S1 〉〉 else〈〈S2 〉〉 fi
〈〈S1�S2 〉〉 == 〈〈S1 〉〉�〈〈S2 〉〉
〈〈m(e;y)〉〉 == m(e;y)

We conclude this section with a lemma.

Lemma (Preservation of wellformedness).The SEQ en-
coding of Creol programs preserves history wellformed-
ness.

The proof goes by induction over method bodies. Ev-
ery statement preserveswf(H), in particular interleave,
release, and the encoding ofl !o.m(e) fulfill this crite-
ria. Since every invocation message is unique and as-
sumed to create exactly one process, read-only access to
caller, label, and this combined with the encoding en-
sure that the completion message recorded at process
termination is unique and corresponds to the invoca-
tion message.

5. Verification of Creol Classes

The sequential language SEQ has a well-established
proof system [6, 7], from which we may derive proof rules
for Creol via the presented encoding. Due to the abbrevia-
tions introduced in Figure 2 it suffices to consider the state-
mentsl !o.m(e), l?(x), andawait g for a basic guardg. Rules
for combined guards may be derived from these.

The weakest liberal precondition for nondeterministic
assignment is

wlp(y := somex | P, Q) = ∀x | (P⇒Qy
x),

assuming thatx is disjoint fromFV[Q]−{y}. The side con-
dition may easily be satisfied, since variable names insome
expressions may be renamed to avoid name capture.

Creol has object pointers but no dot notation for access-
ing attributes, thus Hoare reasoning about pointers can be
done according to standard rules [24]. The rules for nonde-
terministic assignment and local procedure calls maintain
soundness and relative completeness of the proof system.

We first consider invocation and reply statements, and
then processor release points. Backward construction over
the encoding of the invocation statementl !o.m(e) leads to:

wlp(l !o.m(e), Q) =
∀l ′,h | IntReq(h)∧ ¬init (h, this, l ′)⇒Ql ,H

l ′,h`this
l ′→o.m(e)

This statement includes an assignment toH so the precon-
dition captures a nondeterministic update onH , expressed
by interleave, preceding the nondeterministic assignment.
By backward construction over the encoding ofl?(y), the
weakest liberal precondition for this statement becomes:

wlp(l?(y), Q) =
∀h | IntReq(h)∧ comp(h, this, l)⇒QH ,y

h,find(h,this,l ,comp).par

The precondition captures the nondeterministic extension of
H , while leavingH /OUTthis unaltered.

Release Points.The await wait sentence is modeled by a
release, which results in the following precondition:

wlp(await wait, Q) = ∀w′,h | RelReq(w′,h)⇒Qw,H
w′,h

For the weakest precondition of reply guards, we may as-
sume the existence of a completion message:

wlp(await l?, Q) =
∀w′,h | RelReq(w′,h)∧comp(h, this, l)⇒Qw,H

w′,h

For boolean guards, the postcondition must be satisfied di-
rectly if the guard is true:

wlp(await φ,Q) =
if φ then Q else∀w′,h | RelReq(w′,h)∧φw

w′ ⇒Qw,H
w′,h fi

By backward construction, we have obtained a sound and
complete reasoning system for asynchronous method calls
and processor release points. Forrelease, the proposed se-
mantics depends on the given invariantI . In order to es-
tablish completeness of the proof system relative to Creol,
we therefore requireI ⇒wlp(S, I) for execution pathsSbe-
tween suspension points. Consequently, the invariantI must
be a sufficient precondition to ensure thatI holds at the next
suspension point. Weakest liberal preconditions for the re-
maining statements may be derived from the abbreviations
given in Figure 2.

Both wlp and Hoare reasoning may be used in the
same proof, since proving{P}S{Q} is the same as prov-
ing P⇒ wlp(S,Q). To further emphasize invariant reason-
ing we may set up a theorem for processor release points.

Theorem. Given an invariant I(w,H), a predicate L(wm)
over local variables wm such that FV[L] ∩ FV[I] = /0 and a
predicateφ : Data× . . .×Data→ Bool on local and object
variables, then:

{I ∧L} await wait {I ∧L} (1)
{I ∧L} await φ {I ∧L∧φ(w,wm)} (2)
{I ∧L} await l?{I ∧L∧comp(H , this, l)} (3)

The proof goes by showing that the weakest liberal precon-
ditions in the three cases follow from the assumptions.

Given a predicateP whereFV[P] ⊆ w∪wm∪{H }, we
may prove{P∧φ}await φ{P∧φ}, whereP need not imply
the invariant. This implies{P}await true{P}, which is in
accordance with the intuitive understanding of the sentence
await true as being identical toskip.

6. Parallel Composition

The organization of the state space in locally accessible
variables and communication by messages mimicked bylo-
cal communication history variables allows a compositional
reasoning style. In order to check that objects compose, it is
sufficient to compare the local histories. For this purpose,
we adapt a composition method introduced by Soundara-
jan [29, 30] and require that local histories arecompati-
ble. In our approach, compatibility between two histories is
checked directly by projection from a common history. The
local history variableHo in a SEQ class represents the local
history of an arbitrary objecto of classC, denotedo : C. For
two objectso ando′, the local historiesHo andHo′ are com-
posable if∃H | H /o = Ho∧H /o′ = Ho′ . The invariant of
the objecto must satisfy the class invariantIC for some ap-
propriate values of the class attributes:

Io:C(H) == ∃w | (IC(w,H))this
o

The substitution replaces the free occurrences ofthiswith o
and the existential quantifier hides the local state variables.

Two histories must agree on common events when com-
posed, which is expressed by projection from the common
history. An invariant for two composed objectso ando′ may
consequently be derived by conjunction from the invariants
for the two objects:

Io:C||o′:C′(H) == Io:C(H /o)∧ Io′:C′(H /o′)

Similarly, invariants may be derived for sets of objects. The
compatibility requirement reduces the amount of nondeter-
minism of the object seen in isolation. Consequently, the en-
coding leads to many noncomposable histories and is there-
fore not convenient for an operational semantics. However,
it suffices for partial correctness reasoning.

7. Example: Readers and Writers

This section considers a classRWController, which im-
plements a version of the readers and writers problem. We
assume given a shared databasedb, which provides two ba-
sic operationsread andwrite. Through interface specifica-
tions, these are assumed to be accessible forRWController
objects only. Clients will communicate with anRWCon-
troller object to obtain read and write access to the database.
RWController providesread andwrite operations to clients
and in addition four methods used to synchronize read-
ing and writing activity:OR (OpenRead),CR (CloseRead),
OW (OpenWrite) andCW (CloseWrite). A reading session
happens between invocations ofOR and CR and writing
between invocations ofOW andCW. A clients is assumed
not to terminate unless it has invokedCR andCW at least
as many times asOR andOW, respectively. To ensure fair
competition between readers and writers, invocations ofOR
andOW compete on equal terms for a guardfree. If the con-
dition for reading or writing is unsatisfied,free is set to false
and the process is suspended. LetObjSetbe a set over the
typeObj of object identifiers.

class RWController(db: DataBase)
begin
var free:Bool= true, readers:ObjSet= /0, writer: Obj = null
var pr, pw:Nat = 0, 0 // pending calls to db.read and db.write
with RWClient

op OR() ==await free; if writer 6= null then free := false;
await (writer = null); free := truefi;
readers := readers∪ {caller}

op CR() ==await (caller∈ readers); readers := readers\ {caller}
op OW() == await free; free := false;

await (readers =/0 ∧ pr = 0∧ writer = null);
free := true; writer := caller

op CW() == await (pw = 0∧ writer = caller); writer := null
op read(in k: Key out x: Data) ==await (caller∈ readers);

pr := pr + 1;await db.read(k; x); pr := pr – 1
op write(in k: Key, x: Data) ==await (writer = caller);

pw := pw + 1;await db.write(k,x); pw := pw – 1
end

For reasoning purposes, a mythical variableα is introduced
to count the number of processes waiting on the inner guard
of OR : α := α+1; await (writer = null ∧ α > 0); α := α−1.
Similarly, the variableβ is used for the inner guard ofOW.
We may then prove the invariant

Ifair : (free= (α = 0∧β = 0))∧ (α+β≤ 1),

i.e. at most one process is waiting on the inner guards inOR
andOW, andfree is false iff a process is waiting. Such a
process has priority over other invocations ofOR andOW.

In order to express a safety invariant, we define the func-
tionsReaders,Writers: Seq[Msg]→ Set[Obj] by:

Readers(ε) == /0
Readers(H ` caller←OR) == Readers(H)∪{caller}
Readers(H ` caller←CR) == Readers(H)\{caller}
Readers(H ` others) == Readers(H)

where others matches all ground terms not giving any
match in the previous equations. The definition ofWriters
follows the same pattern. Also defineReading, Writing :
Seq[Msg]→ Nat by:

Reading(H) == #(H/this→db.read)−#(H/←this.read)
Writing(H) == #(H/this→db.write)−#(H/←this.write)
The safety invariantI relates the internal object state and the
externally observable behavior:

I1 : {writer}= Writers(H)
I2 : ∧ readers= Readers(H)
I3 : ∧ pr = Reading(H)
I4 : ∧ pw= Writing(H)
I5 : ∧ (#readers= 0∨writer = null)∧#{writer} ≤ 1
I6 : ∧ writer = null⇒ pw= 0
I7 : ∧ (writer 6= null⇒ pr = 0)

This invariant shows how the values of class attributes may
be expressed in terms of observable communication. In ad-
dition, the invariant impliespr = 0∨ pw= 0, i.e. no read-
ing and writingactivity happens simultaneously. To illus-
trate the proposed reasoning system, we indicate some veri-
fication details for the methodsOR andread. Using the de-
rived Hoare rule for boolean guards,OR leads to three ver-
ification conditions. However, sinceI is not concerned with
assignments tofree andα, only one condition is relevant:

{I ∧writer = null}readers:= readers∪{caller};
H := H ` caller← this.OR{I}

Here, the code is extended with a mythical assignment toH
at method termination.I1, I3, andI4 are not affected by the
assignments. For the other parts ofI we have to prove

readers= Readers(H) ∧ writer = null∧ pw= 0
⇒ readers∪{caller}= Readers(H ` caller← this.OR)
∧ (writer = null⇒ pw= 0)∧ (writer 6= null⇒ pr = 0),

which follows directly from the definition ofReaders.
Using definitions in Figure 2, the inner release point in

read becomesl!db.read(k); await l?; l?(x) for some fresh
l. Following the same line of argument as above, we may
interpretpr as a process counter, and strengthen the inner
guard toawait (l? ∧ pr > 0). Applying the derived Hoare
rules for boolean and reply guards, this results in the fol-
lowing two verification conditions:

i) {I ∧caller∈ readers} pr := pr +1;l !db.read(k){I}
ii) {I ∧comp(H , this, l)∧ pr > 0}

l?(x); pr := pr−1;H := H ` caller← this.read(x){I}

For verification ofi), we use backward proof construction,
and arrive at the condition:

(I ∧caller∈ readers∧H ≤ h∧H /OUTthis = h/OUTthis)
⇒ I pr,H

pr+1,h`this
l→db.read(k)

This is proved by using the assumptions on the history. The
most interesting parts areI3 andI7:

I ∧caller∈ readers∧H ≤ h∧H /OUTthis = h/OUTthis

⇒ pr +1 = Reading(h` this
l→db.read(k))

∧ writer 6= null⇒ pr +1 = 0

This follows since output fromthisdoes not occur in the ex-
tension toH . Verification ofii) is similar.

Abstraction. In order to give a composable specification
of theRWController class, we formulate the following ab-
stract invariant in terms of the communication history only:

(Readers(H) = /0∨Writers(H) = /0)∧#Writers(H)≤ 1

It is easy to show that this follows from the class invariant.

8. Related and Future Work

Related work.In this paper we have adapted communica-
tion histories, as introduced in [11], to model object com-
munication in the distributed setting. History sequences re-
flecting message passing have also been used for specifica-
tion and reasoning about CSP-like languages [13,29].

Much recent work has addressed reasoning about se-
quential object-oriented languages [18, 27, 28], covering
various aspects such as inheritance, subtyping, and dynamic
binding. However, reasoning about multithreaded object-
oriented languages is more challenging [1, 10]. For exam-
ple, the approach of [1] uses a global cooperation test to
deal with object communication. In addition, interference
freedom must be proved since several threads may execute
concurrently in the same object. In [13], de Boer presents a
sound and complete compositional Hoare logic for collec-
tions of processes (objects) running in parallel. The objects
communicate asynchronously by message passing, but in
contrast to our work they communicate through FIFO chan-
nels, disallowing message overtaking.

Olderog and Apt [26] consider transformation of pro-
gram statements preserving semantical equivalence. This
approach is further developed in [14], which introduces a
general methodology for transformation of language con-
structions into subparts of the language resulting in sound
and complete reasoning systems. The approach resembles
our encoding of Creol into SEQ, but it is noncompositional
in contrast to our work. In particular, extention of the trans-
formational approach to multithreaded systems seem to re-
quire interference freedom tests.

Future Work. In a recent paper [22], Creol has been ex-
tended with constructs for multiple inheritance. It is our
present research goal to extend the approach to compo-
sitional verification presented in this paper to capture the
combination of processor release points, multiple inheri-
tance, and history-based compositionality. The combina-
tion of nondeterministic assignment and inherited class in-
variants represents a challenge for the transformational ap-
proach, but may be solved by appropriate behavioral restric-

tions. In order to address the verification of larger programs,
tool support to discharge proof conditions should be devel-
oped.

The long term goal of our research is to study openness
in distributed systems, taking an object-oriented approach.
While this paper has focused on reasoning about commu-
nication and concurrency aspects in the asynchronous set-
ting, we believe the language presented here offers inter-
esting possibilities for reasoning in the presence of dy-
namic change. An obvious way to provide some openness
is to allow dynamic addition of new (sub)classes and new
(sub)interfaces. In our setting, this mechanism in itself does
not violate reasoning control, because established results
still hold. Also, additional implementation claims may be
stated and proved. However, old objects may not use new
interfaces that require new methods.

A natural way to overcome this limitation is through a
dynamic class construct, allowing a class to bereplaced
by a subclass. Thus a class may be modified by adding at-
tributes and methods, redefining methods, as well as extend-
ing the inheritance and implements relationships. The for-
malization of an operational semantics for such dynamic
updates is currently being developed. The work presented
in this paper is part of a larger effort to understand how
to formalize and verify the effect of runtime modifica-
tions to open distributed systems in a compositional way.
We believe that reasoning about suitably restricted runtime
class extensions can be done by combining compositional
history-based reasoning and behavioral subtyping.

9. Conclusion

The Creol language proposes programming constructs
which aim to unite object orientation and distribution in
a high-level and natural way, by means of processor re-
lease points and a notion of asynchronous method calls.
In this paper, we develop Hoare rules for local reasoning
about these constructs. The reasoning rules are derived in
a transformational manner from a standard sequential lan-
guage with a well-known semantics and established rea-
soning system. The language constructs for asynchronous
method calls and processor release points are encoded in
the sequential sublanguage extended with nondeterministic
assignment. Combined with local communication histories,
this allows the highly nondeterministic nature of concur-
rent and distributed systems to be captured in the sequen-
tial language. Based on the encoding weakest liberal pre-
conditions are derived, which given sufficiently strong class
invariants yield sound and relative complete Hoare rules for
Creol classes, expressing partial correctness. In contrast to
related approaches, the proposed local proof system is com-
positional, based on a compatibility requirement on local
history variables capturing observable communication.

References

[1] E. Ábrahám-Mumm, F. S. de Boer, W.-P. de Roever, and
M. Steffen. Verification for Java’s reentrant multithreading
concept. InIntl. Conf. on Foundations of Software Science
and Computation Structures (FOSSACS’02), LNCS 2303,
pages 5–20. Springer, Apr. 2002.

[2] G. A. Agha. Abstracting interaction patterns: A program-
ming paradigm for open distributed systems. In E. Najm
and J.-B. Stefani, editors,Proc. 1st IFIP Intl. Conf. on For-
mal Methods for Open Object-based Distributed Systems
(FMOODS’96), pages 135–153, 1996. Chapman & Hall.

[3] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott.
A foundation for actor computation.Journal of Functional
Programming, 7(1):1–72, Jan. 1997.

[4] B. Alpern and F. B. Schneider. Defining liveness.Informa-
tion Processing Letters, 21(4):181–185, Oct. 1985.

[5] G. R. Andrews. Concurrent Programming: Principles and
Practice. Addison-Wesley, Reading, Mass., 1991.

[6] K. R. Apt. Ten years of Hoare’s logic: A survey — Part I.
ACM Transactions on Programming Languages and Sys-
tems, 3(4):431–483, Oct. 1981.

[7] K. R. Apt. Ten years of Hoare’s logic: A survey — Part II:
Nondeterminism. Theoretical Computer Science, 28(1–
2):83–109, Jan. 1984.

[8] N. Benton, L. Cardelli, and C. Fournet. Modern con-
currency abstractions for C]. In B. Magnusson, editor,
Proc. 16th European Conf. on Object-Oriented Program-
ming (ECOOP’02), LNCS 2374, pages 415–440. Springer,
2002.

[9] P. Brinch Hansen. Java’s insecure parallelism.ACM SIG-
PLAN Notices, 34(4):38–45, Apr. 1999.

[10] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-
based structural operational semantics of multi-threaded
Java. In J. Alves-Foss, editor,Formal Syntax and Seman-
tics of Java, LNCS 1523, pages 157–200. Springer, 1999.

[11] O.-J. Dahl. Can program proving be made practical? In
M. Amirchahy and D. Néel, editors,Les Fondements de
la Programmation, pages 57–114. Institut de Recherche
d’Informatique et d’Automatique, Toulouse, Dec. 1977.

[12] O.-J. Dahl.Verifiable Programming. Prentice Hall, 1992.

[13] F. S. de Boer. A Hoare logic for dynamic networks of asyn-
chronously communicating deterministic processes.Theo-
retical Computer Science, 274:3–41, 2002.

[14] F. S. de Boer and C. Pierik. How to Cook a Complete Hoare
Logic for Your Pet OO Language. InFormal Methods for
Components and Objects (FMCO’03), LNCS 3188, pages
111–133. Springer, 2004.

[15] E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs.Communications of the ACM,
18(8):453–457, Aug. 1975.

[16] J. Gosling, B. Joy, G. L. Steele, and G. Bracha.The Java lan-
guage specification. Java series. Addison-Wesley, Reading,
Mass., 2nd edition, 2000.

[17] C. A. R. Hoare.Communicating Sequential Processes. Pren-
tice Hall, 1985.

[18] M. Huisman and B. Jacobs. Java program verification via
a Hoare logic with abrupt termination. In T. Maibaum,
editor, Fundamental Approaches to Software Engineering
(FASE’00), LNCS 1783, pages 284–303. Springer, 2000.

[19] International Telecommunication Union. Open Distributed
Processing - Reference Model parts 1–4. Technical report,
ISO/IEC, Geneva, July 1995.

[20] E. B. Johnsen and O. Owe. An asynchronous communi-
cation model for distributed concurrent objects. InProc.
2nd IEEE Intl. Conf. on Software Engineering and Formal
Methods (SEFM’04), pages 188–197. IEEE Computer Soci-
ety Press, Sept. 2004.

[21] E. B. Johnsen and O. Owe. Object-oriented specification and
open distributed systems. In O. Owe, S. Krogdahl, and T. Ly-
che, editors,From Object-Orientation to Formal Methods:
Essays in Memory of Ole-Johan Dahl, LNCS 2635, pages
137–164. Springer, 2004.

[22] E. B. Johnsen and O. Owe. Inheritance in the presence
of asynchronous method calls. InProc. 38th Hawaii Intl.
Conf. on System Sciences (HICSS’05). IEEE Computer So-
ciety Press, Jan. 2005.

[23] C. B. Jones. Development Methods for Computer Pro-
grammes Including a Notion of Interference. PhD thesis,
Oxford University, UK, June l981.

[24] J. M. Morris. A general axiom of assigment. In M. Broy and
G. Schmidt, editors,Theoretical Foundations of Program-
ming Methodology, pages 25–34. Reidel, 1982.

[25] O. Nierstrasz. A tour of Hybrid – A language for program-
ming with active objects. In D. Mandrioli and B. Meyer,
editors,Advances in Object-Oriented Software Engineering,
pages 167–182. Prentice Hall, 1992.

[26] E.-R. Olderog and K. P. Apt. Fairness in parallel programs:
The transformational approach.ACM Transactions on Pro-
gramming Languages, 10(3):420–455, July 1988.

[27] A. Poetzsch-Heffter and P. Müller. A programming logic for
sequential Java. In S. D. Swierstra, editor,European Symo-
sium on Programming (ESOP’99), LNCS 1576, pages 162–
176. Springer, 1999.

[28] B. Reus, M. Wirsing, and R. Hennicker. A hoare calculus for
verifying java realizations of OCL-constrained design mod-
els. In H. Hussmann, editor,Fundamental Approaches to
Software Engineering (FASE’01), LNCS 2029, pages 300–
317. Springer, 2001.

[29] N. Soundararajan. Axiomatic semantics of communicating
sequential processes.ACM Transactions on Programming
Languages and Systems, 6(4):647–662, Oct. 1984.

[30] N. Soundararajan. A proof technique for parallel programs.
Theoretical Computer Science, 31(1-2):13–29, May 1984.

[31] A. Yonezawa.ABCL: An Object-Oriented Concurrent Sys-
tem. Series in Computer Systems. The MIT Press, 1990.

