Verification of Concurrent Objects with Asynchronous Method Calls

Johan Dovland, Einar Broch Johnsen, and Olaf Owe
Department of informatics, University of Oslo
PO Box 1080 Blindern, N-0316 Oslo, Norway
{johand, einarj, olaf}@ifi.uio.no

Abstract unsettled, especially with respect to inheritance and redefi-
nition.

Current object-oriented approaches to distributed pro- Three basic interaction models for concurrent processes
grams may be criticized in several respects. First, methodare shared variables, remote method calls, and message
calls are generally synchronous, which leads to much wait- passing [5]. As objects encapsulate local states, we find
ing in distributed and unstable networks. Second, the com-inter-object communication most naturally modeled by (re-
mon model of thread concurrency makes reasoning aboutmote) method calls, avoiding shared variables. Withréhe
program behavior very challenging. A model based on con- mote method invocatioRMI) model, an object is acti-
current objects communicating by means of asynchronousvated by a method call. Control is transferred with the call
method calls has been proposed to combine object orienta-so there is a master-slave relationship between the caller
tion and distribution in a more satisfactory way. This pa- and the callee. A similar approach is taken with the exe-
per introduces a reasoning system for this model, focus-cution threads of e.g. Hybrid [25] and Java [16], where con-
ing on simplicity and modularity. We believe that a simple currency is achieved through multithreading. The interfer-
and compositional proof system is paramount to allow ver- ence problem related to shared variables reemerges when
ification of real programs. The proposed proof rules are de- threads operate concurrently in the same object, which hap-
rived from the Hoare rules of a standard sequential lan- pens with nonserialized methods in Java. Reasoning about
guage by means of a semantic encoding preserving soundprograms in this setting is a highly complex matter [1, 10]:
ness and relative completeness. Safety is by convention rather than by language design [9].

Verification considerations therefore suggest that all meth-
ods should be serialized as done in e.g. Hybrid. However,
when restricting to serialized methods, the calling object
1. Introduction r_nl_Jst_/vait for the return of a (_:aII, blocking for_an_y (_)th_er ac-
tivity in the object. In a distributed setting this limitation is
severe; delays and instabilities may cause much unneces-
sary waiting. A serialized nonterminating method will even
block other method invocations, which makes it difficult to
_combine active and passive behavior in the same object.
r{A\Iso, separating execution threads from objects breaks the
modularity and encapsulation of object orientation, leading
to a very low-level style of programming.

The importance of inter-process communication is
rapidly increasing with the development of distributed
computing, both over the Internet and over local net-
works. Object orientation appears as a promising frame
work for concurrent and distributed systems, and has bee
recommended by the RM-ODP [19], but object interac-
tion by means of method calls is usually synchronous.
The mechanism of remote method calls has been de- Message passing is a communication form without any
rived from the setting of sequential systems, and is transfer of control between concurrent objects. A method
well suited for tightly coupled systems. It is less suit- call can here be modeled by an invocation and a reply
able in a distributed setting with loosely coupled com- message. Synchronous message passing, as in Ada’s Ren-
ponents. Here synchronous communication gives rise todezvous mechanism, requires that both sender and receiver
undesired and uncontrolled waiting, and possibly dead- are ready before communication can occur. Hence, the ob-
lock. Asynchronous message passing gives better controjects synchronize on message transmission. For method
and efficiency in the distributed setting, but lacks the struc- calls, the calling object must wait between the synchro-
ture and discipline inherent in method calls. The integra- nized messages [5]. For distributed systems, even such syn-
tion of the message concept in the object-oriented setting ischronization must necessarily result in much waiting. In

Proc. Intl. Conf. on Software - Science, Technology & Engineering (SWSTE'05), pp. 141-150, IEEE press, Feb. 2005

the asynchronous setting message emission is always podifiers may be exchanged between objects. All object inter-
sible, regardless of when the receiver accepts the messagection is by means of method calls.
Communication by asynchronous message passing is welljasses and Objectsit the programming level, attributes
known from e.g. the Actor model [2, 3]. Method calls im- (gpjiect variables) and method declarations are organized in
ply an ordering on communication not easily captured in ¢jasses in a standard way. Objects are dynamically created
the Actor model. Actors do not distinguish replies from in- jngiances of classes. The attributes of an object are encap-
vocations, so capturing method calls with Actors quickly gyjated and can only be accessed via the object's methods.
becomes unwieldy [2]. In addition, the abstraction mech- Among the declared methods, we distinguish the method
anism provided by object-oriented methods is lost in lan- ,,,, \which is given special treatment operationally. After
guages where communication is expressed directly in termsitiajization of the object, theun method, if provided, is
of message passing. invoked. Apart fromrun, declared methods may be invoked
Intuitive high-level programming constructs are needed py other objects. These methods reflect passive, or reactive,
to unite object orientation and distribution in a natural pehavior in the object, whereasn reflects active behav-
way. Recently, programming constructs for concurrent ob- jor. We will refer to the invoked method instances as the ob-
jects have been proposed in the Creol language [20], basegect’s processesObject activity is organized around an ex-
on processor release poinend a notion ofasynchronous ternal message queue, which contains incoming messages,
method calls A concurrent object has its own execution and an internal process queue, which contpigrsdingpro-
thread. Processor release points are used to influence thgesses. Methods need not terminate and may be temporarily
implicit internal control flow in objects. This reduces time suspendedn the internal process queue.
spent waiting for replies to method calls in a distributed Objects are typed by interface. Lebe the declared in-
environment and allows objects to dynamically change be-terface of an objead and letm be a method declared ih
tween active and reactive behavior (client and server). In or-Creol is strongly typed, which ensures that for each method

der to model real world systems in an object-oriented man-jnvocationo.m, the actual object will support I and the
ner, asynchronously communicating concurrent objects ap-methodm s understood.

pear "_"S a natural approach. _Asynchronous Method Calldviethods in Creol may be in-
This paper considers the problem of formal reasoning \oked in an asynchronous way [20]. Methods are imple-
about concurrent objects communicating by asynchronousmented by guarded commands to be evaluated in the context
method calls, based on the approach of the Creol languageys |cally bound variables. Due to possible processor re-
A partial correctness proof system is derived from that of |g456 points, the values of an object’s instance attributes are
a standard sequential language by means of & semantic eyt entirely controlled by a method instance if it suspends
coding. This suggests that reasoning is significantly sim-jiself hefore completion. However, a method may create lo-
pler than for languages based on thread concurrency. Theg| yariables supplementing the attributes. In particular, the
approach of this paper is modular, as invariants for classes g|yes of formal parameters are stored locally, but other lo-
may be established independently and composed at need. ¢4 yariables may also be created. An object can have sev-
The paper is structured as follows. Section 2 introduceseral pending calls to the same method, possibly with differ-
and informally explains the language syntax, Section 3 con-ent values for local variables. The local variablgis:] and
siders reasoning in terms of class invariants, Section 4 ex-caller are reserved to identify the call and the caller for the
plains the language constructs in terms of a sequential lanreply, which is emitted at method termination.
guage, Section 5 derives proof rules for the Creol language, An asynchronous method call is made with the command
Section 6 considers composition of class invariants, Sec-|10.m(e), where the label is a unique reference to the call,
tion 7 provides an example, Section 8 discusses relateds an object expression which reduces to an object identifier,
work, and Section 9 concludes the paper. m a method name, anelan expression list with the sup-
plied actual parameters. Labels are used to identify replies,
and may be omitted in the syntax if a reply is not explicitly
2. The Creol Language requested. No synchronization is involved and process ex-
ecution may proceed after calling an external method until
This section introduces the communication and concur- the return value is needed by the process. To fetch the return
rency aspects of Creol [20], a programming language for values from the queue, say in a variableXistve ask for the
distributed concurrent objects, and in particular the notions reply to the call1?(x). If the reply has arrived, return val-
of asynchronous method calls and processor release pointaies are assigned x@and execution continues without delay.
Concurrent objects are potentially active, encapsulating ex-If no reply to the call has been received, process execution is
ecution threads. Objects have explicit identifiers: communi- blocked. This interpretation ¢?(x) gives the same effect as
cation takes place between named objects and object identreatingx as afuture variable e.g. [8, 31]. Local calls need

potential processor release is expressed agdwhile con-

Syntactic categories. Definitions. structs, and assignment to local and object variables is ex-
gin Guard g:=wait|@|1?|g1 A g2 | g1 V g2 pressed by := e, wherex is a list of disjoint variables to
Sin ComList S:=C|C;S which there is write access, ards a list of expressions of
Cin Com C:=skip|x:=e| (S) equal length ok. There is read-only access to in-parameters
vin Var |v:= new classnamée) of methods. Figure 1 summarizes the language syntax.
xin VarList |if pthen S, elseS, fi With nested processor release points, the processor need
ein ExprList |if @then Sfi |while gdo Sod not wait actively for replies. Pending processes or new
min Mtd |$0S method calls may be evaluated instead of blocking the pro-
0in ObjExpr [Ito.m(e) |12(x) | m(e; X) cessor. However, when the reply has arrived, ¢betinu-
| in Label lo.m(e;x) | I!m(e) [lo.m(e) | Im(e) ation of the original process must compete with other en-
@in BoolExpr | await g | await | 2(x) | await 0.m(e;) abled pending processes in the internal process queue.

Figure 1. An outline of Creol syntax. 3. Class Invariants with Mythical Histories

The execution of a distributed system can be represented
not be prefixed by an object identifier. The syntemy(e; x) by the sequence of observable communication events be-
is adopted for synchronous (RPC) method calls, blocking tween system components. At any given point in time this
the processor while waiting for the reply. Synchronous lo- finite sequence, called a communication history [11] or
cal calls are loaded directly into the active code. trace [17], abstractly captures the system state. Therefore,

Processor Release Pointin Creol, the control flow inside ~ System specifications may be given in terms of the finite
concurrent objects may be influenced by potential processorinitial segments of these histories. Mstory invariantis a
release points. These are explicitly declared in method bod-Predicate on finite sequences which holds for all sequences
ies using guarded commands [15], but adapted to the fol-in the prefix-closure of the set of traces, and consequently
lowing semantics: When a guard evaluatesatee during for all abstract system states, expressing safety properties in
process execution, the remaining process code and the vaithe sense of Alpern and Schneider [4].

ues of its local variables asispendedn the internal pro- In order to reason about distributed object systems,
cess queue and the processor is released. After processor rée use the assumption commitment (or rely-guarantee)
lease, an enabled process from the internal process queue Raradigm [23], but adapted to input and output prefixes of

selected for execution. the communication history [21], which allows composi-
o) tional reasoning. For nonterminating systems, these predi-
Definition 1. The type Guard is constructed by cates typically express invariant requirements on the (local)
e wait € Guard (explicit release) communication history.
e |? € Guard, where | is a label Communication Eventdn order to model object commu-
e @< Guard, wherapis a boolean expression over local nication, a call to a method of an objetby an objecio
and object variables. can be seen as passing an invocation messagedtorno’,

and the reply as passing a completion message éfdoo.
The alphabet of communication events is restricted to these
two kinds of messages, which are now formally defined.

Let Obj, Mtd, and Label denote the types of ob-
jects, methods, and labels. The latter is totally ordered.
Let Data be the type of values occurring as actual pa-
rameters to method calls, aind the enumeration type
{init,comp. The setMsg of messages consists of tuples
(caller,label kind, callee mtd, par) wherepar : List[Datal,

Here,wait is a construct for explicit release of the proces-
sor, resembling the methodeld in Java. The reply guard
|? succeeds if the reply to the invocation labeldths ar-
rived. Guards are evaluated atomically, and may be com-
bined:g1 A g2 andg: Vv g2 for guardsy; andgs.

Guarded commands can bemposedn different ways,
reflecting the requirements to the internal control flow in
the objects. LetGS and GS denote the guarded com-

mandsawaitgy; S and awaitgy; S. Nesting of guards is caller, callee: Obj, label: Label kind: Kind, andmtd: Mtd.

(r)nbet?tnGeSdi' ggsth;eggﬁclg Cgcrﬂfgssné?gs |tr‘1) : %rtzgnrt?;ﬂnsr:::e_The seMsgof invocation messages is obtained by restrict-
' ’ g 2 P P ing Msgto messages of kinidit, represented graphically as

processor release point. Nondeterministic choice between label _

guarded commands is expressedd(1GS, which may ~ caller— calleemtdpar), and the seCMsgof completion
computeS; only wheng; evaluates tarue or S, only when messages by restrictidsgto messages of kincomp rep-
02 evaluates tarue. An unguarded statement may be con- resented graphically asaller@calleemtd(par). In the

sidered as a statement guardedrbg. Control flow without graphical notation, the arrow illustrates which way the mes-

sage is sent. Messages may be decomposed by the fundn this definition,h/(0'm) denotes the restriction df to

tionscaller, calleg label, kind, mtd, andpar: For instance,

<O’ | B ka 0/, m, E>.Iabe| ==.

3.1. The Communication History

messages involving the methad provided by an object

0. In a wellformed history, every invocation message is
uniquely defined by its caller and label. This is because ev-
ery object identifier is assumed to be unique and every invo-
cation from a given caller has a unique label. Furthermore,

The communication history of a system up to present every completion message must match exactly one invoca-

time is represented as a finite sequence of 8ggMsg. Fi-

nite sequences are defined by the emgha(d right append

tion message. Define< _ : SedT] x SedT] — Bool such
thath < W iff his a prefix oft’.

(F) constructors. Initially, the history sequence is empty. Local History Projections.in order to reason locally about
Whenever an object in the system calls a method, the his-a particular objecb, we will consider the restricted com-

tory is extended by means of right append with a messagemunication historyh/o, defined as

of type IMsg. When a reply is emitted, the history is simi-

larly extended with a message of typ#lsg

Preliminaries. Decomposmon functlons for

mes-

h/o==h/{m: Msg|(m.caller= oV m.callee=0)}.

If h is a wellformed history, every local history projec-

of the specified message element For instatadeel:

SedMsg — SedLabel constructs the sequence of la-
bels from the history and is inductively defined. Restriction

of the history to a set of messages is now defined.

Definition 2 (Projection). Leth: SedMsg and S: SefMsg.
Define /_: SedMsg x SefMsg — SedMsg by:

€/S==¢
hF m/S==if me Sthen (h/S) - melseh/Sfi

Foro: Obj, let o— denote the sefm: IMsg|m.caller=o0}
ando« the set{m: CMsg|m.caller=o0}. We now define
the functionsnit andcomp

Definition 3 (Init, Comp). Let h: SedMsd, | : Label, and
0: Obj. Define initcomp: SedMsg x Obj x Label— Bool
by:
init(h,o0,1)==1 € (h/o—).label
comph,o0,1)==1I € (h/o«<).label

In a distributed system with asynchronous communica-
tion an object can in general emit an invocation message at
any time, since no synchronization is involved. However, a
completion message may only occur after the correspon

wellformed histories apply to local histories. The local his-
tory of an uninstantiated objectgs

For a particular objeat, define the set OUjlof possible
messages sent from These are either invocation messages
sent fromo or completion messages generatedby

OUTy ==
{m:IMsg|m.caller = 0} U{m: CMsg|m.callee= o}

Invariant Reasoningln a nonterminating system it is dif-
ficult to specify and reason compositionally about behavior
in terms of pre- and postconditions. Instead, pre- and post-
conditions to method declarations are used to establish a
class invariant In order to facilitate compositional reason-
ing about Creol programs, the class invariant will be used to
establish aelationship between the internal state and the
observable behavioof class instances. The internal state
reflects the values of class attributes and the observable be-
havior is expressed by a set of potential communication his-
tories [21]. For this purpose the class attributes are extended
with a mythical variable#/, reflecting the local history, and

he code is extended with (mythical) statements to update
H for everyoutput messaggenerated by the program code.

d-At the imperative level execution ofo'm(e) by an objecb

ing invocation message in the history. For simplicity, we as- is is reflected by a history extensidf := # 0L0. m(e),
sume that all invocation messages sent from a particular ob-where(o,l) forms a unique pair of values. The correspond-
ject are equipped with unique labels. Wellformed histories ing completion message is recorded on the history when the

are now defined:

Definition 4 (Wellformed histories). Let h: SedMsg,
0 : Obj, m: Mtd, | : Label, and e: ListiData. De-

fine

wf : SedMsg — Bool inductively by:

wf(g) == true

f(hF0—>0 m(e)) =

f(h|—0<—o m(e)) =
wf(h) Ainit(h/ (0

wf(h) A =init (h,0,1)

) o,l) A—comph,o,l)

invocation ofm finishes executior := # + o<'—o’.m(y),
wherey is the list of return parameters. Mythical statements
are introduced for reasoning purposes only, and need not
be included in the final program code [12]. LYV [P] de-
note the set of variables which occur free in a prediéate
and letPX denote the substitution of every free occurrence
of x in P by the expressior. For a clas€ we want to es-
tablish a class invariang, ranging over class attributes{
and the history sequend¥, i.e.FV[lc] CwU{H}.

Class invariants are established in the following way. For
an arbitrary object of class, we must prove that: holds

initially. Consequentlylc may be assumed when the object

processostartsor resumegxecution of an invoked method, l'm(e) —— |ithism(e)

if we can show thatc holds every time processor control 10.m(e) —= Llom(e)

is released Due to Creol's nested processor release points, Im(e) —= Llthism(e)

processor control can be released either because method ex- 0.m(gx) —= if 0= thisthen m(g;x)

ecution is completed or because guards are not satisfied. elseLlo.m(e); L?(x) fi
Let wy, denote the variables local to a methodind as- await 12(x) —— awaitl?; 12(x)

sume disjointness between the names of local and class vari- awaitom(egx) == Llo.m(e);await LX)

ables, i.ewmNw = 0. Ignoring type information, a method if @then Sfi —— if @then Selse skip fi

mmay then be declared as

op m(in x out y) == var Wy, := €; body, Figure 2. Language abbreviations

wherevar wy, := e denotes concurrent assignment of ini-

tial values to local variable declarations. For reasoning pur- A Creol process with release points and asynchronous
poses we assume that methmaf objectthis has been in- method calls is interpreted in SEQ as a nondeterministic
voked, which is reflected in the history by a pending invo- programwithoutshared variables, release points, and asyn-
cation message. Upon method termination a corresponding-hronous method calls. The local history is captured by a
completion message is appended to the history, preserving/ariable}[in each class, using nondeterministic updates on
wellformedness. For reasoning purposes, the history update'}[to mimic the current state of the local interaction history
is explicitly represented. This leads to the following verifi- Of the original Creol program. To obtain an interleaving se-

cation condition: mantics for_ (?re_ol, each _atomic statement is proceeded by a
o _ nondeterministic extension &f, mimicking asynchronous
{Ic Ainit(#/(this.m), caller,label) interaction with external objects.
A—-com@ ¥, caller,label)
Ax = (find(H, caller,label,init)).par} 4.1. Encoding Creol in SEQ
W= € body; H := 9 I caller ®thism(y)
{Ic} This section defines a mapping)) which translates

Creol programs into SEQ. All expressions and types are
Herefind returns the message dfiwith the specified caller translated by the identity function. Creol classes, with meth-
label and kind. The precondition accounts for the assign-ods and attributes, are translated directly to SEQ, with

ment of actual parameters to the formal parameteklist some implicit parameters added to the methods, and with
this: Obj added as a class attribute. We consider a given
4. Semantics classC with variable attributesv, and a given methordhin

this class with local variables and in- and out-parameters.
To define the semantics of Creol programs, we considerEach method gets two implicit in-parametecs]ler : Obj
asequential sublanguag# Creol, excluding constructs for andlabel: Label which store the object identifier of the ini-
asynchronous method calls and processor release points: tiator and label value of the call, respectively. As in Creol

) there is only read access to in-parameters.
skip|x:=e|§0% |m(exX) | (S)|S;S

|if pthen S; elseS fi |while @ do Sod ((op m(in x out y) == var Wy, := Initval; body)) =
))) op m(in x, caller, labelouty) ==
This sequential sublanguage SEQ consists of standard syn- var W, := Initval:
tax with a well-established semantics and proof system. label

In particular, Apt [6, 7] shows that this proof system is {(body)); 5= 7 - caller==thism(y)

sound and relatively complete. In this section we will give The additional class variabl is a sequence of messages
a semantic encoding of the remaining Creol statements ininvolvingthis initialized to empty.

terms of SEQ. To do this, we emphasize the encoding of |, SEQ we introduce aondeterministic assignment
Ilo.m(e),1?(x), andawait g for g € Guard The remaining
language constructs may be defined in terms of these and y :=somex | P(x),

the sequential language as shown in Figure 2, wheite- _ _ _ o _
notes some fresh label value. Note that synchronous callsvhich assigns ty arbitrary values satisfying the predicate
to remote objects are simulated by asynchronous commu-P- (The variable list andy have equal length and type.)

nication, whereas synchronous local calls are performed di-Capturing the EnvironmentReasoning about a Creol pro-
rectly (without involving any communication). cess cannot alone capture the concurrent activity of the

asynchronously communicating object. In particular, the by a loop doingnterleave as long as the reply message has
object may receive arbitrary input and other processes innot arrived. However, restricting ourself to partial correct-
the object may send output. We shall mimic this activity by ness we may assume termination of this loop, giving:
nondeterministic extensions to the history variaide For
this purpose, we introduce two particular nondeterministic
assignmentsinterleave represents activity by the environ-
ment when the object is not active, aretease represents pProcessor release points allow output frts object, ex-
activity by the environment and also by other processes incept for the reply to the current method invocation. There-

{(1?(y))y == H = someh | IntReq(h) Acomgh,this,|);
y:= find(#,this,|,comp.par

the object, capturing release points. Definterleave as fore, await statements are modeled by meansleése.
interleave == A := someh | IntReq(h), ((await wait)) == release

wherelntReq(h) == # < hAh/OUTiis = H/OUTipis A {await 7)) == _

wf(h), i.e. # is extended in a nondeterministic manner pre- w, 7 ;= somew’,h | RelReqw’,h) A compth,this)

serving wellformedness, and without output freinfs. One {{await)) == if gthen skip else "

could model the parallel execution of the environment by in- w, H = somew',h | RelRegw', h) A @i fi

sertinginterleave before each Creol statement, however, for Again, the encoding is restricted to partial correctness. For

simpler partial correctness it suffices to insetérleave be- 5\yajt |2 statements there is a nondeterministic (finite) de-

fore each statement accessifg lay between sending and receiving of messages, modeled

The definition ofinterleave expresses thathis object py release. Other Creol statements are translated directly.
does not control the environment. Predicates not restrict-

ing input tothis or not concerned with input tthis at all ((skip)) == skip

are not affected bynterleave, but predicates may however ((x:=e)) ==X=e
relate output events to input events. Especially, class invari- (((S))) == (({(S))
ants must fulfill the criteria {(while pdo Sod)) == while @do ((S)) od
) (if pthen S elseS; fi)) == if @then ((S;)) else((S)) fi
Consequently, we may oniitterleave when the invariantis ~ {((m(e;y))) ==m(ey)

required to hold, i.e. before and after methods bodies.
In contrastrelease denotes a simultaneous assignment
to the class attributes and f#, defined as

We conclude this section with a lemma.

Lemma (Preservation of wellformedness)The SEQ en-
coding of Creol programs preserves history wellformed-
release == W, # := somew , h | RelReq(W, h), ness.

whereRelReq(W,h) == % < ha-comyh,caller,label) A The proof goes by induction over method bodies. Ev-
wi(h) A (Ic(w, H) = Ic(W,h)). This assignment updates €Y statement preservel_sf(}[), in partlcu_larin_terlee}ve,

the history and class attributes nondeterministically with release, and the encoding offo.m(e) fulfill this crite-
values satisfying the class invariant, extending the his-fia. Since every invocation message is unique and as-
tory in a wellformed manner. Although output frothis sumed to create exgctly one process, read—only_ access to
may occur, the event representing completion of the cur-caller, label, and this combined with the encoding en-

rent method invocation cannot occur. It follows that the Sure that the completion message recorded at process
following Hoare triple holds: termination is unique and corresponds to the invoca-

tion message.
{lc(w, H)} release {Ic(w, H)}.

For reasoning, two subsequénterleave statements, aswell 5. Verification of Creol Classes

as tworelease statements, may be replaced by one. In addi-) _
tion, aninterleave preceding aelease may be omitted. The sequential language SEQ has a well-established
proof system [6, 7], from which we may derive proof rules

for Creol via the presented encoding. Due to the abbrevia-
tions introduced in Figure 2 it suffices to consider the state-
((I'o.m(e))) ==interleave; | :=somel’ | —init (#/,this,l’); mentd!o.m(e),|?(x), andawait g for a basic guard. Rules
H o= H this_s o.m(e) for combined guards may be derived from these.
The weakest liberal precondition for nondeterministic
assignment is

The Encoding.Asynchronous method calls give rise to
events recorded ifi{:

Reply statements block the object’s internal activity. There-
fore, input to the object may occur but output from the ob-
jectis not allowed. Reply statements are therefore modeled wip(y:=somex | P, Q) = Vx| (P= QY),

assuming that is disjoint fromFV[Q] — {y}. The side con- Theorem. Given an invariant {w, %), a predicate [(wp,)

dition may easily be satisfied, since variable namesome over local variables w such that F\JL] N FV[I] = 0 and a

expressions may be renamed to avoid name capture. predicateg: Datax ... x Data— Bool on local and object
Creol has object pointers but no dot notation for access-variables, then:

ing attributes, thus Hoare reasoning about pointers can be

done according to standard rules [24]. The rules for nonde- {I AL} await wait {I AL} Q)
terministic assignment and local procedure calls maintain {I AL} await @ {I AL A @(W, Wm)} 2
soundness and relative completeness of the proof system. {I AL} awaitI? {I ALAcom@H,thisl)} (3)

We first consider invocation and reply statements, and
then processor release points. Backward construction oveiThe proof goes by showing that the weakest liberal precon-

the encoding of the invocation statemélatm(e) leads to: ditions in the three cases follow from the assumptions.
wip(lto.m(e), Q) = Given a predicat® whereFV[P] C wUwn U {H}, we
VI’ h | IntReq(h) A —init (h,this,I") = Q"ﬂ may prove{ P A @} await @{P A @}, whereP need not imply

1" hi-this'>0.m(e) the invariant. This impliegP}await true {P}, which is in
accordance with the intuitive understanding of the sentence

This statement includes an assignmentfso the precon- _ o . .
await true as being identical takip.

dition captures a nondeterministic update&n expressed
by interleave, preceding the nondeterministic assignment.
By backward construction over the encodingl @fy), the 6. Parallel Composition
weakest liberal precondition for this statement becomes:

wip(1?(y), Q) = The organization of the state space in locally accessible
i Hy variables and communication by messages mimickdd-b
v | IntReq(h) 1 comph.this.1) = Qnfngnrist.comp.par cal communication history varia}tl)les aIIO\?vs a compositio>r/1al
The pr_econdit.ion captures the nondeterministic extension Ofreasoning style. In order to check that objects compose, it is
#, while leaving#/OUTinis unaltered. sufficient to compare the local histories. For this purpose,
Release PointsThe await wait sentence is modeled by a we adapt a composition method introduced by Soundara-
release, which results in the following precondition: jan [29, 30] and require that local histories arempati-

. . w9 ble. In our approach, compatibility between two histories is
wip(await wait, Q) = ¥w',h| RelRegw’,h) = QW,h checked directly by projection from a common history. The
For the weakest precondition of reply guards, we may as-local history variable/; in a SEQ class represents the locall
sume the existence of a completion message: history of an arbitrary objeat of classC, denoted : C. For
wlp(await 12, Q) = two ogjegftas;?rgg, the;(zjcal;}i;,tgnrie% a_lr_1r<lj}@ are cotm;c
; W, H posable i 0= HoANH/d = Hy. The invariant o
v, h| RelReqw’, h) A compth,this,1) = Quh the objecto must satisfy the class invarialy for some ap-
For boolean guards, the postcondition must be satisfied di-propriate values of the class attributes:

rectly if the guard is true:
wlp(await @,Q) =

. W, H ¢

if pthen Q else¥w/,h | RelReqw, h) A @l = Qy , i The substitution replaces the free occurrencegisfwith o

By backward construction, we have obtained a sound andand the existential quantifier hides the local state variables.
complete reasoning system for asynchronous method calls Two histories must agree on common events when com-
and processor release points. Felease, the proposed se- posed, which is expressed by projection from the common
mantics depends on the given invaridntin order to es- hijstory. An invariant for two composed objectando’ may
tablish completeness of the proof system relative to Creol, consequently be derived by conjunction from the invariants

|o:C(.7{) ==3w| (Ic(w, _{}{))E)his

we therefore require=- wlp(S,I) for execution path§hbe- for the two objects:
tween suspension points. Consequently, the invariantst
be a sufficient precondition to ensure th&iblds at the next loclio:c/(H) == lac(H/0) Ny (H /)

suspension point. Weakest liberal preconditions for the re-

maining statements may be derived from the abbreviationsSimilarly, invariants may be derived for sets of objects. The

given in Figure 2. compatibility requirement reduces the amount of nondeter-
Both wip and Hoare reasoning may be used in the minism of the object seen in isolation. Consequently, the en-

same proof, since provingP} S{Q} is the same as prov- coding leads to many noncomposable histories and is there-

ing P = wlp(S Q). To further emphasize invariant reason- fore not convenient for an operational semantics. However,

ing we may set up a theorem for processor release points. it suffices for partial correctness reasoning.

7. Example: Readers and Writers

This section considers a claB$Controller, which im-

where others matches all ground terms not giving any
match in the previous equations. The definitiorvdfiters
follows the same pattern. Also defifeading Writing :

plements a version of the readers and writers problem. WeSequg] — Natby:

assume given a shared databdsewhich provides two ba-
sic operationgead and write. Through interface specifica-
tions, these are assumed to be accessibl&Vd€ontroller
objects only. Clients will communicate with aRWCon-

Reading#) == #(H/this—db.read) — #(H/—this.read)
Writing(#H) == #(#/this—dbwrite) — #(H /—this.write)
The safety invariaritrelates the internal object state and the

troller object to obtain read and write access to the databaseexternally observable behavior:

RWController providesread andwrite operations to clients
and in addition four methods used to synchronize read-
ing and writing activity:OR (OpenRead)CR (CloseRead),
OW (OpenWrite) andCW (CloseWrite). A reading session
happens between invocations @R and CR and writing
between invocations addW andCW. A clients is assumed
not to terminate unless it has invok€®R and CW at least
as many times a®R and OW, respectively. To ensure fair
competition between readers and writers, invocatiorGpRf
andOW compete on equal terms for a gudrek. If the con-
dition for reading or writing is unsatisfietree is set to false
and the process is suspended. O&jSetbe a set over the
type Obj of object identifiers.

class RWController(db: DataBase)
begin
var free:Bool = true, readersDbjSet= 0, writer: Obj= null
var pr, pw:Nat=0, 0 // pending calls to db.read and db.write
with RWClient
op OR() ==await free;if writer # null then free := false;
await (writer = null); free := trufi;
readers := readets {caller}
op CR() ==await (callerc readers); readers := readgfsaller}
op OW() == await free; free := false;
await (readers # A pr = 0 A writer = null);
free := true; writer := caller
op CW() ==await (pw = 0 A writer = caller); writer := null
op read(n k: Key out x: Data) ==await (caller € readers);
pr:=pr + 1;await db.read(k; x); pr:=pr—1
op write(in k: Key, x: Data) ==await (writer = caller);
pw = pw + 1;await db.write(k,x); pw = pw -1
end

For reasoning purposes, a mythical variadlis introduced

I1: {writer} = Writers(:H)

I2: Areaders= Reader§#)

I3: A pr=ReadingH)

la: A pw= Writing(#)

. A (#readers= 0V writer = null) A#{writer} <1
: Awriter = null = pw=0

: A (writer # null = pr =0)

This invariant shows how the values of class attributes may
be expressed in terms of observable communication. In ad-
dition, the invariant impliegpr = 0V pw= 0, i.e. no read-

ing and writingactivity happens simultaneously. To illus-
trate the proposed reasoning system, we indicate some veri-
fication details for the method3R andread. Using the de-
rived Hoare rule for boolean guard3R leads to three ver-
ification conditions. However, sindds not concerned with
assignments téree anda, only one condition is relevant:

{I Awriter = null}readers.= readersJ{caller};
H = H + caller—this.OR{l }

Here, the code is extended with a mythical assignmefif to
at method terminatioriy, I3, andl, are not affected by the
assignments. For the other partd afe have to prove

readers= Reader§#) A writer = null A pw=0
= readersJ{caller} = Reader§¢# - caller<this.OR)
A (writer = null = pw= 0) A (writer # null = pr =0),

which follows directly from the definition dReaders

Using definitions in Figure 2, the inner release point in
read becomed!db.read(k); await 1?; 1?(x) for some fresh
I. Following the same line of argument as above, we may

to count the number of processes waiting on the inner guardinterpretpr as a process counter, and strengthen the inner

of OR: a :=a+1; await (writer = null Ao > 0); 0 :=a—1.
Similarly, the variable is used for the inner guard @W.
We may then prove the invariant

I (free= (@ =0AB=0))A(a+B<1),

i.e. at most one process is waiting on the inner guard¥in
and OW, andfree is false iff a process is waiting. Such a
process has priority over other invocationsg@® and OW.

In order to express a safety invariant, we define the func-
tionsReadersWriters: SedMsg — SefObj] by:

Readerée) == 0

ReadersH + caller — OR) == Reader§#) U {caller}
ReadersH + caller —CR) == Readeré#) \ {caller}
Reader§# + others) == ReadersH)

guard toawait (1? A pr > 0). Applying the derived Hoare
rules for boolean and reply guards, this results in the fol-
lowing two verification conditions:

i) {I Acaller e readerg pr:= pr+1;I!dbread(k) {I}
i) {I AcomgH ,this,l) A pr > 0}
[?2(x); pr:= pr—1;# := H caller«this.read(x){! }

For verification ofi), we use backward proof construction,
and arrive at the condition:

(I Acaller € readersh H < hA H /OUTipis = h/OUTipis)

| pr,H

pr+1,h-this - dbread(k)
This is proved by using the assumptions on the history. The
most interesting parts atg andly:

| Acaller € readersh H < hA H /OUTihis = h/OUTipis tions. In order to address the verification of larger programs,
= pr+ 1= Readingh thisgdbread(k)) tool support to discharge proof conditions should be devel-

Awriter #null = pr+1=0 oped.

The long term goal of our research is to study openness
in distributed systems, taking an object-oriented approach.
While this paper has focused on reasoning about commu-
Abstraction.In order to give a composable specification nication and concurrency aspects in the asynchronous set-
of the RWController class, we formulate the following ab- ting, we believe the language presented here offers inter-
stract invariant in terms of the communication history only: esting possibilities for reasoning in the presence of dy-

B . B . namic change. An obvious way to provide some openness
(Readerg?() = 0v Writers(3{) = 0) A #Writers(#) < 1 is to allow dynamic addition of new (sub)classes and new

It is easy to show that this follows from the class invariant. (Sub)interfaces. In our setting, this mechanism in itself does
not violate reasoning control, because established results

8. Related and Future Work still hold. Also, additional implementation claims may be
stated and proved. However, old objects may not use new

Related work.In this paper we have adapted communica- interfaces that require new methods.
tion histories, as introduced in [11], to model object com- A natural way to overcome this limitation is through a
munication in the distributed setting. History sequences re-dynamic class construct, allowing a class torbplaced
flecting message passing have also been used for specificd?y @ subclass. Thus a class may be modified by adding at-
tion and reasoning about CSP-like |anguages [13’ 29] tributes and methOdS, redeﬁning methOdS, as well as extend-
Much recent Work has addressed reasoning about Sej.ng the inheritance and implements relationships. The for-
quential object-oriented languages [18, 27, 28], covering malization of an operational semantics for such dynamic
various aspects such as inheritance, subtyping, and dynamiéPdates is currently being developed. The work presented
binding. However, reasoning about multithreaded object- in this paper is part of a larger effort to understand how
oriented |anguages iSs more Cha”enging [1, 10] For exam_to formalize and Verify the effect of runtime modifica-
p|e’ the approach of [1] uses a globa' Cooperation test totiOI’]S to open distributed SyStemS ina CompOSitional way.
deal with object communication. In addition, interference We believe that reasoning about suitably restricted runtime
freedom must be proved since several threads may executélass extensions can be done by combining compositional
concurrently in the same object. In [13], de Boer presents ahistory-based reasoning and behavioral subtyping.
sound and complete compositional Hoare logic for collec-
tions of processes (objects) running in parallel. The object_39_ Conclusion
communicate asynchronously by message passing, but in
contrast to our work they communipate through FIFO chan- The creol language proposes programming CONSstructs
nels, disallowing message overtaking. _ which aim to unite object orientation and distribution in
Olderog and Apt [26] consider transformation of pro- 5 high-level and natural way, by means of processor re-
gram statements preserving semantical equivalence. Thi§ease points and a notion of asynchronous method calls.
approach is further developed in [14]_, which introduces a |, this paper, we develop Hoare rules for local reasoning
general methodology for transformation of language con- gyt these constructs. The reasoning rules are derived in
structions into subparts of the language resulting in soundy transformational manner from a standard sequential lan-
and complete reasoning systems. The approach resemblegage with a well-known semantics and established rea-
our encoding of Creol into SEQ, but it is noncompositional goning system. The language constructs for asynchronous
in contrast to our work. In par.tlcular, extention of the trans- method calls and processor release points are encoded in
formational approach to multithreaded systems seem 10 reyne sequential sublanguage extended with nondeterministic
quire interference freedom tests. assignment. Combined with local communication histories,
Future Work.In a recent paper [22], Creol has been ex- this allows the highly nondeterministic nature of concur-
tended with constructs for multiple inheritance. It is our rent and distributed systems to be captured in the sequen-
present research goal to extend the approach to compotial language. Based on the encoding weakest liberal pre-
sitional verification presented in this paper to capture the conditions are derived, which given sufficiently strong class
combination of processor release points, multiple inheri- invariants yield sound and relative complete Hoare rules for
tance, and history-based compositionality. The combina- Creol classes, expressing partial correctness. In contrast to
tion of nondeterministic assignment and inherited class in- related approaches, the proposed local proof system is com-
variants represents a challenge for the transformational appositional, based on a compatibility requirement on local
proach, but may be solved by appropriate behavioral restric-history variables capturing observable communication.

This follows since output frorthisdoes not occur in the ex-
tension to#. Verification ofii) is similar.

References

(1]

(2]

(3]

[4

—_—

(5]

[6

—_

[7

—_—

(8]

9]

(10]

(11]

(12]
(13]

(14]

(15]

(16]

(17]

E. AbrahAm-Mumm, F. S. de Boer, W.-P. de Roever, and
M. Steffen. Verification for Java’s reentrant multithreading
concept. Inintl. Conf. on Foundations of Software Science
and Computation Structures (FOSSACS,0RINCS 2303,
pages 5-20. Springer, Apr. 2002.

G. A. Agha. Abstracting interaction patterns: A program-
ming paradigm for open distributed systems. In E. Najm
and J.-B. Stefani, editor®roc. 1st IFIP Intl. Conf. on For-
mal Methods for Open Object-based Distributed Systems
(FMOODS'96) pages 135-153, 1996. Chapman & Hall.

G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott.
A foundation for actor computationJournal of Functional
Programming 7(1):1-72, Jan. 1997.

B. Alpern and F. B. Schneider. Defining livenedaforma-
tion Processing Letter21(4):181-185, Oct. 1985.

G. R. Andrews. Concurrent Programming: Principles and
Practice Addison-Wesley, Reading, Mass., 1991.

K. R. Apt. Ten years of Hoare’s logic: A survey — Part I.
ACM Transactions on Programming Languages and Sys-
tems 3(4):431-483, Oct. 1981.

K. R. Apt. Ten years of Hoare’s logic: A survey — Part Il:
Nondeterminism. Theoretical Computer Scienc@8(1—
2):83-109, Jan. 1984.

N. Benton, L. Cardelli, and C. Fournet. Modern con-
currency abstractions for iC In B. Magnusson, editor,
Proc. 16th European Conf. on Object-Oriented Program-
ming (ECOOP’02) LNCS 2374, pages 415-440. Springer,
2002.

P. Brinch Hansen. Java’s insecure parallelis&’CM SIG-
PLAN Notices34(4):38-45, Apr. 1999.

P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-
based structural operational semantics of multi-threaded
Java. In J. Alves-Foss, editdfprmal Syntax and Seman-
tics of Java LNCS 1523, pages 157—-200. Springer, 1999.
0.-J. Dahl. Can program proving be made practical?
M. Amirchahy and D. Néel, editord,es Fondements de
la Programmation pages 57-114. Institut de Recherche
d’'Informatique et d’Automatique, Toulouse, Dec. 1977.
O.-J. Dahl.Verifiable ProgrammingPrentice Hall, 1992.

F. S. de Boer. A Hoare logic for dynamic networks of asyn-
chronously communicating deterministic process&seo-
retical Computer Scien¢c@74:3-41, 2002.

F. S. de Boer and C. Pierik. How to Cook a Complete Hoare
Logic for Your Pet OO Language. IRormal Methods for
Components and Objects (FMCO’Q3)NCS 3188, pages
111-133. Springer, 2004.

E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of program&£ommunications of the ACM
18(8):453-457, Aug. 1975.

J. Gosling, B. Joy, G. L. Steele, and G. Brachhe Java lan-
guage specificatianJava series. Addison-Wesley, Reading,
Mass., 2nd edition, 2000.

C. A. R. HoareCommunicating Sequential Procesgesen-
tice Hall, 1985.

In

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

M. Huisman and B. Jacobs. Java program verification via
a Hoare logic with abrupt termination. In T. Maibaum,
editor, Fundamental Approaches to Software Engineering
(FASE’00) LNCS 1783, pages 284—303. Springer, 2000.
International Telecommunication Union. Open Distributed
Processing - Reference Model parts 1-4. Technical report,
ISO/IEC, Geneva, July 1995.

E. B. Johnsen and O. Owe. An asynchronous communi-
cation model for distributed concurrent objects. Rroc.
2nd IEEE Intl. Conf. on Software Engineering and Formal
Methods (SEFM’04)pages 188—197. IEEE Computer Soci-
ety Press, Sept. 2004.

E. B. Johnsen and O. Owe. Object-oriented specification and
open distributed systems. In O. Owe, S. Krogdahl, and T. Ly-
che, editorsFrom Object-Orientation to Formal Methods:
Essays in Memory of Ole-Johan DatiNCS 2635, pages
137-164. Springer, 2004.

E. B. Johnsen and O. Owe. Inheritance in the presence
of asynchronous method calls. Rroc. 38th Hawaii Intl.
Conf. on System Sciences (HICSS/OBEE Computer So-
ciety Press, Jan. 2005.

C. B. Jones. Development Methods for Computer Pro-
grammes Including a Notion of Interferencé’hD thesis,
Oxford University, UK, June 1981.

J. M. Morris. A general axiom of assigment. In M. Broy and
G. Schmidt, editorsTheoretical Foundations of Program-
ming Methodologypages 25-34. Reidel, 1982.

O. Nierstrasz. A tour of Hybrid — A language for program-
ming with active objects. In D. Mandrioli and B. Meyer,
editors,Advances in Object-Oriented Software Engineering
pages 167-182. Prentice Hall, 1992.

E.-R. Olderog and K. P. Apt. Fairness in parallel programs:
The transformational approachCM Transactions on Pro-
gramming Languaged.0(3):420-455, July 1988.

A. Poetzsch-Heffter and P. Miiller. A programming logic for
sequential Java. In S. D. Swierstra, editburopean Symo-
sium on Programming (ESOP’9ANCS 1576, pages 162—
176. Springer, 1999.

B. Reus, M. Wirsing, and R. Hennicker. A hoare calculus for
verifying java realizations of OCL-constrained design mod-
els. In H. Hussmann, editokundamental Approaches to
Software Engineering (FASE'01)NCS 2029, pages 300—
317. Springer, 2001.

N. Soundararajan. Axiomatic semantics of communicating
sequential processesACM Transactions on Programming
Languages and Systen4):647-662, Oct. 1984.

N. Soundararajan. A proof technique for parallel programs.
Theoretical Computer Sciencgl(1-2):13-29, May 1984.

A. Yonezawa.ABCL: An Object-Oriented Concurrent Sys-
tem Series in Computer Systems. The MIT Press, 1990.

